• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMI paravirtual timer support routines.
3  *
4  * Copyright (C) 2007, VMware, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/cpumask.h>
26 #include <linux/clocksource.h>
27 #include <linux/clockchips.h>
28 
29 #include <asm/vmi.h>
30 #include <asm/vmi_time.h>
31 #include <asm/arch_hooks.h>
32 #include <asm/apicdef.h>
33 #include <asm/apic.h>
34 #include <asm/timer.h>
35 #include <asm/i8253.h>
36 #include <asm/irq_vectors.h>
37 
38 #define VMI_ONESHOT  (VMI_ALARM_IS_ONESHOT  | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
39 #define VMI_PERIODIC (VMI_ALARM_IS_PERIODIC | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
40 
41 static DEFINE_PER_CPU(struct clock_event_device, local_events);
42 
vmi_counter(u32 flags)43 static inline u32 vmi_counter(u32 flags)
44 {
45 	/* Given VMI_ONESHOT or VMI_PERIODIC, return the corresponding
46 	 * cycle counter. */
47 	return flags & VMI_ALARM_COUNTER_MASK;
48 }
49 
50 /* paravirt_ops.get_wallclock = vmi_get_wallclock */
vmi_get_wallclock(void)51 unsigned long vmi_get_wallclock(void)
52 {
53 	unsigned long long wallclock;
54 	wallclock = vmi_timer_ops.get_wallclock(); // nsec
55 	(void)do_div(wallclock, 1000000000);       // sec
56 
57 	return wallclock;
58 }
59 
60 /* paravirt_ops.set_wallclock = vmi_set_wallclock */
vmi_set_wallclock(unsigned long now)61 int vmi_set_wallclock(unsigned long now)
62 {
63 	return 0;
64 }
65 
66 /* paravirt_ops.sched_clock = vmi_sched_clock */
vmi_sched_clock(void)67 unsigned long long vmi_sched_clock(void)
68 {
69 	return cycles_2_ns(vmi_timer_ops.get_cycle_counter(VMI_CYCLES_AVAILABLE));
70 }
71 
72 /* paravirt_ops.get_tsc_khz = vmi_tsc_khz */
vmi_tsc_khz(void)73 unsigned long vmi_tsc_khz(void)
74 {
75 	unsigned long long khz;
76 	khz = vmi_timer_ops.get_cycle_frequency();
77 	(void)do_div(khz, 1000);
78 	return khz;
79 }
80 
vmi_get_timer_vector(void)81 static inline unsigned int vmi_get_timer_vector(void)
82 {
83 #ifdef CONFIG_X86_IO_APIC
84 	return FIRST_DEVICE_VECTOR;
85 #else
86 	return FIRST_EXTERNAL_VECTOR;
87 #endif
88 }
89 
90 /** vmi clockchip */
91 #ifdef CONFIG_X86_LOCAL_APIC
startup_timer_irq(unsigned int irq)92 static unsigned int startup_timer_irq(unsigned int irq)
93 {
94 	unsigned long val = apic_read(APIC_LVTT);
95 	apic_write(APIC_LVTT, vmi_get_timer_vector());
96 
97 	return (val & APIC_SEND_PENDING);
98 }
99 
mask_timer_irq(unsigned int irq)100 static void mask_timer_irq(unsigned int irq)
101 {
102 	unsigned long val = apic_read(APIC_LVTT);
103 	apic_write(APIC_LVTT, val | APIC_LVT_MASKED);
104 }
105 
unmask_timer_irq(unsigned int irq)106 static void unmask_timer_irq(unsigned int irq)
107 {
108 	unsigned long val = apic_read(APIC_LVTT);
109 	apic_write(APIC_LVTT, val & ~APIC_LVT_MASKED);
110 }
111 
ack_timer_irq(unsigned int irq)112 static void ack_timer_irq(unsigned int irq)
113 {
114 	ack_APIC_irq();
115 }
116 
117 static struct irq_chip vmi_chip __read_mostly = {
118 	.name 		= "VMI-LOCAL",
119 	.startup 	= startup_timer_irq,
120 	.mask	 	= mask_timer_irq,
121 	.unmask	 	= unmask_timer_irq,
122 	.ack 		= ack_timer_irq
123 };
124 #endif
125 
126 /** vmi clockevent */
127 #define VMI_ALARM_WIRED_IRQ0    0x00000000
128 #define VMI_ALARM_WIRED_LVTT    0x00010000
129 static int vmi_wiring = VMI_ALARM_WIRED_IRQ0;
130 
vmi_get_alarm_wiring(void)131 static inline int vmi_get_alarm_wiring(void)
132 {
133 	return vmi_wiring;
134 }
135 
vmi_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)136 static void vmi_timer_set_mode(enum clock_event_mode mode,
137 			       struct clock_event_device *evt)
138 {
139 	cycle_t now, cycles_per_hz;
140 	BUG_ON(!irqs_disabled());
141 
142 	switch (mode) {
143 	case CLOCK_EVT_MODE_ONESHOT:
144 	case CLOCK_EVT_MODE_RESUME:
145 		break;
146 	case CLOCK_EVT_MODE_PERIODIC:
147 		cycles_per_hz = vmi_timer_ops.get_cycle_frequency();
148 		(void)do_div(cycles_per_hz, HZ);
149 		now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_PERIODIC));
150 		vmi_timer_ops.set_alarm(VMI_PERIODIC, now, cycles_per_hz);
151 		break;
152 	case CLOCK_EVT_MODE_UNUSED:
153 	case CLOCK_EVT_MODE_SHUTDOWN:
154 		switch (evt->mode) {
155 		case CLOCK_EVT_MODE_ONESHOT:
156 			vmi_timer_ops.cancel_alarm(VMI_ONESHOT);
157 			break;
158 		case CLOCK_EVT_MODE_PERIODIC:
159 			vmi_timer_ops.cancel_alarm(VMI_PERIODIC);
160 			break;
161 		default:
162 			break;
163 		}
164 		break;
165 	default:
166 		break;
167 	}
168 }
169 
vmi_timer_next_event(unsigned long delta,struct clock_event_device * evt)170 static int vmi_timer_next_event(unsigned long delta,
171 				struct clock_event_device *evt)
172 {
173 	/* Unfortunately, set_next_event interface only passes relative
174 	 * expiry, but we want absolute expiry.  It'd be better if were
175 	 * were passed an aboslute expiry, since a bunch of time may
176 	 * have been stolen between the time the delta is computed and
177 	 * when we set the alarm below. */
178 	cycle_t now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_ONESHOT));
179 
180 	BUG_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
181 	vmi_timer_ops.set_alarm(VMI_ONESHOT, now + delta, 0);
182 	return 0;
183 }
184 
185 static struct clock_event_device vmi_clockevent = {
186 	.name		= "vmi-timer",
187 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
188 	.shift		= 22,
189 	.set_mode	= vmi_timer_set_mode,
190 	.set_next_event = vmi_timer_next_event,
191 	.rating         = 1000,
192 	.irq		= 0,
193 };
194 
vmi_timer_interrupt(int irq,void * dev_id)195 static irqreturn_t vmi_timer_interrupt(int irq, void *dev_id)
196 {
197 	struct clock_event_device *evt = &__get_cpu_var(local_events);
198 	evt->event_handler(evt);
199 	return IRQ_HANDLED;
200 }
201 
202 static struct irqaction vmi_clock_action  = {
203 	.name 		= "vmi-timer",
204 	.handler 	= vmi_timer_interrupt,
205 	.flags 		= IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
206 	.mask 		= CPU_MASK_ALL,
207 };
208 
vmi_time_init_clockevent(void)209 static void __devinit vmi_time_init_clockevent(void)
210 {
211 	cycle_t cycles_per_msec;
212 	struct clock_event_device *evt;
213 
214 	int cpu = smp_processor_id();
215 	evt = &__get_cpu_var(local_events);
216 
217 	/* Use cycles_per_msec since div_sc params are 32-bits. */
218 	cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
219 	(void)do_div(cycles_per_msec, 1000);
220 
221 	memcpy(evt, &vmi_clockevent, sizeof(*evt));
222 	/* Must pick .shift such that .mult fits in 32-bits.  Choosing
223 	 * .shift to be 22 allows 2^(32-22) cycles per nano-seconds
224 	 * before overflow. */
225 	evt->mult = div_sc(cycles_per_msec, NSEC_PER_MSEC, evt->shift);
226 	/* Upper bound is clockevent's use of ulong for cycle deltas. */
227 	evt->max_delta_ns = clockevent_delta2ns(ULONG_MAX, evt);
228 	evt->min_delta_ns = clockevent_delta2ns(1, evt);
229 	evt->cpumask = cpumask_of(cpu);
230 
231 	printk(KERN_WARNING "vmi: registering clock event %s. mult=%lu shift=%u\n",
232 	       evt->name, evt->mult, evt->shift);
233 	clockevents_register_device(evt);
234 }
235 
vmi_time_init(void)236 void __init vmi_time_init(void)
237 {
238 	unsigned int cpu;
239 	/* Disable PIT: BIOSes start PIT CH0 with 18.2hz peridic. */
240 	outb_pit(0x3a, PIT_MODE); /* binary, mode 5, LSB/MSB, ch 0 */
241 
242 	vmi_time_init_clockevent();
243 	setup_irq(0, &vmi_clock_action);
244 	for_each_possible_cpu(cpu)
245 		per_cpu(vector_irq, cpu)[vmi_get_timer_vector()] = 0;
246 }
247 
248 #ifdef CONFIG_X86_LOCAL_APIC
vmi_time_bsp_init(void)249 void __devinit vmi_time_bsp_init(void)
250 {
251 	/*
252 	 * On APIC systems, we want local timers to fire on each cpu.  We do
253 	 * this by programming LVTT to deliver timer events to the IRQ handler
254 	 * for IRQ-0, since we can't re-use the APIC local timer handler
255 	 * without interfering with that code.
256 	 */
257 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
258 	local_irq_disable();
259 #ifdef CONFIG_X86_SMP
260 	/*
261 	 * XXX handle_percpu_irq only defined for SMP; we need to switch over
262 	 * to using it, since this is a local interrupt, which each CPU must
263 	 * handle individually without locking out or dropping simultaneous
264 	 * local timers on other CPUs.  We also don't want to trigger the
265 	 * quirk workaround code for interrupts which gets invoked from
266 	 * handle_percpu_irq via eoi, so we use our own IRQ chip.
267 	 */
268 	set_irq_chip_and_handler_name(0, &vmi_chip, handle_percpu_irq, "lvtt");
269 #else
270 	set_irq_chip_and_handler_name(0, &vmi_chip, handle_edge_irq, "lvtt");
271 #endif
272 	vmi_wiring = VMI_ALARM_WIRED_LVTT;
273 	apic_write(APIC_LVTT, vmi_get_timer_vector());
274 	local_irq_enable();
275 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
276 }
277 
vmi_time_ap_init(void)278 void __devinit vmi_time_ap_init(void)
279 {
280 	vmi_time_init_clockevent();
281 	apic_write(APIC_LVTT, vmi_get_timer_vector());
282 }
283 #endif
284 
285 /** vmi clocksource */
286 static struct clocksource clocksource_vmi;
287 
read_real_cycles(void)288 static cycle_t read_real_cycles(void)
289 {
290 	cycle_t ret = (cycle_t)vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
291 	return ret >= clocksource_vmi.cycle_last ?
292 		ret : clocksource_vmi.cycle_last;
293 }
294 
295 static struct clocksource clocksource_vmi = {
296 	.name			= "vmi-timer",
297 	.rating			= 450,
298 	.read			= read_real_cycles,
299 	.mask			= CLOCKSOURCE_MASK(64),
300 	.mult			= 0, /* to be set */
301 	.shift			= 22,
302 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
303 };
304 
init_vmi_clocksource(void)305 static int __init init_vmi_clocksource(void)
306 {
307 	cycle_t cycles_per_msec;
308 
309 	if (!vmi_timer_ops.get_cycle_frequency)
310 		return 0;
311 	/* Use khz2mult rather than hz2mult since hz arg is only 32-bits. */
312 	cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
313 	(void)do_div(cycles_per_msec, 1000);
314 
315 	/* Note that clocksource.{mult, shift} converts in the opposite direction
316 	 * as clockevents.  */
317 	clocksource_vmi.mult = clocksource_khz2mult(cycles_per_msec,
318 						    clocksource_vmi.shift);
319 
320 	printk(KERN_WARNING "vmi: registering clock source khz=%lld\n", cycles_per_msec);
321 	return clocksource_register(&clocksource_vmi);
322 
323 }
324 module_init(init_vmi_clocksource);
325