• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RTC related functions
3  */
4 #include <linux/acpi.h>
5 #include <linux/bcd.h>
6 #include <linux/mc146818rtc.h>
7 #include <linux/platform_device.h>
8 #include <linux/pnp.h>
9 
10 #include <asm/time.h>
11 #include <asm/vsyscall.h>
12 
13 #ifdef CONFIG_X86_32
14 /*
15  * This is a special lock that is owned by the CPU and holds the index
16  * register we are working with.  It is required for NMI access to the
17  * CMOS/RTC registers.  See include/asm-i386/mc146818rtc.h for details.
18  */
19 volatile unsigned long cmos_lock = 0;
20 EXPORT_SYMBOL(cmos_lock);
21 #endif
22 
23 /* For two digit years assume time is always after that */
24 #define CMOS_YEARS_OFFS 2000
25 
26 DEFINE_SPINLOCK(rtc_lock);
27 EXPORT_SYMBOL(rtc_lock);
28 
29 /*
30  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
31  * called 500 ms after the second nowtime has started, because when
32  * nowtime is written into the registers of the CMOS clock, it will
33  * jump to the next second precisely 500 ms later. Check the Motorola
34  * MC146818A or Dallas DS12887 data sheet for details.
35  *
36  * BUG: This routine does not handle hour overflow properly; it just
37  *      sets the minutes. Usually you'll only notice that after reboot!
38  */
mach_set_rtc_mmss(unsigned long nowtime)39 int mach_set_rtc_mmss(unsigned long nowtime)
40 {
41 	int retval = 0;
42 	int real_seconds, real_minutes, cmos_minutes;
43 	unsigned char save_control, save_freq_select;
44 
45 	 /* tell the clock it's being set */
46 	save_control = CMOS_READ(RTC_CONTROL);
47 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
48 
49 	/* stop and reset prescaler */
50 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
51 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
52 
53 	cmos_minutes = CMOS_READ(RTC_MINUTES);
54 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
55 		cmos_minutes = bcd2bin(cmos_minutes);
56 
57 	/*
58 	 * since we're only adjusting minutes and seconds,
59 	 * don't interfere with hour overflow. This avoids
60 	 * messing with unknown time zones but requires your
61 	 * RTC not to be off by more than 15 minutes
62 	 */
63 	real_seconds = nowtime % 60;
64 	real_minutes = nowtime / 60;
65 	/* correct for half hour time zone */
66 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
67 		real_minutes += 30;
68 	real_minutes %= 60;
69 
70 	if (abs(real_minutes - cmos_minutes) < 30) {
71 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
72 			real_seconds = bin2bcd(real_seconds);
73 			real_minutes = bin2bcd(real_minutes);
74 		}
75 		CMOS_WRITE(real_seconds,RTC_SECONDS);
76 		CMOS_WRITE(real_minutes,RTC_MINUTES);
77 	} else {
78 		printk(KERN_WARNING
79 		       "set_rtc_mmss: can't update from %d to %d\n",
80 		       cmos_minutes, real_minutes);
81 		retval = -1;
82 	}
83 
84 	/* The following flags have to be released exactly in this order,
85 	 * otherwise the DS12887 (popular MC146818A clone with integrated
86 	 * battery and quartz) will not reset the oscillator and will not
87 	 * update precisely 500 ms later. You won't find this mentioned in
88 	 * the Dallas Semiconductor data sheets, but who believes data
89 	 * sheets anyway ...                           -- Markus Kuhn
90 	 */
91 	CMOS_WRITE(save_control, RTC_CONTROL);
92 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
93 
94 	return retval;
95 }
96 
mach_get_cmos_time(void)97 unsigned long mach_get_cmos_time(void)
98 {
99 	unsigned int status, year, mon, day, hour, min, sec, century = 0;
100 
101 	/*
102 	 * If UIP is clear, then we have >= 244 microseconds before
103 	 * RTC registers will be updated.  Spec sheet says that this
104 	 * is the reliable way to read RTC - registers. If UIP is set
105 	 * then the register access might be invalid.
106 	 */
107 	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
108 		cpu_relax();
109 
110 	sec = CMOS_READ(RTC_SECONDS);
111 	min = CMOS_READ(RTC_MINUTES);
112 	hour = CMOS_READ(RTC_HOURS);
113 	day = CMOS_READ(RTC_DAY_OF_MONTH);
114 	mon = CMOS_READ(RTC_MONTH);
115 	year = CMOS_READ(RTC_YEAR);
116 
117 #ifdef CONFIG_ACPI
118 	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
119 	    acpi_gbl_FADT.century)
120 		century = CMOS_READ(acpi_gbl_FADT.century);
121 #endif
122 
123 	status = CMOS_READ(RTC_CONTROL);
124 	WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY));
125 
126 	if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
127 		sec = bcd2bin(sec);
128 		min = bcd2bin(min);
129 		hour = bcd2bin(hour);
130 		day = bcd2bin(day);
131 		mon = bcd2bin(mon);
132 		year = bcd2bin(year);
133 	}
134 
135 	if (century) {
136 		century = bcd2bin(century);
137 		year += century * 100;
138 		printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
139 	} else
140 		year += CMOS_YEARS_OFFS;
141 
142 	return mktime(year, mon, day, hour, min, sec);
143 }
144 
145 /* Routines for accessing the CMOS RAM/RTC. */
rtc_cmos_read(unsigned char addr)146 unsigned char rtc_cmos_read(unsigned char addr)
147 {
148 	unsigned char val;
149 
150 	lock_cmos_prefix(addr);
151 	outb(addr, RTC_PORT(0));
152 	val = inb(RTC_PORT(1));
153 	lock_cmos_suffix(addr);
154 	return val;
155 }
156 EXPORT_SYMBOL(rtc_cmos_read);
157 
rtc_cmos_write(unsigned char val,unsigned char addr)158 void rtc_cmos_write(unsigned char val, unsigned char addr)
159 {
160 	lock_cmos_prefix(addr);
161 	outb(addr, RTC_PORT(0));
162 	outb(val, RTC_PORT(1));
163 	lock_cmos_suffix(addr);
164 }
165 EXPORT_SYMBOL(rtc_cmos_write);
166 
set_rtc_mmss(unsigned long nowtime)167 static int set_rtc_mmss(unsigned long nowtime)
168 {
169 	int retval;
170 	unsigned long flags;
171 
172 	spin_lock_irqsave(&rtc_lock, flags);
173 	retval = set_wallclock(nowtime);
174 	spin_unlock_irqrestore(&rtc_lock, flags);
175 
176 	return retval;
177 }
178 
179 /* not static: needed by APM */
read_persistent_clock(void)180 unsigned long read_persistent_clock(void)
181 {
182 	unsigned long retval, flags;
183 
184 	spin_lock_irqsave(&rtc_lock, flags);
185 	retval = get_wallclock();
186 	spin_unlock_irqrestore(&rtc_lock, flags);
187 
188 	return retval;
189 }
190 
update_persistent_clock(struct timespec now)191 int update_persistent_clock(struct timespec now)
192 {
193 	return set_rtc_mmss(now.tv_sec);
194 }
195 
native_read_tsc(void)196 unsigned long long native_read_tsc(void)
197 {
198 	return __native_read_tsc();
199 }
200 EXPORT_SYMBOL(native_read_tsc);
201 
202 
203 static struct resource rtc_resources[] = {
204 	[0] = {
205 		.start	= RTC_PORT(0),
206 		.end	= RTC_PORT(1),
207 		.flags	= IORESOURCE_IO,
208 	},
209 	[1] = {
210 		.start	= RTC_IRQ,
211 		.end	= RTC_IRQ,
212 		.flags	= IORESOURCE_IRQ,
213 	}
214 };
215 
216 static struct platform_device rtc_device = {
217 	.name		= "rtc_cmos",
218 	.id		= -1,
219 	.resource	= rtc_resources,
220 	.num_resources	= ARRAY_SIZE(rtc_resources),
221 };
222 
add_rtc_cmos(void)223 static __init int add_rtc_cmos(void)
224 {
225 #ifdef CONFIG_PNP
226 	static const char *ids[] __initconst =
227 	    { "PNP0b00", "PNP0b01", "PNP0b02", };
228 	struct pnp_dev *dev;
229 	struct pnp_id *id;
230 	int i;
231 
232 	pnp_for_each_dev(dev) {
233 		for (id = dev->id; id; id = id->next) {
234 			for (i = 0; i < ARRAY_SIZE(ids); i++) {
235 				if (compare_pnp_id(id, ids[i]) != 0)
236 					return 0;
237 			}
238 		}
239 	}
240 #endif
241 
242 	platform_device_register(&rtc_device);
243 	dev_info(&rtc_device.dev,
244 		 "registered platform RTC device (no PNP device found)\n");
245 	return 0;
246 }
247 device_initcall(add_rtc_cmos);
248