• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17 
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 
29 #include <asm/desc.h>
30 
31 #include <asm/virtext.h>
32 
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
34 
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
37 
38 #define IOPM_ALLOC_ORDER 2
39 #define MSRPM_ALLOC_ORDER 1
40 
41 #define DR7_GD_MASK (1 << 13)
42 #define DR6_BD_MASK (1 << 13)
43 
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46 
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 
51 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
52 
53 /* enable NPT for AMD64 and X86 with PAE */
54 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
55 static bool npt_enabled = true;
56 #else
57 static bool npt_enabled = false;
58 #endif
59 static int npt = 1;
60 
61 module_param(npt, int, S_IRUGO);
62 
63 static void kvm_reput_irq(struct vcpu_svm *svm);
64 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
65 
to_svm(struct kvm_vcpu * vcpu)66 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
67 {
68 	return container_of(vcpu, struct vcpu_svm, vcpu);
69 }
70 
71 static unsigned long iopm_base;
72 
73 struct kvm_ldttss_desc {
74 	u16 limit0;
75 	u16 base0;
76 	unsigned base1 : 8, type : 5, dpl : 2, p : 1;
77 	unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
78 	u32 base3;
79 	u32 zero1;
80 } __attribute__((packed));
81 
82 struct svm_cpu_data {
83 	int cpu;
84 
85 	u64 asid_generation;
86 	u32 max_asid;
87 	u32 next_asid;
88 	struct kvm_ldttss_desc *tss_desc;
89 
90 	struct page *save_area;
91 };
92 
93 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
94 static uint32_t svm_features;
95 
96 struct svm_init_data {
97 	int cpu;
98 	int r;
99 };
100 
101 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
102 
103 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
104 #define MSRS_RANGE_SIZE 2048
105 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
106 
107 #define MAX_INST_SIZE 15
108 
svm_has(u32 feat)109 static inline u32 svm_has(u32 feat)
110 {
111 	return svm_features & feat;
112 }
113 
pop_irq(struct kvm_vcpu * vcpu)114 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
115 {
116 	int word_index = __ffs(vcpu->arch.irq_summary);
117 	int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
118 	int irq = word_index * BITS_PER_LONG + bit_index;
119 
120 	clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
121 	if (!vcpu->arch.irq_pending[word_index])
122 		clear_bit(word_index, &vcpu->arch.irq_summary);
123 	return irq;
124 }
125 
push_irq(struct kvm_vcpu * vcpu,u8 irq)126 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
127 {
128 	set_bit(irq, vcpu->arch.irq_pending);
129 	set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
130 }
131 
clgi(void)132 static inline void clgi(void)
133 {
134 	asm volatile (__ex(SVM_CLGI));
135 }
136 
stgi(void)137 static inline void stgi(void)
138 {
139 	asm volatile (__ex(SVM_STGI));
140 }
141 
invlpga(unsigned long addr,u32 asid)142 static inline void invlpga(unsigned long addr, u32 asid)
143 {
144 	asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
145 }
146 
kvm_read_cr2(void)147 static inline unsigned long kvm_read_cr2(void)
148 {
149 	unsigned long cr2;
150 
151 	asm volatile ("mov %%cr2, %0" : "=r" (cr2));
152 	return cr2;
153 }
154 
kvm_write_cr2(unsigned long val)155 static inline void kvm_write_cr2(unsigned long val)
156 {
157 	asm volatile ("mov %0, %%cr2" :: "r" (val));
158 }
159 
read_dr6(void)160 static inline unsigned long read_dr6(void)
161 {
162 	unsigned long dr6;
163 
164 	asm volatile ("mov %%dr6, %0" : "=r" (dr6));
165 	return dr6;
166 }
167 
write_dr6(unsigned long val)168 static inline void write_dr6(unsigned long val)
169 {
170 	asm volatile ("mov %0, %%dr6" :: "r" (val));
171 }
172 
read_dr7(void)173 static inline unsigned long read_dr7(void)
174 {
175 	unsigned long dr7;
176 
177 	asm volatile ("mov %%dr7, %0" : "=r" (dr7));
178 	return dr7;
179 }
180 
write_dr7(unsigned long val)181 static inline void write_dr7(unsigned long val)
182 {
183 	asm volatile ("mov %0, %%dr7" :: "r" (val));
184 }
185 
force_new_asid(struct kvm_vcpu * vcpu)186 static inline void force_new_asid(struct kvm_vcpu *vcpu)
187 {
188 	to_svm(vcpu)->asid_generation--;
189 }
190 
flush_guest_tlb(struct kvm_vcpu * vcpu)191 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
192 {
193 	force_new_asid(vcpu);
194 }
195 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)196 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
197 {
198 	if (!npt_enabled && !(efer & EFER_LMA))
199 		efer &= ~EFER_LME;
200 
201 	to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
202 	vcpu->arch.shadow_efer = efer;
203 }
204 
svm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code)205 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
206 				bool has_error_code, u32 error_code)
207 {
208 	struct vcpu_svm *svm = to_svm(vcpu);
209 
210 	svm->vmcb->control.event_inj = nr
211 		| SVM_EVTINJ_VALID
212 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
213 		| SVM_EVTINJ_TYPE_EXEPT;
214 	svm->vmcb->control.event_inj_err = error_code;
215 }
216 
svm_exception_injected(struct kvm_vcpu * vcpu)217 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
218 {
219 	struct vcpu_svm *svm = to_svm(vcpu);
220 
221 	return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
222 }
223 
is_external_interrupt(u32 info)224 static int is_external_interrupt(u32 info)
225 {
226 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
228 }
229 
skip_emulated_instruction(struct kvm_vcpu * vcpu)230 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
231 {
232 	struct vcpu_svm *svm = to_svm(vcpu);
233 
234 	if (!svm->next_rip) {
235 		printk(KERN_DEBUG "%s: NOP\n", __func__);
236 		return;
237 	}
238 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
239 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
240 		       __func__, kvm_rip_read(vcpu), svm->next_rip);
241 
242 	kvm_rip_write(vcpu, svm->next_rip);
243 	svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244 
245 	vcpu->arch.interrupt_window_open = 1;
246 }
247 
has_svm(void)248 static int has_svm(void)
249 {
250 	const char *msg;
251 
252 	if (!cpu_has_svm(&msg)) {
253 		printk(KERN_INFO "has_svn: %s\n", msg);
254 		return 0;
255 	}
256 
257 	return 1;
258 }
259 
svm_hardware_disable(void * garbage)260 static void svm_hardware_disable(void *garbage)
261 {
262 	cpu_svm_disable();
263 }
264 
svm_hardware_enable(void * garbage)265 static void svm_hardware_enable(void *garbage)
266 {
267 
268 	struct svm_cpu_data *svm_data;
269 	uint64_t efer;
270 	struct desc_ptr gdt_descr;
271 	struct desc_struct *gdt;
272 	int me = raw_smp_processor_id();
273 
274 	if (!has_svm()) {
275 		printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
276 		return;
277 	}
278 	svm_data = per_cpu(svm_data, me);
279 
280 	if (!svm_data) {
281 		printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
282 		       me);
283 		return;
284 	}
285 
286 	svm_data->asid_generation = 1;
287 	svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
288 	svm_data->next_asid = svm_data->max_asid + 1;
289 
290 	asm volatile ("sgdt %0" : "=m"(gdt_descr));
291 	gdt = (struct desc_struct *)gdt_descr.address;
292 	svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
293 
294 	rdmsrl(MSR_EFER, efer);
295 	wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
296 
297 	wrmsrl(MSR_VM_HSAVE_PA,
298 	       page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
299 }
300 
svm_cpu_uninit(int cpu)301 static void svm_cpu_uninit(int cpu)
302 {
303 	struct svm_cpu_data *svm_data
304 		= per_cpu(svm_data, raw_smp_processor_id());
305 
306 	if (!svm_data)
307 		return;
308 
309 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
310 	__free_page(svm_data->save_area);
311 	kfree(svm_data);
312 }
313 
svm_cpu_init(int cpu)314 static int svm_cpu_init(int cpu)
315 {
316 	struct svm_cpu_data *svm_data;
317 	int r;
318 
319 	svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
320 	if (!svm_data)
321 		return -ENOMEM;
322 	svm_data->cpu = cpu;
323 	svm_data->save_area = alloc_page(GFP_KERNEL);
324 	r = -ENOMEM;
325 	if (!svm_data->save_area)
326 		goto err_1;
327 
328 	per_cpu(svm_data, cpu) = svm_data;
329 
330 	return 0;
331 
332 err_1:
333 	kfree(svm_data);
334 	return r;
335 
336 }
337 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)338 static void set_msr_interception(u32 *msrpm, unsigned msr,
339 				 int read, int write)
340 {
341 	int i;
342 
343 	for (i = 0; i < NUM_MSR_MAPS; i++) {
344 		if (msr >= msrpm_ranges[i] &&
345 		    msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
346 			u32 msr_offset = (i * MSRS_IN_RANGE + msr -
347 					  msrpm_ranges[i]) * 2;
348 
349 			u32 *base = msrpm + (msr_offset / 32);
350 			u32 msr_shift = msr_offset % 32;
351 			u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
352 			*base = (*base & ~(0x3 << msr_shift)) |
353 				(mask << msr_shift);
354 			return;
355 		}
356 	}
357 	BUG();
358 }
359 
svm_vcpu_init_msrpm(u32 * msrpm)360 static void svm_vcpu_init_msrpm(u32 *msrpm)
361 {
362 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
363 
364 #ifdef CONFIG_X86_64
365 	set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
366 	set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
367 	set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
368 	set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
369 	set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
370 	set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
371 #endif
372 	set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
373 	set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
374 	set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
375 	set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
376 }
377 
svm_enable_lbrv(struct vcpu_svm * svm)378 static void svm_enable_lbrv(struct vcpu_svm *svm)
379 {
380 	u32 *msrpm = svm->msrpm;
381 
382 	svm->vmcb->control.lbr_ctl = 1;
383 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
384 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
385 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
386 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
387 }
388 
svm_disable_lbrv(struct vcpu_svm * svm)389 static void svm_disable_lbrv(struct vcpu_svm *svm)
390 {
391 	u32 *msrpm = svm->msrpm;
392 
393 	svm->vmcb->control.lbr_ctl = 0;
394 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
395 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
396 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
397 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
398 }
399 
svm_hardware_setup(void)400 static __init int svm_hardware_setup(void)
401 {
402 	int cpu;
403 	struct page *iopm_pages;
404 	void *iopm_va;
405 	int r;
406 
407 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
408 
409 	if (!iopm_pages)
410 		return -ENOMEM;
411 
412 	iopm_va = page_address(iopm_pages);
413 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
414 	clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
415 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
416 
417 	if (boot_cpu_has(X86_FEATURE_NX))
418 		kvm_enable_efer_bits(EFER_NX);
419 
420 	for_each_online_cpu(cpu) {
421 		r = svm_cpu_init(cpu);
422 		if (r)
423 			goto err;
424 	}
425 
426 	svm_features = cpuid_edx(SVM_CPUID_FUNC);
427 
428 	if (!svm_has(SVM_FEATURE_NPT))
429 		npt_enabled = false;
430 
431 	if (npt_enabled && !npt) {
432 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
433 		npt_enabled = false;
434 	}
435 
436 	if (npt_enabled) {
437 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
438 		kvm_enable_tdp();
439 	} else
440 		kvm_disable_tdp();
441 
442 	return 0;
443 
444 err:
445 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
446 	iopm_base = 0;
447 	return r;
448 }
449 
svm_hardware_unsetup(void)450 static __exit void svm_hardware_unsetup(void)
451 {
452 	int cpu;
453 
454 	for_each_online_cpu(cpu)
455 		svm_cpu_uninit(cpu);
456 
457 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
458 	iopm_base = 0;
459 }
460 
init_seg(struct vmcb_seg * seg)461 static void init_seg(struct vmcb_seg *seg)
462 {
463 	seg->selector = 0;
464 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
465 		SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
466 	seg->limit = 0xffff;
467 	seg->base = 0;
468 }
469 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)470 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
471 {
472 	seg->selector = 0;
473 	seg->attrib = SVM_SELECTOR_P_MASK | type;
474 	seg->limit = 0xffff;
475 	seg->base = 0;
476 }
477 
init_vmcb(struct vcpu_svm * svm)478 static void init_vmcb(struct vcpu_svm *svm)
479 {
480 	struct vmcb_control_area *control = &svm->vmcb->control;
481 	struct vmcb_save_area *save = &svm->vmcb->save;
482 
483 	control->intercept_cr_read = 	INTERCEPT_CR0_MASK |
484 					INTERCEPT_CR3_MASK |
485 					INTERCEPT_CR4_MASK;
486 
487 	control->intercept_cr_write = 	INTERCEPT_CR0_MASK |
488 					INTERCEPT_CR3_MASK |
489 					INTERCEPT_CR4_MASK |
490 					INTERCEPT_CR8_MASK;
491 
492 	control->intercept_dr_read = 	INTERCEPT_DR0_MASK |
493 					INTERCEPT_DR1_MASK |
494 					INTERCEPT_DR2_MASK |
495 					INTERCEPT_DR3_MASK;
496 
497 	control->intercept_dr_write = 	INTERCEPT_DR0_MASK |
498 					INTERCEPT_DR1_MASK |
499 					INTERCEPT_DR2_MASK |
500 					INTERCEPT_DR3_MASK |
501 					INTERCEPT_DR5_MASK |
502 					INTERCEPT_DR7_MASK;
503 
504 	control->intercept_exceptions = (1 << PF_VECTOR) |
505 					(1 << UD_VECTOR) |
506 					(1 << MC_VECTOR);
507 
508 
509 	control->intercept = 	(1ULL << INTERCEPT_INTR) |
510 				(1ULL << INTERCEPT_NMI) |
511 				(1ULL << INTERCEPT_SMI) |
512 				(1ULL << INTERCEPT_CPUID) |
513 				(1ULL << INTERCEPT_INVD) |
514 				(1ULL << INTERCEPT_HLT) |
515 				(1ULL << INTERCEPT_INVLPG) |
516 				(1ULL << INTERCEPT_INVLPGA) |
517 				(1ULL << INTERCEPT_IOIO_PROT) |
518 				(1ULL << INTERCEPT_MSR_PROT) |
519 				(1ULL << INTERCEPT_TASK_SWITCH) |
520 				(1ULL << INTERCEPT_SHUTDOWN) |
521 				(1ULL << INTERCEPT_VMRUN) |
522 				(1ULL << INTERCEPT_VMMCALL) |
523 				(1ULL << INTERCEPT_VMLOAD) |
524 				(1ULL << INTERCEPT_VMSAVE) |
525 				(1ULL << INTERCEPT_STGI) |
526 				(1ULL << INTERCEPT_CLGI) |
527 				(1ULL << INTERCEPT_SKINIT) |
528 				(1ULL << INTERCEPT_WBINVD) |
529 				(1ULL << INTERCEPT_MONITOR) |
530 				(1ULL << INTERCEPT_MWAIT);
531 
532 	control->iopm_base_pa = iopm_base;
533 	control->msrpm_base_pa = __pa(svm->msrpm);
534 	control->tsc_offset = 0;
535 	control->int_ctl = V_INTR_MASKING_MASK;
536 
537 	init_seg(&save->es);
538 	init_seg(&save->ss);
539 	init_seg(&save->ds);
540 	init_seg(&save->fs);
541 	init_seg(&save->gs);
542 
543 	save->cs.selector = 0xf000;
544 	/* Executable/Readable Code Segment */
545 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
546 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
547 	save->cs.limit = 0xffff;
548 	/*
549 	 * cs.base should really be 0xffff0000, but vmx can't handle that, so
550 	 * be consistent with it.
551 	 *
552 	 * Replace when we have real mode working for vmx.
553 	 */
554 	save->cs.base = 0xf0000;
555 
556 	save->gdtr.limit = 0xffff;
557 	save->idtr.limit = 0xffff;
558 
559 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
560 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
561 
562 	save->efer = MSR_EFER_SVME_MASK;
563 	save->dr6 = 0xffff0ff0;
564 	save->dr7 = 0x400;
565 	save->rflags = 2;
566 	save->rip = 0x0000fff0;
567 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
568 
569 	/*
570 	 * cr0 val on cpu init should be 0x60000010, we enable cpu
571 	 * cache by default. the orderly way is to enable cache in bios.
572 	 */
573 	save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
574 	save->cr4 = X86_CR4_PAE;
575 	/* rdx = ?? */
576 
577 	if (npt_enabled) {
578 		/* Setup VMCB for Nested Paging */
579 		control->nested_ctl = 1;
580 		control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
581 					(1ULL << INTERCEPT_INVLPG));
582 		control->intercept_exceptions &= ~(1 << PF_VECTOR);
583 		control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
584 						INTERCEPT_CR3_MASK);
585 		control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
586 						 INTERCEPT_CR3_MASK);
587 		save->g_pat = 0x0007040600070406ULL;
588 		/* enable caching because the QEMU Bios doesn't enable it */
589 		save->cr0 = X86_CR0_ET;
590 		save->cr3 = 0;
591 		save->cr4 = 0;
592 	}
593 	force_new_asid(&svm->vcpu);
594 }
595 
svm_vcpu_reset(struct kvm_vcpu * vcpu)596 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
597 {
598 	struct vcpu_svm *svm = to_svm(vcpu);
599 
600 	init_vmcb(svm);
601 
602 	if (vcpu->vcpu_id != 0) {
603 		kvm_rip_write(vcpu, 0);
604 		svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
605 		svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
606 	}
607 	vcpu->arch.regs_avail = ~0;
608 	vcpu->arch.regs_dirty = ~0;
609 
610 	return 0;
611 }
612 
svm_create_vcpu(struct kvm * kvm,unsigned int id)613 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
614 {
615 	struct vcpu_svm *svm;
616 	struct page *page;
617 	struct page *msrpm_pages;
618 	int err;
619 
620 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
621 	if (!svm) {
622 		err = -ENOMEM;
623 		goto out;
624 	}
625 
626 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
627 	if (err)
628 		goto free_svm;
629 
630 	page = alloc_page(GFP_KERNEL);
631 	if (!page) {
632 		err = -ENOMEM;
633 		goto uninit;
634 	}
635 
636 	err = -ENOMEM;
637 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
638 	if (!msrpm_pages)
639 		goto uninit;
640 	svm->msrpm = page_address(msrpm_pages);
641 	svm_vcpu_init_msrpm(svm->msrpm);
642 
643 	svm->vmcb = page_address(page);
644 	clear_page(svm->vmcb);
645 	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
646 	svm->asid_generation = 0;
647 	memset(svm->db_regs, 0, sizeof(svm->db_regs));
648 	init_vmcb(svm);
649 
650 	fx_init(&svm->vcpu);
651 	svm->vcpu.fpu_active = 1;
652 	svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
653 	if (svm->vcpu.vcpu_id == 0)
654 		svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
655 
656 	return &svm->vcpu;
657 
658 uninit:
659 	kvm_vcpu_uninit(&svm->vcpu);
660 free_svm:
661 	kmem_cache_free(kvm_vcpu_cache, svm);
662 out:
663 	return ERR_PTR(err);
664 }
665 
svm_free_vcpu(struct kvm_vcpu * vcpu)666 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
667 {
668 	struct vcpu_svm *svm = to_svm(vcpu);
669 
670 	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
671 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
672 	kvm_vcpu_uninit(vcpu);
673 	kmem_cache_free(kvm_vcpu_cache, svm);
674 }
675 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)676 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
677 {
678 	struct vcpu_svm *svm = to_svm(vcpu);
679 	int i;
680 
681 	if (unlikely(cpu != vcpu->cpu)) {
682 		u64 tsc_this, delta;
683 
684 		/*
685 		 * Make sure that the guest sees a monotonically
686 		 * increasing TSC.
687 		 */
688 		rdtscll(tsc_this);
689 		delta = vcpu->arch.host_tsc - tsc_this;
690 		svm->vmcb->control.tsc_offset += delta;
691 		vcpu->cpu = cpu;
692 		kvm_migrate_timers(vcpu);
693 	}
694 
695 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
696 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
697 }
698 
svm_vcpu_put(struct kvm_vcpu * vcpu)699 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
700 {
701 	struct vcpu_svm *svm = to_svm(vcpu);
702 	int i;
703 
704 	++vcpu->stat.host_state_reload;
705 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
706 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
707 
708 	rdtscll(vcpu->arch.host_tsc);
709 }
710 
svm_get_rflags(struct kvm_vcpu * vcpu)711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
712 {
713 	return to_svm(vcpu)->vmcb->save.rflags;
714 }
715 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
717 {
718 	to_svm(vcpu)->vmcb->save.rflags = rflags;
719 }
720 
svm_seg(struct kvm_vcpu * vcpu,int seg)721 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
722 {
723 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
724 
725 	switch (seg) {
726 	case VCPU_SREG_CS: return &save->cs;
727 	case VCPU_SREG_DS: return &save->ds;
728 	case VCPU_SREG_ES: return &save->es;
729 	case VCPU_SREG_FS: return &save->fs;
730 	case VCPU_SREG_GS: return &save->gs;
731 	case VCPU_SREG_SS: return &save->ss;
732 	case VCPU_SREG_TR: return &save->tr;
733 	case VCPU_SREG_LDTR: return &save->ldtr;
734 	}
735 	BUG();
736 	return NULL;
737 }
738 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)739 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
740 {
741 	struct vmcb_seg *s = svm_seg(vcpu, seg);
742 
743 	return s->base;
744 }
745 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)746 static void svm_get_segment(struct kvm_vcpu *vcpu,
747 			    struct kvm_segment *var, int seg)
748 {
749 	struct vmcb_seg *s = svm_seg(vcpu, seg);
750 
751 	var->base = s->base;
752 	var->limit = s->limit;
753 	var->selector = s->selector;
754 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
755 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
756 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
757 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
758 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
759 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
760 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
761 	var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
762 
763 	/*
764 	 * SVM always stores 0 for the 'G' bit in the CS selector in
765 	 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
766 	 * Intel's VMENTRY has a check on the 'G' bit.
767 	 */
768 	if (seg == VCPU_SREG_CS)
769 		var->g = s->limit > 0xfffff;
770 
771 	/*
772 	 * Work around a bug where the busy flag in the tr selector
773 	 * isn't exposed
774 	 */
775 	if (seg == VCPU_SREG_TR)
776 		var->type |= 0x2;
777 
778 	var->unusable = !var->present;
779 }
780 
svm_get_cpl(struct kvm_vcpu * vcpu)781 static int svm_get_cpl(struct kvm_vcpu *vcpu)
782 {
783 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
784 
785 	return save->cpl;
786 }
787 
svm_get_idt(struct kvm_vcpu * vcpu,struct descriptor_table * dt)788 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
789 {
790 	struct vcpu_svm *svm = to_svm(vcpu);
791 
792 	dt->limit = svm->vmcb->save.idtr.limit;
793 	dt->base = svm->vmcb->save.idtr.base;
794 }
795 
svm_set_idt(struct kvm_vcpu * vcpu,struct descriptor_table * dt)796 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
797 {
798 	struct vcpu_svm *svm = to_svm(vcpu);
799 
800 	svm->vmcb->save.idtr.limit = dt->limit;
801 	svm->vmcb->save.idtr.base = dt->base ;
802 }
803 
svm_get_gdt(struct kvm_vcpu * vcpu,struct descriptor_table * dt)804 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
805 {
806 	struct vcpu_svm *svm = to_svm(vcpu);
807 
808 	dt->limit = svm->vmcb->save.gdtr.limit;
809 	dt->base = svm->vmcb->save.gdtr.base;
810 }
811 
svm_set_gdt(struct kvm_vcpu * vcpu,struct descriptor_table * dt)812 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
813 {
814 	struct vcpu_svm *svm = to_svm(vcpu);
815 
816 	svm->vmcb->save.gdtr.limit = dt->limit;
817 	svm->vmcb->save.gdtr.base = dt->base ;
818 }
819 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)820 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
821 {
822 }
823 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)824 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
825 {
826 	struct vcpu_svm *svm = to_svm(vcpu);
827 
828 #ifdef CONFIG_X86_64
829 	if (vcpu->arch.shadow_efer & EFER_LME) {
830 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
831 			vcpu->arch.shadow_efer |= EFER_LMA;
832 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
833 		}
834 
835 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
836 			vcpu->arch.shadow_efer &= ~EFER_LMA;
837 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
838 		}
839 	}
840 #endif
841 	if (npt_enabled)
842 		goto set;
843 
844 	if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
845 		svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
846 		vcpu->fpu_active = 1;
847 	}
848 
849 	vcpu->arch.cr0 = cr0;
850 	cr0 |= X86_CR0_PG | X86_CR0_WP;
851 	if (!vcpu->fpu_active) {
852 		svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
853 		cr0 |= X86_CR0_TS;
854 	}
855 set:
856 	/*
857 	 * re-enable caching here because the QEMU bios
858 	 * does not do it - this results in some delay at
859 	 * reboot
860 	 */
861 	cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
862 	svm->vmcb->save.cr0 = cr0;
863 }
864 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)865 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
866 {
867 	unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
868 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
869 
870 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
871 		force_new_asid(vcpu);
872 
873 	vcpu->arch.cr4 = cr4;
874 	if (!npt_enabled)
875 		cr4 |= X86_CR4_PAE;
876 	cr4 |= host_cr4_mce;
877 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
878 }
879 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)880 static void svm_set_segment(struct kvm_vcpu *vcpu,
881 			    struct kvm_segment *var, int seg)
882 {
883 	struct vcpu_svm *svm = to_svm(vcpu);
884 	struct vmcb_seg *s = svm_seg(vcpu, seg);
885 
886 	s->base = var->base;
887 	s->limit = var->limit;
888 	s->selector = var->selector;
889 	if (var->unusable)
890 		s->attrib = 0;
891 	else {
892 		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
893 		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
894 		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
895 		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
896 		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
897 		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
898 		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
899 		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
900 	}
901 	if (seg == VCPU_SREG_CS)
902 		svm->vmcb->save.cpl
903 			= (svm->vmcb->save.cs.attrib
904 			   >> SVM_SELECTOR_DPL_SHIFT) & 3;
905 
906 }
907 
svm_guest_debug(struct kvm_vcpu * vcpu,struct kvm_debug_guest * dbg)908 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
909 {
910 	return -EOPNOTSUPP;
911 }
912 
svm_get_irq(struct kvm_vcpu * vcpu)913 static int svm_get_irq(struct kvm_vcpu *vcpu)
914 {
915 	struct vcpu_svm *svm = to_svm(vcpu);
916 	u32 exit_int_info = svm->vmcb->control.exit_int_info;
917 
918 	if (is_external_interrupt(exit_int_info))
919 		return exit_int_info & SVM_EVTINJ_VEC_MASK;
920 	return -1;
921 }
922 
load_host_msrs(struct kvm_vcpu * vcpu)923 static void load_host_msrs(struct kvm_vcpu *vcpu)
924 {
925 #ifdef CONFIG_X86_64
926 	wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
927 #endif
928 }
929 
save_host_msrs(struct kvm_vcpu * vcpu)930 static void save_host_msrs(struct kvm_vcpu *vcpu)
931 {
932 #ifdef CONFIG_X86_64
933 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
934 #endif
935 }
936 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * svm_data)937 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
938 {
939 	if (svm_data->next_asid > svm_data->max_asid) {
940 		++svm_data->asid_generation;
941 		svm_data->next_asid = 1;
942 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
943 	}
944 
945 	svm->vcpu.cpu = svm_data->cpu;
946 	svm->asid_generation = svm_data->asid_generation;
947 	svm->vmcb->control.asid = svm_data->next_asid++;
948 }
949 
svm_get_dr(struct kvm_vcpu * vcpu,int dr)950 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
951 {
952 	unsigned long val = to_svm(vcpu)->db_regs[dr];
953 	KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
954 	return val;
955 }
956 
svm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long value,int * exception)957 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
958 		       int *exception)
959 {
960 	struct vcpu_svm *svm = to_svm(vcpu);
961 
962 	*exception = 0;
963 
964 	if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
965 		svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
966 		svm->vmcb->save.dr6 |= DR6_BD_MASK;
967 		*exception = DB_VECTOR;
968 		return;
969 	}
970 
971 	switch (dr) {
972 	case 0 ... 3:
973 		svm->db_regs[dr] = value;
974 		return;
975 	case 4 ... 5:
976 		if (vcpu->arch.cr4 & X86_CR4_DE) {
977 			*exception = UD_VECTOR;
978 			return;
979 		}
980 	case 7: {
981 		if (value & ~((1ULL << 32) - 1)) {
982 			*exception = GP_VECTOR;
983 			return;
984 		}
985 		svm->vmcb->save.dr7 = value;
986 		return;
987 	}
988 	default:
989 		printk(KERN_DEBUG "%s: unexpected dr %u\n",
990 		       __func__, dr);
991 		*exception = UD_VECTOR;
992 		return;
993 	}
994 }
995 
pf_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)996 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
997 {
998 	u32 exit_int_info = svm->vmcb->control.exit_int_info;
999 	struct kvm *kvm = svm->vcpu.kvm;
1000 	u64 fault_address;
1001 	u32 error_code;
1002 	bool event_injection = false;
1003 
1004 	if (!irqchip_in_kernel(kvm) &&
1005 	    is_external_interrupt(exit_int_info)) {
1006 		event_injection = true;
1007 		push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1008 	}
1009 
1010 	fault_address  = svm->vmcb->control.exit_info_2;
1011 	error_code = svm->vmcb->control.exit_info_1;
1012 
1013 	if (!npt_enabled)
1014 		KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1015 			    (u32)fault_address, (u32)(fault_address >> 32),
1016 			    handler);
1017 	else
1018 		KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1019 			    (u32)fault_address, (u32)(fault_address >> 32),
1020 			    handler);
1021 	/*
1022 	 * FIXME: Tis shouldn't be necessary here, but there is a flush
1023 	 * missing in the MMU code. Until we find this bug, flush the
1024 	 * complete TLB here on an NPF
1025 	 */
1026 	if (npt_enabled)
1027 		svm_flush_tlb(&svm->vcpu);
1028 
1029 	if (!npt_enabled && event_injection)
1030 		kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1031 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1032 }
1033 
ud_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1034 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1035 {
1036 	int er;
1037 
1038 	er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1039 	if (er != EMULATE_DONE)
1040 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1041 	return 1;
1042 }
1043 
nm_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1044 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1045 {
1046 	svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1047 	if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1048 		svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1049 	svm->vcpu.fpu_active = 1;
1050 
1051 	return 1;
1052 }
1053 
mc_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1054 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1055 {
1056 	/*
1057 	 * On an #MC intercept the MCE handler is not called automatically in
1058 	 * the host. So do it by hand here.
1059 	 */
1060 	asm volatile (
1061 		"int $0x12\n");
1062 	/* not sure if we ever come back to this point */
1063 
1064 	return 1;
1065 }
1066 
shutdown_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1067 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1068 {
1069 	/*
1070 	 * VMCB is undefined after a SHUTDOWN intercept
1071 	 * so reinitialize it.
1072 	 */
1073 	clear_page(svm->vmcb);
1074 	init_vmcb(svm);
1075 
1076 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1077 	return 0;
1078 }
1079 
io_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1080 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1081 {
1082 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1083 	int size, down, in, string, rep;
1084 	unsigned port;
1085 
1086 	++svm->vcpu.stat.io_exits;
1087 
1088 	svm->next_rip = svm->vmcb->control.exit_info_2;
1089 
1090 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1091 
1092 	if (string) {
1093 		if (emulate_instruction(&svm->vcpu,
1094 					kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1095 			return 0;
1096 		return 1;
1097 	}
1098 
1099 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1100 	port = io_info >> 16;
1101 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1102 	rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1103 	down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1104 
1105 	skip_emulated_instruction(&svm->vcpu);
1106 	return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1107 }
1108 
nmi_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1109 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1110 {
1111 	KVMTRACE_0D(NMI, &svm->vcpu, handler);
1112 	return 1;
1113 }
1114 
intr_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1115 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1116 {
1117 	++svm->vcpu.stat.irq_exits;
1118 	KVMTRACE_0D(INTR, &svm->vcpu, handler);
1119 	return 1;
1120 }
1121 
nop_on_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1122 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1123 {
1124 	return 1;
1125 }
1126 
halt_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1127 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1128 {
1129 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1130 	skip_emulated_instruction(&svm->vcpu);
1131 	return kvm_emulate_halt(&svm->vcpu);
1132 }
1133 
vmmcall_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1134 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1135 {
1136 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1137 	skip_emulated_instruction(&svm->vcpu);
1138 	kvm_emulate_hypercall(&svm->vcpu);
1139 	return 1;
1140 }
1141 
invalid_op_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1142 static int invalid_op_interception(struct vcpu_svm *svm,
1143 				   struct kvm_run *kvm_run)
1144 {
1145 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1146 	return 1;
1147 }
1148 
task_switch_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1149 static int task_switch_interception(struct vcpu_svm *svm,
1150 				    struct kvm_run *kvm_run)
1151 {
1152 	u16 tss_selector;
1153 
1154 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
1155 	if (svm->vmcb->control.exit_info_2 &
1156 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1157 		return kvm_task_switch(&svm->vcpu, tss_selector,
1158 				       TASK_SWITCH_IRET);
1159 	if (svm->vmcb->control.exit_info_2 &
1160 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1161 		return kvm_task_switch(&svm->vcpu, tss_selector,
1162 				       TASK_SWITCH_JMP);
1163 	return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1164 }
1165 
cpuid_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1166 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1169 	kvm_emulate_cpuid(&svm->vcpu);
1170 	return 1;
1171 }
1172 
invlpg_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1173 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1174 {
1175 	if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1176 		pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1177 	return 1;
1178 }
1179 
emulate_on_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1180 static int emulate_on_interception(struct vcpu_svm *svm,
1181 				   struct kvm_run *kvm_run)
1182 {
1183 	if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1184 		pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1185 	return 1;
1186 }
1187 
cr8_write_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1188 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1189 {
1190 	emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1191 	if (irqchip_in_kernel(svm->vcpu.kvm))
1192 		return 1;
1193 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1194 	return 0;
1195 }
1196 
svm_get_msr(struct kvm_vcpu * vcpu,unsigned ecx,u64 * data)1197 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1198 {
1199 	struct vcpu_svm *svm = to_svm(vcpu);
1200 
1201 	switch (ecx) {
1202 	case MSR_IA32_TIME_STAMP_COUNTER: {
1203 		u64 tsc;
1204 
1205 		rdtscll(tsc);
1206 		*data = svm->vmcb->control.tsc_offset + tsc;
1207 		break;
1208 	}
1209 	case MSR_K6_STAR:
1210 		*data = svm->vmcb->save.star;
1211 		break;
1212 #ifdef CONFIG_X86_64
1213 	case MSR_LSTAR:
1214 		*data = svm->vmcb->save.lstar;
1215 		break;
1216 	case MSR_CSTAR:
1217 		*data = svm->vmcb->save.cstar;
1218 		break;
1219 	case MSR_KERNEL_GS_BASE:
1220 		*data = svm->vmcb->save.kernel_gs_base;
1221 		break;
1222 	case MSR_SYSCALL_MASK:
1223 		*data = svm->vmcb->save.sfmask;
1224 		break;
1225 #endif
1226 	case MSR_IA32_SYSENTER_CS:
1227 		*data = svm->vmcb->save.sysenter_cs;
1228 		break;
1229 	case MSR_IA32_SYSENTER_EIP:
1230 		*data = svm->vmcb->save.sysenter_eip;
1231 		break;
1232 	case MSR_IA32_SYSENTER_ESP:
1233 		*data = svm->vmcb->save.sysenter_esp;
1234 		break;
1235 	/* Nobody will change the following 5 values in the VMCB so
1236 	   we can safely return them on rdmsr. They will always be 0
1237 	   until LBRV is implemented. */
1238 	case MSR_IA32_DEBUGCTLMSR:
1239 		*data = svm->vmcb->save.dbgctl;
1240 		break;
1241 	case MSR_IA32_LASTBRANCHFROMIP:
1242 		*data = svm->vmcb->save.br_from;
1243 		break;
1244 	case MSR_IA32_LASTBRANCHTOIP:
1245 		*data = svm->vmcb->save.br_to;
1246 		break;
1247 	case MSR_IA32_LASTINTFROMIP:
1248 		*data = svm->vmcb->save.last_excp_from;
1249 		break;
1250 	case MSR_IA32_LASTINTTOIP:
1251 		*data = svm->vmcb->save.last_excp_to;
1252 		break;
1253 	default:
1254 		return kvm_get_msr_common(vcpu, ecx, data);
1255 	}
1256 	return 0;
1257 }
1258 
rdmsr_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1259 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1260 {
1261 	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1262 	u64 data;
1263 
1264 	if (svm_get_msr(&svm->vcpu, ecx, &data))
1265 		kvm_inject_gp(&svm->vcpu, 0);
1266 	else {
1267 		KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1268 			    (u32)(data >> 32), handler);
1269 
1270 		svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1271 		svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1272 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1273 		skip_emulated_instruction(&svm->vcpu);
1274 	}
1275 	return 1;
1276 }
1277 
svm_set_msr(struct kvm_vcpu * vcpu,unsigned ecx,u64 data)1278 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1279 {
1280 	struct vcpu_svm *svm = to_svm(vcpu);
1281 
1282 	switch (ecx) {
1283 	case MSR_IA32_TIME_STAMP_COUNTER: {
1284 		u64 tsc;
1285 
1286 		rdtscll(tsc);
1287 		svm->vmcb->control.tsc_offset = data - tsc;
1288 		break;
1289 	}
1290 	case MSR_K6_STAR:
1291 		svm->vmcb->save.star = data;
1292 		break;
1293 #ifdef CONFIG_X86_64
1294 	case MSR_LSTAR:
1295 		svm->vmcb->save.lstar = data;
1296 		break;
1297 	case MSR_CSTAR:
1298 		svm->vmcb->save.cstar = data;
1299 		break;
1300 	case MSR_KERNEL_GS_BASE:
1301 		svm->vmcb->save.kernel_gs_base = data;
1302 		break;
1303 	case MSR_SYSCALL_MASK:
1304 		svm->vmcb->save.sfmask = data;
1305 		break;
1306 #endif
1307 	case MSR_IA32_SYSENTER_CS:
1308 		svm->vmcb->save.sysenter_cs = data;
1309 		break;
1310 	case MSR_IA32_SYSENTER_EIP:
1311 		svm->vmcb->save.sysenter_eip = data;
1312 		break;
1313 	case MSR_IA32_SYSENTER_ESP:
1314 		svm->vmcb->save.sysenter_esp = data;
1315 		break;
1316 	case MSR_IA32_DEBUGCTLMSR:
1317 		if (!svm_has(SVM_FEATURE_LBRV)) {
1318 			pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1319 					__func__, data);
1320 			break;
1321 		}
1322 		if (data & DEBUGCTL_RESERVED_BITS)
1323 			return 1;
1324 
1325 		svm->vmcb->save.dbgctl = data;
1326 		if (data & (1ULL<<0))
1327 			svm_enable_lbrv(svm);
1328 		else
1329 			svm_disable_lbrv(svm);
1330 		break;
1331 	case MSR_K7_EVNTSEL0:
1332 	case MSR_K7_EVNTSEL1:
1333 	case MSR_K7_EVNTSEL2:
1334 	case MSR_K7_EVNTSEL3:
1335 	case MSR_K7_PERFCTR0:
1336 	case MSR_K7_PERFCTR1:
1337 	case MSR_K7_PERFCTR2:
1338 	case MSR_K7_PERFCTR3:
1339 		/*
1340 		 * Just discard all writes to the performance counters; this
1341 		 * should keep both older linux and windows 64-bit guests
1342 		 * happy
1343 		 */
1344 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
1345 
1346 		break;
1347 	default:
1348 		return kvm_set_msr_common(vcpu, ecx, data);
1349 	}
1350 	return 0;
1351 }
1352 
wrmsr_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1353 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1354 {
1355 	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1356 	u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
1357 		| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1358 
1359 	KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
1360 		    handler);
1361 
1362 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1363 	if (svm_set_msr(&svm->vcpu, ecx, data))
1364 		kvm_inject_gp(&svm->vcpu, 0);
1365 	else
1366 		skip_emulated_instruction(&svm->vcpu);
1367 	return 1;
1368 }
1369 
msr_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1370 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1371 {
1372 	if (svm->vmcb->control.exit_info_1)
1373 		return wrmsr_interception(svm, kvm_run);
1374 	else
1375 		return rdmsr_interception(svm, kvm_run);
1376 }
1377 
interrupt_window_interception(struct vcpu_svm * svm,struct kvm_run * kvm_run)1378 static int interrupt_window_interception(struct vcpu_svm *svm,
1379 				   struct kvm_run *kvm_run)
1380 {
1381 	KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
1382 
1383 	svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1384 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1385 	/*
1386 	 * If the user space waits to inject interrupts, exit as soon as
1387 	 * possible
1388 	 */
1389 	if (kvm_run->request_interrupt_window &&
1390 	    !svm->vcpu.arch.irq_summary) {
1391 		++svm->vcpu.stat.irq_window_exits;
1392 		kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1393 		return 0;
1394 	}
1395 
1396 	return 1;
1397 }
1398 
1399 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1400 				      struct kvm_run *kvm_run) = {
1401 	[SVM_EXIT_READ_CR0]           		= emulate_on_interception,
1402 	[SVM_EXIT_READ_CR3]           		= emulate_on_interception,
1403 	[SVM_EXIT_READ_CR4]           		= emulate_on_interception,
1404 	[SVM_EXIT_READ_CR8]           		= emulate_on_interception,
1405 	/* for now: */
1406 	[SVM_EXIT_WRITE_CR0]          		= emulate_on_interception,
1407 	[SVM_EXIT_WRITE_CR3]          		= emulate_on_interception,
1408 	[SVM_EXIT_WRITE_CR4]          		= emulate_on_interception,
1409 	[SVM_EXIT_WRITE_CR8]          		= cr8_write_interception,
1410 	[SVM_EXIT_READ_DR0] 			= emulate_on_interception,
1411 	[SVM_EXIT_READ_DR1]			= emulate_on_interception,
1412 	[SVM_EXIT_READ_DR2]			= emulate_on_interception,
1413 	[SVM_EXIT_READ_DR3]			= emulate_on_interception,
1414 	[SVM_EXIT_WRITE_DR0]			= emulate_on_interception,
1415 	[SVM_EXIT_WRITE_DR1]			= emulate_on_interception,
1416 	[SVM_EXIT_WRITE_DR2]			= emulate_on_interception,
1417 	[SVM_EXIT_WRITE_DR3]			= emulate_on_interception,
1418 	[SVM_EXIT_WRITE_DR5]			= emulate_on_interception,
1419 	[SVM_EXIT_WRITE_DR7]			= emulate_on_interception,
1420 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
1421 	[SVM_EXIT_EXCP_BASE + PF_VECTOR] 	= pf_interception,
1422 	[SVM_EXIT_EXCP_BASE + NM_VECTOR] 	= nm_interception,
1423 	[SVM_EXIT_EXCP_BASE + MC_VECTOR] 	= mc_interception,
1424 	[SVM_EXIT_INTR] 			= intr_interception,
1425 	[SVM_EXIT_NMI]				= nmi_interception,
1426 	[SVM_EXIT_SMI]				= nop_on_interception,
1427 	[SVM_EXIT_INIT]				= nop_on_interception,
1428 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
1429 	/* [SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception, */
1430 	[SVM_EXIT_CPUID]			= cpuid_interception,
1431 	[SVM_EXIT_INVD]                         = emulate_on_interception,
1432 	[SVM_EXIT_HLT]				= halt_interception,
1433 	[SVM_EXIT_INVLPG]			= invlpg_interception,
1434 	[SVM_EXIT_INVLPGA]			= invalid_op_interception,
1435 	[SVM_EXIT_IOIO] 		  	= io_interception,
1436 	[SVM_EXIT_MSR]				= msr_interception,
1437 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
1438 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
1439 	[SVM_EXIT_VMRUN]			= invalid_op_interception,
1440 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
1441 	[SVM_EXIT_VMLOAD]			= invalid_op_interception,
1442 	[SVM_EXIT_VMSAVE]			= invalid_op_interception,
1443 	[SVM_EXIT_STGI]				= invalid_op_interception,
1444 	[SVM_EXIT_CLGI]				= invalid_op_interception,
1445 	[SVM_EXIT_SKINIT]			= invalid_op_interception,
1446 	[SVM_EXIT_WBINVD]                       = emulate_on_interception,
1447 	[SVM_EXIT_MONITOR]			= invalid_op_interception,
1448 	[SVM_EXIT_MWAIT]			= invalid_op_interception,
1449 	[SVM_EXIT_NPF]				= pf_interception,
1450 };
1451 
handle_exit(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)1452 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1453 {
1454 	struct vcpu_svm *svm = to_svm(vcpu);
1455 	u32 exit_code = svm->vmcb->control.exit_code;
1456 
1457 	KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
1458 		    (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
1459 
1460 	if (npt_enabled) {
1461 		int mmu_reload = 0;
1462 		if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1463 			svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1464 			mmu_reload = 1;
1465 		}
1466 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
1467 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
1468 		if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1469 			if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1470 				kvm_inject_gp(vcpu, 0);
1471 				return 1;
1472 			}
1473 		}
1474 		if (mmu_reload) {
1475 			kvm_mmu_reset_context(vcpu);
1476 			kvm_mmu_load(vcpu);
1477 		}
1478 	}
1479 
1480 	kvm_reput_irq(svm);
1481 
1482 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1483 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1484 		kvm_run->fail_entry.hardware_entry_failure_reason
1485 			= svm->vmcb->control.exit_code;
1486 		return 0;
1487 	}
1488 
1489 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1490 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1491 	    exit_code != SVM_EXIT_NPF)
1492 		printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1493 		       "exit_code 0x%x\n",
1494 		       __func__, svm->vmcb->control.exit_int_info,
1495 		       exit_code);
1496 
1497 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1498 	    || !svm_exit_handlers[exit_code]) {
1499 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1500 		kvm_run->hw.hardware_exit_reason = exit_code;
1501 		return 0;
1502 	}
1503 
1504 	return svm_exit_handlers[exit_code](svm, kvm_run);
1505 }
1506 
reload_tss(struct kvm_vcpu * vcpu)1507 static void reload_tss(struct kvm_vcpu *vcpu)
1508 {
1509 	int cpu = raw_smp_processor_id();
1510 
1511 	struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1512 	svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1513 	load_TR_desc();
1514 }
1515 
pre_svm_run(struct vcpu_svm * svm)1516 static void pre_svm_run(struct vcpu_svm *svm)
1517 {
1518 	int cpu = raw_smp_processor_id();
1519 
1520 	struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1521 
1522 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1523 	if (svm->vcpu.cpu != cpu ||
1524 	    svm->asid_generation != svm_data->asid_generation)
1525 		new_asid(svm, svm_data);
1526 }
1527 
1528 
svm_inject_irq(struct vcpu_svm * svm,int irq)1529 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1530 {
1531 	struct vmcb_control_area *control;
1532 
1533 	KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
1534 
1535 	++svm->vcpu.stat.irq_injections;
1536 	control = &svm->vmcb->control;
1537 	control->int_vector = irq;
1538 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1539 	control->int_ctl |= V_IRQ_MASK |
1540 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1541 }
1542 
svm_set_irq(struct kvm_vcpu * vcpu,int irq)1543 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1544 {
1545 	struct vcpu_svm *svm = to_svm(vcpu);
1546 
1547 	svm_inject_irq(svm, irq);
1548 }
1549 
update_cr8_intercept(struct kvm_vcpu * vcpu)1550 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
1551 {
1552 	struct vcpu_svm *svm = to_svm(vcpu);
1553 	struct vmcb *vmcb = svm->vmcb;
1554 	int max_irr, tpr;
1555 
1556 	if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
1557 		return;
1558 
1559 	vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1560 
1561 	max_irr = kvm_lapic_find_highest_irr(vcpu);
1562 	if (max_irr == -1)
1563 		return;
1564 
1565 	tpr = kvm_lapic_get_cr8(vcpu) << 4;
1566 
1567 	if (tpr >= (max_irr & 0xf0))
1568 		vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
1569 }
1570 
svm_intr_assist(struct kvm_vcpu * vcpu)1571 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1572 {
1573 	struct vcpu_svm *svm = to_svm(vcpu);
1574 	struct vmcb *vmcb = svm->vmcb;
1575 	int intr_vector = -1;
1576 
1577 	if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1578 	    ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1579 		intr_vector = vmcb->control.exit_int_info &
1580 			      SVM_EVTINJ_VEC_MASK;
1581 		vmcb->control.exit_int_info = 0;
1582 		svm_inject_irq(svm, intr_vector);
1583 		goto out;
1584 	}
1585 
1586 	if (vmcb->control.int_ctl & V_IRQ_MASK)
1587 		goto out;
1588 
1589 	if (!kvm_cpu_has_interrupt(vcpu))
1590 		goto out;
1591 
1592 	if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1593 	    (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1594 	    (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1595 		/* unable to deliver irq, set pending irq */
1596 		vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1597 		svm_inject_irq(svm, 0x0);
1598 		goto out;
1599 	}
1600 	/* Okay, we can deliver the interrupt: grab it and update PIC state. */
1601 	intr_vector = kvm_cpu_get_interrupt(vcpu);
1602 	svm_inject_irq(svm, intr_vector);
1603 out:
1604 	update_cr8_intercept(vcpu);
1605 }
1606 
kvm_reput_irq(struct vcpu_svm * svm)1607 static void kvm_reput_irq(struct vcpu_svm *svm)
1608 {
1609 	struct vmcb_control_area *control = &svm->vmcb->control;
1610 
1611 	if ((control->int_ctl & V_IRQ_MASK)
1612 	    && !irqchip_in_kernel(svm->vcpu.kvm)) {
1613 		control->int_ctl &= ~V_IRQ_MASK;
1614 		push_irq(&svm->vcpu, control->int_vector);
1615 	}
1616 
1617 	svm->vcpu.arch.interrupt_window_open =
1618 		!(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1619 }
1620 
svm_do_inject_vector(struct vcpu_svm * svm)1621 static void svm_do_inject_vector(struct vcpu_svm *svm)
1622 {
1623 	struct kvm_vcpu *vcpu = &svm->vcpu;
1624 	int word_index = __ffs(vcpu->arch.irq_summary);
1625 	int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1626 	int irq = word_index * BITS_PER_LONG + bit_index;
1627 
1628 	clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1629 	if (!vcpu->arch.irq_pending[word_index])
1630 		clear_bit(word_index, &vcpu->arch.irq_summary);
1631 	svm_inject_irq(svm, irq);
1632 }
1633 
do_interrupt_requests(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)1634 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1635 				       struct kvm_run *kvm_run)
1636 {
1637 	struct vcpu_svm *svm = to_svm(vcpu);
1638 	struct vmcb_control_area *control = &svm->vmcb->control;
1639 
1640 	svm->vcpu.arch.interrupt_window_open =
1641 		(!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1642 		 (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1643 
1644 	if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1645 		/*
1646 		 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1647 		 */
1648 		svm_do_inject_vector(svm);
1649 
1650 	/*
1651 	 * Interrupts blocked.  Wait for unblock.
1652 	 */
1653 	if (!svm->vcpu.arch.interrupt_window_open &&
1654 	    (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1655 		control->intercept |= 1ULL << INTERCEPT_VINTR;
1656 	 else
1657 		control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1658 }
1659 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)1660 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1661 {
1662 	return 0;
1663 }
1664 
save_db_regs(unsigned long * db_regs)1665 static void save_db_regs(unsigned long *db_regs)
1666 {
1667 	asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1668 	asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1669 	asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1670 	asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1671 }
1672 
load_db_regs(unsigned long * db_regs)1673 static void load_db_regs(unsigned long *db_regs)
1674 {
1675 	asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1676 	asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1677 	asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1678 	asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1679 }
1680 
svm_flush_tlb(struct kvm_vcpu * vcpu)1681 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1682 {
1683 	force_new_asid(vcpu);
1684 }
1685 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)1686 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1687 {
1688 }
1689 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)1690 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
1691 {
1692 	struct vcpu_svm *svm = to_svm(vcpu);
1693 
1694 	if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
1695 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
1696 		kvm_lapic_set_tpr(vcpu, cr8);
1697 	}
1698 }
1699 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)1700 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
1701 {
1702 	struct vcpu_svm *svm = to_svm(vcpu);
1703 	u64 cr8;
1704 
1705 	if (!irqchip_in_kernel(vcpu->kvm))
1706 		return;
1707 
1708 	cr8 = kvm_get_cr8(vcpu);
1709 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
1710 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
1711 }
1712 
1713 #ifdef CONFIG_X86_64
1714 #define R "r"
1715 #else
1716 #define R "e"
1717 #endif
1718 
svm_vcpu_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)1719 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1720 {
1721 	struct vcpu_svm *svm = to_svm(vcpu);
1722 	u16 fs_selector;
1723 	u16 gs_selector;
1724 	u16 ldt_selector;
1725 
1726 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
1727 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
1728 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
1729 
1730 	pre_svm_run(svm);
1731 
1732 	sync_lapic_to_cr8(vcpu);
1733 
1734 	save_host_msrs(vcpu);
1735 	fs_selector = kvm_read_fs();
1736 	gs_selector = kvm_read_gs();
1737 	ldt_selector = kvm_read_ldt();
1738 	svm->host_cr2 = kvm_read_cr2();
1739 	svm->host_dr6 = read_dr6();
1740 	svm->host_dr7 = read_dr7();
1741 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
1742 	/* required for live migration with NPT */
1743 	if (npt_enabled)
1744 		svm->vmcb->save.cr3 = vcpu->arch.cr3;
1745 
1746 	if (svm->vmcb->save.dr7 & 0xff) {
1747 		write_dr7(0);
1748 		save_db_regs(svm->host_db_regs);
1749 		load_db_regs(svm->db_regs);
1750 	}
1751 
1752 	clgi();
1753 
1754 	local_irq_enable();
1755 
1756 	asm volatile (
1757 		"push %%"R"bp; \n\t"
1758 		"mov %c[rbx](%[svm]), %%"R"bx \n\t"
1759 		"mov %c[rcx](%[svm]), %%"R"cx \n\t"
1760 		"mov %c[rdx](%[svm]), %%"R"dx \n\t"
1761 		"mov %c[rsi](%[svm]), %%"R"si \n\t"
1762 		"mov %c[rdi](%[svm]), %%"R"di \n\t"
1763 		"mov %c[rbp](%[svm]), %%"R"bp \n\t"
1764 #ifdef CONFIG_X86_64
1765 		"mov %c[r8](%[svm]),  %%r8  \n\t"
1766 		"mov %c[r9](%[svm]),  %%r9  \n\t"
1767 		"mov %c[r10](%[svm]), %%r10 \n\t"
1768 		"mov %c[r11](%[svm]), %%r11 \n\t"
1769 		"mov %c[r12](%[svm]), %%r12 \n\t"
1770 		"mov %c[r13](%[svm]), %%r13 \n\t"
1771 		"mov %c[r14](%[svm]), %%r14 \n\t"
1772 		"mov %c[r15](%[svm]), %%r15 \n\t"
1773 #endif
1774 
1775 		/* Enter guest mode */
1776 		"push %%"R"ax \n\t"
1777 		"mov %c[vmcb](%[svm]), %%"R"ax \n\t"
1778 		__ex(SVM_VMLOAD) "\n\t"
1779 		__ex(SVM_VMRUN) "\n\t"
1780 		__ex(SVM_VMSAVE) "\n\t"
1781 		"pop %%"R"ax \n\t"
1782 
1783 		/* Save guest registers, load host registers */
1784 		"mov %%"R"bx, %c[rbx](%[svm]) \n\t"
1785 		"mov %%"R"cx, %c[rcx](%[svm]) \n\t"
1786 		"mov %%"R"dx, %c[rdx](%[svm]) \n\t"
1787 		"mov %%"R"si, %c[rsi](%[svm]) \n\t"
1788 		"mov %%"R"di, %c[rdi](%[svm]) \n\t"
1789 		"mov %%"R"bp, %c[rbp](%[svm]) \n\t"
1790 #ifdef CONFIG_X86_64
1791 		"mov %%r8,  %c[r8](%[svm]) \n\t"
1792 		"mov %%r9,  %c[r9](%[svm]) \n\t"
1793 		"mov %%r10, %c[r10](%[svm]) \n\t"
1794 		"mov %%r11, %c[r11](%[svm]) \n\t"
1795 		"mov %%r12, %c[r12](%[svm]) \n\t"
1796 		"mov %%r13, %c[r13](%[svm]) \n\t"
1797 		"mov %%r14, %c[r14](%[svm]) \n\t"
1798 		"mov %%r15, %c[r15](%[svm]) \n\t"
1799 #endif
1800 		"pop %%"R"bp"
1801 		:
1802 		: [svm]"a"(svm),
1803 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1804 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1805 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1806 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1807 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1808 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1809 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1810 #ifdef CONFIG_X86_64
1811 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1812 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1813 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1814 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1815 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1816 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1817 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1818 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1819 #endif
1820 		: "cc", "memory"
1821 		, R"bx", R"cx", R"dx", R"si", R"di"
1822 #ifdef CONFIG_X86_64
1823 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1824 #endif
1825 		);
1826 
1827 	if ((svm->vmcb->save.dr7 & 0xff))
1828 		load_db_regs(svm->host_db_regs);
1829 
1830 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
1831 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
1832 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
1833 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
1834 
1835 	write_dr6(svm->host_dr6);
1836 	write_dr7(svm->host_dr7);
1837 	kvm_write_cr2(svm->host_cr2);
1838 
1839 	kvm_load_fs(fs_selector);
1840 	kvm_load_gs(gs_selector);
1841 	kvm_load_ldt(ldt_selector);
1842 	load_host_msrs(vcpu);
1843 
1844 	reload_tss(vcpu);
1845 
1846 	local_irq_disable();
1847 
1848 	stgi();
1849 
1850 	sync_cr8_to_lapic(vcpu);
1851 
1852 	svm->next_rip = 0;
1853 }
1854 
1855 #undef R
1856 
1857 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1858 {
1859 	struct vcpu_svm *svm = to_svm(vcpu);
1860 
1861 	if (npt_enabled) {
1862 		svm->vmcb->control.nested_cr3 = root;
1863 		force_new_asid(vcpu);
1864 		return;
1865 	}
1866 
1867 	svm->vmcb->save.cr3 = root;
1868 	force_new_asid(vcpu);
1869 
1870 	if (vcpu->fpu_active) {
1871 		svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1872 		svm->vmcb->save.cr0 |= X86_CR0_TS;
1873 		vcpu->fpu_active = 0;
1874 	}
1875 }
1876 
1877 static int is_disabled(void)
1878 {
1879 	u64 vm_cr;
1880 
1881 	rdmsrl(MSR_VM_CR, vm_cr);
1882 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1883 		return 1;
1884 
1885 	return 0;
1886 }
1887 
1888 static void
1889 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1890 {
1891 	/*
1892 	 * Patch in the VMMCALL instruction:
1893 	 */
1894 	hypercall[0] = 0x0f;
1895 	hypercall[1] = 0x01;
1896 	hypercall[2] = 0xd9;
1897 }
1898 
1899 static void svm_check_processor_compat(void *rtn)
1900 {
1901 	*(int *)rtn = 0;
1902 }
1903 
1904 static bool svm_cpu_has_accelerated_tpr(void)
1905 {
1906 	return false;
1907 }
1908 
1909 static int get_npt_level(void)
1910 {
1911 #ifdef CONFIG_X86_64
1912 	return PT64_ROOT_LEVEL;
1913 #else
1914 	return PT32E_ROOT_LEVEL;
1915 #endif
1916 }
1917 
1918 static int svm_get_mt_mask_shift(void)
1919 {
1920 	return 0;
1921 }
1922 
1923 static struct kvm_x86_ops svm_x86_ops = {
1924 	.cpu_has_kvm_support = has_svm,
1925 	.disabled_by_bios = is_disabled,
1926 	.hardware_setup = svm_hardware_setup,
1927 	.hardware_unsetup = svm_hardware_unsetup,
1928 	.check_processor_compatibility = svm_check_processor_compat,
1929 	.hardware_enable = svm_hardware_enable,
1930 	.hardware_disable = svm_hardware_disable,
1931 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1932 
1933 	.vcpu_create = svm_create_vcpu,
1934 	.vcpu_free = svm_free_vcpu,
1935 	.vcpu_reset = svm_vcpu_reset,
1936 
1937 	.prepare_guest_switch = svm_prepare_guest_switch,
1938 	.vcpu_load = svm_vcpu_load,
1939 	.vcpu_put = svm_vcpu_put,
1940 
1941 	.set_guest_debug = svm_guest_debug,
1942 	.get_msr = svm_get_msr,
1943 	.set_msr = svm_set_msr,
1944 	.get_segment_base = svm_get_segment_base,
1945 	.get_segment = svm_get_segment,
1946 	.set_segment = svm_set_segment,
1947 	.get_cpl = svm_get_cpl,
1948 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1949 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1950 	.set_cr0 = svm_set_cr0,
1951 	.set_cr3 = svm_set_cr3,
1952 	.set_cr4 = svm_set_cr4,
1953 	.set_efer = svm_set_efer,
1954 	.get_idt = svm_get_idt,
1955 	.set_idt = svm_set_idt,
1956 	.get_gdt = svm_get_gdt,
1957 	.set_gdt = svm_set_gdt,
1958 	.get_dr = svm_get_dr,
1959 	.set_dr = svm_set_dr,
1960 	.get_rflags = svm_get_rflags,
1961 	.set_rflags = svm_set_rflags,
1962 
1963 	.tlb_flush = svm_flush_tlb,
1964 
1965 	.run = svm_vcpu_run,
1966 	.handle_exit = handle_exit,
1967 	.skip_emulated_instruction = skip_emulated_instruction,
1968 	.patch_hypercall = svm_patch_hypercall,
1969 	.get_irq = svm_get_irq,
1970 	.set_irq = svm_set_irq,
1971 	.queue_exception = svm_queue_exception,
1972 	.exception_injected = svm_exception_injected,
1973 	.inject_pending_irq = svm_intr_assist,
1974 	.inject_pending_vectors = do_interrupt_requests,
1975 
1976 	.set_tss_addr = svm_set_tss_addr,
1977 	.get_tdp_level = get_npt_level,
1978 	.get_mt_mask_shift = svm_get_mt_mask_shift,
1979 };
1980 
1981 static int __init svm_init(void)
1982 {
1983 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1984 			      THIS_MODULE);
1985 }
1986 
1987 static void __exit svm_exit(void)
1988 {
1989 	kvm_exit();
1990 }
1991 
1992 module_init(svm_init)
1993 module_exit(svm_exit)
1994