1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/desc.h>
50 #include <asm/proto.h>
51 #include <asm/acpi.h>
52 #include <asm/dma.h>
53 #include <asm/timer.h>
54 #include <asm/i8259.h>
55 #include <asm/nmi.h>
56 #include <asm/msidef.h>
57 #include <asm/hypertransport.h>
58 #include <asm/setup.h>
59 #include <asm/irq_remapping.h>
60 #include <asm/hpet.h>
61 #include <asm/uv/uv_hub.h>
62 #include <asm/uv/uv_irq.h>
63
64 #include <mach_ipi.h>
65 #include <mach_apic.h>
66 #include <mach_apicdef.h>
67
68 #define __apicdebuginit(type) static type __init
69
70 /*
71 * Is the SiS APIC rmw bug present ?
72 * -1 = don't know, 0 = no, 1 = yes
73 */
74 int sis_apic_bug = -1;
75
76 static DEFINE_SPINLOCK(ioapic_lock);
77 static DEFINE_SPINLOCK(vector_lock);
78
79 /*
80 * # of IRQ routing registers
81 */
82 int nr_ioapic_registers[MAX_IO_APICS];
83
84 /* I/O APIC entries */
85 struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87
88 /* MP IRQ source entries */
89 struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
90
91 /* # of MP IRQ source entries */
92 int mp_irq_entries;
93
94 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
95 int mp_bus_id_to_type[MAX_MP_BUSSES];
96 #endif
97
98 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
99
100 int skip_ioapic_setup;
101
parse_noapic(char * str)102 static int __init parse_noapic(char *str)
103 {
104 /* disable IO-APIC */
105 disable_ioapic_setup();
106 return 0;
107 }
108 early_param("noapic", parse_noapic);
109
110 struct irq_pin_list;
111
112 /*
113 * This is performance-critical, we want to do it O(1)
114 *
115 * the indexing order of this array favors 1:1 mappings
116 * between pins and IRQs.
117 */
118
119 struct irq_pin_list {
120 int apic, pin;
121 struct irq_pin_list *next;
122 };
123
get_one_free_irq_2_pin(int cpu)124 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
125 {
126 struct irq_pin_list *pin;
127 int node;
128
129 node = cpu_to_node(cpu);
130
131 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
132
133 return pin;
134 }
135
136 struct irq_cfg {
137 struct irq_pin_list *irq_2_pin;
138 cpumask_var_t domain;
139 cpumask_var_t old_domain;
140 unsigned move_cleanup_count;
141 u8 vector;
142 u8 move_in_progress : 1;
143 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
144 u8 move_desc_pending : 1;
145 #endif
146 };
147
148 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
149 #ifdef CONFIG_SPARSE_IRQ
150 static struct irq_cfg irq_cfgx[] = {
151 #else
152 static struct irq_cfg irq_cfgx[NR_IRQS] = {
153 #endif
154 [0] = { .vector = IRQ0_VECTOR, },
155 [1] = { .vector = IRQ1_VECTOR, },
156 [2] = { .vector = IRQ2_VECTOR, },
157 [3] = { .vector = IRQ3_VECTOR, },
158 [4] = { .vector = IRQ4_VECTOR, },
159 [5] = { .vector = IRQ5_VECTOR, },
160 [6] = { .vector = IRQ6_VECTOR, },
161 [7] = { .vector = IRQ7_VECTOR, },
162 [8] = { .vector = IRQ8_VECTOR, },
163 [9] = { .vector = IRQ9_VECTOR, },
164 [10] = { .vector = IRQ10_VECTOR, },
165 [11] = { .vector = IRQ11_VECTOR, },
166 [12] = { .vector = IRQ12_VECTOR, },
167 [13] = { .vector = IRQ13_VECTOR, },
168 [14] = { .vector = IRQ14_VECTOR, },
169 [15] = { .vector = IRQ15_VECTOR, },
170 };
171
arch_early_irq_init(void)172 int __init arch_early_irq_init(void)
173 {
174 struct irq_cfg *cfg;
175 struct irq_desc *desc;
176 int count;
177 int i;
178
179 cfg = irq_cfgx;
180 count = ARRAY_SIZE(irq_cfgx);
181
182 for (i = 0; i < count; i++) {
183 desc = irq_to_desc(i);
184 desc->chip_data = &cfg[i];
185 alloc_bootmem_cpumask_var(&cfg[i].domain);
186 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
187 if (i < NR_IRQS_LEGACY)
188 cpumask_setall(cfg[i].domain);
189 }
190
191 return 0;
192 }
193
194 #ifdef CONFIG_SPARSE_IRQ
irq_cfg(unsigned int irq)195 static struct irq_cfg *irq_cfg(unsigned int irq)
196 {
197 struct irq_cfg *cfg = NULL;
198 struct irq_desc *desc;
199
200 desc = irq_to_desc(irq);
201 if (desc)
202 cfg = desc->chip_data;
203
204 return cfg;
205 }
206
get_one_free_irq_cfg(int cpu)207 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
208 {
209 struct irq_cfg *cfg;
210 int node;
211
212 node = cpu_to_node(cpu);
213
214 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
215 if (cfg) {
216 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
217 kfree(cfg);
218 cfg = NULL;
219 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
220 GFP_ATOMIC, node)) {
221 free_cpumask_var(cfg->domain);
222 kfree(cfg);
223 cfg = NULL;
224 } else {
225 cpumask_clear(cfg->domain);
226 cpumask_clear(cfg->old_domain);
227 }
228 }
229
230 return cfg;
231 }
232
arch_init_chip_data(struct irq_desc * desc,int cpu)233 int arch_init_chip_data(struct irq_desc *desc, int cpu)
234 {
235 struct irq_cfg *cfg;
236
237 cfg = desc->chip_data;
238 if (!cfg) {
239 desc->chip_data = get_one_free_irq_cfg(cpu);
240 if (!desc->chip_data) {
241 printk(KERN_ERR "can not alloc irq_cfg\n");
242 BUG_ON(1);
243 }
244 }
245
246 return 0;
247 }
248
249 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
250
251 static void
init_copy_irq_2_pin(struct irq_cfg * old_cfg,struct irq_cfg * cfg,int cpu)252 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
253 {
254 struct irq_pin_list *old_entry, *head, *tail, *entry;
255
256 cfg->irq_2_pin = NULL;
257 old_entry = old_cfg->irq_2_pin;
258 if (!old_entry)
259 return;
260
261 entry = get_one_free_irq_2_pin(cpu);
262 if (!entry)
263 return;
264
265 entry->apic = old_entry->apic;
266 entry->pin = old_entry->pin;
267 head = entry;
268 tail = entry;
269 old_entry = old_entry->next;
270 while (old_entry) {
271 entry = get_one_free_irq_2_pin(cpu);
272 if (!entry) {
273 entry = head;
274 while (entry) {
275 head = entry->next;
276 kfree(entry);
277 entry = head;
278 }
279 /* still use the old one */
280 return;
281 }
282 entry->apic = old_entry->apic;
283 entry->pin = old_entry->pin;
284 tail->next = entry;
285 tail = entry;
286 old_entry = old_entry->next;
287 }
288
289 tail->next = NULL;
290 cfg->irq_2_pin = head;
291 }
292
free_irq_2_pin(struct irq_cfg * old_cfg,struct irq_cfg * cfg)293 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
294 {
295 struct irq_pin_list *entry, *next;
296
297 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
298 return;
299
300 entry = old_cfg->irq_2_pin;
301
302 while (entry) {
303 next = entry->next;
304 kfree(entry);
305 entry = next;
306 }
307 old_cfg->irq_2_pin = NULL;
308 }
309
arch_init_copy_chip_data(struct irq_desc * old_desc,struct irq_desc * desc,int cpu)310 void arch_init_copy_chip_data(struct irq_desc *old_desc,
311 struct irq_desc *desc, int cpu)
312 {
313 struct irq_cfg *cfg;
314 struct irq_cfg *old_cfg;
315
316 cfg = get_one_free_irq_cfg(cpu);
317
318 if (!cfg)
319 return;
320
321 desc->chip_data = cfg;
322
323 old_cfg = old_desc->chip_data;
324
325 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
326
327 init_copy_irq_2_pin(old_cfg, cfg, cpu);
328 }
329
free_irq_cfg(struct irq_cfg * old_cfg)330 static void free_irq_cfg(struct irq_cfg *old_cfg)
331 {
332 kfree(old_cfg);
333 }
334
arch_free_chip_data(struct irq_desc * old_desc,struct irq_desc * desc)335 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
336 {
337 struct irq_cfg *old_cfg, *cfg;
338
339 old_cfg = old_desc->chip_data;
340 cfg = desc->chip_data;
341
342 if (old_cfg == cfg)
343 return;
344
345 if (old_cfg) {
346 free_irq_2_pin(old_cfg, cfg);
347 free_irq_cfg(old_cfg);
348 old_desc->chip_data = NULL;
349 }
350 }
351
352 static void
set_extra_move_desc(struct irq_desc * desc,const struct cpumask * mask)353 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
354 {
355 struct irq_cfg *cfg = desc->chip_data;
356
357 if (!cfg->move_in_progress) {
358 /* it means that domain is not changed */
359 if (!cpumask_intersects(&desc->affinity, mask))
360 cfg->move_desc_pending = 1;
361 }
362 }
363 #endif
364
365 #else
irq_cfg(unsigned int irq)366 static struct irq_cfg *irq_cfg(unsigned int irq)
367 {
368 return irq < nr_irqs ? irq_cfgx + irq : NULL;
369 }
370
371 #endif
372
373 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
374 static inline void
set_extra_move_desc(struct irq_desc * desc,const struct cpumask * mask)375 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
376 {
377 }
378 #endif
379
380 struct io_apic {
381 unsigned int index;
382 unsigned int unused[3];
383 unsigned int data;
384 };
385
io_apic_base(int idx)386 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
387 {
388 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
389 + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
390 }
391
io_apic_read(unsigned int apic,unsigned int reg)392 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
393 {
394 struct io_apic __iomem *io_apic = io_apic_base(apic);
395 writel(reg, &io_apic->index);
396 return readl(&io_apic->data);
397 }
398
io_apic_write(unsigned int apic,unsigned int reg,unsigned int value)399 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
400 {
401 struct io_apic __iomem *io_apic = io_apic_base(apic);
402 writel(reg, &io_apic->index);
403 writel(value, &io_apic->data);
404 }
405
406 /*
407 * Re-write a value: to be used for read-modify-write
408 * cycles where the read already set up the index register.
409 *
410 * Older SiS APIC requires we rewrite the index register
411 */
io_apic_modify(unsigned int apic,unsigned int reg,unsigned int value)412 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
413 {
414 struct io_apic __iomem *io_apic = io_apic_base(apic);
415
416 if (sis_apic_bug)
417 writel(reg, &io_apic->index);
418 writel(value, &io_apic->data);
419 }
420
io_apic_level_ack_pending(struct irq_cfg * cfg)421 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
422 {
423 struct irq_pin_list *entry;
424 unsigned long flags;
425
426 spin_lock_irqsave(&ioapic_lock, flags);
427 entry = cfg->irq_2_pin;
428 for (;;) {
429 unsigned int reg;
430 int pin;
431
432 if (!entry)
433 break;
434 pin = entry->pin;
435 reg = io_apic_read(entry->apic, 0x10 + pin*2);
436 /* Is the remote IRR bit set? */
437 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
438 spin_unlock_irqrestore(&ioapic_lock, flags);
439 return true;
440 }
441 if (!entry->next)
442 break;
443 entry = entry->next;
444 }
445 spin_unlock_irqrestore(&ioapic_lock, flags);
446
447 return false;
448 }
449
450 union entry_union {
451 struct { u32 w1, w2; };
452 struct IO_APIC_route_entry entry;
453 };
454
ioapic_read_entry(int apic,int pin)455 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
456 {
457 union entry_union eu;
458 unsigned long flags;
459 spin_lock_irqsave(&ioapic_lock, flags);
460 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
461 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
462 spin_unlock_irqrestore(&ioapic_lock, flags);
463 return eu.entry;
464 }
465
466 /*
467 * When we write a new IO APIC routing entry, we need to write the high
468 * word first! If the mask bit in the low word is clear, we will enable
469 * the interrupt, and we need to make sure the entry is fully populated
470 * before that happens.
471 */
472 static void
__ioapic_write_entry(int apic,int pin,struct IO_APIC_route_entry e)473 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
474 {
475 union entry_union eu;
476 eu.entry = e;
477 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
478 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
479 }
480
ioapic_write_entry(int apic,int pin,struct IO_APIC_route_entry e)481 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
482 {
483 unsigned long flags;
484 spin_lock_irqsave(&ioapic_lock, flags);
485 __ioapic_write_entry(apic, pin, e);
486 spin_unlock_irqrestore(&ioapic_lock, flags);
487 }
488
489 /*
490 * When we mask an IO APIC routing entry, we need to write the low
491 * word first, in order to set the mask bit before we change the
492 * high bits!
493 */
ioapic_mask_entry(int apic,int pin)494 static void ioapic_mask_entry(int apic, int pin)
495 {
496 unsigned long flags;
497 union entry_union eu = { .entry.mask = 1 };
498
499 spin_lock_irqsave(&ioapic_lock, flags);
500 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
501 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
502 spin_unlock_irqrestore(&ioapic_lock, flags);
503 }
504
505 #ifdef CONFIG_SMP
send_cleanup_vector(struct irq_cfg * cfg)506 static void send_cleanup_vector(struct irq_cfg *cfg)
507 {
508 cpumask_var_t cleanup_mask;
509
510 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
511 unsigned int i;
512 cfg->move_cleanup_count = 0;
513 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
514 cfg->move_cleanup_count++;
515 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
516 send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
517 } else {
518 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
519 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
520 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
521 free_cpumask_var(cleanup_mask);
522 }
523 cfg->move_in_progress = 0;
524 }
525
__target_IO_APIC_irq(unsigned int irq,unsigned int dest,struct irq_cfg * cfg)526 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
527 {
528 int apic, pin;
529 struct irq_pin_list *entry;
530 u8 vector = cfg->vector;
531
532 entry = cfg->irq_2_pin;
533 for (;;) {
534 unsigned int reg;
535
536 if (!entry)
537 break;
538
539 apic = entry->apic;
540 pin = entry->pin;
541 #ifdef CONFIG_INTR_REMAP
542 /*
543 * With interrupt-remapping, destination information comes
544 * from interrupt-remapping table entry.
545 */
546 if (!irq_remapped(irq))
547 io_apic_write(apic, 0x11 + pin*2, dest);
548 #else
549 io_apic_write(apic, 0x11 + pin*2, dest);
550 #endif
551 reg = io_apic_read(apic, 0x10 + pin*2);
552 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
553 reg |= vector;
554 io_apic_modify(apic, 0x10 + pin*2, reg);
555 if (!entry->next)
556 break;
557 entry = entry->next;
558 }
559 }
560
561 static int
562 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
563
564 /*
565 * Either sets desc->affinity to a valid value, and returns cpu_mask_to_apicid
566 * of that, or returns BAD_APICID and leaves desc->affinity untouched.
567 */
568 static unsigned int
set_desc_affinity(struct irq_desc * desc,const struct cpumask * mask)569 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
570 {
571 struct irq_cfg *cfg;
572 unsigned int irq;
573
574 if (!cpumask_intersects(mask, cpu_online_mask))
575 return BAD_APICID;
576
577 irq = desc->irq;
578 cfg = desc->chip_data;
579 if (assign_irq_vector(irq, cfg, mask))
580 return BAD_APICID;
581
582 cpumask_and(&desc->affinity, cfg->domain, mask);
583 set_extra_move_desc(desc, mask);
584 return cpu_mask_to_apicid_and(&desc->affinity, cpu_online_mask);
585 }
586
587 static void
set_ioapic_affinity_irq_desc(struct irq_desc * desc,const struct cpumask * mask)588 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
589 {
590 struct irq_cfg *cfg;
591 unsigned long flags;
592 unsigned int dest;
593 unsigned int irq;
594
595 irq = desc->irq;
596 cfg = desc->chip_data;
597
598 spin_lock_irqsave(&ioapic_lock, flags);
599 dest = set_desc_affinity(desc, mask);
600 if (dest != BAD_APICID) {
601 /* Only the high 8 bits are valid. */
602 dest = SET_APIC_LOGICAL_ID(dest);
603 __target_IO_APIC_irq(irq, dest, cfg);
604 }
605 spin_unlock_irqrestore(&ioapic_lock, flags);
606 }
607
608 static void
set_ioapic_affinity_irq(unsigned int irq,const struct cpumask * mask)609 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
610 {
611 struct irq_desc *desc;
612
613 desc = irq_to_desc(irq);
614
615 set_ioapic_affinity_irq_desc(desc, mask);
616 }
617 #endif /* CONFIG_SMP */
618
619 /*
620 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
621 * shared ISA-space IRQs, so we have to support them. We are super
622 * fast in the common case, and fast for shared ISA-space IRQs.
623 */
add_pin_to_irq_cpu(struct irq_cfg * cfg,int cpu,int apic,int pin)624 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
625 {
626 struct irq_pin_list *entry;
627
628 entry = cfg->irq_2_pin;
629 if (!entry) {
630 entry = get_one_free_irq_2_pin(cpu);
631 if (!entry) {
632 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
633 apic, pin);
634 return;
635 }
636 cfg->irq_2_pin = entry;
637 entry->apic = apic;
638 entry->pin = pin;
639 return;
640 }
641
642 while (entry->next) {
643 /* not again, please */
644 if (entry->apic == apic && entry->pin == pin)
645 return;
646
647 entry = entry->next;
648 }
649
650 entry->next = get_one_free_irq_2_pin(cpu);
651 entry = entry->next;
652 entry->apic = apic;
653 entry->pin = pin;
654 }
655
656 /*
657 * Reroute an IRQ to a different pin.
658 */
replace_pin_at_irq_cpu(struct irq_cfg * cfg,int cpu,int oldapic,int oldpin,int newapic,int newpin)659 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
660 int oldapic, int oldpin,
661 int newapic, int newpin)
662 {
663 struct irq_pin_list *entry = cfg->irq_2_pin;
664 int replaced = 0;
665
666 while (entry) {
667 if (entry->apic == oldapic && entry->pin == oldpin) {
668 entry->apic = newapic;
669 entry->pin = newpin;
670 replaced = 1;
671 /* every one is different, right? */
672 break;
673 }
674 entry = entry->next;
675 }
676
677 /* why? call replace before add? */
678 if (!replaced)
679 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
680 }
681
io_apic_modify_irq(struct irq_cfg * cfg,int mask_and,int mask_or,void (* final)(struct irq_pin_list * entry))682 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
683 int mask_and, int mask_or,
684 void (*final)(struct irq_pin_list *entry))
685 {
686 int pin;
687 struct irq_pin_list *entry;
688
689 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
690 unsigned int reg;
691 pin = entry->pin;
692 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
693 reg &= mask_and;
694 reg |= mask_or;
695 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
696 if (final)
697 final(entry);
698 }
699 }
700
__unmask_IO_APIC_irq(struct irq_cfg * cfg)701 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
702 {
703 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
704 }
705
706 #ifdef CONFIG_X86_64
io_apic_sync(struct irq_pin_list * entry)707 static void io_apic_sync(struct irq_pin_list *entry)
708 {
709 /*
710 * Synchronize the IO-APIC and the CPU by doing
711 * a dummy read from the IO-APIC
712 */
713 struct io_apic __iomem *io_apic;
714 io_apic = io_apic_base(entry->apic);
715 readl(&io_apic->data);
716 }
717
__mask_IO_APIC_irq(struct irq_cfg * cfg)718 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
719 {
720 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
721 }
722 #else /* CONFIG_X86_32 */
__mask_IO_APIC_irq(struct irq_cfg * cfg)723 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
724 {
725 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
726 }
727
__mask_and_edge_IO_APIC_irq(struct irq_cfg * cfg)728 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
729 {
730 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
731 IO_APIC_REDIR_MASKED, NULL);
732 }
733
__unmask_and_level_IO_APIC_irq(struct irq_cfg * cfg)734 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
735 {
736 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
737 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
738 }
739 #endif /* CONFIG_X86_32 */
740
mask_IO_APIC_irq_desc(struct irq_desc * desc)741 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
742 {
743 struct irq_cfg *cfg = desc->chip_data;
744 unsigned long flags;
745
746 BUG_ON(!cfg);
747
748 spin_lock_irqsave(&ioapic_lock, flags);
749 __mask_IO_APIC_irq(cfg);
750 spin_unlock_irqrestore(&ioapic_lock, flags);
751 }
752
unmask_IO_APIC_irq_desc(struct irq_desc * desc)753 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
754 {
755 struct irq_cfg *cfg = desc->chip_data;
756 unsigned long flags;
757
758 spin_lock_irqsave(&ioapic_lock, flags);
759 __unmask_IO_APIC_irq(cfg);
760 spin_unlock_irqrestore(&ioapic_lock, flags);
761 }
762
mask_IO_APIC_irq(unsigned int irq)763 static void mask_IO_APIC_irq(unsigned int irq)
764 {
765 struct irq_desc *desc = irq_to_desc(irq);
766
767 mask_IO_APIC_irq_desc(desc);
768 }
unmask_IO_APIC_irq(unsigned int irq)769 static void unmask_IO_APIC_irq(unsigned int irq)
770 {
771 struct irq_desc *desc = irq_to_desc(irq);
772
773 unmask_IO_APIC_irq_desc(desc);
774 }
775
clear_IO_APIC_pin(unsigned int apic,unsigned int pin)776 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
777 {
778 struct IO_APIC_route_entry entry;
779
780 /* Check delivery_mode to be sure we're not clearing an SMI pin */
781 entry = ioapic_read_entry(apic, pin);
782 if (entry.delivery_mode == dest_SMI)
783 return;
784 /*
785 * Disable it in the IO-APIC irq-routing table:
786 */
787 ioapic_mask_entry(apic, pin);
788 }
789
clear_IO_APIC(void)790 static void clear_IO_APIC (void)
791 {
792 int apic, pin;
793
794 for (apic = 0; apic < nr_ioapics; apic++)
795 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
796 clear_IO_APIC_pin(apic, pin);
797 }
798
799 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
send_IPI_self(int vector)800 void send_IPI_self(int vector)
801 {
802 unsigned int cfg;
803
804 /*
805 * Wait for idle.
806 */
807 apic_wait_icr_idle();
808 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | APIC_DEST_LOGICAL;
809 /*
810 * Send the IPI. The write to APIC_ICR fires this off.
811 */
812 apic_write(APIC_ICR, cfg);
813 }
814 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
815
816 #ifdef CONFIG_X86_32
817 /*
818 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
819 * specific CPU-side IRQs.
820 */
821
822 #define MAX_PIRQS 8
823 static int pirq_entries [MAX_PIRQS];
824 static int pirqs_enabled;
825
ioapic_pirq_setup(char * str)826 static int __init ioapic_pirq_setup(char *str)
827 {
828 int i, max;
829 int ints[MAX_PIRQS+1];
830
831 get_options(str, ARRAY_SIZE(ints), ints);
832
833 for (i = 0; i < MAX_PIRQS; i++)
834 pirq_entries[i] = -1;
835
836 pirqs_enabled = 1;
837 apic_printk(APIC_VERBOSE, KERN_INFO
838 "PIRQ redirection, working around broken MP-BIOS.\n");
839 max = MAX_PIRQS;
840 if (ints[0] < MAX_PIRQS)
841 max = ints[0];
842
843 for (i = 0; i < max; i++) {
844 apic_printk(APIC_VERBOSE, KERN_DEBUG
845 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
846 /*
847 * PIRQs are mapped upside down, usually.
848 */
849 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
850 }
851 return 1;
852 }
853
854 __setup("pirq=", ioapic_pirq_setup);
855 #endif /* CONFIG_X86_32 */
856
857 #ifdef CONFIG_INTR_REMAP
858 /* I/O APIC RTE contents at the OS boot up */
859 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
860
861 /*
862 * Saves and masks all the unmasked IO-APIC RTE's
863 */
save_mask_IO_APIC_setup(void)864 int save_mask_IO_APIC_setup(void)
865 {
866 union IO_APIC_reg_01 reg_01;
867 unsigned long flags;
868 int apic, pin;
869
870 /*
871 * The number of IO-APIC IRQ registers (== #pins):
872 */
873 for (apic = 0; apic < nr_ioapics; apic++) {
874 spin_lock_irqsave(&ioapic_lock, flags);
875 reg_01.raw = io_apic_read(apic, 1);
876 spin_unlock_irqrestore(&ioapic_lock, flags);
877 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
878 }
879
880 for (apic = 0; apic < nr_ioapics; apic++) {
881 early_ioapic_entries[apic] =
882 kzalloc(sizeof(struct IO_APIC_route_entry) *
883 nr_ioapic_registers[apic], GFP_KERNEL);
884 if (!early_ioapic_entries[apic])
885 goto nomem;
886 }
887
888 for (apic = 0; apic < nr_ioapics; apic++)
889 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
890 struct IO_APIC_route_entry entry;
891
892 entry = early_ioapic_entries[apic][pin] =
893 ioapic_read_entry(apic, pin);
894 if (!entry.mask) {
895 entry.mask = 1;
896 ioapic_write_entry(apic, pin, entry);
897 }
898 }
899
900 return 0;
901
902 nomem:
903 while (apic >= 0)
904 kfree(early_ioapic_entries[apic--]);
905 memset(early_ioapic_entries, 0,
906 ARRAY_SIZE(early_ioapic_entries));
907
908 return -ENOMEM;
909 }
910
restore_IO_APIC_setup(void)911 void restore_IO_APIC_setup(void)
912 {
913 int apic, pin;
914
915 for (apic = 0; apic < nr_ioapics; apic++) {
916 if (!early_ioapic_entries[apic])
917 break;
918 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
919 ioapic_write_entry(apic, pin,
920 early_ioapic_entries[apic][pin]);
921 kfree(early_ioapic_entries[apic]);
922 early_ioapic_entries[apic] = NULL;
923 }
924 }
925
reinit_intr_remapped_IO_APIC(int intr_remapping)926 void reinit_intr_remapped_IO_APIC(int intr_remapping)
927 {
928 /*
929 * for now plain restore of previous settings.
930 * TBD: In the case of OS enabling interrupt-remapping,
931 * IO-APIC RTE's need to be setup to point to interrupt-remapping
932 * table entries. for now, do a plain restore, and wait for
933 * the setup_IO_APIC_irqs() to do proper initialization.
934 */
935 restore_IO_APIC_setup();
936 }
937 #endif
938
939 /*
940 * Find the IRQ entry number of a certain pin.
941 */
find_irq_entry(int apic,int pin,int type)942 static int find_irq_entry(int apic, int pin, int type)
943 {
944 int i;
945
946 for (i = 0; i < mp_irq_entries; i++)
947 if (mp_irqs[i].mp_irqtype == type &&
948 (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
949 mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
950 mp_irqs[i].mp_dstirq == pin)
951 return i;
952
953 return -1;
954 }
955
956 /*
957 * Find the pin to which IRQ[irq] (ISA) is connected
958 */
find_isa_irq_pin(int irq,int type)959 static int __init find_isa_irq_pin(int irq, int type)
960 {
961 int i;
962
963 for (i = 0; i < mp_irq_entries; i++) {
964 int lbus = mp_irqs[i].mp_srcbus;
965
966 if (test_bit(lbus, mp_bus_not_pci) &&
967 (mp_irqs[i].mp_irqtype == type) &&
968 (mp_irqs[i].mp_srcbusirq == irq))
969
970 return mp_irqs[i].mp_dstirq;
971 }
972 return -1;
973 }
974
find_isa_irq_apic(int irq,int type)975 static int __init find_isa_irq_apic(int irq, int type)
976 {
977 int i;
978
979 for (i = 0; i < mp_irq_entries; i++) {
980 int lbus = mp_irqs[i].mp_srcbus;
981
982 if (test_bit(lbus, mp_bus_not_pci) &&
983 (mp_irqs[i].mp_irqtype == type) &&
984 (mp_irqs[i].mp_srcbusirq == irq))
985 break;
986 }
987 if (i < mp_irq_entries) {
988 int apic;
989 for(apic = 0; apic < nr_ioapics; apic++) {
990 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
991 return apic;
992 }
993 }
994
995 return -1;
996 }
997
998 /*
999 * Find a specific PCI IRQ entry.
1000 * Not an __init, possibly needed by modules
1001 */
1002 static int pin_2_irq(int idx, int apic, int pin);
1003
IO_APIC_get_PCI_irq_vector(int bus,int slot,int pin)1004 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1005 {
1006 int apic, i, best_guess = -1;
1007
1008 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1009 bus, slot, pin);
1010 if (test_bit(bus, mp_bus_not_pci)) {
1011 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1012 return -1;
1013 }
1014 for (i = 0; i < mp_irq_entries; i++) {
1015 int lbus = mp_irqs[i].mp_srcbus;
1016
1017 for (apic = 0; apic < nr_ioapics; apic++)
1018 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
1019 mp_irqs[i].mp_dstapic == MP_APIC_ALL)
1020 break;
1021
1022 if (!test_bit(lbus, mp_bus_not_pci) &&
1023 !mp_irqs[i].mp_irqtype &&
1024 (bus == lbus) &&
1025 (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
1026 int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
1027
1028 if (!(apic || IO_APIC_IRQ(irq)))
1029 continue;
1030
1031 if (pin == (mp_irqs[i].mp_srcbusirq & 3))
1032 return irq;
1033 /*
1034 * Use the first all-but-pin matching entry as a
1035 * best-guess fuzzy result for broken mptables.
1036 */
1037 if (best_guess < 0)
1038 best_guess = irq;
1039 }
1040 }
1041 return best_guess;
1042 }
1043
1044 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1045
1046 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1047 /*
1048 * EISA Edge/Level control register, ELCR
1049 */
EISA_ELCR(unsigned int irq)1050 static int EISA_ELCR(unsigned int irq)
1051 {
1052 if (irq < NR_IRQS_LEGACY) {
1053 unsigned int port = 0x4d0 + (irq >> 3);
1054 return (inb(port) >> (irq & 7)) & 1;
1055 }
1056 apic_printk(APIC_VERBOSE, KERN_INFO
1057 "Broken MPtable reports ISA irq %d\n", irq);
1058 return 0;
1059 }
1060
1061 #endif
1062
1063 /* ISA interrupts are always polarity zero edge triggered,
1064 * when listed as conforming in the MP table. */
1065
1066 #define default_ISA_trigger(idx) (0)
1067 #define default_ISA_polarity(idx) (0)
1068
1069 /* EISA interrupts are always polarity zero and can be edge or level
1070 * trigger depending on the ELCR value. If an interrupt is listed as
1071 * EISA conforming in the MP table, that means its trigger type must
1072 * be read in from the ELCR */
1073
1074 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].mp_srcbusirq))
1075 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1076
1077 /* PCI interrupts are always polarity one level triggered,
1078 * when listed as conforming in the MP table. */
1079
1080 #define default_PCI_trigger(idx) (1)
1081 #define default_PCI_polarity(idx) (1)
1082
1083 /* MCA interrupts are always polarity zero level triggered,
1084 * when listed as conforming in the MP table. */
1085
1086 #define default_MCA_trigger(idx) (1)
1087 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1088
MPBIOS_polarity(int idx)1089 static int MPBIOS_polarity(int idx)
1090 {
1091 int bus = mp_irqs[idx].mp_srcbus;
1092 int polarity;
1093
1094 /*
1095 * Determine IRQ line polarity (high active or low active):
1096 */
1097 switch (mp_irqs[idx].mp_irqflag & 3)
1098 {
1099 case 0: /* conforms, ie. bus-type dependent polarity */
1100 if (test_bit(bus, mp_bus_not_pci))
1101 polarity = default_ISA_polarity(idx);
1102 else
1103 polarity = default_PCI_polarity(idx);
1104 break;
1105 case 1: /* high active */
1106 {
1107 polarity = 0;
1108 break;
1109 }
1110 case 2: /* reserved */
1111 {
1112 printk(KERN_WARNING "broken BIOS!!\n");
1113 polarity = 1;
1114 break;
1115 }
1116 case 3: /* low active */
1117 {
1118 polarity = 1;
1119 break;
1120 }
1121 default: /* invalid */
1122 {
1123 printk(KERN_WARNING "broken BIOS!!\n");
1124 polarity = 1;
1125 break;
1126 }
1127 }
1128 return polarity;
1129 }
1130
MPBIOS_trigger(int idx)1131 static int MPBIOS_trigger(int idx)
1132 {
1133 int bus = mp_irqs[idx].mp_srcbus;
1134 int trigger;
1135
1136 /*
1137 * Determine IRQ trigger mode (edge or level sensitive):
1138 */
1139 switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
1140 {
1141 case 0: /* conforms, ie. bus-type dependent */
1142 if (test_bit(bus, mp_bus_not_pci))
1143 trigger = default_ISA_trigger(idx);
1144 else
1145 trigger = default_PCI_trigger(idx);
1146 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1147 switch (mp_bus_id_to_type[bus]) {
1148 case MP_BUS_ISA: /* ISA pin */
1149 {
1150 /* set before the switch */
1151 break;
1152 }
1153 case MP_BUS_EISA: /* EISA pin */
1154 {
1155 trigger = default_EISA_trigger(idx);
1156 break;
1157 }
1158 case MP_BUS_PCI: /* PCI pin */
1159 {
1160 /* set before the switch */
1161 break;
1162 }
1163 case MP_BUS_MCA: /* MCA pin */
1164 {
1165 trigger = default_MCA_trigger(idx);
1166 break;
1167 }
1168 default:
1169 {
1170 printk(KERN_WARNING "broken BIOS!!\n");
1171 trigger = 1;
1172 break;
1173 }
1174 }
1175 #endif
1176 break;
1177 case 1: /* edge */
1178 {
1179 trigger = 0;
1180 break;
1181 }
1182 case 2: /* reserved */
1183 {
1184 printk(KERN_WARNING "broken BIOS!!\n");
1185 trigger = 1;
1186 break;
1187 }
1188 case 3: /* level */
1189 {
1190 trigger = 1;
1191 break;
1192 }
1193 default: /* invalid */
1194 {
1195 printk(KERN_WARNING "broken BIOS!!\n");
1196 trigger = 0;
1197 break;
1198 }
1199 }
1200 return trigger;
1201 }
1202
irq_polarity(int idx)1203 static inline int irq_polarity(int idx)
1204 {
1205 return MPBIOS_polarity(idx);
1206 }
1207
irq_trigger(int idx)1208 static inline int irq_trigger(int idx)
1209 {
1210 return MPBIOS_trigger(idx);
1211 }
1212
1213 int (*ioapic_renumber_irq)(int ioapic, int irq);
pin_2_irq(int idx,int apic,int pin)1214 static int pin_2_irq(int idx, int apic, int pin)
1215 {
1216 int irq, i;
1217 int bus = mp_irqs[idx].mp_srcbus;
1218
1219 /*
1220 * Debugging check, we are in big trouble if this message pops up!
1221 */
1222 if (mp_irqs[idx].mp_dstirq != pin)
1223 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1224
1225 if (test_bit(bus, mp_bus_not_pci)) {
1226 irq = mp_irqs[idx].mp_srcbusirq;
1227 } else {
1228 /*
1229 * PCI IRQs are mapped in order
1230 */
1231 i = irq = 0;
1232 while (i < apic)
1233 irq += nr_ioapic_registers[i++];
1234 irq += pin;
1235 /*
1236 * For MPS mode, so far only needed by ES7000 platform
1237 */
1238 if (ioapic_renumber_irq)
1239 irq = ioapic_renumber_irq(apic, irq);
1240 }
1241
1242 #ifdef CONFIG_X86_32
1243 /*
1244 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1245 */
1246 if ((pin >= 16) && (pin <= 23)) {
1247 if (pirq_entries[pin-16] != -1) {
1248 if (!pirq_entries[pin-16]) {
1249 apic_printk(APIC_VERBOSE, KERN_DEBUG
1250 "disabling PIRQ%d\n", pin-16);
1251 } else {
1252 irq = pirq_entries[pin-16];
1253 apic_printk(APIC_VERBOSE, KERN_DEBUG
1254 "using PIRQ%d -> IRQ %d\n",
1255 pin-16, irq);
1256 }
1257 }
1258 }
1259 #endif
1260
1261 return irq;
1262 }
1263
lock_vector_lock(void)1264 void lock_vector_lock(void)
1265 {
1266 /* Used to the online set of cpus does not change
1267 * during assign_irq_vector.
1268 */
1269 spin_lock(&vector_lock);
1270 }
1271
unlock_vector_lock(void)1272 void unlock_vector_lock(void)
1273 {
1274 spin_unlock(&vector_lock);
1275 }
1276
1277 static int
__assign_irq_vector(int irq,struct irq_cfg * cfg,const struct cpumask * mask)1278 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1279 {
1280 /*
1281 * NOTE! The local APIC isn't very good at handling
1282 * multiple interrupts at the same interrupt level.
1283 * As the interrupt level is determined by taking the
1284 * vector number and shifting that right by 4, we
1285 * want to spread these out a bit so that they don't
1286 * all fall in the same interrupt level.
1287 *
1288 * Also, we've got to be careful not to trash gate
1289 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1290 */
1291 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1292 unsigned int old_vector;
1293 int cpu, err;
1294 cpumask_var_t tmp_mask;
1295
1296 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1297 return -EBUSY;
1298
1299 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1300 return -ENOMEM;
1301
1302 old_vector = cfg->vector;
1303 if (old_vector) {
1304 cpumask_and(tmp_mask, mask, cpu_online_mask);
1305 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1306 if (!cpumask_empty(tmp_mask)) {
1307 free_cpumask_var(tmp_mask);
1308 return 0;
1309 }
1310 }
1311
1312 /* Only try and allocate irqs on cpus that are present */
1313 err = -ENOSPC;
1314 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1315 int new_cpu;
1316 int vector, offset;
1317
1318 vector_allocation_domain(cpu, tmp_mask);
1319
1320 vector = current_vector;
1321 offset = current_offset;
1322 next:
1323 vector += 8;
1324 if (vector >= first_system_vector) {
1325 /* If out of vectors on large boxen, must share them. */
1326 offset = (offset + 1) % 8;
1327 vector = FIRST_DEVICE_VECTOR + offset;
1328 }
1329 if (unlikely(current_vector == vector))
1330 continue;
1331
1332 if (test_bit(vector, used_vectors))
1333 goto next;
1334
1335 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1336 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1337 goto next;
1338 /* Found one! */
1339 current_vector = vector;
1340 current_offset = offset;
1341 if (old_vector) {
1342 cfg->move_in_progress = 1;
1343 cpumask_copy(cfg->old_domain, cfg->domain);
1344 }
1345 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1346 per_cpu(vector_irq, new_cpu)[vector] = irq;
1347 cfg->vector = vector;
1348 cpumask_copy(cfg->domain, tmp_mask);
1349 err = 0;
1350 break;
1351 }
1352 free_cpumask_var(tmp_mask);
1353 return err;
1354 }
1355
1356 static int
assign_irq_vector(int irq,struct irq_cfg * cfg,const struct cpumask * mask)1357 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1358 {
1359 int err;
1360 unsigned long flags;
1361
1362 spin_lock_irqsave(&vector_lock, flags);
1363 err = __assign_irq_vector(irq, cfg, mask);
1364 spin_unlock_irqrestore(&vector_lock, flags);
1365 return err;
1366 }
1367
__clear_irq_vector(int irq,struct irq_cfg * cfg)1368 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1369 {
1370 int cpu, vector;
1371
1372 BUG_ON(!cfg->vector);
1373
1374 vector = cfg->vector;
1375 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1376 per_cpu(vector_irq, cpu)[vector] = -1;
1377
1378 cfg->vector = 0;
1379 cpumask_clear(cfg->domain);
1380
1381 if (likely(!cfg->move_in_progress))
1382 return;
1383 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1384 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1385 vector++) {
1386 if (per_cpu(vector_irq, cpu)[vector] != irq)
1387 continue;
1388 per_cpu(vector_irq, cpu)[vector] = -1;
1389 break;
1390 }
1391 }
1392 cfg->move_in_progress = 0;
1393 }
1394
__setup_vector_irq(int cpu)1395 void __setup_vector_irq(int cpu)
1396 {
1397 /* Initialize vector_irq on a new cpu */
1398 /* This function must be called with vector_lock held */
1399 int irq, vector;
1400 struct irq_cfg *cfg;
1401 struct irq_desc *desc;
1402
1403 /* Mark the inuse vectors */
1404 for_each_irq_desc(irq, desc) {
1405 cfg = desc->chip_data;
1406 if (!cpumask_test_cpu(cpu, cfg->domain))
1407 continue;
1408 vector = cfg->vector;
1409 per_cpu(vector_irq, cpu)[vector] = irq;
1410 }
1411 /* Mark the free vectors */
1412 for (vector = 0; vector < NR_VECTORS; ++vector) {
1413 irq = per_cpu(vector_irq, cpu)[vector];
1414 if (irq < 0)
1415 continue;
1416
1417 cfg = irq_cfg(irq);
1418 if (!cpumask_test_cpu(cpu, cfg->domain))
1419 per_cpu(vector_irq, cpu)[vector] = -1;
1420 }
1421 }
1422
1423 static struct irq_chip ioapic_chip;
1424 #ifdef CONFIG_INTR_REMAP
1425 static struct irq_chip ir_ioapic_chip;
1426 #endif
1427
1428 #define IOAPIC_AUTO -1
1429 #define IOAPIC_EDGE 0
1430 #define IOAPIC_LEVEL 1
1431
1432 #ifdef CONFIG_X86_32
IO_APIC_irq_trigger(int irq)1433 static inline int IO_APIC_irq_trigger(int irq)
1434 {
1435 int apic, idx, pin;
1436
1437 for (apic = 0; apic < nr_ioapics; apic++) {
1438 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1439 idx = find_irq_entry(apic, pin, mp_INT);
1440 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1441 return irq_trigger(idx);
1442 }
1443 }
1444 /*
1445 * nonexistent IRQs are edge default
1446 */
1447 return 0;
1448 }
1449 #else
IO_APIC_irq_trigger(int irq)1450 static inline int IO_APIC_irq_trigger(int irq)
1451 {
1452 return 1;
1453 }
1454 #endif
1455
ioapic_register_intr(int irq,struct irq_desc * desc,unsigned long trigger)1456 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1457 {
1458
1459 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1460 trigger == IOAPIC_LEVEL)
1461 desc->status |= IRQ_LEVEL;
1462 else
1463 desc->status &= ~IRQ_LEVEL;
1464
1465 #ifdef CONFIG_INTR_REMAP
1466 if (irq_remapped(irq)) {
1467 desc->status |= IRQ_MOVE_PCNTXT;
1468 if (trigger)
1469 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1470 handle_fasteoi_irq,
1471 "fasteoi");
1472 else
1473 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1474 handle_edge_irq, "edge");
1475 return;
1476 }
1477 #endif
1478 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1479 trigger == IOAPIC_LEVEL)
1480 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1481 handle_fasteoi_irq,
1482 "fasteoi");
1483 else
1484 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1485 handle_edge_irq, "edge");
1486 }
1487
setup_ioapic_entry(int apic,int irq,struct IO_APIC_route_entry * entry,unsigned int destination,int trigger,int polarity,int vector)1488 static int setup_ioapic_entry(int apic, int irq,
1489 struct IO_APIC_route_entry *entry,
1490 unsigned int destination, int trigger,
1491 int polarity, int vector)
1492 {
1493 /*
1494 * add it to the IO-APIC irq-routing table:
1495 */
1496 memset(entry,0,sizeof(*entry));
1497
1498 #ifdef CONFIG_INTR_REMAP
1499 if (intr_remapping_enabled) {
1500 struct intel_iommu *iommu = map_ioapic_to_ir(apic);
1501 struct irte irte;
1502 struct IR_IO_APIC_route_entry *ir_entry =
1503 (struct IR_IO_APIC_route_entry *) entry;
1504 int index;
1505
1506 if (!iommu)
1507 panic("No mapping iommu for ioapic %d\n", apic);
1508
1509 index = alloc_irte(iommu, irq, 1);
1510 if (index < 0)
1511 panic("Failed to allocate IRTE for ioapic %d\n", apic);
1512
1513 memset(&irte, 0, sizeof(irte));
1514
1515 irte.present = 1;
1516 irte.dst_mode = INT_DEST_MODE;
1517 irte.trigger_mode = trigger;
1518 irte.dlvry_mode = INT_DELIVERY_MODE;
1519 irte.vector = vector;
1520 irte.dest_id = IRTE_DEST(destination);
1521
1522 modify_irte(irq, &irte);
1523
1524 ir_entry->index2 = (index >> 15) & 0x1;
1525 ir_entry->zero = 0;
1526 ir_entry->format = 1;
1527 ir_entry->index = (index & 0x7fff);
1528 } else
1529 #endif
1530 {
1531 entry->delivery_mode = INT_DELIVERY_MODE;
1532 entry->dest_mode = INT_DEST_MODE;
1533 entry->dest = destination;
1534 }
1535
1536 entry->mask = 0; /* enable IRQ */
1537 entry->trigger = trigger;
1538 entry->polarity = polarity;
1539 entry->vector = vector;
1540
1541 /* Mask level triggered irqs.
1542 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1543 */
1544 if (trigger)
1545 entry->mask = 1;
1546 return 0;
1547 }
1548
setup_IO_APIC_irq(int apic,int pin,unsigned int irq,struct irq_desc * desc,int trigger,int polarity)1549 static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq, struct irq_desc *desc,
1550 int trigger, int polarity)
1551 {
1552 struct irq_cfg *cfg;
1553 struct IO_APIC_route_entry entry;
1554 unsigned int dest;
1555
1556 if (!IO_APIC_IRQ(irq))
1557 return;
1558
1559 cfg = desc->chip_data;
1560
1561 if (assign_irq_vector(irq, cfg, TARGET_CPUS))
1562 return;
1563
1564 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
1565
1566 apic_printk(APIC_VERBOSE,KERN_DEBUG
1567 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1568 "IRQ %d Mode:%i Active:%i)\n",
1569 apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
1570 irq, trigger, polarity);
1571
1572
1573 if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
1574 dest, trigger, polarity, cfg->vector)) {
1575 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1576 mp_ioapics[apic].mp_apicid, pin);
1577 __clear_irq_vector(irq, cfg);
1578 return;
1579 }
1580
1581 ioapic_register_intr(irq, desc, trigger);
1582 if (irq < NR_IRQS_LEGACY)
1583 disable_8259A_irq(irq);
1584
1585 ioapic_write_entry(apic, pin, entry);
1586 }
1587
setup_IO_APIC_irqs(void)1588 static void __init setup_IO_APIC_irqs(void)
1589 {
1590 int apic, pin, idx, irq;
1591 int notcon = 0;
1592 struct irq_desc *desc;
1593 struct irq_cfg *cfg;
1594 int cpu = boot_cpu_id;
1595
1596 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1597
1598 for (apic = 0; apic < nr_ioapics; apic++) {
1599 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1600
1601 idx = find_irq_entry(apic, pin, mp_INT);
1602 if (idx == -1) {
1603 if (!notcon) {
1604 notcon = 1;
1605 apic_printk(APIC_VERBOSE,
1606 KERN_DEBUG " %d-%d",
1607 mp_ioapics[apic].mp_apicid,
1608 pin);
1609 } else
1610 apic_printk(APIC_VERBOSE, " %d-%d",
1611 mp_ioapics[apic].mp_apicid,
1612 pin);
1613 continue;
1614 }
1615 if (notcon) {
1616 apic_printk(APIC_VERBOSE,
1617 " (apicid-pin) not connected\n");
1618 notcon = 0;
1619 }
1620
1621 irq = pin_2_irq(idx, apic, pin);
1622 #ifdef CONFIG_X86_32
1623 if (multi_timer_check(apic, irq))
1624 continue;
1625 #endif
1626 desc = irq_to_desc_alloc_cpu(irq, cpu);
1627 if (!desc) {
1628 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1629 continue;
1630 }
1631 cfg = desc->chip_data;
1632 add_pin_to_irq_cpu(cfg, cpu, apic, pin);
1633
1634 setup_IO_APIC_irq(apic, pin, irq, desc,
1635 irq_trigger(idx), irq_polarity(idx));
1636 }
1637 }
1638
1639 if (notcon)
1640 apic_printk(APIC_VERBOSE,
1641 " (apicid-pin) not connected\n");
1642 }
1643
1644 /*
1645 * Set up the timer pin, possibly with the 8259A-master behind.
1646 */
setup_timer_IRQ0_pin(unsigned int apic,unsigned int pin,int vector)1647 static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
1648 int vector)
1649 {
1650 struct IO_APIC_route_entry entry;
1651
1652 #ifdef CONFIG_INTR_REMAP
1653 if (intr_remapping_enabled)
1654 return;
1655 #endif
1656
1657 memset(&entry, 0, sizeof(entry));
1658
1659 /*
1660 * We use logical delivery to get the timer IRQ
1661 * to the first CPU.
1662 */
1663 entry.dest_mode = INT_DEST_MODE;
1664 entry.mask = 1; /* mask IRQ now */
1665 entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
1666 entry.delivery_mode = INT_DELIVERY_MODE;
1667 entry.polarity = 0;
1668 entry.trigger = 0;
1669 entry.vector = vector;
1670
1671 /*
1672 * The timer IRQ doesn't have to know that behind the
1673 * scene we may have a 8259A-master in AEOI mode ...
1674 */
1675 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1676
1677 /*
1678 * Add it to the IO-APIC irq-routing table:
1679 */
1680 ioapic_write_entry(apic, pin, entry);
1681 }
1682
1683
print_IO_APIC(void)1684 __apicdebuginit(void) print_IO_APIC(void)
1685 {
1686 int apic, i;
1687 union IO_APIC_reg_00 reg_00;
1688 union IO_APIC_reg_01 reg_01;
1689 union IO_APIC_reg_02 reg_02;
1690 union IO_APIC_reg_03 reg_03;
1691 unsigned long flags;
1692 struct irq_cfg *cfg;
1693 struct irq_desc *desc;
1694 unsigned int irq;
1695
1696 if (apic_verbosity == APIC_QUIET)
1697 return;
1698
1699 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1700 for (i = 0; i < nr_ioapics; i++)
1701 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1702 mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
1703
1704 /*
1705 * We are a bit conservative about what we expect. We have to
1706 * know about every hardware change ASAP.
1707 */
1708 printk(KERN_INFO "testing the IO APIC.......................\n");
1709
1710 for (apic = 0; apic < nr_ioapics; apic++) {
1711
1712 spin_lock_irqsave(&ioapic_lock, flags);
1713 reg_00.raw = io_apic_read(apic, 0);
1714 reg_01.raw = io_apic_read(apic, 1);
1715 if (reg_01.bits.version >= 0x10)
1716 reg_02.raw = io_apic_read(apic, 2);
1717 if (reg_01.bits.version >= 0x20)
1718 reg_03.raw = io_apic_read(apic, 3);
1719 spin_unlock_irqrestore(&ioapic_lock, flags);
1720
1721 printk("\n");
1722 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
1723 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1724 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1725 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1726 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1727
1728 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01);
1729 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1730
1731 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1732 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1733
1734 /*
1735 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1736 * but the value of reg_02 is read as the previous read register
1737 * value, so ignore it if reg_02 == reg_01.
1738 */
1739 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1740 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1741 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1742 }
1743
1744 /*
1745 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1746 * or reg_03, but the value of reg_0[23] is read as the previous read
1747 * register value, so ignore it if reg_03 == reg_0[12].
1748 */
1749 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1750 reg_03.raw != reg_01.raw) {
1751 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1752 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1753 }
1754
1755 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1756
1757 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1758 " Stat Dmod Deli Vect: \n");
1759
1760 for (i = 0; i <= reg_01.bits.entries; i++) {
1761 struct IO_APIC_route_entry entry;
1762
1763 entry = ioapic_read_entry(apic, i);
1764
1765 printk(KERN_DEBUG " %02x %03X ",
1766 i,
1767 entry.dest
1768 );
1769
1770 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1771 entry.mask,
1772 entry.trigger,
1773 entry.irr,
1774 entry.polarity,
1775 entry.delivery_status,
1776 entry.dest_mode,
1777 entry.delivery_mode,
1778 entry.vector
1779 );
1780 }
1781 }
1782 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1783 for_each_irq_desc(irq, desc) {
1784 struct irq_pin_list *entry;
1785
1786 cfg = desc->chip_data;
1787 entry = cfg->irq_2_pin;
1788 if (!entry)
1789 continue;
1790 printk(KERN_DEBUG "IRQ%d ", irq);
1791 for (;;) {
1792 printk("-> %d:%d", entry->apic, entry->pin);
1793 if (!entry->next)
1794 break;
1795 entry = entry->next;
1796 }
1797 printk("\n");
1798 }
1799
1800 printk(KERN_INFO ".................................... done.\n");
1801
1802 return;
1803 }
1804
print_APIC_bitfield(int base)1805 __apicdebuginit(void) print_APIC_bitfield(int base)
1806 {
1807 unsigned int v;
1808 int i, j;
1809
1810 if (apic_verbosity == APIC_QUIET)
1811 return;
1812
1813 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1814 for (i = 0; i < 8; i++) {
1815 v = apic_read(base + i*0x10);
1816 for (j = 0; j < 32; j++) {
1817 if (v & (1<<j))
1818 printk("1");
1819 else
1820 printk("0");
1821 }
1822 printk("\n");
1823 }
1824 }
1825
print_local_APIC(void * dummy)1826 __apicdebuginit(void) print_local_APIC(void *dummy)
1827 {
1828 unsigned int v, ver, maxlvt;
1829 u64 icr;
1830
1831 if (apic_verbosity == APIC_QUIET)
1832 return;
1833
1834 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1835 smp_processor_id(), hard_smp_processor_id());
1836 v = apic_read(APIC_ID);
1837 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1838 v = apic_read(APIC_LVR);
1839 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1840 ver = GET_APIC_VERSION(v);
1841 maxlvt = lapic_get_maxlvt();
1842
1843 v = apic_read(APIC_TASKPRI);
1844 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1845
1846 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1847 if (!APIC_XAPIC(ver)) {
1848 v = apic_read(APIC_ARBPRI);
1849 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1850 v & APIC_ARBPRI_MASK);
1851 }
1852 v = apic_read(APIC_PROCPRI);
1853 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1854 }
1855
1856 /*
1857 * Remote read supported only in the 82489DX and local APIC for
1858 * Pentium processors.
1859 */
1860 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1861 v = apic_read(APIC_RRR);
1862 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1863 }
1864
1865 v = apic_read(APIC_LDR);
1866 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1867 if (!x2apic_enabled()) {
1868 v = apic_read(APIC_DFR);
1869 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1870 }
1871 v = apic_read(APIC_SPIV);
1872 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1873
1874 printk(KERN_DEBUG "... APIC ISR field:\n");
1875 print_APIC_bitfield(APIC_ISR);
1876 printk(KERN_DEBUG "... APIC TMR field:\n");
1877 print_APIC_bitfield(APIC_TMR);
1878 printk(KERN_DEBUG "... APIC IRR field:\n");
1879 print_APIC_bitfield(APIC_IRR);
1880
1881 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1882 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1883 apic_write(APIC_ESR, 0);
1884
1885 v = apic_read(APIC_ESR);
1886 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1887 }
1888
1889 icr = apic_icr_read();
1890 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1891 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1892
1893 v = apic_read(APIC_LVTT);
1894 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1895
1896 if (maxlvt > 3) { /* PC is LVT#4. */
1897 v = apic_read(APIC_LVTPC);
1898 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1899 }
1900 v = apic_read(APIC_LVT0);
1901 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1902 v = apic_read(APIC_LVT1);
1903 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1904
1905 if (maxlvt > 2) { /* ERR is LVT#3. */
1906 v = apic_read(APIC_LVTERR);
1907 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1908 }
1909
1910 v = apic_read(APIC_TMICT);
1911 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1912 v = apic_read(APIC_TMCCT);
1913 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1914 v = apic_read(APIC_TDCR);
1915 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1916 printk("\n");
1917 }
1918
print_all_local_APICs(void)1919 __apicdebuginit(void) print_all_local_APICs(void)
1920 {
1921 int cpu;
1922
1923 preempt_disable();
1924 for_each_online_cpu(cpu)
1925 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1926 preempt_enable();
1927 }
1928
print_PIC(void)1929 __apicdebuginit(void) print_PIC(void)
1930 {
1931 unsigned int v;
1932 unsigned long flags;
1933
1934 if (apic_verbosity == APIC_QUIET)
1935 return;
1936
1937 printk(KERN_DEBUG "\nprinting PIC contents\n");
1938
1939 spin_lock_irqsave(&i8259A_lock, flags);
1940
1941 v = inb(0xa1) << 8 | inb(0x21);
1942 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1943
1944 v = inb(0xa0) << 8 | inb(0x20);
1945 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1946
1947 outb(0x0b,0xa0);
1948 outb(0x0b,0x20);
1949 v = inb(0xa0) << 8 | inb(0x20);
1950 outb(0x0a,0xa0);
1951 outb(0x0a,0x20);
1952
1953 spin_unlock_irqrestore(&i8259A_lock, flags);
1954
1955 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1956
1957 v = inb(0x4d1) << 8 | inb(0x4d0);
1958 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1959 }
1960
print_all_ICs(void)1961 __apicdebuginit(int) print_all_ICs(void)
1962 {
1963 print_PIC();
1964 print_all_local_APICs();
1965 print_IO_APIC();
1966
1967 return 0;
1968 }
1969
1970 fs_initcall(print_all_ICs);
1971
1972
1973 /* Where if anywhere is the i8259 connect in external int mode */
1974 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1975
enable_IO_APIC(void)1976 void __init enable_IO_APIC(void)
1977 {
1978 union IO_APIC_reg_01 reg_01;
1979 int i8259_apic, i8259_pin;
1980 int apic;
1981 unsigned long flags;
1982
1983 #ifdef CONFIG_X86_32
1984 int i;
1985 if (!pirqs_enabled)
1986 for (i = 0; i < MAX_PIRQS; i++)
1987 pirq_entries[i] = -1;
1988 #endif
1989
1990 /*
1991 * The number of IO-APIC IRQ registers (== #pins):
1992 */
1993 for (apic = 0; apic < nr_ioapics; apic++) {
1994 spin_lock_irqsave(&ioapic_lock, flags);
1995 reg_01.raw = io_apic_read(apic, 1);
1996 spin_unlock_irqrestore(&ioapic_lock, flags);
1997 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1998 }
1999 for(apic = 0; apic < nr_ioapics; apic++) {
2000 int pin;
2001 /* See if any of the pins is in ExtINT mode */
2002 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2003 struct IO_APIC_route_entry entry;
2004 entry = ioapic_read_entry(apic, pin);
2005
2006 /* If the interrupt line is enabled and in ExtInt mode
2007 * I have found the pin where the i8259 is connected.
2008 */
2009 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2010 ioapic_i8259.apic = apic;
2011 ioapic_i8259.pin = pin;
2012 goto found_i8259;
2013 }
2014 }
2015 }
2016 found_i8259:
2017 /* Look to see what if the MP table has reported the ExtINT */
2018 /* If we could not find the appropriate pin by looking at the ioapic
2019 * the i8259 probably is not connected the ioapic but give the
2020 * mptable a chance anyway.
2021 */
2022 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
2023 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2024 /* Trust the MP table if nothing is setup in the hardware */
2025 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2026 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2027 ioapic_i8259.pin = i8259_pin;
2028 ioapic_i8259.apic = i8259_apic;
2029 }
2030 /* Complain if the MP table and the hardware disagree */
2031 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2032 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2033 {
2034 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2035 }
2036
2037 /*
2038 * Do not trust the IO-APIC being empty at bootup
2039 */
2040 clear_IO_APIC();
2041 }
2042
2043 /*
2044 * Not an __init, needed by the reboot code
2045 */
disable_IO_APIC(void)2046 void disable_IO_APIC(void)
2047 {
2048 /*
2049 * Clear the IO-APIC before rebooting:
2050 */
2051 clear_IO_APIC();
2052
2053 /*
2054 * If the i8259 is routed through an IOAPIC
2055 * Put that IOAPIC in virtual wire mode
2056 * so legacy interrupts can be delivered.
2057 */
2058 if (ioapic_i8259.pin != -1) {
2059 struct IO_APIC_route_entry entry;
2060
2061 memset(&entry, 0, sizeof(entry));
2062 entry.mask = 0; /* Enabled */
2063 entry.trigger = 0; /* Edge */
2064 entry.irr = 0;
2065 entry.polarity = 0; /* High */
2066 entry.delivery_status = 0;
2067 entry.dest_mode = 0; /* Physical */
2068 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2069 entry.vector = 0;
2070 entry.dest = read_apic_id();
2071
2072 /*
2073 * Add it to the IO-APIC irq-routing table:
2074 */
2075 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2076 }
2077
2078 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
2079 }
2080
2081 #ifdef CONFIG_X86_32
2082 /*
2083 * function to set the IO-APIC physical IDs based on the
2084 * values stored in the MPC table.
2085 *
2086 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2087 */
2088
setup_ioapic_ids_from_mpc(void)2089 static void __init setup_ioapic_ids_from_mpc(void)
2090 {
2091 union IO_APIC_reg_00 reg_00;
2092 physid_mask_t phys_id_present_map;
2093 int apic;
2094 int i;
2095 unsigned char old_id;
2096 unsigned long flags;
2097
2098 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2099 return;
2100
2101 /*
2102 * Don't check I/O APIC IDs for xAPIC systems. They have
2103 * no meaning without the serial APIC bus.
2104 */
2105 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2106 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2107 return;
2108 /*
2109 * This is broken; anything with a real cpu count has to
2110 * circumvent this idiocy regardless.
2111 */
2112 phys_id_present_map = ioapic_phys_id_map(phys_cpu_present_map);
2113
2114 /*
2115 * Set the IOAPIC ID to the value stored in the MPC table.
2116 */
2117 for (apic = 0; apic < nr_ioapics; apic++) {
2118
2119 /* Read the register 0 value */
2120 spin_lock_irqsave(&ioapic_lock, flags);
2121 reg_00.raw = io_apic_read(apic, 0);
2122 spin_unlock_irqrestore(&ioapic_lock, flags);
2123
2124 old_id = mp_ioapics[apic].mp_apicid;
2125
2126 if (mp_ioapics[apic].mp_apicid >= get_physical_broadcast()) {
2127 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2128 apic, mp_ioapics[apic].mp_apicid);
2129 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2130 reg_00.bits.ID);
2131 mp_ioapics[apic].mp_apicid = reg_00.bits.ID;
2132 }
2133
2134 /*
2135 * Sanity check, is the ID really free? Every APIC in a
2136 * system must have a unique ID or we get lots of nice
2137 * 'stuck on smp_invalidate_needed IPI wait' messages.
2138 */
2139 if (check_apicid_used(phys_id_present_map,
2140 mp_ioapics[apic].mp_apicid)) {
2141 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2142 apic, mp_ioapics[apic].mp_apicid);
2143 for (i = 0; i < get_physical_broadcast(); i++)
2144 if (!physid_isset(i, phys_id_present_map))
2145 break;
2146 if (i >= get_physical_broadcast())
2147 panic("Max APIC ID exceeded!\n");
2148 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2149 i);
2150 physid_set(i, phys_id_present_map);
2151 mp_ioapics[apic].mp_apicid = i;
2152 } else {
2153 physid_mask_t tmp;
2154 tmp = apicid_to_cpu_present(mp_ioapics[apic].mp_apicid);
2155 apic_printk(APIC_VERBOSE, "Setting %d in the "
2156 "phys_id_present_map\n",
2157 mp_ioapics[apic].mp_apicid);
2158 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2159 }
2160
2161
2162 /*
2163 * We need to adjust the IRQ routing table
2164 * if the ID changed.
2165 */
2166 if (old_id != mp_ioapics[apic].mp_apicid)
2167 for (i = 0; i < mp_irq_entries; i++)
2168 if (mp_irqs[i].mp_dstapic == old_id)
2169 mp_irqs[i].mp_dstapic
2170 = mp_ioapics[apic].mp_apicid;
2171
2172 /*
2173 * Read the right value from the MPC table and
2174 * write it into the ID register.
2175 */
2176 apic_printk(APIC_VERBOSE, KERN_INFO
2177 "...changing IO-APIC physical APIC ID to %d ...",
2178 mp_ioapics[apic].mp_apicid);
2179
2180 reg_00.bits.ID = mp_ioapics[apic].mp_apicid;
2181 spin_lock_irqsave(&ioapic_lock, flags);
2182 io_apic_write(apic, 0, reg_00.raw);
2183 spin_unlock_irqrestore(&ioapic_lock, flags);
2184
2185 /*
2186 * Sanity check
2187 */
2188 spin_lock_irqsave(&ioapic_lock, flags);
2189 reg_00.raw = io_apic_read(apic, 0);
2190 spin_unlock_irqrestore(&ioapic_lock, flags);
2191 if (reg_00.bits.ID != mp_ioapics[apic].mp_apicid)
2192 printk("could not set ID!\n");
2193 else
2194 apic_printk(APIC_VERBOSE, " ok.\n");
2195 }
2196 }
2197 #endif
2198
2199 int no_timer_check __initdata;
2200
notimercheck(char * s)2201 static int __init notimercheck(char *s)
2202 {
2203 no_timer_check = 1;
2204 return 1;
2205 }
2206 __setup("no_timer_check", notimercheck);
2207
2208 /*
2209 * There is a nasty bug in some older SMP boards, their mptable lies
2210 * about the timer IRQ. We do the following to work around the situation:
2211 *
2212 * - timer IRQ defaults to IO-APIC IRQ
2213 * - if this function detects that timer IRQs are defunct, then we fall
2214 * back to ISA timer IRQs
2215 */
timer_irq_works(void)2216 static int __init timer_irq_works(void)
2217 {
2218 unsigned long t1 = jiffies;
2219 unsigned long flags;
2220
2221 if (no_timer_check)
2222 return 1;
2223
2224 local_save_flags(flags);
2225 local_irq_enable();
2226 /* Let ten ticks pass... */
2227 mdelay((10 * 1000) / HZ);
2228 local_irq_restore(flags);
2229
2230 /*
2231 * Expect a few ticks at least, to be sure some possible
2232 * glue logic does not lock up after one or two first
2233 * ticks in a non-ExtINT mode. Also the local APIC
2234 * might have cached one ExtINT interrupt. Finally, at
2235 * least one tick may be lost due to delays.
2236 */
2237
2238 /* jiffies wrap? */
2239 if (time_after(jiffies, t1 + 4))
2240 return 1;
2241 return 0;
2242 }
2243
2244 /*
2245 * In the SMP+IOAPIC case it might happen that there are an unspecified
2246 * number of pending IRQ events unhandled. These cases are very rare,
2247 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2248 * better to do it this way as thus we do not have to be aware of
2249 * 'pending' interrupts in the IRQ path, except at this point.
2250 */
2251 /*
2252 * Edge triggered needs to resend any interrupt
2253 * that was delayed but this is now handled in the device
2254 * independent code.
2255 */
2256
2257 /*
2258 * Starting up a edge-triggered IO-APIC interrupt is
2259 * nasty - we need to make sure that we get the edge.
2260 * If it is already asserted for some reason, we need
2261 * return 1 to indicate that is was pending.
2262 *
2263 * This is not complete - we should be able to fake
2264 * an edge even if it isn't on the 8259A...
2265 */
2266
startup_ioapic_irq(unsigned int irq)2267 static unsigned int startup_ioapic_irq(unsigned int irq)
2268 {
2269 int was_pending = 0;
2270 unsigned long flags;
2271 struct irq_cfg *cfg;
2272
2273 spin_lock_irqsave(&ioapic_lock, flags);
2274 if (irq < NR_IRQS_LEGACY) {
2275 disable_8259A_irq(irq);
2276 if (i8259A_irq_pending(irq))
2277 was_pending = 1;
2278 }
2279 cfg = irq_cfg(irq);
2280 __unmask_IO_APIC_irq(cfg);
2281 spin_unlock_irqrestore(&ioapic_lock, flags);
2282
2283 return was_pending;
2284 }
2285
2286 #ifdef CONFIG_X86_64
ioapic_retrigger_irq(unsigned int irq)2287 static int ioapic_retrigger_irq(unsigned int irq)
2288 {
2289
2290 struct irq_cfg *cfg = irq_cfg(irq);
2291 unsigned long flags;
2292
2293 spin_lock_irqsave(&vector_lock, flags);
2294 send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2295 spin_unlock_irqrestore(&vector_lock, flags);
2296
2297 return 1;
2298 }
2299 #else
ioapic_retrigger_irq(unsigned int irq)2300 static int ioapic_retrigger_irq(unsigned int irq)
2301 {
2302 send_IPI_self(irq_cfg(irq)->vector);
2303
2304 return 1;
2305 }
2306 #endif
2307
2308 /*
2309 * Level and edge triggered IO-APIC interrupts need different handling,
2310 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2311 * handled with the level-triggered descriptor, but that one has slightly
2312 * more overhead. Level-triggered interrupts cannot be handled with the
2313 * edge-triggered handler, without risking IRQ storms and other ugly
2314 * races.
2315 */
2316
2317 #ifdef CONFIG_SMP
2318
2319 #ifdef CONFIG_INTR_REMAP
2320 static void ir_irq_migration(struct work_struct *work);
2321
2322 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2323
2324 /*
2325 * Migrate the IO-APIC irq in the presence of intr-remapping.
2326 *
2327 * For edge triggered, irq migration is a simple atomic update(of vector
2328 * and cpu destination) of IRTE and flush the hardware cache.
2329 *
2330 * For level triggered, we need to modify the io-apic RTE aswell with the update
2331 * vector information, along with modifying IRTE with vector and destination.
2332 * So irq migration for level triggered is little bit more complex compared to
2333 * edge triggered migration. But the good news is, we use the same algorithm
2334 * for level triggered migration as we have today, only difference being,
2335 * we now initiate the irq migration from process context instead of the
2336 * interrupt context.
2337 *
2338 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2339 * suppression) to the IO-APIC, level triggered irq migration will also be
2340 * as simple as edge triggered migration and we can do the irq migration
2341 * with a simple atomic update to IO-APIC RTE.
2342 */
2343 static void
migrate_ioapic_irq_desc(struct irq_desc * desc,const struct cpumask * mask)2344 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2345 {
2346 struct irq_cfg *cfg;
2347 struct irte irte;
2348 int modify_ioapic_rte;
2349 unsigned int dest;
2350 unsigned long flags;
2351 unsigned int irq;
2352
2353 if (!cpumask_intersects(mask, cpu_online_mask))
2354 return;
2355
2356 irq = desc->irq;
2357 if (get_irte(irq, &irte))
2358 return;
2359
2360 cfg = desc->chip_data;
2361 if (assign_irq_vector(irq, cfg, mask))
2362 return;
2363
2364 set_extra_move_desc(desc, mask);
2365
2366 dest = cpu_mask_to_apicid_and(cfg->domain, mask);
2367
2368 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2369 if (modify_ioapic_rte) {
2370 spin_lock_irqsave(&ioapic_lock, flags);
2371 __target_IO_APIC_irq(irq, dest, cfg);
2372 spin_unlock_irqrestore(&ioapic_lock, flags);
2373 }
2374
2375 irte.vector = cfg->vector;
2376 irte.dest_id = IRTE_DEST(dest);
2377
2378 /*
2379 * Modified the IRTE and flushes the Interrupt entry cache.
2380 */
2381 modify_irte(irq, &irte);
2382
2383 if (cfg->move_in_progress)
2384 send_cleanup_vector(cfg);
2385
2386 cpumask_copy(&desc->affinity, mask);
2387 }
2388
migrate_irq_remapped_level_desc(struct irq_desc * desc)2389 static int migrate_irq_remapped_level_desc(struct irq_desc *desc)
2390 {
2391 int ret = -1;
2392 struct irq_cfg *cfg = desc->chip_data;
2393
2394 mask_IO_APIC_irq_desc(desc);
2395
2396 if (io_apic_level_ack_pending(cfg)) {
2397 /*
2398 * Interrupt in progress. Migrating irq now will change the
2399 * vector information in the IO-APIC RTE and that will confuse
2400 * the EOI broadcast performed by cpu.
2401 * So, delay the irq migration to the next instance.
2402 */
2403 schedule_delayed_work(&ir_migration_work, 1);
2404 goto unmask;
2405 }
2406
2407 /* everthing is clear. we have right of way */
2408 migrate_ioapic_irq_desc(desc, &desc->pending_mask);
2409
2410 ret = 0;
2411 desc->status &= ~IRQ_MOVE_PENDING;
2412 cpumask_clear(&desc->pending_mask);
2413
2414 unmask:
2415 unmask_IO_APIC_irq_desc(desc);
2416
2417 return ret;
2418 }
2419
ir_irq_migration(struct work_struct * work)2420 static void ir_irq_migration(struct work_struct *work)
2421 {
2422 unsigned int irq;
2423 struct irq_desc *desc;
2424
2425 for_each_irq_desc(irq, desc) {
2426 if (desc->status & IRQ_MOVE_PENDING) {
2427 unsigned long flags;
2428
2429 spin_lock_irqsave(&desc->lock, flags);
2430 if (!desc->chip->set_affinity ||
2431 !(desc->status & IRQ_MOVE_PENDING)) {
2432 desc->status &= ~IRQ_MOVE_PENDING;
2433 spin_unlock_irqrestore(&desc->lock, flags);
2434 continue;
2435 }
2436
2437 desc->chip->set_affinity(irq, &desc->pending_mask);
2438 spin_unlock_irqrestore(&desc->lock, flags);
2439 }
2440 }
2441 }
2442
2443 /*
2444 * Migrates the IRQ destination in the process context.
2445 */
set_ir_ioapic_affinity_irq_desc(struct irq_desc * desc,const struct cpumask * mask)2446 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2447 const struct cpumask *mask)
2448 {
2449 if (desc->status & IRQ_LEVEL) {
2450 desc->status |= IRQ_MOVE_PENDING;
2451 cpumask_copy(&desc->pending_mask, mask);
2452 migrate_irq_remapped_level_desc(desc);
2453 return;
2454 }
2455
2456 migrate_ioapic_irq_desc(desc, mask);
2457 }
set_ir_ioapic_affinity_irq(unsigned int irq,const struct cpumask * mask)2458 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2459 const struct cpumask *mask)
2460 {
2461 struct irq_desc *desc = irq_to_desc(irq);
2462
2463 set_ir_ioapic_affinity_irq_desc(desc, mask);
2464 }
2465 #endif
2466
smp_irq_move_cleanup_interrupt(void)2467 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2468 {
2469 unsigned vector, me;
2470
2471 ack_APIC_irq();
2472 exit_idle();
2473 irq_enter();
2474
2475 me = smp_processor_id();
2476 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2477 unsigned int irq;
2478 struct irq_desc *desc;
2479 struct irq_cfg *cfg;
2480 irq = __get_cpu_var(vector_irq)[vector];
2481
2482 if (irq == -1)
2483 continue;
2484
2485 desc = irq_to_desc(irq);
2486 if (!desc)
2487 continue;
2488
2489 cfg = irq_cfg(irq);
2490 spin_lock(&desc->lock);
2491 if (!cfg->move_cleanup_count)
2492 goto unlock;
2493
2494 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2495 goto unlock;
2496
2497 __get_cpu_var(vector_irq)[vector] = -1;
2498 cfg->move_cleanup_count--;
2499 unlock:
2500 spin_unlock(&desc->lock);
2501 }
2502
2503 irq_exit();
2504 }
2505
irq_complete_move(struct irq_desc ** descp)2506 static void irq_complete_move(struct irq_desc **descp)
2507 {
2508 struct irq_desc *desc = *descp;
2509 struct irq_cfg *cfg = desc->chip_data;
2510 unsigned vector, me;
2511
2512 if (likely(!cfg->move_in_progress)) {
2513 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2514 if (likely(!cfg->move_desc_pending))
2515 return;
2516
2517 /* domain has not changed, but affinity did */
2518 me = smp_processor_id();
2519 if (cpu_isset(me, desc->affinity)) {
2520 *descp = desc = move_irq_desc(desc, me);
2521 /* get the new one */
2522 cfg = desc->chip_data;
2523 cfg->move_desc_pending = 0;
2524 }
2525 #endif
2526 return;
2527 }
2528
2529 vector = ~get_irq_regs()->orig_ax;
2530 me = smp_processor_id();
2531
2532 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain)) {
2533 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2534 *descp = desc = move_irq_desc(desc, me);
2535 /* get the new one */
2536 cfg = desc->chip_data;
2537 #endif
2538 send_cleanup_vector(cfg);
2539 }
2540 }
2541 #else
irq_complete_move(struct irq_desc ** descp)2542 static inline void irq_complete_move(struct irq_desc **descp) {}
2543 #endif
2544
2545 #ifdef CONFIG_INTR_REMAP
ack_x2apic_level(unsigned int irq)2546 static void ack_x2apic_level(unsigned int irq)
2547 {
2548 ack_x2APIC_irq();
2549 }
2550
ack_x2apic_edge(unsigned int irq)2551 static void ack_x2apic_edge(unsigned int irq)
2552 {
2553 ack_x2APIC_irq();
2554 }
2555
2556 #endif
2557
ack_apic_edge(unsigned int irq)2558 static void ack_apic_edge(unsigned int irq)
2559 {
2560 struct irq_desc *desc = irq_to_desc(irq);
2561
2562 irq_complete_move(&desc);
2563 move_native_irq(irq);
2564 ack_APIC_irq();
2565 }
2566
2567 atomic_t irq_mis_count;
2568
ack_apic_level(unsigned int irq)2569 static void ack_apic_level(unsigned int irq)
2570 {
2571 struct irq_desc *desc = irq_to_desc(irq);
2572
2573 #ifdef CONFIG_X86_32
2574 unsigned long v;
2575 int i;
2576 #endif
2577 struct irq_cfg *cfg;
2578 int do_unmask_irq = 0;
2579
2580 irq_complete_move(&desc);
2581 #ifdef CONFIG_GENERIC_PENDING_IRQ
2582 /* If we are moving the irq we need to mask it */
2583 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2584 do_unmask_irq = 1;
2585 mask_IO_APIC_irq_desc(desc);
2586 }
2587 #endif
2588
2589 #ifdef CONFIG_X86_32
2590 /*
2591 * It appears there is an erratum which affects at least version 0x11
2592 * of I/O APIC (that's the 82093AA and cores integrated into various
2593 * chipsets). Under certain conditions a level-triggered interrupt is
2594 * erroneously delivered as edge-triggered one but the respective IRR
2595 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2596 * message but it will never arrive and further interrupts are blocked
2597 * from the source. The exact reason is so far unknown, but the
2598 * phenomenon was observed when two consecutive interrupt requests
2599 * from a given source get delivered to the same CPU and the source is
2600 * temporarily disabled in between.
2601 *
2602 * A workaround is to simulate an EOI message manually. We achieve it
2603 * by setting the trigger mode to edge and then to level when the edge
2604 * trigger mode gets detected in the TMR of a local APIC for a
2605 * level-triggered interrupt. We mask the source for the time of the
2606 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2607 * The idea is from Manfred Spraul. --macro
2608 */
2609 cfg = desc->chip_data;
2610 i = cfg->vector;
2611
2612 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2613 #endif
2614
2615 /*
2616 * We must acknowledge the irq before we move it or the acknowledge will
2617 * not propagate properly.
2618 */
2619 ack_APIC_irq();
2620
2621 /* Now we can move and renable the irq */
2622 if (unlikely(do_unmask_irq)) {
2623 /* Only migrate the irq if the ack has been received.
2624 *
2625 * On rare occasions the broadcast level triggered ack gets
2626 * delayed going to ioapics, and if we reprogram the
2627 * vector while Remote IRR is still set the irq will never
2628 * fire again.
2629 *
2630 * To prevent this scenario we read the Remote IRR bit
2631 * of the ioapic. This has two effects.
2632 * - On any sane system the read of the ioapic will
2633 * flush writes (and acks) going to the ioapic from
2634 * this cpu.
2635 * - We get to see if the ACK has actually been delivered.
2636 *
2637 * Based on failed experiments of reprogramming the
2638 * ioapic entry from outside of irq context starting
2639 * with masking the ioapic entry and then polling until
2640 * Remote IRR was clear before reprogramming the
2641 * ioapic I don't trust the Remote IRR bit to be
2642 * completey accurate.
2643 *
2644 * However there appears to be no other way to plug
2645 * this race, so if the Remote IRR bit is not
2646 * accurate and is causing problems then it is a hardware bug
2647 * and you can go talk to the chipset vendor about it.
2648 */
2649 cfg = desc->chip_data;
2650 if (!io_apic_level_ack_pending(cfg))
2651 move_masked_irq(irq);
2652 unmask_IO_APIC_irq_desc(desc);
2653 }
2654
2655 #ifdef CONFIG_X86_32
2656 if (!(v & (1 << (i & 0x1f)))) {
2657 atomic_inc(&irq_mis_count);
2658 spin_lock(&ioapic_lock);
2659 __mask_and_edge_IO_APIC_irq(cfg);
2660 __unmask_and_level_IO_APIC_irq(cfg);
2661 spin_unlock(&ioapic_lock);
2662 }
2663 #endif
2664 }
2665
2666 static struct irq_chip ioapic_chip __read_mostly = {
2667 .name = "IO-APIC",
2668 .startup = startup_ioapic_irq,
2669 .mask = mask_IO_APIC_irq,
2670 .unmask = unmask_IO_APIC_irq,
2671 .ack = ack_apic_edge,
2672 .eoi = ack_apic_level,
2673 #ifdef CONFIG_SMP
2674 .set_affinity = set_ioapic_affinity_irq,
2675 #endif
2676 .retrigger = ioapic_retrigger_irq,
2677 };
2678
2679 #ifdef CONFIG_INTR_REMAP
2680 static struct irq_chip ir_ioapic_chip __read_mostly = {
2681 .name = "IR-IO-APIC",
2682 .startup = startup_ioapic_irq,
2683 .mask = mask_IO_APIC_irq,
2684 .unmask = unmask_IO_APIC_irq,
2685 .ack = ack_x2apic_edge,
2686 .eoi = ack_x2apic_level,
2687 #ifdef CONFIG_SMP
2688 .set_affinity = set_ir_ioapic_affinity_irq,
2689 #endif
2690 .retrigger = ioapic_retrigger_irq,
2691 };
2692 #endif
2693
init_IO_APIC_traps(void)2694 static inline void init_IO_APIC_traps(void)
2695 {
2696 int irq;
2697 struct irq_desc *desc;
2698 struct irq_cfg *cfg;
2699
2700 /*
2701 * NOTE! The local APIC isn't very good at handling
2702 * multiple interrupts at the same interrupt level.
2703 * As the interrupt level is determined by taking the
2704 * vector number and shifting that right by 4, we
2705 * want to spread these out a bit so that they don't
2706 * all fall in the same interrupt level.
2707 *
2708 * Also, we've got to be careful not to trash gate
2709 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2710 */
2711 for_each_irq_desc(irq, desc) {
2712 cfg = desc->chip_data;
2713 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2714 /*
2715 * Hmm.. We don't have an entry for this,
2716 * so default to an old-fashioned 8259
2717 * interrupt if we can..
2718 */
2719 if (irq < NR_IRQS_LEGACY)
2720 make_8259A_irq(irq);
2721 else
2722 /* Strange. Oh, well.. */
2723 desc->chip = &no_irq_chip;
2724 }
2725 }
2726 }
2727
2728 /*
2729 * The local APIC irq-chip implementation:
2730 */
2731
mask_lapic_irq(unsigned int irq)2732 static void mask_lapic_irq(unsigned int irq)
2733 {
2734 unsigned long v;
2735
2736 v = apic_read(APIC_LVT0);
2737 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2738 }
2739
unmask_lapic_irq(unsigned int irq)2740 static void unmask_lapic_irq(unsigned int irq)
2741 {
2742 unsigned long v;
2743
2744 v = apic_read(APIC_LVT0);
2745 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2746 }
2747
ack_lapic_irq(unsigned int irq)2748 static void ack_lapic_irq(unsigned int irq)
2749 {
2750 ack_APIC_irq();
2751 }
2752
2753 static struct irq_chip lapic_chip __read_mostly = {
2754 .name = "local-APIC",
2755 .mask = mask_lapic_irq,
2756 .unmask = unmask_lapic_irq,
2757 .ack = ack_lapic_irq,
2758 };
2759
lapic_register_intr(int irq,struct irq_desc * desc)2760 static void lapic_register_intr(int irq, struct irq_desc *desc)
2761 {
2762 desc->status &= ~IRQ_LEVEL;
2763 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2764 "edge");
2765 }
2766
setup_nmi(void)2767 static void __init setup_nmi(void)
2768 {
2769 /*
2770 * Dirty trick to enable the NMI watchdog ...
2771 * We put the 8259A master into AEOI mode and
2772 * unmask on all local APICs LVT0 as NMI.
2773 *
2774 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2775 * is from Maciej W. Rozycki - so we do not have to EOI from
2776 * the NMI handler or the timer interrupt.
2777 */
2778 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2779
2780 enable_NMI_through_LVT0();
2781
2782 apic_printk(APIC_VERBOSE, " done.\n");
2783 }
2784
2785 /*
2786 * This looks a bit hackish but it's about the only one way of sending
2787 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2788 * not support the ExtINT mode, unfortunately. We need to send these
2789 * cycles as some i82489DX-based boards have glue logic that keeps the
2790 * 8259A interrupt line asserted until INTA. --macro
2791 */
unlock_ExtINT_logic(void)2792 static inline void __init unlock_ExtINT_logic(void)
2793 {
2794 int apic, pin, i;
2795 struct IO_APIC_route_entry entry0, entry1;
2796 unsigned char save_control, save_freq_select;
2797
2798 pin = find_isa_irq_pin(8, mp_INT);
2799 if (pin == -1) {
2800 WARN_ON_ONCE(1);
2801 return;
2802 }
2803 apic = find_isa_irq_apic(8, mp_INT);
2804 if (apic == -1) {
2805 WARN_ON_ONCE(1);
2806 return;
2807 }
2808
2809 entry0 = ioapic_read_entry(apic, pin);
2810 clear_IO_APIC_pin(apic, pin);
2811
2812 memset(&entry1, 0, sizeof(entry1));
2813
2814 entry1.dest_mode = 0; /* physical delivery */
2815 entry1.mask = 0; /* unmask IRQ now */
2816 entry1.dest = hard_smp_processor_id();
2817 entry1.delivery_mode = dest_ExtINT;
2818 entry1.polarity = entry0.polarity;
2819 entry1.trigger = 0;
2820 entry1.vector = 0;
2821
2822 ioapic_write_entry(apic, pin, entry1);
2823
2824 save_control = CMOS_READ(RTC_CONTROL);
2825 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2826 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2827 RTC_FREQ_SELECT);
2828 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2829
2830 i = 100;
2831 while (i-- > 0) {
2832 mdelay(10);
2833 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2834 i -= 10;
2835 }
2836
2837 CMOS_WRITE(save_control, RTC_CONTROL);
2838 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2839 clear_IO_APIC_pin(apic, pin);
2840
2841 ioapic_write_entry(apic, pin, entry0);
2842 }
2843
2844 static int disable_timer_pin_1 __initdata;
2845 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
disable_timer_pin_setup(char * arg)2846 static int __init disable_timer_pin_setup(char *arg)
2847 {
2848 disable_timer_pin_1 = 1;
2849 return 0;
2850 }
2851 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2852
2853 int timer_through_8259 __initdata;
2854
2855 /*
2856 * This code may look a bit paranoid, but it's supposed to cooperate with
2857 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2858 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2859 * fanatically on his truly buggy board.
2860 *
2861 * FIXME: really need to revamp this for all platforms.
2862 */
check_timer(void)2863 static inline void __init check_timer(void)
2864 {
2865 struct irq_desc *desc = irq_to_desc(0);
2866 struct irq_cfg *cfg = desc->chip_data;
2867 int cpu = boot_cpu_id;
2868 int apic1, pin1, apic2, pin2;
2869 unsigned long flags;
2870 unsigned int ver;
2871 int no_pin1 = 0;
2872
2873 local_irq_save(flags);
2874
2875 ver = apic_read(APIC_LVR);
2876 ver = GET_APIC_VERSION(ver);
2877
2878 /*
2879 * get/set the timer IRQ vector:
2880 */
2881 disable_8259A_irq(0);
2882 assign_irq_vector(0, cfg, TARGET_CPUS);
2883
2884 /*
2885 * As IRQ0 is to be enabled in the 8259A, the virtual
2886 * wire has to be disabled in the local APIC. Also
2887 * timer interrupts need to be acknowledged manually in
2888 * the 8259A for the i82489DX when using the NMI
2889 * watchdog as that APIC treats NMIs as level-triggered.
2890 * The AEOI mode will finish them in the 8259A
2891 * automatically.
2892 */
2893 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2894 init_8259A(1);
2895 #ifdef CONFIG_X86_32
2896 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2897 #endif
2898
2899 pin1 = find_isa_irq_pin(0, mp_INT);
2900 apic1 = find_isa_irq_apic(0, mp_INT);
2901 pin2 = ioapic_i8259.pin;
2902 apic2 = ioapic_i8259.apic;
2903
2904 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2905 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2906 cfg->vector, apic1, pin1, apic2, pin2);
2907
2908 /*
2909 * Some BIOS writers are clueless and report the ExtINTA
2910 * I/O APIC input from the cascaded 8259A as the timer
2911 * interrupt input. So just in case, if only one pin
2912 * was found above, try it both directly and through the
2913 * 8259A.
2914 */
2915 if (pin1 == -1) {
2916 #ifdef CONFIG_INTR_REMAP
2917 if (intr_remapping_enabled)
2918 panic("BIOS bug: timer not connected to IO-APIC");
2919 #endif
2920 pin1 = pin2;
2921 apic1 = apic2;
2922 no_pin1 = 1;
2923 } else if (pin2 == -1) {
2924 pin2 = pin1;
2925 apic2 = apic1;
2926 }
2927
2928 if (pin1 != -1) {
2929 /*
2930 * Ok, does IRQ0 through the IOAPIC work?
2931 */
2932 if (no_pin1) {
2933 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2934 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2935 }
2936 unmask_IO_APIC_irq_desc(desc);
2937 if (timer_irq_works()) {
2938 if (nmi_watchdog == NMI_IO_APIC) {
2939 setup_nmi();
2940 enable_8259A_irq(0);
2941 }
2942 if (disable_timer_pin_1 > 0)
2943 clear_IO_APIC_pin(0, pin1);
2944 goto out;
2945 }
2946 #ifdef CONFIG_INTR_REMAP
2947 if (intr_remapping_enabled)
2948 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2949 #endif
2950 clear_IO_APIC_pin(apic1, pin1);
2951 if (!no_pin1)
2952 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2953 "8254 timer not connected to IO-APIC\n");
2954
2955 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2956 "(IRQ0) through the 8259A ...\n");
2957 apic_printk(APIC_QUIET, KERN_INFO
2958 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2959 /*
2960 * legacy devices should be connected to IO APIC #0
2961 */
2962 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2963 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2964 unmask_IO_APIC_irq_desc(desc);
2965 enable_8259A_irq(0);
2966 if (timer_irq_works()) {
2967 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2968 timer_through_8259 = 1;
2969 if (nmi_watchdog == NMI_IO_APIC) {
2970 disable_8259A_irq(0);
2971 setup_nmi();
2972 enable_8259A_irq(0);
2973 }
2974 goto out;
2975 }
2976 /*
2977 * Cleanup, just in case ...
2978 */
2979 disable_8259A_irq(0);
2980 clear_IO_APIC_pin(apic2, pin2);
2981 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2982 }
2983
2984 if (nmi_watchdog == NMI_IO_APIC) {
2985 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2986 "through the IO-APIC - disabling NMI Watchdog!\n");
2987 nmi_watchdog = NMI_NONE;
2988 }
2989 #ifdef CONFIG_X86_32
2990 timer_ack = 0;
2991 #endif
2992
2993 apic_printk(APIC_QUIET, KERN_INFO
2994 "...trying to set up timer as Virtual Wire IRQ...\n");
2995
2996 lapic_register_intr(0, desc);
2997 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2998 enable_8259A_irq(0);
2999
3000 if (timer_irq_works()) {
3001 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3002 goto out;
3003 }
3004 disable_8259A_irq(0);
3005 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3006 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3007
3008 apic_printk(APIC_QUIET, KERN_INFO
3009 "...trying to set up timer as ExtINT IRQ...\n");
3010
3011 init_8259A(0);
3012 make_8259A_irq(0);
3013 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3014
3015 unlock_ExtINT_logic();
3016
3017 if (timer_irq_works()) {
3018 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3019 goto out;
3020 }
3021 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3022 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3023 "report. Then try booting with the 'noapic' option.\n");
3024 out:
3025 local_irq_restore(flags);
3026 }
3027
3028 /*
3029 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3030 * to devices. However there may be an I/O APIC pin available for
3031 * this interrupt regardless. The pin may be left unconnected, but
3032 * typically it will be reused as an ExtINT cascade interrupt for
3033 * the master 8259A. In the MPS case such a pin will normally be
3034 * reported as an ExtINT interrupt in the MP table. With ACPI
3035 * there is no provision for ExtINT interrupts, and in the absence
3036 * of an override it would be treated as an ordinary ISA I/O APIC
3037 * interrupt, that is edge-triggered and unmasked by default. We
3038 * used to do this, but it caused problems on some systems because
3039 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3040 * the same ExtINT cascade interrupt to drive the local APIC of the
3041 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3042 * the I/O APIC in all cases now. No actual device should request
3043 * it anyway. --macro
3044 */
3045 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3046
setup_IO_APIC(void)3047 void __init setup_IO_APIC(void)
3048 {
3049
3050 #ifdef CONFIG_X86_32
3051 enable_IO_APIC();
3052 #else
3053 /*
3054 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3055 */
3056 #endif
3057
3058 io_apic_irqs = ~PIC_IRQS;
3059
3060 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3061 /*
3062 * Set up IO-APIC IRQ routing.
3063 */
3064 #ifdef CONFIG_X86_32
3065 if (!acpi_ioapic)
3066 setup_ioapic_ids_from_mpc();
3067 #endif
3068 sync_Arb_IDs();
3069 setup_IO_APIC_irqs();
3070 init_IO_APIC_traps();
3071 check_timer();
3072 }
3073
3074 /*
3075 * Called after all the initialization is done. If we didnt find any
3076 * APIC bugs then we can allow the modify fast path
3077 */
3078
io_apic_bug_finalize(void)3079 static int __init io_apic_bug_finalize(void)
3080 {
3081 if (sis_apic_bug == -1)
3082 sis_apic_bug = 0;
3083 return 0;
3084 }
3085
3086 late_initcall(io_apic_bug_finalize);
3087
3088 struct sysfs_ioapic_data {
3089 struct sys_device dev;
3090 struct IO_APIC_route_entry entry[0];
3091 };
3092 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3093
ioapic_suspend(struct sys_device * dev,pm_message_t state)3094 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3095 {
3096 struct IO_APIC_route_entry *entry;
3097 struct sysfs_ioapic_data *data;
3098 int i;
3099
3100 data = container_of(dev, struct sysfs_ioapic_data, dev);
3101 entry = data->entry;
3102 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3103 *entry = ioapic_read_entry(dev->id, i);
3104
3105 return 0;
3106 }
3107
ioapic_resume(struct sys_device * dev)3108 static int ioapic_resume(struct sys_device *dev)
3109 {
3110 struct IO_APIC_route_entry *entry;
3111 struct sysfs_ioapic_data *data;
3112 unsigned long flags;
3113 union IO_APIC_reg_00 reg_00;
3114 int i;
3115
3116 data = container_of(dev, struct sysfs_ioapic_data, dev);
3117 entry = data->entry;
3118
3119 spin_lock_irqsave(&ioapic_lock, flags);
3120 reg_00.raw = io_apic_read(dev->id, 0);
3121 if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
3122 reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
3123 io_apic_write(dev->id, 0, reg_00.raw);
3124 }
3125 spin_unlock_irqrestore(&ioapic_lock, flags);
3126 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3127 ioapic_write_entry(dev->id, i, entry[i]);
3128
3129 return 0;
3130 }
3131
3132 static struct sysdev_class ioapic_sysdev_class = {
3133 .name = "ioapic",
3134 .suspend = ioapic_suspend,
3135 .resume = ioapic_resume,
3136 };
3137
ioapic_init_sysfs(void)3138 static int __init ioapic_init_sysfs(void)
3139 {
3140 struct sys_device * dev;
3141 int i, size, error;
3142
3143 error = sysdev_class_register(&ioapic_sysdev_class);
3144 if (error)
3145 return error;
3146
3147 for (i = 0; i < nr_ioapics; i++ ) {
3148 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3149 * sizeof(struct IO_APIC_route_entry);
3150 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3151 if (!mp_ioapic_data[i]) {
3152 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3153 continue;
3154 }
3155 dev = &mp_ioapic_data[i]->dev;
3156 dev->id = i;
3157 dev->cls = &ioapic_sysdev_class;
3158 error = sysdev_register(dev);
3159 if (error) {
3160 kfree(mp_ioapic_data[i]);
3161 mp_ioapic_data[i] = NULL;
3162 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3163 continue;
3164 }
3165 }
3166
3167 return 0;
3168 }
3169
3170 device_initcall(ioapic_init_sysfs);
3171
3172 /*
3173 * Dynamic irq allocate and deallocation
3174 */
create_irq_nr(unsigned int irq_want)3175 unsigned int create_irq_nr(unsigned int irq_want)
3176 {
3177 /* Allocate an unused irq */
3178 unsigned int irq;
3179 unsigned int new;
3180 unsigned long flags;
3181 struct irq_cfg *cfg_new = NULL;
3182 int cpu = boot_cpu_id;
3183 struct irq_desc *desc_new = NULL;
3184
3185 irq = 0;
3186 spin_lock_irqsave(&vector_lock, flags);
3187 for (new = irq_want; new < NR_IRQS; new++) {
3188 if (platform_legacy_irq(new))
3189 continue;
3190
3191 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3192 if (!desc_new) {
3193 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3194 continue;
3195 }
3196 cfg_new = desc_new->chip_data;
3197
3198 if (cfg_new->vector != 0)
3199 continue;
3200 if (__assign_irq_vector(new, cfg_new, TARGET_CPUS) == 0)
3201 irq = new;
3202 break;
3203 }
3204 spin_unlock_irqrestore(&vector_lock, flags);
3205
3206 if (irq > 0) {
3207 dynamic_irq_init(irq);
3208 /* restore it, in case dynamic_irq_init clear it */
3209 if (desc_new)
3210 desc_new->chip_data = cfg_new;
3211 }
3212 return irq;
3213 }
3214
3215 static int nr_irqs_gsi = NR_IRQS_LEGACY;
create_irq(void)3216 int create_irq(void)
3217 {
3218 unsigned int irq_want;
3219 int irq;
3220
3221 irq_want = nr_irqs_gsi;
3222 irq = create_irq_nr(irq_want);
3223
3224 if (irq == 0)
3225 irq = -1;
3226
3227 return irq;
3228 }
3229
destroy_irq(unsigned int irq)3230 void destroy_irq(unsigned int irq)
3231 {
3232 unsigned long flags;
3233 struct irq_cfg *cfg;
3234 struct irq_desc *desc;
3235
3236 /* store it, in case dynamic_irq_cleanup clear it */
3237 desc = irq_to_desc(irq);
3238 cfg = desc->chip_data;
3239 dynamic_irq_cleanup(irq);
3240 /* connect back irq_cfg */
3241 if (desc)
3242 desc->chip_data = cfg;
3243
3244 #ifdef CONFIG_INTR_REMAP
3245 free_irte(irq);
3246 #endif
3247 spin_lock_irqsave(&vector_lock, flags);
3248 __clear_irq_vector(irq, cfg);
3249 spin_unlock_irqrestore(&vector_lock, flags);
3250 }
3251
3252 /*
3253 * MSI message composition
3254 */
3255 #ifdef CONFIG_PCI_MSI
msi_compose_msg(struct pci_dev * pdev,unsigned int irq,struct msi_msg * msg)3256 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3257 {
3258 struct irq_cfg *cfg;
3259 int err;
3260 unsigned dest;
3261
3262 cfg = irq_cfg(irq);
3263 err = assign_irq_vector(irq, cfg, TARGET_CPUS);
3264 if (err)
3265 return err;
3266
3267 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
3268
3269 #ifdef CONFIG_INTR_REMAP
3270 if (irq_remapped(irq)) {
3271 struct irte irte;
3272 int ir_index;
3273 u16 sub_handle;
3274
3275 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3276 BUG_ON(ir_index == -1);
3277
3278 memset (&irte, 0, sizeof(irte));
3279
3280 irte.present = 1;
3281 irte.dst_mode = INT_DEST_MODE;
3282 irte.trigger_mode = 0; /* edge */
3283 irte.dlvry_mode = INT_DELIVERY_MODE;
3284 irte.vector = cfg->vector;
3285 irte.dest_id = IRTE_DEST(dest);
3286
3287 modify_irte(irq, &irte);
3288
3289 msg->address_hi = MSI_ADDR_BASE_HI;
3290 msg->data = sub_handle;
3291 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3292 MSI_ADDR_IR_SHV |
3293 MSI_ADDR_IR_INDEX1(ir_index) |
3294 MSI_ADDR_IR_INDEX2(ir_index);
3295 } else
3296 #endif
3297 {
3298 msg->address_hi = MSI_ADDR_BASE_HI;
3299 msg->address_lo =
3300 MSI_ADDR_BASE_LO |
3301 ((INT_DEST_MODE == 0) ?
3302 MSI_ADDR_DEST_MODE_PHYSICAL:
3303 MSI_ADDR_DEST_MODE_LOGICAL) |
3304 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3305 MSI_ADDR_REDIRECTION_CPU:
3306 MSI_ADDR_REDIRECTION_LOWPRI) |
3307 MSI_ADDR_DEST_ID(dest);
3308
3309 msg->data =
3310 MSI_DATA_TRIGGER_EDGE |
3311 MSI_DATA_LEVEL_ASSERT |
3312 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3313 MSI_DATA_DELIVERY_FIXED:
3314 MSI_DATA_DELIVERY_LOWPRI) |
3315 MSI_DATA_VECTOR(cfg->vector);
3316 }
3317 return err;
3318 }
3319
3320 #ifdef CONFIG_SMP
set_msi_irq_affinity(unsigned int irq,const struct cpumask * mask)3321 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3322 {
3323 struct irq_desc *desc = irq_to_desc(irq);
3324 struct irq_cfg *cfg;
3325 struct msi_msg msg;
3326 unsigned int dest;
3327
3328 dest = set_desc_affinity(desc, mask);
3329 if (dest == BAD_APICID)
3330 return;
3331
3332 cfg = desc->chip_data;
3333
3334 read_msi_msg_desc(desc, &msg);
3335
3336 msg.data &= ~MSI_DATA_VECTOR_MASK;
3337 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3338 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3339 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3340
3341 write_msi_msg_desc(desc, &msg);
3342 }
3343 #ifdef CONFIG_INTR_REMAP
3344 /*
3345 * Migrate the MSI irq to another cpumask. This migration is
3346 * done in the process context using interrupt-remapping hardware.
3347 */
3348 static void
ir_set_msi_irq_affinity(unsigned int irq,const struct cpumask * mask)3349 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3350 {
3351 struct irq_desc *desc = irq_to_desc(irq);
3352 struct irq_cfg *cfg = desc->chip_data;
3353 unsigned int dest;
3354 struct irte irte;
3355
3356 if (get_irte(irq, &irte))
3357 return;
3358
3359 dest = set_desc_affinity(desc, mask);
3360 if (dest == BAD_APICID)
3361 return;
3362
3363 irte.vector = cfg->vector;
3364 irte.dest_id = IRTE_DEST(dest);
3365
3366 /*
3367 * atomically update the IRTE with the new destination and vector.
3368 */
3369 modify_irte(irq, &irte);
3370
3371 /*
3372 * After this point, all the interrupts will start arriving
3373 * at the new destination. So, time to cleanup the previous
3374 * vector allocation.
3375 */
3376 if (cfg->move_in_progress)
3377 send_cleanup_vector(cfg);
3378 }
3379
3380 #endif
3381 #endif /* CONFIG_SMP */
3382
3383 /*
3384 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3385 * which implement the MSI or MSI-X Capability Structure.
3386 */
3387 static struct irq_chip msi_chip = {
3388 .name = "PCI-MSI",
3389 .unmask = unmask_msi_irq,
3390 .mask = mask_msi_irq,
3391 .ack = ack_apic_edge,
3392 #ifdef CONFIG_SMP
3393 .set_affinity = set_msi_irq_affinity,
3394 #endif
3395 .retrigger = ioapic_retrigger_irq,
3396 };
3397
3398 #ifdef CONFIG_INTR_REMAP
3399 static struct irq_chip msi_ir_chip = {
3400 .name = "IR-PCI-MSI",
3401 .unmask = unmask_msi_irq,
3402 .mask = mask_msi_irq,
3403 .ack = ack_x2apic_edge,
3404 #ifdef CONFIG_SMP
3405 .set_affinity = ir_set_msi_irq_affinity,
3406 #endif
3407 .retrigger = ioapic_retrigger_irq,
3408 };
3409
3410 /*
3411 * Map the PCI dev to the corresponding remapping hardware unit
3412 * and allocate 'nvec' consecutive interrupt-remapping table entries
3413 * in it.
3414 */
msi_alloc_irte(struct pci_dev * dev,int irq,int nvec)3415 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3416 {
3417 struct intel_iommu *iommu;
3418 int index;
3419
3420 iommu = map_dev_to_ir(dev);
3421 if (!iommu) {
3422 printk(KERN_ERR
3423 "Unable to map PCI %s to iommu\n", pci_name(dev));
3424 return -ENOENT;
3425 }
3426
3427 index = alloc_irte(iommu, irq, nvec);
3428 if (index < 0) {
3429 printk(KERN_ERR
3430 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3431 pci_name(dev));
3432 return -ENOSPC;
3433 }
3434 return index;
3435 }
3436 #endif
3437
setup_msi_irq(struct pci_dev * dev,struct msi_desc * msidesc,int irq)3438 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3439 {
3440 int ret;
3441 struct msi_msg msg;
3442
3443 ret = msi_compose_msg(dev, irq, &msg);
3444 if (ret < 0)
3445 return ret;
3446
3447 set_irq_msi(irq, msidesc);
3448 write_msi_msg(irq, &msg);
3449
3450 #ifdef CONFIG_INTR_REMAP
3451 if (irq_remapped(irq)) {
3452 struct irq_desc *desc = irq_to_desc(irq);
3453 /*
3454 * irq migration in process context
3455 */
3456 desc->status |= IRQ_MOVE_PCNTXT;
3457 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3458 } else
3459 #endif
3460 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3461
3462 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3463
3464 return 0;
3465 }
3466
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * msidesc)3467 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc)
3468 {
3469 unsigned int irq;
3470 int ret;
3471 unsigned int irq_want;
3472
3473 irq_want = nr_irqs_gsi;
3474 irq = create_irq_nr(irq_want);
3475 if (irq == 0)
3476 return -1;
3477
3478 #ifdef CONFIG_INTR_REMAP
3479 if (!intr_remapping_enabled)
3480 goto no_ir;
3481
3482 ret = msi_alloc_irte(dev, irq, 1);
3483 if (ret < 0)
3484 goto error;
3485 no_ir:
3486 #endif
3487 ret = setup_msi_irq(dev, msidesc, irq);
3488 if (ret < 0) {
3489 destroy_irq(irq);
3490 return ret;
3491 }
3492 return 0;
3493
3494 #ifdef CONFIG_INTR_REMAP
3495 error:
3496 destroy_irq(irq);
3497 return ret;
3498 #endif
3499 }
3500
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)3501 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3502 {
3503 unsigned int irq;
3504 int ret, sub_handle;
3505 struct msi_desc *msidesc;
3506 unsigned int irq_want;
3507
3508 #ifdef CONFIG_INTR_REMAP
3509 struct intel_iommu *iommu = 0;
3510 int index = 0;
3511 #endif
3512
3513 irq_want = nr_irqs_gsi;
3514 sub_handle = 0;
3515 list_for_each_entry(msidesc, &dev->msi_list, list) {
3516 irq = create_irq_nr(irq_want);
3517 irq_want++;
3518 if (irq == 0)
3519 return -1;
3520 #ifdef CONFIG_INTR_REMAP
3521 if (!intr_remapping_enabled)
3522 goto no_ir;
3523
3524 if (!sub_handle) {
3525 /*
3526 * allocate the consecutive block of IRTE's
3527 * for 'nvec'
3528 */
3529 index = msi_alloc_irte(dev, irq, nvec);
3530 if (index < 0) {
3531 ret = index;
3532 goto error;
3533 }
3534 } else {
3535 iommu = map_dev_to_ir(dev);
3536 if (!iommu) {
3537 ret = -ENOENT;
3538 goto error;
3539 }
3540 /*
3541 * setup the mapping between the irq and the IRTE
3542 * base index, the sub_handle pointing to the
3543 * appropriate interrupt remap table entry.
3544 */
3545 set_irte_irq(irq, iommu, index, sub_handle);
3546 }
3547 no_ir:
3548 #endif
3549 ret = setup_msi_irq(dev, msidesc, irq);
3550 if (ret < 0)
3551 goto error;
3552 sub_handle++;
3553 }
3554 return 0;
3555
3556 error:
3557 destroy_irq(irq);
3558 return ret;
3559 }
3560
arch_teardown_msi_irq(unsigned int irq)3561 void arch_teardown_msi_irq(unsigned int irq)
3562 {
3563 destroy_irq(irq);
3564 }
3565
3566 #ifdef CONFIG_DMAR
3567 #ifdef CONFIG_SMP
dmar_msi_set_affinity(unsigned int irq,const struct cpumask * mask)3568 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3569 {
3570 struct irq_desc *desc = irq_to_desc(irq);
3571 struct irq_cfg *cfg;
3572 struct msi_msg msg;
3573 unsigned int dest;
3574
3575 dest = set_desc_affinity(desc, mask);
3576 if (dest == BAD_APICID)
3577 return;
3578
3579 cfg = desc->chip_data;
3580
3581 dmar_msi_read(irq, &msg);
3582
3583 msg.data &= ~MSI_DATA_VECTOR_MASK;
3584 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3585 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3586 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3587
3588 dmar_msi_write(irq, &msg);
3589 }
3590
3591 #endif /* CONFIG_SMP */
3592
3593 struct irq_chip dmar_msi_type = {
3594 .name = "DMAR_MSI",
3595 .unmask = dmar_msi_unmask,
3596 .mask = dmar_msi_mask,
3597 .ack = ack_apic_edge,
3598 #ifdef CONFIG_SMP
3599 .set_affinity = dmar_msi_set_affinity,
3600 #endif
3601 .retrigger = ioapic_retrigger_irq,
3602 };
3603
arch_setup_dmar_msi(unsigned int irq)3604 int arch_setup_dmar_msi(unsigned int irq)
3605 {
3606 int ret;
3607 struct msi_msg msg;
3608
3609 ret = msi_compose_msg(NULL, irq, &msg);
3610 if (ret < 0)
3611 return ret;
3612 dmar_msi_write(irq, &msg);
3613 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3614 "edge");
3615 return 0;
3616 }
3617 #endif
3618
3619 #ifdef CONFIG_HPET_TIMER
3620
3621 #ifdef CONFIG_SMP
hpet_msi_set_affinity(unsigned int irq,const struct cpumask * mask)3622 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3623 {
3624 struct irq_desc *desc = irq_to_desc(irq);
3625 struct irq_cfg *cfg;
3626 struct msi_msg msg;
3627 unsigned int dest;
3628
3629 dest = set_desc_affinity(desc, mask);
3630 if (dest == BAD_APICID)
3631 return;
3632
3633 cfg = desc->chip_data;
3634
3635 hpet_msi_read(irq, &msg);
3636
3637 msg.data &= ~MSI_DATA_VECTOR_MASK;
3638 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3639 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3640 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3641
3642 hpet_msi_write(irq, &msg);
3643 }
3644
3645 #endif /* CONFIG_SMP */
3646
3647 struct irq_chip hpet_msi_type = {
3648 .name = "HPET_MSI",
3649 .unmask = hpet_msi_unmask,
3650 .mask = hpet_msi_mask,
3651 .ack = ack_apic_edge,
3652 #ifdef CONFIG_SMP
3653 .set_affinity = hpet_msi_set_affinity,
3654 #endif
3655 .retrigger = ioapic_retrigger_irq,
3656 };
3657
arch_setup_hpet_msi(unsigned int irq)3658 int arch_setup_hpet_msi(unsigned int irq)
3659 {
3660 int ret;
3661 struct msi_msg msg;
3662
3663 ret = msi_compose_msg(NULL, irq, &msg);
3664 if (ret < 0)
3665 return ret;
3666
3667 hpet_msi_write(irq, &msg);
3668 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3669 "edge");
3670
3671 return 0;
3672 }
3673 #endif
3674
3675 #endif /* CONFIG_PCI_MSI */
3676 /*
3677 * Hypertransport interrupt support
3678 */
3679 #ifdef CONFIG_HT_IRQ
3680
3681 #ifdef CONFIG_SMP
3682
target_ht_irq(unsigned int irq,unsigned int dest,u8 vector)3683 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3684 {
3685 struct ht_irq_msg msg;
3686 fetch_ht_irq_msg(irq, &msg);
3687
3688 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3689 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3690
3691 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3692 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3693
3694 write_ht_irq_msg(irq, &msg);
3695 }
3696
set_ht_irq_affinity(unsigned int irq,const struct cpumask * mask)3697 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3698 {
3699 struct irq_desc *desc = irq_to_desc(irq);
3700 struct irq_cfg *cfg;
3701 unsigned int dest;
3702
3703 dest = set_desc_affinity(desc, mask);
3704 if (dest == BAD_APICID)
3705 return;
3706
3707 cfg = desc->chip_data;
3708
3709 target_ht_irq(irq, dest, cfg->vector);
3710 }
3711
3712 #endif
3713
3714 static struct irq_chip ht_irq_chip = {
3715 .name = "PCI-HT",
3716 .mask = mask_ht_irq,
3717 .unmask = unmask_ht_irq,
3718 .ack = ack_apic_edge,
3719 #ifdef CONFIG_SMP
3720 .set_affinity = set_ht_irq_affinity,
3721 #endif
3722 .retrigger = ioapic_retrigger_irq,
3723 };
3724
arch_setup_ht_irq(unsigned int irq,struct pci_dev * dev)3725 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3726 {
3727 struct irq_cfg *cfg;
3728 int err;
3729
3730 cfg = irq_cfg(irq);
3731 err = assign_irq_vector(irq, cfg, TARGET_CPUS);
3732 if (!err) {
3733 struct ht_irq_msg msg;
3734 unsigned dest;
3735
3736 dest = cpu_mask_to_apicid_and(cfg->domain, TARGET_CPUS);
3737
3738 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3739
3740 msg.address_lo =
3741 HT_IRQ_LOW_BASE |
3742 HT_IRQ_LOW_DEST_ID(dest) |
3743 HT_IRQ_LOW_VECTOR(cfg->vector) |
3744 ((INT_DEST_MODE == 0) ?
3745 HT_IRQ_LOW_DM_PHYSICAL :
3746 HT_IRQ_LOW_DM_LOGICAL) |
3747 HT_IRQ_LOW_RQEOI_EDGE |
3748 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3749 HT_IRQ_LOW_MT_FIXED :
3750 HT_IRQ_LOW_MT_ARBITRATED) |
3751 HT_IRQ_LOW_IRQ_MASKED;
3752
3753 write_ht_irq_msg(irq, &msg);
3754
3755 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3756 handle_edge_irq, "edge");
3757
3758 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3759 }
3760 return err;
3761 }
3762 #endif /* CONFIG_HT_IRQ */
3763
3764 #ifdef CONFIG_X86_64
3765 /*
3766 * Re-target the irq to the specified CPU and enable the specified MMR located
3767 * on the specified blade to allow the sending of MSIs to the specified CPU.
3768 */
arch_enable_uv_irq(char * irq_name,unsigned int irq,int cpu,int mmr_blade,unsigned long mmr_offset)3769 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3770 unsigned long mmr_offset)
3771 {
3772 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3773 struct irq_cfg *cfg;
3774 int mmr_pnode;
3775 unsigned long mmr_value;
3776 struct uv_IO_APIC_route_entry *entry;
3777 unsigned long flags;
3778 int err;
3779
3780 cfg = irq_cfg(irq);
3781
3782 err = assign_irq_vector(irq, cfg, eligible_cpu);
3783 if (err != 0)
3784 return err;
3785
3786 spin_lock_irqsave(&vector_lock, flags);
3787 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3788 irq_name);
3789 spin_unlock_irqrestore(&vector_lock, flags);
3790
3791 mmr_value = 0;
3792 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3793 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3794
3795 entry->vector = cfg->vector;
3796 entry->delivery_mode = INT_DELIVERY_MODE;
3797 entry->dest_mode = INT_DEST_MODE;
3798 entry->polarity = 0;
3799 entry->trigger = 0;
3800 entry->mask = 0;
3801 entry->dest = cpu_mask_to_apicid(eligible_cpu);
3802
3803 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3804 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3805
3806 return irq;
3807 }
3808
3809 /*
3810 * Disable the specified MMR located on the specified blade so that MSIs are
3811 * longer allowed to be sent.
3812 */
arch_disable_uv_irq(int mmr_blade,unsigned long mmr_offset)3813 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3814 {
3815 unsigned long mmr_value;
3816 struct uv_IO_APIC_route_entry *entry;
3817 int mmr_pnode;
3818
3819 mmr_value = 0;
3820 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3821 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3822
3823 entry->mask = 1;
3824
3825 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3826 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3827 }
3828 #endif /* CONFIG_X86_64 */
3829
io_apic_get_redir_entries(int ioapic)3830 int __init io_apic_get_redir_entries (int ioapic)
3831 {
3832 union IO_APIC_reg_01 reg_01;
3833 unsigned long flags;
3834
3835 spin_lock_irqsave(&ioapic_lock, flags);
3836 reg_01.raw = io_apic_read(ioapic, 1);
3837 spin_unlock_irqrestore(&ioapic_lock, flags);
3838
3839 return reg_01.bits.entries;
3840 }
3841
probe_nr_irqs_gsi(void)3842 void __init probe_nr_irqs_gsi(void)
3843 {
3844 int nr = 0;
3845
3846 nr = acpi_probe_gsi();
3847 if (nr > nr_irqs_gsi) {
3848 nr_irqs_gsi = nr;
3849 } else {
3850 /* for acpi=off or acpi is not compiled in */
3851 int idx;
3852
3853 nr = 0;
3854 for (idx = 0; idx < nr_ioapics; idx++)
3855 nr += io_apic_get_redir_entries(idx) + 1;
3856
3857 if (nr > nr_irqs_gsi)
3858 nr_irqs_gsi = nr;
3859 }
3860
3861 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3862 }
3863
3864 /* --------------------------------------------------------------------------
3865 ACPI-based IOAPIC Configuration
3866 -------------------------------------------------------------------------- */
3867
3868 #ifdef CONFIG_ACPI
3869
3870 #ifdef CONFIG_X86_32
io_apic_get_unique_id(int ioapic,int apic_id)3871 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3872 {
3873 union IO_APIC_reg_00 reg_00;
3874 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3875 physid_mask_t tmp;
3876 unsigned long flags;
3877 int i = 0;
3878
3879 /*
3880 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3881 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3882 * supports up to 16 on one shared APIC bus.
3883 *
3884 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3885 * advantage of new APIC bus architecture.
3886 */
3887
3888 if (physids_empty(apic_id_map))
3889 apic_id_map = ioapic_phys_id_map(phys_cpu_present_map);
3890
3891 spin_lock_irqsave(&ioapic_lock, flags);
3892 reg_00.raw = io_apic_read(ioapic, 0);
3893 spin_unlock_irqrestore(&ioapic_lock, flags);
3894
3895 if (apic_id >= get_physical_broadcast()) {
3896 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3897 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3898 apic_id = reg_00.bits.ID;
3899 }
3900
3901 /*
3902 * Every APIC in a system must have a unique ID or we get lots of nice
3903 * 'stuck on smp_invalidate_needed IPI wait' messages.
3904 */
3905 if (check_apicid_used(apic_id_map, apic_id)) {
3906
3907 for (i = 0; i < get_physical_broadcast(); i++) {
3908 if (!check_apicid_used(apic_id_map, i))
3909 break;
3910 }
3911
3912 if (i == get_physical_broadcast())
3913 panic("Max apic_id exceeded!\n");
3914
3915 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3916 "trying %d\n", ioapic, apic_id, i);
3917
3918 apic_id = i;
3919 }
3920
3921 tmp = apicid_to_cpu_present(apic_id);
3922 physids_or(apic_id_map, apic_id_map, tmp);
3923
3924 if (reg_00.bits.ID != apic_id) {
3925 reg_00.bits.ID = apic_id;
3926
3927 spin_lock_irqsave(&ioapic_lock, flags);
3928 io_apic_write(ioapic, 0, reg_00.raw);
3929 reg_00.raw = io_apic_read(ioapic, 0);
3930 spin_unlock_irqrestore(&ioapic_lock, flags);
3931
3932 /* Sanity check */
3933 if (reg_00.bits.ID != apic_id) {
3934 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3935 return -1;
3936 }
3937 }
3938
3939 apic_printk(APIC_VERBOSE, KERN_INFO
3940 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3941
3942 return apic_id;
3943 }
3944
io_apic_get_version(int ioapic)3945 int __init io_apic_get_version(int ioapic)
3946 {
3947 union IO_APIC_reg_01 reg_01;
3948 unsigned long flags;
3949
3950 spin_lock_irqsave(&ioapic_lock, flags);
3951 reg_01.raw = io_apic_read(ioapic, 1);
3952 spin_unlock_irqrestore(&ioapic_lock, flags);
3953
3954 return reg_01.bits.version;
3955 }
3956 #endif
3957
io_apic_set_pci_routing(int ioapic,int pin,int irq,int triggering,int polarity)3958 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3959 {
3960 struct irq_desc *desc;
3961 struct irq_cfg *cfg;
3962 int cpu = boot_cpu_id;
3963
3964 if (!IO_APIC_IRQ(irq)) {
3965 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3966 ioapic);
3967 return -EINVAL;
3968 }
3969
3970 desc = irq_to_desc_alloc_cpu(irq, cpu);
3971 if (!desc) {
3972 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3973 return 0;
3974 }
3975
3976 /*
3977 * IRQs < 16 are already in the irq_2_pin[] map
3978 */
3979 if (irq >= NR_IRQS_LEGACY) {
3980 cfg = desc->chip_data;
3981 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3982 }
3983
3984 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3985
3986 return 0;
3987 }
3988
3989
acpi_get_override_irq(int bus_irq,int * trigger,int * polarity)3990 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3991 {
3992 int i;
3993
3994 if (skip_ioapic_setup)
3995 return -1;
3996
3997 for (i = 0; i < mp_irq_entries; i++)
3998 if (mp_irqs[i].mp_irqtype == mp_INT &&
3999 mp_irqs[i].mp_srcbusirq == bus_irq)
4000 break;
4001 if (i >= mp_irq_entries)
4002 return -1;
4003
4004 *trigger = irq_trigger(i);
4005 *polarity = irq_polarity(i);
4006 return 0;
4007 }
4008
4009 #endif /* CONFIG_ACPI */
4010
4011 /*
4012 * This function currently is only a helper for the i386 smp boot process where
4013 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4014 * so mask in all cases should simply be TARGET_CPUS
4015 */
4016 #ifdef CONFIG_SMP
setup_ioapic_dest(void)4017 void __init setup_ioapic_dest(void)
4018 {
4019 int pin, ioapic, irq, irq_entry;
4020 struct irq_desc *desc;
4021 struct irq_cfg *cfg;
4022 const struct cpumask *mask;
4023
4024 if (skip_ioapic_setup == 1)
4025 return;
4026
4027 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4028 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4029 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4030 if (irq_entry == -1)
4031 continue;
4032 irq = pin_2_irq(irq_entry, ioapic, pin);
4033
4034 /* setup_IO_APIC_irqs could fail to get vector for some device
4035 * when you have too many devices, because at that time only boot
4036 * cpu is online.
4037 */
4038 desc = irq_to_desc(irq);
4039 cfg = desc->chip_data;
4040 if (!cfg->vector) {
4041 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4042 irq_trigger(irq_entry),
4043 irq_polarity(irq_entry));
4044 continue;
4045
4046 }
4047
4048 /*
4049 * Honour affinities which have been set in early boot
4050 */
4051 if (desc->status &
4052 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4053 mask = &desc->affinity;
4054 else
4055 mask = TARGET_CPUS;
4056
4057 #ifdef CONFIG_INTR_REMAP
4058 if (intr_remapping_enabled)
4059 set_ir_ioapic_affinity_irq_desc(desc, mask);
4060 else
4061 #endif
4062 set_ioapic_affinity_irq_desc(desc, mask);
4063 }
4064
4065 }
4066 }
4067 #endif
4068
4069 #define IOAPIC_RESOURCE_NAME_SIZE 11
4070
4071 static struct resource *ioapic_resources;
4072
ioapic_setup_resources(void)4073 static struct resource * __init ioapic_setup_resources(void)
4074 {
4075 unsigned long n;
4076 struct resource *res;
4077 char *mem;
4078 int i;
4079
4080 if (nr_ioapics <= 0)
4081 return NULL;
4082
4083 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4084 n *= nr_ioapics;
4085
4086 mem = alloc_bootmem(n);
4087 res = (void *)mem;
4088
4089 if (mem != NULL) {
4090 mem += sizeof(struct resource) * nr_ioapics;
4091
4092 for (i = 0; i < nr_ioapics; i++) {
4093 res[i].name = mem;
4094 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4095 sprintf(mem, "IOAPIC %u", i);
4096 mem += IOAPIC_RESOURCE_NAME_SIZE;
4097 }
4098 }
4099
4100 ioapic_resources = res;
4101
4102 return res;
4103 }
4104
ioapic_init_mappings(void)4105 void __init ioapic_init_mappings(void)
4106 {
4107 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4108 struct resource *ioapic_res;
4109 int i;
4110
4111 ioapic_res = ioapic_setup_resources();
4112 for (i = 0; i < nr_ioapics; i++) {
4113 if (smp_found_config) {
4114 ioapic_phys = mp_ioapics[i].mp_apicaddr;
4115 #ifdef CONFIG_X86_32
4116 if (!ioapic_phys) {
4117 printk(KERN_ERR
4118 "WARNING: bogus zero IO-APIC "
4119 "address found in MPTABLE, "
4120 "disabling IO/APIC support!\n");
4121 smp_found_config = 0;
4122 skip_ioapic_setup = 1;
4123 goto fake_ioapic_page;
4124 }
4125 #endif
4126 } else {
4127 #ifdef CONFIG_X86_32
4128 fake_ioapic_page:
4129 #endif
4130 ioapic_phys = (unsigned long)
4131 alloc_bootmem_pages(PAGE_SIZE);
4132 ioapic_phys = __pa(ioapic_phys);
4133 }
4134 set_fixmap_nocache(idx, ioapic_phys);
4135 apic_printk(APIC_VERBOSE,
4136 "mapped IOAPIC to %08lx (%08lx)\n",
4137 __fix_to_virt(idx), ioapic_phys);
4138 idx++;
4139
4140 if (ioapic_res != NULL) {
4141 ioapic_res->start = ioapic_phys;
4142 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4143 ioapic_res++;
4144 }
4145 }
4146 }
4147
ioapic_insert_resources(void)4148 static int __init ioapic_insert_resources(void)
4149 {
4150 int i;
4151 struct resource *r = ioapic_resources;
4152
4153 if (!r) {
4154 printk(KERN_ERR
4155 "IO APIC resources could be not be allocated.\n");
4156 return -1;
4157 }
4158
4159 for (i = 0; i < nr_ioapics; i++) {
4160 insert_resource(&iomem_resource, r);
4161 r++;
4162 }
4163
4164 return 0;
4165 }
4166
4167 /* Insert the IO APIC resources after PCI initialization has occured to handle
4168 * IO APICS that are mapped in on a BAR in PCI space. */
4169 late_initcall(ioapic_insert_resources);
4170