• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *  Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4  */
5 
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/ptrace.h>
13 #include <linux/mmiotrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h>		/* For unblank_screen() */
21 #include <linux/compiler.h>
22 #include <linux/highmem.h>
23 #include <linux/bootmem.h>		/* for max_low_pfn */
24 #include <linux/vmalloc.h>
25 #include <linux/module.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/kdebug.h>
29 
30 #include <asm/system.h>
31 #include <asm/desc.h>
32 #include <asm/segment.h>
33 #include <asm/pgalloc.h>
34 #include <asm/smp.h>
35 #include <asm/tlbflush.h>
36 #include <asm/proto.h>
37 #include <asm-generic/sections.h>
38 #include <asm/traps.h>
39 
40 /*
41  * Page fault error code bits
42  *	bit 0 == 0 means no page found, 1 means protection fault
43  *	bit 1 == 0 means read, 1 means write
44  *	bit 2 == 0 means kernel, 1 means user-mode
45  *	bit 3 == 1 means use of reserved bit detected
46  *	bit 4 == 1 means fault was an instruction fetch
47  */
48 #define PF_PROT		(1<<0)
49 #define PF_WRITE	(1<<1)
50 #define PF_USER		(1<<2)
51 #define PF_RSVD		(1<<3)
52 #define PF_INSTR	(1<<4)
53 
kmmio_fault(struct pt_regs * regs,unsigned long addr)54 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
55 {
56 #ifdef CONFIG_MMIOTRACE
57 	if (unlikely(is_kmmio_active()))
58 		if (kmmio_handler(regs, addr) == 1)
59 			return -1;
60 #endif
61 	return 0;
62 }
63 
notify_page_fault(struct pt_regs * regs)64 static inline int notify_page_fault(struct pt_regs *regs)
65 {
66 #ifdef CONFIG_KPROBES
67 	int ret = 0;
68 
69 	/* kprobe_running() needs smp_processor_id() */
70 	if (!user_mode_vm(regs)) {
71 		preempt_disable();
72 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 			ret = 1;
74 		preempt_enable();
75 	}
76 
77 	return ret;
78 #else
79 	return 0;
80 #endif
81 }
82 
83 /*
84  * X86_32
85  * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86  * Check that here and ignore it.
87  *
88  * X86_64
89  * Sometimes the CPU reports invalid exceptions on prefetch.
90  * Check that here and ignore it.
91  *
92  * Opcode checker based on code by Richard Brunner
93  */
is_prefetch(struct pt_regs * regs,unsigned long addr,unsigned long error_code)94 static int is_prefetch(struct pt_regs *regs, unsigned long addr,
95 		       unsigned long error_code)
96 {
97 	unsigned char *instr;
98 	int scan_more = 1;
99 	int prefetch = 0;
100 	unsigned char *max_instr;
101 
102 	/*
103 	 * If it was a exec (instruction fetch) fault on NX page, then
104 	 * do not ignore the fault:
105 	 */
106 	if (error_code & PF_INSTR)
107 		return 0;
108 
109 	instr = (unsigned char *)convert_ip_to_linear(current, regs);
110 	max_instr = instr + 15;
111 
112 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113 		return 0;
114 
115 	while (scan_more && instr < max_instr) {
116 		unsigned char opcode;
117 		unsigned char instr_hi;
118 		unsigned char instr_lo;
119 
120 		if (probe_kernel_address(instr, opcode))
121 			break;
122 
123 		instr_hi = opcode & 0xf0;
124 		instr_lo = opcode & 0x0f;
125 		instr++;
126 
127 		switch (instr_hi) {
128 		case 0x20:
129 		case 0x30:
130 			/*
131 			 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 			 * In X86_64 long mode, the CPU will signal invalid
133 			 * opcode if some of these prefixes are present so
134 			 * X86_64 will never get here anyway
135 			 */
136 			scan_more = ((instr_lo & 7) == 0x6);
137 			break;
138 #ifdef CONFIG_X86_64
139 		case 0x40:
140 			/*
141 			 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 			 * Need to figure out under what instruction mode the
143 			 * instruction was issued. Could check the LDT for lm,
144 			 * but for now it's good enough to assume that long
145 			 * mode only uses well known segments or kernel.
146 			 */
147 			scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148 			break;
149 #endif
150 		case 0x60:
151 			/* 0x64 thru 0x67 are valid prefixes in all modes. */
152 			scan_more = (instr_lo & 0xC) == 0x4;
153 			break;
154 		case 0xF0:
155 			/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156 			scan_more = !instr_lo || (instr_lo>>1) == 1;
157 			break;
158 		case 0x00:
159 			/* Prefetch instruction is 0x0F0D or 0x0F18 */
160 			scan_more = 0;
161 
162 			if (probe_kernel_address(instr, opcode))
163 				break;
164 			prefetch = (instr_lo == 0xF) &&
165 				(opcode == 0x0D || opcode == 0x18);
166 			break;
167 		default:
168 			scan_more = 0;
169 			break;
170 		}
171 	}
172 	return prefetch;
173 }
174 
force_sig_info_fault(int si_signo,int si_code,unsigned long address,struct task_struct * tsk)175 static void force_sig_info_fault(int si_signo, int si_code,
176 	unsigned long address, struct task_struct *tsk)
177 {
178 	siginfo_t info;
179 
180 	info.si_signo = si_signo;
181 	info.si_errno = 0;
182 	info.si_code = si_code;
183 	info.si_addr = (void __user *)address;
184 	force_sig_info(si_signo, &info, tsk);
185 }
186 
187 #ifdef CONFIG_X86_64
bad_address(void * p)188 static int bad_address(void *p)
189 {
190 	unsigned long dummy;
191 	return probe_kernel_address((unsigned long *)p, dummy);
192 }
193 #endif
194 
dump_pagetable(unsigned long address)195 static void dump_pagetable(unsigned long address)
196 {
197 #ifdef CONFIG_X86_32
198 	__typeof__(pte_val(__pte(0))) page;
199 
200 	page = read_cr3();
201 	page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202 #ifdef CONFIG_X86_PAE
203 	printk("*pdpt = %016Lx ", page);
204 	if ((page >> PAGE_SHIFT) < max_low_pfn
205 	    && page & _PAGE_PRESENT) {
206 		page &= PAGE_MASK;
207 		page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 		                                         & (PTRS_PER_PMD - 1)];
209 		printk(KERN_CONT "*pde = %016Lx ", page);
210 		page &= ~_PAGE_NX;
211 	}
212 #else
213 	printk("*pde = %08lx ", page);
214 #endif
215 
216 	/*
217 	 * We must not directly access the pte in the highpte
218 	 * case if the page table is located in highmem.
219 	 * And let's rather not kmap-atomic the pte, just in case
220 	 * it's allocated already.
221 	 */
222 	if ((page >> PAGE_SHIFT) < max_low_pfn
223 	    && (page & _PAGE_PRESENT)
224 	    && !(page & _PAGE_PSE)) {
225 		page &= PAGE_MASK;
226 		page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 		                                         & (PTRS_PER_PTE - 1)];
228 		printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 	}
230 
231 	printk("\n");
232 #else /* CONFIG_X86_64 */
233 	pgd_t *pgd;
234 	pud_t *pud;
235 	pmd_t *pmd;
236 	pte_t *pte;
237 
238 	pgd = (pgd_t *)read_cr3();
239 
240 	pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
241 	pgd += pgd_index(address);
242 	if (bad_address(pgd)) goto bad;
243 	printk("PGD %lx ", pgd_val(*pgd));
244 	if (!pgd_present(*pgd)) goto ret;
245 
246 	pud = pud_offset(pgd, address);
247 	if (bad_address(pud)) goto bad;
248 	printk("PUD %lx ", pud_val(*pud));
249 	if (!pud_present(*pud) || pud_large(*pud))
250 		goto ret;
251 
252 	pmd = pmd_offset(pud, address);
253 	if (bad_address(pmd)) goto bad;
254 	printk("PMD %lx ", pmd_val(*pmd));
255 	if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
256 
257 	pte = pte_offset_kernel(pmd, address);
258 	if (bad_address(pte)) goto bad;
259 	printk("PTE %lx", pte_val(*pte));
260 ret:
261 	printk("\n");
262 	return;
263 bad:
264 	printk("BAD\n");
265 #endif
266 }
267 
268 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)269 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270 {
271 	unsigned index = pgd_index(address);
272 	pgd_t *pgd_k;
273 	pud_t *pud, *pud_k;
274 	pmd_t *pmd, *pmd_k;
275 
276 	pgd += index;
277 	pgd_k = init_mm.pgd + index;
278 
279 	if (!pgd_present(*pgd_k))
280 		return NULL;
281 
282 	/*
283 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 	 * and redundant with the set_pmd() on non-PAE. As would
285 	 * set_pud.
286 	 */
287 
288 	pud = pud_offset(pgd, address);
289 	pud_k = pud_offset(pgd_k, address);
290 	if (!pud_present(*pud_k))
291 		return NULL;
292 
293 	pmd = pmd_offset(pud, address);
294 	pmd_k = pmd_offset(pud_k, address);
295 	if (!pmd_present(*pmd_k))
296 		return NULL;
297 	if (!pmd_present(*pmd)) {
298 		set_pmd(pmd, *pmd_k);
299 		arch_flush_lazy_mmu_mode();
300 	} else
301 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 	return pmd_k;
303 }
304 #endif
305 
306 #ifdef CONFIG_X86_64
307 static const char errata93_warning[] =
308 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310 KERN_ERR "******* Please consider a BIOS update.\n"
311 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312 #endif
313 
314 /* Workaround for K8 erratum #93 & buggy BIOS.
315    BIOS SMM functions are required to use a specific workaround
316    to avoid corruption of the 64bit RIP register on C stepping K8.
317    A lot of BIOS that didn't get tested properly miss this.
318    The OS sees this as a page fault with the upper 32bits of RIP cleared.
319    Try to work around it here.
320    Note we only handle faults in kernel here.
321    Does nothing for X86_32
322  */
is_errata93(struct pt_regs * regs,unsigned long address)323 static int is_errata93(struct pt_regs *regs, unsigned long address)
324 {
325 #ifdef CONFIG_X86_64
326 	static int warned;
327 	if (address != regs->ip)
328 		return 0;
329 	if ((address >> 32) != 0)
330 		return 0;
331 	address |= 0xffffffffUL << 32;
332 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
334 		if (!warned) {
335 			printk(errata93_warning);
336 			warned = 1;
337 		}
338 		regs->ip = address;
339 		return 1;
340 	}
341 #endif
342 	return 0;
343 }
344 
345 /*
346  * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347  * addresses >4GB.  We catch this in the page fault handler because these
348  * addresses are not reachable. Just detect this case and return.  Any code
349  * segment in LDT is compatibility mode.
350  */
is_errata100(struct pt_regs * regs,unsigned long address)351 static int is_errata100(struct pt_regs *regs, unsigned long address)
352 {
353 #ifdef CONFIG_X86_64
354 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 	    (address >> 32))
356 		return 1;
357 #endif
358 	return 0;
359 }
360 
is_f00f_bug(struct pt_regs * regs,unsigned long address)361 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362 {
363 #ifdef CONFIG_X86_F00F_BUG
364 	unsigned long nr;
365 	/*
366 	 * Pentium F0 0F C7 C8 bug workaround.
367 	 */
368 	if (boot_cpu_data.f00f_bug) {
369 		nr = (address - idt_descr.address) >> 3;
370 
371 		if (nr == 6) {
372 			do_invalid_op(regs, 0);
373 			return 1;
374 		}
375 	}
376 #endif
377 	return 0;
378 }
379 
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)380 static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 			    unsigned long address)
382 {
383 #ifdef CONFIG_X86_32
384 	if (!oops_may_print())
385 		return;
386 #endif
387 
388 #ifdef CONFIG_X86_PAE
389 	if (error_code & PF_INSTR) {
390 		unsigned int level;
391 		pte_t *pte = lookup_address(address, &level);
392 
393 		if (pte && pte_present(*pte) && !pte_exec(*pte))
394 			printk(KERN_CRIT "kernel tried to execute "
395 				"NX-protected page - exploit attempt? "
396 				"(uid: %d)\n", current_uid());
397 	}
398 #endif
399 
400 	printk(KERN_ALERT "BUG: unable to handle kernel ");
401 	if (address < PAGE_SIZE)
402 		printk(KERN_CONT "NULL pointer dereference");
403 	else
404 		printk(KERN_CONT "paging request");
405 	printk(KERN_CONT " at %p\n", (void *) address);
406 	printk(KERN_ALERT "IP:");
407 	printk_address(regs->ip, 1);
408 	dump_pagetable(address);
409 }
410 
411 #ifdef CONFIG_X86_64
pgtable_bad(unsigned long address,struct pt_regs * regs,unsigned long error_code)412 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 				 unsigned long error_code)
414 {
415 	unsigned long flags = oops_begin();
416 	int sig = SIGKILL;
417 	struct task_struct *tsk;
418 
419 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 	       current->comm, address);
421 	dump_pagetable(address);
422 	tsk = current;
423 	tsk->thread.cr2 = address;
424 	tsk->thread.trap_no = 14;
425 	tsk->thread.error_code = error_code;
426 	if (__die("Bad pagetable", regs, error_code))
427 		sig = 0;
428 	oops_end(flags, regs, sig);
429 }
430 #endif
431 
spurious_fault_check(unsigned long error_code,pte_t * pte)432 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433 {
434 	if ((error_code & PF_WRITE) && !pte_write(*pte))
435 		return 0;
436 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 		return 0;
438 
439 	return 1;
440 }
441 
442 /*
443  * Handle a spurious fault caused by a stale TLB entry.  This allows
444  * us to lazily refresh the TLB when increasing the permissions of a
445  * kernel page (RO -> RW or NX -> X).  Doing it eagerly is very
446  * expensive since that implies doing a full cross-processor TLB
447  * flush, even if no stale TLB entries exist on other processors.
448  * There are no security implications to leaving a stale TLB when
449  * increasing the permissions on a page.
450  */
spurious_fault(unsigned long address,unsigned long error_code)451 static int spurious_fault(unsigned long address,
452 			  unsigned long error_code)
453 {
454 	pgd_t *pgd;
455 	pud_t *pud;
456 	pmd_t *pmd;
457 	pte_t *pte;
458 
459 	/* Reserved-bit violation or user access to kernel space? */
460 	if (error_code & (PF_USER | PF_RSVD))
461 		return 0;
462 
463 	pgd = init_mm.pgd + pgd_index(address);
464 	if (!pgd_present(*pgd))
465 		return 0;
466 
467 	pud = pud_offset(pgd, address);
468 	if (!pud_present(*pud))
469 		return 0;
470 
471 	if (pud_large(*pud))
472 		return spurious_fault_check(error_code, (pte_t *) pud);
473 
474 	pmd = pmd_offset(pud, address);
475 	if (!pmd_present(*pmd))
476 		return 0;
477 
478 	if (pmd_large(*pmd))
479 		return spurious_fault_check(error_code, (pte_t *) pmd);
480 
481 	pte = pte_offset_kernel(pmd, address);
482 	if (!pte_present(*pte))
483 		return 0;
484 
485 	return spurious_fault_check(error_code, pte);
486 }
487 
488 /*
489  * X86_32
490  * Handle a fault on the vmalloc or module mapping area
491  *
492  * X86_64
493  * Handle a fault on the vmalloc area
494  *
495  * This assumes no large pages in there.
496  */
vmalloc_fault(unsigned long address)497 static int vmalloc_fault(unsigned long address)
498 {
499 #ifdef CONFIG_X86_32
500 	unsigned long pgd_paddr;
501 	pmd_t *pmd_k;
502 	pte_t *pte_k;
503 
504 	/* Make sure we are in vmalloc area */
505 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
506 		return -1;
507 
508 	/*
509 	 * Synchronize this task's top level page-table
510 	 * with the 'reference' page table.
511 	 *
512 	 * Do _not_ use "current" here. We might be inside
513 	 * an interrupt in the middle of a task switch..
514 	 */
515 	pgd_paddr = read_cr3();
516 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
517 	if (!pmd_k)
518 		return -1;
519 	pte_k = pte_offset_kernel(pmd_k, address);
520 	if (!pte_present(*pte_k))
521 		return -1;
522 	return 0;
523 #else
524 	pgd_t *pgd, *pgd_ref;
525 	pud_t *pud, *pud_ref;
526 	pmd_t *pmd, *pmd_ref;
527 	pte_t *pte, *pte_ref;
528 
529 	/* Make sure we are in vmalloc area */
530 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
531 		return -1;
532 
533 	/* Copy kernel mappings over when needed. This can also
534 	   happen within a race in page table update. In the later
535 	   case just flush. */
536 
537 	pgd = pgd_offset(current->active_mm, address);
538 	pgd_ref = pgd_offset_k(address);
539 	if (pgd_none(*pgd_ref))
540 		return -1;
541 	if (pgd_none(*pgd))
542 		set_pgd(pgd, *pgd_ref);
543 	else
544 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
545 
546 	/* Below here mismatches are bugs because these lower tables
547 	   are shared */
548 
549 	pud = pud_offset(pgd, address);
550 	pud_ref = pud_offset(pgd_ref, address);
551 	if (pud_none(*pud_ref))
552 		return -1;
553 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
554 		BUG();
555 	pmd = pmd_offset(pud, address);
556 	pmd_ref = pmd_offset(pud_ref, address);
557 	if (pmd_none(*pmd_ref))
558 		return -1;
559 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
560 		BUG();
561 	pte_ref = pte_offset_kernel(pmd_ref, address);
562 	if (!pte_present(*pte_ref))
563 		return -1;
564 	pte = pte_offset_kernel(pmd, address);
565 	/* Don't use pte_page here, because the mappings can point
566 	   outside mem_map, and the NUMA hash lookup cannot handle
567 	   that. */
568 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
569 		BUG();
570 	return 0;
571 #endif
572 }
573 
574 int show_unhandled_signals = 1;
575 
576 /*
577  * This routine handles page faults.  It determines the address,
578  * and the problem, and then passes it off to one of the appropriate
579  * routines.
580  */
581 #ifdef CONFIG_X86_64
582 asmlinkage
583 #endif
do_page_fault(struct pt_regs * regs,unsigned long error_code)584 void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
585 {
586 	struct task_struct *tsk;
587 	struct mm_struct *mm;
588 	struct vm_area_struct *vma;
589 	unsigned long address;
590 	int write, si_code;
591 	int fault;
592 #ifdef CONFIG_X86_64
593 	unsigned long flags;
594 	int sig;
595 #endif
596 
597 	tsk = current;
598 	mm = tsk->mm;
599 	prefetchw(&mm->mmap_sem);
600 
601 	/* get the address */
602 	address = read_cr2();
603 
604 	si_code = SEGV_MAPERR;
605 
606 	if (unlikely(kmmio_fault(regs, address)))
607 		return;
608 
609 	/*
610 	 * We fault-in kernel-space virtual memory on-demand. The
611 	 * 'reference' page table is init_mm.pgd.
612 	 *
613 	 * NOTE! We MUST NOT take any locks for this case. We may
614 	 * be in an interrupt or a critical region, and should
615 	 * only copy the information from the master page table,
616 	 * nothing more.
617 	 *
618 	 * This verifies that the fault happens in kernel space
619 	 * (error_code & 4) == 0, and that the fault was not a
620 	 * protection error (error_code & 9) == 0.
621 	 */
622 #ifdef CONFIG_X86_32
623 	if (unlikely(address >= TASK_SIZE)) {
624 #else
625 	if (unlikely(address >= TASK_SIZE64)) {
626 #endif
627 		if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
628 		    vmalloc_fault(address) >= 0)
629 			return;
630 
631 		/* Can handle a stale RO->RW TLB */
632 		if (spurious_fault(address, error_code))
633 			return;
634 
635 		/* kprobes don't want to hook the spurious faults. */
636 		if (notify_page_fault(regs))
637 			return;
638 		/*
639 		 * Don't take the mm semaphore here. If we fixup a prefetch
640 		 * fault we could otherwise deadlock.
641 		 */
642 		goto bad_area_nosemaphore;
643 	}
644 
645 	/* kprobes don't want to hook the spurious faults. */
646 	if (notify_page_fault(regs))
647 		return;
648 
649 	/*
650 	 * It's safe to allow irq's after cr2 has been saved and the
651 	 * vmalloc fault has been handled.
652 	 *
653 	 * User-mode registers count as a user access even for any
654 	 * potential system fault or CPU buglet.
655 	 */
656 	if (user_mode_vm(regs)) {
657 		local_irq_enable();
658 		error_code |= PF_USER;
659 	} else if (regs->flags & X86_EFLAGS_IF)
660 		local_irq_enable();
661 
662 #ifdef CONFIG_X86_64
663 	if (unlikely(error_code & PF_RSVD))
664 		pgtable_bad(address, regs, error_code);
665 #endif
666 
667 	/*
668 	 * If we're in an interrupt, have no user context or are running in an
669 	 * atomic region then we must not take the fault.
670 	 */
671 	if (unlikely(in_atomic() || !mm))
672 		goto bad_area_nosemaphore;
673 
674 	/*
675 	 * When running in the kernel we expect faults to occur only to
676 	 * addresses in user space.  All other faults represent errors in the
677 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
678 	 * erroneous fault occurring in a code path which already holds mmap_sem
679 	 * we will deadlock attempting to validate the fault against the
680 	 * address space.  Luckily the kernel only validly references user
681 	 * space from well defined areas of code, which are listed in the
682 	 * exceptions table.
683 	 *
684 	 * As the vast majority of faults will be valid we will only perform
685 	 * the source reference check when there is a possibility of a deadlock.
686 	 * Attempt to lock the address space, if we cannot we then validate the
687 	 * source.  If this is invalid we can skip the address space check,
688 	 * thus avoiding the deadlock.
689 	 */
690 	if (!down_read_trylock(&mm->mmap_sem)) {
691 		if ((error_code & PF_USER) == 0 &&
692 		    !search_exception_tables(regs->ip))
693 			goto bad_area_nosemaphore;
694 		down_read(&mm->mmap_sem);
695 	}
696 
697 	vma = find_vma(mm, address);
698 	if (!vma)
699 		goto bad_area;
700 	if (vma->vm_start <= address)
701 		goto good_area;
702 	if (!(vma->vm_flags & VM_GROWSDOWN))
703 		goto bad_area;
704 	if (error_code & PF_USER) {
705 		/*
706 		 * Accessing the stack below %sp is always a bug.
707 		 * The large cushion allows instructions like enter
708 		 * and pusha to work.  ("enter $65535,$31" pushes
709 		 * 32 pointers and then decrements %sp by 65535.)
710 		 */
711 		if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
712 			goto bad_area;
713 	}
714 	if (expand_stack(vma, address))
715 		goto bad_area;
716 /*
717  * Ok, we have a good vm_area for this memory access, so
718  * we can handle it..
719  */
720 good_area:
721 	si_code = SEGV_ACCERR;
722 	write = 0;
723 	switch (error_code & (PF_PROT|PF_WRITE)) {
724 	default:	/* 3: write, present */
725 		/* fall through */
726 	case PF_WRITE:		/* write, not present */
727 		if (!(vma->vm_flags & VM_WRITE))
728 			goto bad_area;
729 		write++;
730 		break;
731 	case PF_PROT:		/* read, present */
732 		goto bad_area;
733 	case 0:			/* read, not present */
734 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
735 			goto bad_area;
736 	}
737 
738 	/*
739 	 * If for any reason at all we couldn't handle the fault,
740 	 * make sure we exit gracefully rather than endlessly redo
741 	 * the fault.
742 	 */
743 	fault = handle_mm_fault(mm, vma, address, write);
744 	if (unlikely(fault & VM_FAULT_ERROR)) {
745 		if (fault & VM_FAULT_OOM)
746 			goto out_of_memory;
747 		else if (fault & VM_FAULT_SIGBUS)
748 			goto do_sigbus;
749 		BUG();
750 	}
751 	if (fault & VM_FAULT_MAJOR)
752 		tsk->maj_flt++;
753 	else
754 		tsk->min_flt++;
755 
756 #ifdef CONFIG_X86_32
757 	/*
758 	 * Did it hit the DOS screen memory VA from vm86 mode?
759 	 */
760 	if (v8086_mode(regs)) {
761 		unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
762 		if (bit < 32)
763 			tsk->thread.screen_bitmap |= 1 << bit;
764 	}
765 #endif
766 	up_read(&mm->mmap_sem);
767 	return;
768 
769 /*
770  * Something tried to access memory that isn't in our memory map..
771  * Fix it, but check if it's kernel or user first..
772  */
773 bad_area:
774 	up_read(&mm->mmap_sem);
775 
776 bad_area_nosemaphore:
777 	/* User mode accesses just cause a SIGSEGV */
778 	if (error_code & PF_USER) {
779 		/*
780 		 * It's possible to have interrupts off here.
781 		 */
782 		local_irq_enable();
783 
784 		/*
785 		 * Valid to do another page fault here because this one came
786 		 * from user space.
787 		 */
788 		if (is_prefetch(regs, address, error_code))
789 			return;
790 
791 		if (is_errata100(regs, address))
792 			return;
793 
794 		if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
795 		    printk_ratelimit()) {
796 			printk(
797 			"%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
798 			task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
799 			tsk->comm, task_pid_nr(tsk), address,
800 			(void *) regs->ip, (void *) regs->sp, error_code);
801 			print_vma_addr(" in ", regs->ip);
802 			printk("\n");
803 		}
804 
805 		tsk->thread.cr2 = address;
806 		/* Kernel addresses are always protection faults */
807 		tsk->thread.error_code = error_code | (address >= TASK_SIZE);
808 		tsk->thread.trap_no = 14;
809 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
810 		return;
811 	}
812 
813 	if (is_f00f_bug(regs, address))
814 		return;
815 
816 no_context:
817 	/* Are we prepared to handle this kernel fault?  */
818 	if (fixup_exception(regs))
819 		return;
820 
821 	/*
822 	 * X86_32
823 	 * Valid to do another page fault here, because if this fault
824 	 * had been triggered by is_prefetch fixup_exception would have
825 	 * handled it.
826 	 *
827 	 * X86_64
828 	 * Hall of shame of CPU/BIOS bugs.
829 	 */
830 	if (is_prefetch(regs, address, error_code))
831 		return;
832 
833 	if (is_errata93(regs, address))
834 		return;
835 
836 /*
837  * Oops. The kernel tried to access some bad page. We'll have to
838  * terminate things with extreme prejudice.
839  */
840 #ifdef CONFIG_X86_32
841 	bust_spinlocks(1);
842 #else
843 	flags = oops_begin();
844 #endif
845 
846 	show_fault_oops(regs, error_code, address);
847 
848 	tsk->thread.cr2 = address;
849 	tsk->thread.trap_no = 14;
850 	tsk->thread.error_code = error_code;
851 
852 #ifdef CONFIG_X86_32
853 	die("Oops", regs, error_code);
854 	bust_spinlocks(0);
855 	do_exit(SIGKILL);
856 #else
857 	sig = SIGKILL;
858 	if (__die("Oops", regs, error_code))
859 		sig = 0;
860 	/* Executive summary in case the body of the oops scrolled away */
861 	printk(KERN_EMERG "CR2: %016lx\n", address);
862 	oops_end(flags, regs, sig);
863 #endif
864 
865 out_of_memory:
866 	/*
867 	 * We ran out of memory, call the OOM killer, and return the userspace
868 	 * (which will retry the fault, or kill us if we got oom-killed).
869 	 */
870 	up_read(&mm->mmap_sem);
871 	pagefault_out_of_memory();
872 	return;
873 
874 do_sigbus:
875 	up_read(&mm->mmap_sem);
876 
877 	/* Kernel mode? Handle exceptions or die */
878 	if (!(error_code & PF_USER))
879 		goto no_context;
880 #ifdef CONFIG_X86_32
881 	/* User space => ok to do another page fault */
882 	if (is_prefetch(regs, address, error_code))
883 		return;
884 #endif
885 	tsk->thread.cr2 = address;
886 	tsk->thread.error_code = error_code;
887 	tsk->thread.trap_no = 14;
888 	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
889 }
890 
891 DEFINE_SPINLOCK(pgd_lock);
892 LIST_HEAD(pgd_list);
893 
894 void vmalloc_sync_all(void)
895 {
896 	unsigned long address;
897 
898 #ifdef CONFIG_X86_32
899 	if (SHARED_KERNEL_PMD)
900 		return;
901 
902 	for (address = VMALLOC_START & PMD_MASK;
903 	     address >= TASK_SIZE && address < FIXADDR_TOP;
904 	     address += PMD_SIZE) {
905 		unsigned long flags;
906 		struct page *page;
907 
908 		spin_lock_irqsave(&pgd_lock, flags);
909 		list_for_each_entry(page, &pgd_list, lru) {
910 			if (!vmalloc_sync_one(page_address(page),
911 					      address))
912 				break;
913 		}
914 		spin_unlock_irqrestore(&pgd_lock, flags);
915 	}
916 #else /* CONFIG_X86_64 */
917 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
918 	     address += PGDIR_SIZE) {
919 		const pgd_t *pgd_ref = pgd_offset_k(address);
920 		unsigned long flags;
921 		struct page *page;
922 
923 		if (pgd_none(*pgd_ref))
924 			continue;
925 		spin_lock_irqsave(&pgd_lock, flags);
926 		list_for_each_entry(page, &pgd_list, lru) {
927 			pgd_t *pgd;
928 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
929 			if (pgd_none(*pgd))
930 				set_pgd(pgd, *pgd_ref);
931 			else
932 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
933 		}
934 		spin_unlock_irqrestore(&pgd_lock, flags);
935 	}
936 #endif
937 }
938