• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PRNG: Pseudo Random Number Generator
3  *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
4  *       AES 128 cipher
5  *
6  *  (C) Neil Horman <nhorman@tuxdriver.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms of the GNU General Public License as published by the
10  *  Free Software Foundation; either version 2 of the License, or (at your
11  *  any later version.
12  *
13  *
14  */
15 
16 #include <crypto/internal/rng.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/string.h>
22 
23 #include "internal.h"
24 
25 #define DEFAULT_PRNG_KEY "0123456789abcdef"
26 #define DEFAULT_PRNG_KSZ 16
27 #define DEFAULT_BLK_SZ 16
28 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
29 
30 /*
31  * Flags for the prng_context flags field
32  */
33 
34 #define PRNG_FIXED_SIZE 0x1
35 #define PRNG_NEED_RESET 0x2
36 
37 /*
38  * Note: DT is our counter value
39  *	 I is our intermediate value
40  *	 V is our seed vector
41  * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
42  * for implementation details
43  */
44 
45 
46 struct prng_context {
47 	spinlock_t prng_lock;
48 	unsigned char rand_data[DEFAULT_BLK_SZ];
49 	unsigned char last_rand_data[DEFAULT_BLK_SZ];
50 	unsigned char DT[DEFAULT_BLK_SZ];
51 	unsigned char I[DEFAULT_BLK_SZ];
52 	unsigned char V[DEFAULT_BLK_SZ];
53 	u32 rand_data_valid;
54 	struct crypto_cipher *tfm;
55 	u32 flags;
56 };
57 
58 static int dbg;
59 
hexdump(char * note,unsigned char * buf,unsigned int len)60 static void hexdump(char *note, unsigned char *buf, unsigned int len)
61 {
62 	if (dbg) {
63 		printk(KERN_CRIT "%s", note);
64 		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
65 				16, 1,
66 				buf, len, false);
67 	}
68 }
69 
70 #define dbgprint(format, args...) do {\
71 if (dbg)\
72 	printk(format, ##args);\
73 } while (0)
74 
xor_vectors(unsigned char * in1,unsigned char * in2,unsigned char * out,unsigned int size)75 static void xor_vectors(unsigned char *in1, unsigned char *in2,
76 			unsigned char *out, unsigned int size)
77 {
78 	int i;
79 
80 	for (i = 0; i < size; i++)
81 		out[i] = in1[i] ^ in2[i];
82 
83 }
84 /*
85  * Returns DEFAULT_BLK_SZ bytes of random data per call
86  * returns 0 if generation succeded, <0 if something went wrong
87  */
_get_more_prng_bytes(struct prng_context * ctx)88 static int _get_more_prng_bytes(struct prng_context *ctx)
89 {
90 	int i;
91 	unsigned char tmp[DEFAULT_BLK_SZ];
92 	unsigned char *output = NULL;
93 
94 
95 	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
96 		ctx);
97 
98 	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
99 	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
100 	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
101 
102 	/*
103 	 * This algorithm is a 3 stage state machine
104 	 */
105 	for (i = 0; i < 3; i++) {
106 
107 		switch (i) {
108 		case 0:
109 			/*
110 			 * Start by encrypting the counter value
111 			 * This gives us an intermediate value I
112 			 */
113 			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
114 			output = ctx->I;
115 			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
116 			break;
117 		case 1:
118 
119 			/*
120 			 * Next xor I with our secret vector V
121 			 * encrypt that result to obtain our
122 			 * pseudo random data which we output
123 			 */
124 			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
125 			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
126 			output = ctx->rand_data;
127 			break;
128 		case 2:
129 			/*
130 			 * First check that we didn't produce the same
131 			 * random data that we did last time around through this
132 			 */
133 			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
134 					DEFAULT_BLK_SZ)) {
135 				printk(KERN_ERR
136 					"ctx %p Failed repetition check!\n",
137 					ctx);
138 				ctx->flags |= PRNG_NEED_RESET;
139 				return -EINVAL;
140 			}
141 			memcpy(ctx->last_rand_data, ctx->rand_data,
142 				DEFAULT_BLK_SZ);
143 
144 			/*
145 			 * Lastly xor the random data with I
146 			 * and encrypt that to obtain a new secret vector V
147 			 */
148 			xor_vectors(ctx->rand_data, ctx->I, tmp,
149 				DEFAULT_BLK_SZ);
150 			output = ctx->V;
151 			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
152 			break;
153 		}
154 
155 
156 		/* do the encryption */
157 		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
158 
159 	}
160 
161 	/*
162 	 * Now update our DT value
163 	 */
164 	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
165 		ctx->DT[i] += 1;
166 		if (ctx->DT[i] != 0)
167 			break;
168 	}
169 
170 	dbgprint("Returning new block for context %p\n", ctx);
171 	ctx->rand_data_valid = 0;
172 
173 	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
174 	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
175 	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
176 	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
177 
178 	return 0;
179 }
180 
181 /* Our exported functions */
get_prng_bytes(char * buf,size_t nbytes,struct prng_context * ctx)182 static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx)
183 {
184 	unsigned long flags;
185 	unsigned char *ptr = buf;
186 	unsigned int byte_count = (unsigned int)nbytes;
187 	int err;
188 
189 
190 	if (nbytes < 0)
191 		return -EINVAL;
192 
193 	spin_lock_irqsave(&ctx->prng_lock, flags);
194 
195 	err = -EINVAL;
196 	if (ctx->flags & PRNG_NEED_RESET)
197 		goto done;
198 
199 	/*
200 	 * If the FIXED_SIZE flag is on, only return whole blocks of
201 	 * pseudo random data
202 	 */
203 	err = -EINVAL;
204 	if (ctx->flags & PRNG_FIXED_SIZE) {
205 		if (nbytes < DEFAULT_BLK_SZ)
206 			goto done;
207 		byte_count = DEFAULT_BLK_SZ;
208 	}
209 
210 	err = byte_count;
211 
212 	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
213 		byte_count, ctx);
214 
215 
216 remainder:
217 	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
218 		if (_get_more_prng_bytes(ctx) < 0) {
219 			memset(buf, 0, nbytes);
220 			err = -EINVAL;
221 			goto done;
222 		}
223 	}
224 
225 	/*
226 	 * Copy any data less than an entire block
227 	 */
228 	if (byte_count < DEFAULT_BLK_SZ) {
229 empty_rbuf:
230 		for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
231 			ctx->rand_data_valid++) {
232 			*ptr = ctx->rand_data[ctx->rand_data_valid];
233 			ptr++;
234 			byte_count--;
235 			if (byte_count == 0)
236 				goto done;
237 		}
238 	}
239 
240 	/*
241 	 * Now copy whole blocks
242 	 */
243 	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
244 		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
245 			if (_get_more_prng_bytes(ctx) < 0) {
246 				memset(buf, 0, nbytes);
247 				err = -EINVAL;
248 				goto done;
249 			}
250 		}
251 		if (ctx->rand_data_valid > 0)
252 			goto empty_rbuf;
253 		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
254 		ctx->rand_data_valid += DEFAULT_BLK_SZ;
255 		ptr += DEFAULT_BLK_SZ;
256 	}
257 
258 	/*
259 	 * Now go back and get any remaining partial block
260 	 */
261 	if (byte_count)
262 		goto remainder;
263 
264 done:
265 	spin_unlock_irqrestore(&ctx->prng_lock, flags);
266 	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
267 		err, ctx);
268 	return err;
269 }
270 
free_prng_context(struct prng_context * ctx)271 static void free_prng_context(struct prng_context *ctx)
272 {
273 	crypto_free_cipher(ctx->tfm);
274 }
275 
reset_prng_context(struct prng_context * ctx,unsigned char * key,size_t klen,unsigned char * V,unsigned char * DT)276 static int reset_prng_context(struct prng_context *ctx,
277 			      unsigned char *key, size_t klen,
278 			      unsigned char *V, unsigned char *DT)
279 {
280 	int ret;
281 	int rc = -EINVAL;
282 	unsigned char *prng_key;
283 
284 	spin_lock(&ctx->prng_lock);
285 	ctx->flags |= PRNG_NEED_RESET;
286 
287 	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
288 
289 	if (!key)
290 		klen = DEFAULT_PRNG_KSZ;
291 
292 	if (V)
293 		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
294 	else
295 		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
296 
297 	if (DT)
298 		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
299 	else
300 		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
301 
302 	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
303 	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
304 
305 	if (ctx->tfm)
306 		crypto_free_cipher(ctx->tfm);
307 
308 	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
309 	if (IS_ERR(ctx->tfm)) {
310 		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
311 			ctx);
312 		ctx->tfm = NULL;
313 		goto out;
314 	}
315 
316 	ctx->rand_data_valid = DEFAULT_BLK_SZ;
317 
318 	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
319 	if (ret) {
320 		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
321 			crypto_cipher_get_flags(ctx->tfm));
322 		crypto_free_cipher(ctx->tfm);
323 		goto out;
324 	}
325 
326 	rc = 0;
327 	ctx->flags &= ~PRNG_NEED_RESET;
328 out:
329 	spin_unlock(&ctx->prng_lock);
330 
331 	return rc;
332 
333 }
334 
cprng_init(struct crypto_tfm * tfm)335 static int cprng_init(struct crypto_tfm *tfm)
336 {
337 	struct prng_context *ctx = crypto_tfm_ctx(tfm);
338 
339 	spin_lock_init(&ctx->prng_lock);
340 
341 	return reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL);
342 }
343 
cprng_exit(struct crypto_tfm * tfm)344 static void cprng_exit(struct crypto_tfm *tfm)
345 {
346 	free_prng_context(crypto_tfm_ctx(tfm));
347 }
348 
cprng_get_random(struct crypto_rng * tfm,u8 * rdata,unsigned int dlen)349 static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
350 			    unsigned int dlen)
351 {
352 	struct prng_context *prng = crypto_rng_ctx(tfm);
353 
354 	return get_prng_bytes(rdata, dlen, prng);
355 }
356 
357 /*
358  *  This is the cprng_registered reset method the seed value is
359  *  interpreted as the tuple { V KEY DT}
360  *  V and KEY are required during reset, and DT is optional, detected
361  *  as being present by testing the length of the seed
362  */
cprng_reset(struct crypto_rng * tfm,u8 * seed,unsigned int slen)363 static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
364 {
365 	struct prng_context *prng = crypto_rng_ctx(tfm);
366 	u8 *key = seed + DEFAULT_BLK_SZ;
367 	u8 *dt = NULL;
368 
369 	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
370 		return -EINVAL;
371 
372 	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
373 		dt = key + DEFAULT_PRNG_KSZ;
374 
375 	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
376 
377 	if (prng->flags & PRNG_NEED_RESET)
378 		return -EINVAL;
379 	return 0;
380 }
381 
382 static struct crypto_alg rng_alg = {
383 	.cra_name		= "stdrng",
384 	.cra_driver_name	= "ansi_cprng",
385 	.cra_priority		= 100,
386 	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
387 	.cra_ctxsize		= sizeof(struct prng_context),
388 	.cra_type		= &crypto_rng_type,
389 	.cra_module		= THIS_MODULE,
390 	.cra_list		= LIST_HEAD_INIT(rng_alg.cra_list),
391 	.cra_init		= cprng_init,
392 	.cra_exit		= cprng_exit,
393 	.cra_u			= {
394 		.rng = {
395 			.rng_make_random	= cprng_get_random,
396 			.rng_reset		= cprng_reset,
397 			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
398 		}
399 	}
400 };
401 
402 
403 /* Module initalization */
prng_mod_init(void)404 static int __init prng_mod_init(void)
405 {
406 	int ret = 0;
407 
408 	if (fips_enabled)
409 		rng_alg.cra_priority += 200;
410 
411 	ret = crypto_register_alg(&rng_alg);
412 
413 	if (ret)
414 		goto out;
415 out:
416 	return 0;
417 }
418 
prng_mod_fini(void)419 static void __exit prng_mod_fini(void)
420 {
421 	crypto_unregister_alg(&rng_alg);
422 	return;
423 }
424 
425 MODULE_LICENSE("GPL");
426 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
427 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
428 module_param(dbg, int, 0);
429 MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
430 module_init(prng_mod_init);
431 module_exit(prng_mod_fini);
432 MODULE_ALIAS("stdrng");
433