• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/init.h>
2 
3 #include <linux/mm.h>
4 #include <linux/delay.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/mc146818rtc.h>
9 #include <linux/interrupt.h>
10 
11 #include <asm/mtrr.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/mmu_context.h>
15 #include <asm/proto.h>
16 #include <asm/apicdef.h>
17 #include <asm/idle.h>
18 #include <asm/uv/uv_hub.h>
19 #include <asm/uv/uv_bau.h>
20 
21 #include <mach_ipi.h>
22 /*
23  *	Smarter SMP flushing macros.
24  *		c/o Linus Torvalds.
25  *
26  *	These mean you can really definitely utterly forget about
27  *	writing to user space from interrupts. (Its not allowed anyway).
28  *
29  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
30  *
31  *	More scalable flush, from Andi Kleen
32  *
33  *	To avoid global state use 8 different call vectors.
34  *	Each CPU uses a specific vector to trigger flushes on other
35  *	CPUs. Depending on the received vector the target CPUs look into
36  *	the right per cpu variable for the flush data.
37  *
38  *	With more than 8 CPUs they are hashed to the 8 available
39  *	vectors. The limited global vector space forces us to this right now.
40  *	In future when interrupts are split into per CPU domains this could be
41  *	fixed, at the cost of triggering multiple IPIs in some cases.
42  */
43 
44 union smp_flush_state {
45 	struct {
46 		cpumask_t flush_cpumask;
47 		struct mm_struct *flush_mm;
48 		unsigned long flush_va;
49 		spinlock_t tlbstate_lock;
50 	};
51 	char pad[SMP_CACHE_BYTES];
52 } ____cacheline_aligned;
53 
54 /* State is put into the per CPU data section, but padded
55    to a full cache line because other CPUs can access it and we don't
56    want false sharing in the per cpu data segment. */
57 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
58 
59 /*
60  * We cannot call mmdrop() because we are in interrupt context,
61  * instead update mm->cpu_vm_mask.
62  */
leave_mm(int cpu)63 void leave_mm(int cpu)
64 {
65 	if (read_pda(mmu_state) == TLBSTATE_OK)
66 		BUG();
67 	cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
68 	load_cr3(swapper_pg_dir);
69 }
70 EXPORT_SYMBOL_GPL(leave_mm);
71 
72 /*
73  *
74  * The flush IPI assumes that a thread switch happens in this order:
75  * [cpu0: the cpu that switches]
76  * 1) switch_mm() either 1a) or 1b)
77  * 1a) thread switch to a different mm
78  * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
79  *	Stop ipi delivery for the old mm. This is not synchronized with
80  *	the other cpus, but smp_invalidate_interrupt ignore flush ipis
81  *	for the wrong mm, and in the worst case we perform a superfluous
82  *	tlb flush.
83  * 1a2) set cpu mmu_state to TLBSTATE_OK
84  *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
85  *	was in lazy tlb mode.
86  * 1a3) update cpu active_mm
87  *	Now cpu0 accepts tlb flushes for the new mm.
88  * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
89  *	Now the other cpus will send tlb flush ipis.
90  * 1a4) change cr3.
91  * 1b) thread switch without mm change
92  *	cpu active_mm is correct, cpu0 already handles
93  *	flush ipis.
94  * 1b1) set cpu mmu_state to TLBSTATE_OK
95  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
96  *	Atomically set the bit [other cpus will start sending flush ipis],
97  *	and test the bit.
98  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
99  * 2) switch %%esp, ie current
100  *
101  * The interrupt must handle 2 special cases:
102  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
103  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
104  *   runs in kernel space, the cpu could load tlb entries for user space
105  *   pages.
106  *
107  * The good news is that cpu mmu_state is local to each cpu, no
108  * write/read ordering problems.
109  */
110 
111 /*
112  * TLB flush IPI:
113  *
114  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
115  * 2) Leave the mm if we are in the lazy tlb mode.
116  *
117  * Interrupts are disabled.
118  */
119 
smp_invalidate_interrupt(struct pt_regs * regs)120 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
121 {
122 	int cpu;
123 	int sender;
124 	union smp_flush_state *f;
125 
126 	cpu = smp_processor_id();
127 	/*
128 	 * orig_rax contains the negated interrupt vector.
129 	 * Use that to determine where the sender put the data.
130 	 */
131 	sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
132 	f = &per_cpu(flush_state, sender);
133 
134 	if (!cpu_isset(cpu, f->flush_cpumask))
135 		goto out;
136 		/*
137 		 * This was a BUG() but until someone can quote me the
138 		 * line from the intel manual that guarantees an IPI to
139 		 * multiple CPUs is retried _only_ on the erroring CPUs
140 		 * its staying as a return
141 		 *
142 		 * BUG();
143 		 */
144 
145 	if (f->flush_mm == read_pda(active_mm)) {
146 		if (read_pda(mmu_state) == TLBSTATE_OK) {
147 			if (f->flush_va == TLB_FLUSH_ALL)
148 				local_flush_tlb();
149 			else
150 				__flush_tlb_one(f->flush_va);
151 		} else
152 			leave_mm(cpu);
153 	}
154 out:
155 	ack_APIC_irq();
156 	cpu_clear(cpu, f->flush_cpumask);
157 	inc_irq_stat(irq_tlb_count);
158 }
159 
native_flush_tlb_others(const cpumask_t * cpumaskp,struct mm_struct * mm,unsigned long va)160 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
161 			     unsigned long va)
162 {
163 	int sender;
164 	union smp_flush_state *f;
165 	cpumask_t cpumask = *cpumaskp;
166 
167 	if (is_uv_system() && uv_flush_tlb_others(&cpumask, mm, va))
168 		return;
169 
170 	/* Caller has disabled preemption */
171 	sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
172 	f = &per_cpu(flush_state, sender);
173 
174 	/*
175 	 * Could avoid this lock when
176 	 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
177 	 * probably not worth checking this for a cache-hot lock.
178 	 */
179 	spin_lock(&f->tlbstate_lock);
180 
181 	f->flush_mm = mm;
182 	f->flush_va = va;
183 	cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
184 
185 	/*
186 	 * Make the above memory operations globally visible before
187 	 * sending the IPI.
188 	 */
189 	smp_mb();
190 	/*
191 	 * We have to send the IPI only to
192 	 * CPUs affected.
193 	 */
194 	send_IPI_mask(&cpumask, INVALIDATE_TLB_VECTOR_START + sender);
195 
196 	while (!cpus_empty(f->flush_cpumask))
197 		cpu_relax();
198 
199 	f->flush_mm = NULL;
200 	f->flush_va = 0;
201 	spin_unlock(&f->tlbstate_lock);
202 }
203 
init_smp_flush(void)204 static int __cpuinit init_smp_flush(void)
205 {
206 	int i;
207 
208 	for_each_possible_cpu(i)
209 		spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
210 
211 	return 0;
212 }
213 core_initcall(init_smp_flush);
214 
flush_tlb_current_task(void)215 void flush_tlb_current_task(void)
216 {
217 	struct mm_struct *mm = current->mm;
218 	cpumask_t cpu_mask;
219 
220 	preempt_disable();
221 	cpu_mask = mm->cpu_vm_mask;
222 	cpu_clear(smp_processor_id(), cpu_mask);
223 
224 	local_flush_tlb();
225 	if (!cpus_empty(cpu_mask))
226 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
227 	preempt_enable();
228 }
229 
flush_tlb_mm(struct mm_struct * mm)230 void flush_tlb_mm(struct mm_struct *mm)
231 {
232 	cpumask_t cpu_mask;
233 
234 	preempt_disable();
235 	cpu_mask = mm->cpu_vm_mask;
236 	cpu_clear(smp_processor_id(), cpu_mask);
237 
238 	if (current->active_mm == mm) {
239 		if (current->mm)
240 			local_flush_tlb();
241 		else
242 			leave_mm(smp_processor_id());
243 	}
244 	if (!cpus_empty(cpu_mask))
245 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
246 
247 	preempt_enable();
248 }
249 
flush_tlb_page(struct vm_area_struct * vma,unsigned long va)250 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
251 {
252 	struct mm_struct *mm = vma->vm_mm;
253 	cpumask_t cpu_mask;
254 
255 	preempt_disable();
256 	cpu_mask = mm->cpu_vm_mask;
257 	cpu_clear(smp_processor_id(), cpu_mask);
258 
259 	if (current->active_mm == mm) {
260 		if (current->mm)
261 			__flush_tlb_one(va);
262 		else
263 			leave_mm(smp_processor_id());
264 	}
265 
266 	if (!cpus_empty(cpu_mask))
267 		flush_tlb_others(cpu_mask, mm, va);
268 
269 	preempt_enable();
270 }
271 
do_flush_tlb_all(void * info)272 static void do_flush_tlb_all(void *info)
273 {
274 	unsigned long cpu = smp_processor_id();
275 
276 	__flush_tlb_all();
277 	if (read_pda(mmu_state) == TLBSTATE_LAZY)
278 		leave_mm(cpu);
279 }
280 
flush_tlb_all(void)281 void flush_tlb_all(void)
282 {
283 	on_each_cpu(do_flush_tlb_all, NULL, 1);
284 }
285