• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
39 
40 #include "libata.h"
41 
42 const struct ata_port_operations ata_sff_port_ops = {
43 	.inherits		= &ata_base_port_ops,
44 
45 	.qc_prep		= ata_sff_qc_prep,
46 	.qc_issue		= ata_sff_qc_issue,
47 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
48 
49 	.freeze			= ata_sff_freeze,
50 	.thaw			= ata_sff_thaw,
51 	.prereset		= ata_sff_prereset,
52 	.softreset		= ata_sff_softreset,
53 	.hardreset		= sata_sff_hardreset,
54 	.postreset		= ata_sff_postreset,
55 	.error_handler		= ata_sff_error_handler,
56 	.post_internal_cmd	= ata_sff_post_internal_cmd,
57 
58 	.sff_dev_select		= ata_sff_dev_select,
59 	.sff_check_status	= ata_sff_check_status,
60 	.sff_tf_load		= ata_sff_tf_load,
61 	.sff_tf_read		= ata_sff_tf_read,
62 	.sff_exec_command	= ata_sff_exec_command,
63 	.sff_data_xfer		= ata_sff_data_xfer,
64 	.sff_irq_on		= ata_sff_irq_on,
65 	.sff_irq_clear		= ata_sff_irq_clear,
66 
67 	.port_start		= ata_sff_port_start,
68 };
69 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
70 
71 const struct ata_port_operations ata_bmdma_port_ops = {
72 	.inherits		= &ata_sff_port_ops,
73 
74 	.mode_filter		= ata_bmdma_mode_filter,
75 
76 	.bmdma_setup		= ata_bmdma_setup,
77 	.bmdma_start		= ata_bmdma_start,
78 	.bmdma_stop		= ata_bmdma_stop,
79 	.bmdma_status		= ata_bmdma_status,
80 };
81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
82 
83 const struct ata_port_operations ata_bmdma32_port_ops = {
84 	.inherits		= &ata_bmdma_port_ops,
85 
86 	.sff_data_xfer		= ata_sff_data_xfer32,
87 };
88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
89 
90 /**
91  *	ata_fill_sg - Fill PCI IDE PRD table
92  *	@qc: Metadata associated with taskfile to be transferred
93  *
94  *	Fill PCI IDE PRD (scatter-gather) table with segments
95  *	associated with the current disk command.
96  *
97  *	LOCKING:
98  *	spin_lock_irqsave(host lock)
99  *
100  */
ata_fill_sg(struct ata_queued_cmd * qc)101 static void ata_fill_sg(struct ata_queued_cmd *qc)
102 {
103 	struct ata_port *ap = qc->ap;
104 	struct scatterlist *sg;
105 	unsigned int si, pi;
106 
107 	pi = 0;
108 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
109 		u32 addr, offset;
110 		u32 sg_len, len;
111 
112 		/* determine if physical DMA addr spans 64K boundary.
113 		 * Note h/w doesn't support 64-bit, so we unconditionally
114 		 * truncate dma_addr_t to u32.
115 		 */
116 		addr = (u32) sg_dma_address(sg);
117 		sg_len = sg_dma_len(sg);
118 
119 		while (sg_len) {
120 			offset = addr & 0xffff;
121 			len = sg_len;
122 			if ((offset + sg_len) > 0x10000)
123 				len = 0x10000 - offset;
124 
125 			ap->prd[pi].addr = cpu_to_le32(addr);
126 			ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
127 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
128 
129 			pi++;
130 			sg_len -= len;
131 			addr += len;
132 		}
133 	}
134 
135 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
136 }
137 
138 /**
139  *	ata_fill_sg_dumb - Fill PCI IDE PRD table
140  *	@qc: Metadata associated with taskfile to be transferred
141  *
142  *	Fill PCI IDE PRD (scatter-gather) table with segments
143  *	associated with the current disk command. Perform the fill
144  *	so that we avoid writing any length 64K records for
145  *	controllers that don't follow the spec.
146  *
147  *	LOCKING:
148  *	spin_lock_irqsave(host lock)
149  *
150  */
ata_fill_sg_dumb(struct ata_queued_cmd * qc)151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
152 {
153 	struct ata_port *ap = qc->ap;
154 	struct scatterlist *sg;
155 	unsigned int si, pi;
156 
157 	pi = 0;
158 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
159 		u32 addr, offset;
160 		u32 sg_len, len, blen;
161 
162 		/* determine if physical DMA addr spans 64K boundary.
163 		 * Note h/w doesn't support 64-bit, so we unconditionally
164 		 * truncate dma_addr_t to u32.
165 		 */
166 		addr = (u32) sg_dma_address(sg);
167 		sg_len = sg_dma_len(sg);
168 
169 		while (sg_len) {
170 			offset = addr & 0xffff;
171 			len = sg_len;
172 			if ((offset + sg_len) > 0x10000)
173 				len = 0x10000 - offset;
174 
175 			blen = len & 0xffff;
176 			ap->prd[pi].addr = cpu_to_le32(addr);
177 			if (blen == 0) {
178 				/* Some PATA chipsets like the CS5530 can't
179 				   cope with 0x0000 meaning 64K as the spec
180 				   says */
181 				ap->prd[pi].flags_len = cpu_to_le32(0x8000);
182 				blen = 0x8000;
183 				ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
184 			}
185 			ap->prd[pi].flags_len = cpu_to_le32(blen);
186 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
187 
188 			pi++;
189 			sg_len -= len;
190 			addr += len;
191 		}
192 	}
193 
194 	ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
195 }
196 
197 /**
198  *	ata_sff_qc_prep - Prepare taskfile for submission
199  *	@qc: Metadata associated with taskfile to be prepared
200  *
201  *	Prepare ATA taskfile for submission.
202  *
203  *	LOCKING:
204  *	spin_lock_irqsave(host lock)
205  */
ata_sff_qc_prep(struct ata_queued_cmd * qc)206 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
207 {
208 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
209 		return;
210 
211 	ata_fill_sg(qc);
212 }
213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
214 
215 /**
216  *	ata_sff_dumb_qc_prep - Prepare taskfile for submission
217  *	@qc: Metadata associated with taskfile to be prepared
218  *
219  *	Prepare ATA taskfile for submission.
220  *
221  *	LOCKING:
222  *	spin_lock_irqsave(host lock)
223  */
ata_sff_dumb_qc_prep(struct ata_queued_cmd * qc)224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
225 {
226 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
227 		return;
228 
229 	ata_fill_sg_dumb(qc);
230 }
231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
232 
233 /**
234  *	ata_sff_check_status - Read device status reg & clear interrupt
235  *	@ap: port where the device is
236  *
237  *	Reads ATA taskfile status register for currently-selected device
238  *	and return its value. This also clears pending interrupts
239  *      from this device
240  *
241  *	LOCKING:
242  *	Inherited from caller.
243  */
ata_sff_check_status(struct ata_port * ap)244 u8 ata_sff_check_status(struct ata_port *ap)
245 {
246 	return ioread8(ap->ioaddr.status_addr);
247 }
248 EXPORT_SYMBOL_GPL(ata_sff_check_status);
249 
250 /**
251  *	ata_sff_altstatus - Read device alternate status reg
252  *	@ap: port where the device is
253  *
254  *	Reads ATA taskfile alternate status register for
255  *	currently-selected device and return its value.
256  *
257  *	Note: may NOT be used as the check_altstatus() entry in
258  *	ata_port_operations.
259  *
260  *	LOCKING:
261  *	Inherited from caller.
262  */
ata_sff_altstatus(struct ata_port * ap)263 static u8 ata_sff_altstatus(struct ata_port *ap)
264 {
265 	if (ap->ops->sff_check_altstatus)
266 		return ap->ops->sff_check_altstatus(ap);
267 
268 	return ioread8(ap->ioaddr.altstatus_addr);
269 }
270 
271 /**
272  *	ata_sff_irq_status - Check if the device is busy
273  *	@ap: port where the device is
274  *
275  *	Determine if the port is currently busy. Uses altstatus
276  *	if available in order to avoid clearing shared IRQ status
277  *	when finding an IRQ source. Non ctl capable devices don't
278  *	share interrupt lines fortunately for us.
279  *
280  *	LOCKING:
281  *	Inherited from caller.
282  */
ata_sff_irq_status(struct ata_port * ap)283 static u8 ata_sff_irq_status(struct ata_port *ap)
284 {
285 	u8 status;
286 
287 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
288 		status = ata_sff_altstatus(ap);
289 		/* Not us: We are busy */
290 		if (status & ATA_BUSY)
291 			return status;
292 	}
293 	/* Clear INTRQ latch */
294 	status = ap->ops->sff_check_status(ap);
295 	return status;
296 }
297 
298 /**
299  *	ata_sff_sync - Flush writes
300  *	@ap: Port to wait for.
301  *
302  *	CAUTION:
303  *	If we have an mmio device with no ctl and no altstatus
304  *	method this will fail. No such devices are known to exist.
305  *
306  *	LOCKING:
307  *	Inherited from caller.
308  */
309 
ata_sff_sync(struct ata_port * ap)310 static void ata_sff_sync(struct ata_port *ap)
311 {
312 	if (ap->ops->sff_check_altstatus)
313 		ap->ops->sff_check_altstatus(ap);
314 	else if (ap->ioaddr.altstatus_addr)
315 		ioread8(ap->ioaddr.altstatus_addr);
316 }
317 
318 /**
319  *	ata_sff_pause		-	Flush writes and wait 400nS
320  *	@ap: Port to pause for.
321  *
322  *	CAUTION:
323  *	If we have an mmio device with no ctl and no altstatus
324  *	method this will fail. No such devices are known to exist.
325  *
326  *	LOCKING:
327  *	Inherited from caller.
328  */
329 
ata_sff_pause(struct ata_port * ap)330 void ata_sff_pause(struct ata_port *ap)
331 {
332 	ata_sff_sync(ap);
333 	ndelay(400);
334 }
335 EXPORT_SYMBOL_GPL(ata_sff_pause);
336 
337 /**
338  *	ata_sff_dma_pause	-	Pause before commencing DMA
339  *	@ap: Port to pause for.
340  *
341  *	Perform I/O fencing and ensure sufficient cycle delays occur
342  *	for the HDMA1:0 transition
343  */
344 
ata_sff_dma_pause(struct ata_port * ap)345 void ata_sff_dma_pause(struct ata_port *ap)
346 {
347 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
348 		/* An altstatus read will cause the needed delay without
349 		   messing up the IRQ status */
350 		ata_sff_altstatus(ap);
351 		return;
352 	}
353 	/* There are no DMA controllers without ctl. BUG here to ensure
354 	   we never violate the HDMA1:0 transition timing and risk
355 	   corruption. */
356 	BUG();
357 }
358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
359 
360 /**
361  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
362  *	@ap: port containing status register to be polled
363  *	@tmout_pat: impatience timeout in msecs
364  *	@tmout: overall timeout in msecs
365  *
366  *	Sleep until ATA Status register bit BSY clears,
367  *	or a timeout occurs.
368  *
369  *	LOCKING:
370  *	Kernel thread context (may sleep).
371  *
372  *	RETURNS:
373  *	0 on success, -errno otherwise.
374  */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)375 int ata_sff_busy_sleep(struct ata_port *ap,
376 		       unsigned long tmout_pat, unsigned long tmout)
377 {
378 	unsigned long timer_start, timeout;
379 	u8 status;
380 
381 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
382 	timer_start = jiffies;
383 	timeout = ata_deadline(timer_start, tmout_pat);
384 	while (status != 0xff && (status & ATA_BUSY) &&
385 	       time_before(jiffies, timeout)) {
386 		msleep(50);
387 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
388 	}
389 
390 	if (status != 0xff && (status & ATA_BUSY))
391 		ata_port_printk(ap, KERN_WARNING,
392 				"port is slow to respond, please be patient "
393 				"(Status 0x%x)\n", status);
394 
395 	timeout = ata_deadline(timer_start, tmout);
396 	while (status != 0xff && (status & ATA_BUSY) &&
397 	       time_before(jiffies, timeout)) {
398 		msleep(50);
399 		status = ap->ops->sff_check_status(ap);
400 	}
401 
402 	if (status == 0xff)
403 		return -ENODEV;
404 
405 	if (status & ATA_BUSY) {
406 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
407 				"(%lu secs, Status 0x%x)\n",
408 				DIV_ROUND_UP(tmout, 1000), status);
409 		return -EBUSY;
410 	}
411 
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
415 
ata_sff_check_ready(struct ata_link * link)416 static int ata_sff_check_ready(struct ata_link *link)
417 {
418 	u8 status = link->ap->ops->sff_check_status(link->ap);
419 
420 	return ata_check_ready(status);
421 }
422 
423 /**
424  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
425  *	@link: SFF link to wait ready status for
426  *	@deadline: deadline jiffies for the operation
427  *
428  *	Sleep until ATA Status register bit BSY clears, or timeout
429  *	occurs.
430  *
431  *	LOCKING:
432  *	Kernel thread context (may sleep).
433  *
434  *	RETURNS:
435  *	0 on success, -errno otherwise.
436  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
438 {
439 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
440 }
441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
442 
443 /**
444  *	ata_sff_dev_select - Select device 0/1 on ATA bus
445  *	@ap: ATA channel to manipulate
446  *	@device: ATA device (numbered from zero) to select
447  *
448  *	Use the method defined in the ATA specification to
449  *	make either device 0, or device 1, active on the
450  *	ATA channel.  Works with both PIO and MMIO.
451  *
452  *	May be used as the dev_select() entry in ata_port_operations.
453  *
454  *	LOCKING:
455  *	caller.
456  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
458 {
459 	u8 tmp;
460 
461 	if (device == 0)
462 		tmp = ATA_DEVICE_OBS;
463 	else
464 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
465 
466 	iowrite8(tmp, ap->ioaddr.device_addr);
467 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
468 }
469 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
470 
471 /**
472  *	ata_dev_select - Select device 0/1 on ATA bus
473  *	@ap: ATA channel to manipulate
474  *	@device: ATA device (numbered from zero) to select
475  *	@wait: non-zero to wait for Status register BSY bit to clear
476  *	@can_sleep: non-zero if context allows sleeping
477  *
478  *	Use the method defined in the ATA specification to
479  *	make either device 0, or device 1, active on the
480  *	ATA channel.
481  *
482  *	This is a high-level version of ata_sff_dev_select(), which
483  *	additionally provides the services of inserting the proper
484  *	pauses and status polling, where needed.
485  *
486  *	LOCKING:
487  *	caller.
488  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)489 void ata_dev_select(struct ata_port *ap, unsigned int device,
490 			   unsigned int wait, unsigned int can_sleep)
491 {
492 	if (ata_msg_probe(ap))
493 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
494 				"device %u, wait %u\n", device, wait);
495 
496 	if (wait)
497 		ata_wait_idle(ap);
498 
499 	ap->ops->sff_dev_select(ap, device);
500 
501 	if (wait) {
502 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
503 			msleep(150);
504 		ata_wait_idle(ap);
505 	}
506 }
507 
508 /**
509  *	ata_sff_irq_on - Enable interrupts on a port.
510  *	@ap: Port on which interrupts are enabled.
511  *
512  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
513  *	wait for idle, clear any pending interrupts.
514  *
515  *	LOCKING:
516  *	Inherited from caller.
517  */
ata_sff_irq_on(struct ata_port * ap)518 u8 ata_sff_irq_on(struct ata_port *ap)
519 {
520 	struct ata_ioports *ioaddr = &ap->ioaddr;
521 	u8 tmp;
522 
523 	ap->ctl &= ~ATA_NIEN;
524 	ap->last_ctl = ap->ctl;
525 
526 	if (ioaddr->ctl_addr)
527 		iowrite8(ap->ctl, ioaddr->ctl_addr);
528 	tmp = ata_wait_idle(ap);
529 
530 	ap->ops->sff_irq_clear(ap);
531 
532 	return tmp;
533 }
534 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
535 
536 /**
537  *	ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
538  *	@ap: Port associated with this ATA transaction.
539  *
540  *	Clear interrupt and error flags in DMA status register.
541  *
542  *	May be used as the irq_clear() entry in ata_port_operations.
543  *
544  *	LOCKING:
545  *	spin_lock_irqsave(host lock)
546  */
ata_sff_irq_clear(struct ata_port * ap)547 void ata_sff_irq_clear(struct ata_port *ap)
548 {
549 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
550 
551 	if (!mmio)
552 		return;
553 
554 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
555 }
556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
557 
558 /**
559  *	ata_sff_tf_load - send taskfile registers to host controller
560  *	@ap: Port to which output is sent
561  *	@tf: ATA taskfile register set
562  *
563  *	Outputs ATA taskfile to standard ATA host controller.
564  *
565  *	LOCKING:
566  *	Inherited from caller.
567  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
569 {
570 	struct ata_ioports *ioaddr = &ap->ioaddr;
571 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
572 
573 	if (tf->ctl != ap->last_ctl) {
574 		if (ioaddr->ctl_addr)
575 			iowrite8(tf->ctl, ioaddr->ctl_addr);
576 		ap->last_ctl = tf->ctl;
577 		ata_wait_idle(ap);
578 	}
579 
580 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
581 		WARN_ON_ONCE(!ioaddr->ctl_addr);
582 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
583 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
584 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
585 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
586 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
587 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
588 			tf->hob_feature,
589 			tf->hob_nsect,
590 			tf->hob_lbal,
591 			tf->hob_lbam,
592 			tf->hob_lbah);
593 	}
594 
595 	if (is_addr) {
596 		iowrite8(tf->feature, ioaddr->feature_addr);
597 		iowrite8(tf->nsect, ioaddr->nsect_addr);
598 		iowrite8(tf->lbal, ioaddr->lbal_addr);
599 		iowrite8(tf->lbam, ioaddr->lbam_addr);
600 		iowrite8(tf->lbah, ioaddr->lbah_addr);
601 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
602 			tf->feature,
603 			tf->nsect,
604 			tf->lbal,
605 			tf->lbam,
606 			tf->lbah);
607 	}
608 
609 	if (tf->flags & ATA_TFLAG_DEVICE) {
610 		iowrite8(tf->device, ioaddr->device_addr);
611 		VPRINTK("device 0x%X\n", tf->device);
612 	}
613 
614 	ata_wait_idle(ap);
615 }
616 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
617 
618 /**
619  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
620  *	@ap: Port from which input is read
621  *	@tf: ATA taskfile register set for storing input
622  *
623  *	Reads ATA taskfile registers for currently-selected device
624  *	into @tf. Assumes the device has a fully SFF compliant task file
625  *	layout and behaviour. If you device does not (eg has a different
626  *	status method) then you will need to provide a replacement tf_read
627  *
628  *	LOCKING:
629  *	Inherited from caller.
630  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
632 {
633 	struct ata_ioports *ioaddr = &ap->ioaddr;
634 
635 	tf->command = ata_sff_check_status(ap);
636 	tf->feature = ioread8(ioaddr->error_addr);
637 	tf->nsect = ioread8(ioaddr->nsect_addr);
638 	tf->lbal = ioread8(ioaddr->lbal_addr);
639 	tf->lbam = ioread8(ioaddr->lbam_addr);
640 	tf->lbah = ioread8(ioaddr->lbah_addr);
641 	tf->device = ioread8(ioaddr->device_addr);
642 
643 	if (tf->flags & ATA_TFLAG_LBA48) {
644 		if (likely(ioaddr->ctl_addr)) {
645 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
646 			tf->hob_feature = ioread8(ioaddr->error_addr);
647 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
648 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
649 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
650 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
651 			iowrite8(tf->ctl, ioaddr->ctl_addr);
652 			ap->last_ctl = tf->ctl;
653 		} else
654 			WARN_ON_ONCE(1);
655 	}
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
658 
659 /**
660  *	ata_sff_exec_command - issue ATA command to host controller
661  *	@ap: port to which command is being issued
662  *	@tf: ATA taskfile register set
663  *
664  *	Issues ATA command, with proper synchronization with interrupt
665  *	handler / other threads.
666  *
667  *	LOCKING:
668  *	spin_lock_irqsave(host lock)
669  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
671 {
672 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
673 
674 	iowrite8(tf->command, ap->ioaddr.command_addr);
675 	ata_sff_pause(ap);
676 }
677 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
678 
679 /**
680  *	ata_tf_to_host - issue ATA taskfile to host controller
681  *	@ap: port to which command is being issued
682  *	@tf: ATA taskfile register set
683  *
684  *	Issues ATA taskfile register set to ATA host controller,
685  *	with proper synchronization with interrupt handler and
686  *	other threads.
687  *
688  *	LOCKING:
689  *	spin_lock_irqsave(host lock)
690  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)691 static inline void ata_tf_to_host(struct ata_port *ap,
692 				  const struct ata_taskfile *tf)
693 {
694 	ap->ops->sff_tf_load(ap, tf);
695 	ap->ops->sff_exec_command(ap, tf);
696 }
697 
698 /**
699  *	ata_sff_data_xfer - Transfer data by PIO
700  *	@dev: device to target
701  *	@buf: data buffer
702  *	@buflen: buffer length
703  *	@rw: read/write
704  *
705  *	Transfer data from/to the device data register by PIO.
706  *
707  *	LOCKING:
708  *	Inherited from caller.
709  *
710  *	RETURNS:
711  *	Bytes consumed.
712  */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
714 			       unsigned int buflen, int rw)
715 {
716 	struct ata_port *ap = dev->link->ap;
717 	void __iomem *data_addr = ap->ioaddr.data_addr;
718 	unsigned int words = buflen >> 1;
719 
720 	/* Transfer multiple of 2 bytes */
721 	if (rw == READ)
722 		ioread16_rep(data_addr, buf, words);
723 	else
724 		iowrite16_rep(data_addr, buf, words);
725 
726 	/* Transfer trailing 1 byte, if any. */
727 	if (unlikely(buflen & 0x01)) {
728 		__le16 align_buf[1] = { 0 };
729 		unsigned char *trailing_buf = buf + buflen - 1;
730 
731 		if (rw == READ) {
732 			align_buf[0] = cpu_to_le16(ioread16(data_addr));
733 			memcpy(trailing_buf, align_buf, 1);
734 		} else {
735 			memcpy(align_buf, trailing_buf, 1);
736 			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
737 		}
738 		words++;
739 	}
740 
741 	return words << 1;
742 }
743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
744 
745 /**
746  *	ata_sff_data_xfer32 - Transfer data by PIO
747  *	@dev: device to target
748  *	@buf: data buffer
749  *	@buflen: buffer length
750  *	@rw: read/write
751  *
752  *	Transfer data from/to the device data register by PIO using 32bit
753  *	I/O operations.
754  *
755  *	LOCKING:
756  *	Inherited from caller.
757  *
758  *	RETURNS:
759  *	Bytes consumed.
760  */
761 
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
763 			       unsigned int buflen, int rw)
764 {
765 	struct ata_port *ap = dev->link->ap;
766 	void __iomem *data_addr = ap->ioaddr.data_addr;
767 	unsigned int words = buflen >> 2;
768 	int slop = buflen & 3;
769 
770 	/* Transfer multiple of 4 bytes */
771 	if (rw == READ)
772 		ioread32_rep(data_addr, buf, words);
773 	else
774 		iowrite32_rep(data_addr, buf, words);
775 
776 	/* Transfer trailing bytes, if any */
777 	if (unlikely(slop)) {
778 		unsigned char pad[4];
779 
780 		/* Point buf to the tail of buffer */
781 		buf += buflen - slop;
782 
783 		/*
784 		 * Use io*_rep() accessors here as well to avoid pointlessly
785 		 * swapping bytes to and fro on the big endian machines...
786 		 */
787 		if (rw == READ) {
788 			if (slop < 3)
789 				ioread16_rep(data_addr, pad, 1);
790 			else
791 				ioread32_rep(data_addr, pad, 1);
792 			memcpy(buf, pad, slop);
793 		} else {
794 			memcpy(pad, buf, slop);
795 			if (slop < 3)
796 				iowrite16_rep(data_addr, pad, 1);
797 			else
798 				iowrite32_rep(data_addr, pad, 1);
799 		}
800 	}
801 	return (buflen + 1) & ~1;
802 }
803 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
804 
805 /**
806  *	ata_sff_data_xfer_noirq - Transfer data by PIO
807  *	@dev: device to target
808  *	@buf: data buffer
809  *	@buflen: buffer length
810  *	@rw: read/write
811  *
812  *	Transfer data from/to the device data register by PIO. Do the
813  *	transfer with interrupts disabled.
814  *
815  *	LOCKING:
816  *	Inherited from caller.
817  *
818  *	RETURNS:
819  *	Bytes consumed.
820  */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)821 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
822 				     unsigned int buflen, int rw)
823 {
824 	unsigned long flags;
825 	unsigned int consumed;
826 
827 	local_irq_save(flags);
828 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
829 	local_irq_restore(flags);
830 
831 	return consumed;
832 }
833 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
834 
835 /**
836  *	ata_pio_sector - Transfer a sector of data.
837  *	@qc: Command on going
838  *
839  *	Transfer qc->sect_size bytes of data from/to the ATA device.
840  *
841  *	LOCKING:
842  *	Inherited from caller.
843  */
ata_pio_sector(struct ata_queued_cmd * qc)844 static void ata_pio_sector(struct ata_queued_cmd *qc)
845 {
846 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
847 	struct ata_port *ap = qc->ap;
848 	struct page *page;
849 	unsigned int offset;
850 	unsigned char *buf;
851 
852 	if (qc->curbytes == qc->nbytes - qc->sect_size)
853 		ap->hsm_task_state = HSM_ST_LAST;
854 
855 	page = sg_page(qc->cursg);
856 	offset = qc->cursg->offset + qc->cursg_ofs;
857 
858 	/* get the current page and offset */
859 	page = nth_page(page, (offset >> PAGE_SHIFT));
860 	offset %= PAGE_SIZE;
861 
862 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863 
864 	if (PageHighMem(page)) {
865 		unsigned long flags;
866 
867 		/* FIXME: use a bounce buffer */
868 		local_irq_save(flags);
869 		buf = kmap_atomic(page, KM_IRQ0);
870 
871 		/* do the actual data transfer */
872 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
873 				       do_write);
874 
875 		kunmap_atomic(buf, KM_IRQ0);
876 		local_irq_restore(flags);
877 	} else {
878 		buf = page_address(page);
879 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
880 				       do_write);
881 	}
882 
883 	qc->curbytes += qc->sect_size;
884 	qc->cursg_ofs += qc->sect_size;
885 
886 	if (qc->cursg_ofs == qc->cursg->length) {
887 		qc->cursg = sg_next(qc->cursg);
888 		qc->cursg_ofs = 0;
889 	}
890 }
891 
892 /**
893  *	ata_pio_sectors - Transfer one or many sectors.
894  *	@qc: Command on going
895  *
896  *	Transfer one or many sectors of data from/to the
897  *	ATA device for the DRQ request.
898  *
899  *	LOCKING:
900  *	Inherited from caller.
901  */
ata_pio_sectors(struct ata_queued_cmd * qc)902 static void ata_pio_sectors(struct ata_queued_cmd *qc)
903 {
904 	if (is_multi_taskfile(&qc->tf)) {
905 		/* READ/WRITE MULTIPLE */
906 		unsigned int nsect;
907 
908 		WARN_ON_ONCE(qc->dev->multi_count == 0);
909 
910 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
911 			    qc->dev->multi_count);
912 		while (nsect--)
913 			ata_pio_sector(qc);
914 	} else
915 		ata_pio_sector(qc);
916 
917 	ata_sff_sync(qc->ap); /* flush */
918 }
919 
920 /**
921  *	atapi_send_cdb - Write CDB bytes to hardware
922  *	@ap: Port to which ATAPI device is attached.
923  *	@qc: Taskfile currently active
924  *
925  *	When device has indicated its readiness to accept
926  *	a CDB, this function is called.  Send the CDB.
927  *
928  *	LOCKING:
929  *	caller.
930  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)931 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
932 {
933 	/* send SCSI cdb */
934 	DPRINTK("send cdb\n");
935 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
936 
937 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
938 	ata_sff_sync(ap);
939 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
940 	   or is bmdma_start guaranteed to do it ? */
941 	switch (qc->tf.protocol) {
942 	case ATAPI_PROT_PIO:
943 		ap->hsm_task_state = HSM_ST;
944 		break;
945 	case ATAPI_PROT_NODATA:
946 		ap->hsm_task_state = HSM_ST_LAST;
947 		break;
948 	case ATAPI_PROT_DMA:
949 		ap->hsm_task_state = HSM_ST_LAST;
950 		/* initiate bmdma */
951 		ap->ops->bmdma_start(qc);
952 		break;
953 	}
954 }
955 
956 /**
957  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
958  *	@qc: Command on going
959  *	@bytes: number of bytes
960  *
961  *	Transfer Transfer data from/to the ATAPI device.
962  *
963  *	LOCKING:
964  *	Inherited from caller.
965  *
966  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)967 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
968 {
969 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
970 	struct ata_port *ap = qc->ap;
971 	struct ata_device *dev = qc->dev;
972 	struct ata_eh_info *ehi = &dev->link->eh_info;
973 	struct scatterlist *sg;
974 	struct page *page;
975 	unsigned char *buf;
976 	unsigned int offset, count, consumed;
977 
978 next_sg:
979 	sg = qc->cursg;
980 	if (unlikely(!sg)) {
981 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
982 				  "buf=%u cur=%u bytes=%u",
983 				  qc->nbytes, qc->curbytes, bytes);
984 		return -1;
985 	}
986 
987 	page = sg_page(sg);
988 	offset = sg->offset + qc->cursg_ofs;
989 
990 	/* get the current page and offset */
991 	page = nth_page(page, (offset >> PAGE_SHIFT));
992 	offset %= PAGE_SIZE;
993 
994 	/* don't overrun current sg */
995 	count = min(sg->length - qc->cursg_ofs, bytes);
996 
997 	/* don't cross page boundaries */
998 	count = min(count, (unsigned int)PAGE_SIZE - offset);
999 
1000 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1001 
1002 	if (PageHighMem(page)) {
1003 		unsigned long flags;
1004 
1005 		/* FIXME: use bounce buffer */
1006 		local_irq_save(flags);
1007 		buf = kmap_atomic(page, KM_IRQ0);
1008 
1009 		/* do the actual data transfer */
1010 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1011 								count, rw);
1012 
1013 		kunmap_atomic(buf, KM_IRQ0);
1014 		local_irq_restore(flags);
1015 	} else {
1016 		buf = page_address(page);
1017 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
1018 								count, rw);
1019 	}
1020 
1021 	bytes -= min(bytes, consumed);
1022 	qc->curbytes += count;
1023 	qc->cursg_ofs += count;
1024 
1025 	if (qc->cursg_ofs == sg->length) {
1026 		qc->cursg = sg_next(qc->cursg);
1027 		qc->cursg_ofs = 0;
1028 	}
1029 
1030 	/*
1031 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
1032 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1033 	 * check correctly as it doesn't know if it is the last request being
1034 	 * made. Somebody should implement a proper sanity check.
1035 	 */
1036 	if (bytes)
1037 		goto next_sg;
1038 	return 0;
1039 }
1040 
1041 /**
1042  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
1043  *	@qc: Command on going
1044  *
1045  *	Transfer Transfer data from/to the ATAPI device.
1046  *
1047  *	LOCKING:
1048  *	Inherited from caller.
1049  */
atapi_pio_bytes(struct ata_queued_cmd * qc)1050 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1051 {
1052 	struct ata_port *ap = qc->ap;
1053 	struct ata_device *dev = qc->dev;
1054 	struct ata_eh_info *ehi = &dev->link->eh_info;
1055 	unsigned int ireason, bc_lo, bc_hi, bytes;
1056 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1057 
1058 	/* Abuse qc->result_tf for temp storage of intermediate TF
1059 	 * here to save some kernel stack usage.
1060 	 * For normal completion, qc->result_tf is not relevant. For
1061 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
1062 	 * So, the correctness of qc->result_tf is not affected.
1063 	 */
1064 	ap->ops->sff_tf_read(ap, &qc->result_tf);
1065 	ireason = qc->result_tf.nsect;
1066 	bc_lo = qc->result_tf.lbam;
1067 	bc_hi = qc->result_tf.lbah;
1068 	bytes = (bc_hi << 8) | bc_lo;
1069 
1070 	/* shall be cleared to zero, indicating xfer of data */
1071 	if (unlikely(ireason & (1 << 0)))
1072 		goto atapi_check;
1073 
1074 	/* make sure transfer direction matches expected */
1075 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1076 	if (unlikely(do_write != i_write))
1077 		goto atapi_check;
1078 
1079 	if (unlikely(!bytes))
1080 		goto atapi_check;
1081 
1082 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1083 
1084 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
1085 		goto err_out;
1086 	ata_sff_sync(ap); /* flush */
1087 
1088 	return;
1089 
1090  atapi_check:
1091 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1092 			  ireason, bytes);
1093  err_out:
1094 	qc->err_mask |= AC_ERR_HSM;
1095 	ap->hsm_task_state = HSM_ST_ERR;
1096 }
1097 
1098 /**
1099  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1100  *	@ap: the target ata_port
1101  *	@qc: qc on going
1102  *
1103  *	RETURNS:
1104  *	1 if ok in workqueue, 0 otherwise.
1105  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)1106 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1107 						struct ata_queued_cmd *qc)
1108 {
1109 	if (qc->tf.flags & ATA_TFLAG_POLLING)
1110 		return 1;
1111 
1112 	if (ap->hsm_task_state == HSM_ST_FIRST) {
1113 		if (qc->tf.protocol == ATA_PROT_PIO &&
1114 		   (qc->tf.flags & ATA_TFLAG_WRITE))
1115 		    return 1;
1116 
1117 		if (ata_is_atapi(qc->tf.protocol) &&
1118 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1119 			return 1;
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  *	ata_hsm_qc_complete - finish a qc running on standard HSM
1127  *	@qc: Command to complete
1128  *	@in_wq: 1 if called from workqueue, 0 otherwise
1129  *
1130  *	Finish @qc which is running on standard HSM.
1131  *
1132  *	LOCKING:
1133  *	If @in_wq is zero, spin_lock_irqsave(host lock).
1134  *	Otherwise, none on entry and grabs host lock.
1135  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)1136 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1137 {
1138 	struct ata_port *ap = qc->ap;
1139 	unsigned long flags;
1140 
1141 	if (ap->ops->error_handler) {
1142 		if (in_wq) {
1143 			spin_lock_irqsave(ap->lock, flags);
1144 
1145 			/* EH might have kicked in while host lock is
1146 			 * released.
1147 			 */
1148 			qc = ata_qc_from_tag(ap, qc->tag);
1149 			if (qc) {
1150 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1151 					ap->ops->sff_irq_on(ap);
1152 					ata_qc_complete(qc);
1153 				} else
1154 					ata_port_freeze(ap);
1155 			}
1156 
1157 			spin_unlock_irqrestore(ap->lock, flags);
1158 		} else {
1159 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1160 				ata_qc_complete(qc);
1161 			else
1162 				ata_port_freeze(ap);
1163 		}
1164 	} else {
1165 		if (in_wq) {
1166 			spin_lock_irqsave(ap->lock, flags);
1167 			ap->ops->sff_irq_on(ap);
1168 			ata_qc_complete(qc);
1169 			spin_unlock_irqrestore(ap->lock, flags);
1170 		} else
1171 			ata_qc_complete(qc);
1172 	}
1173 }
1174 
1175 /**
1176  *	ata_sff_hsm_move - move the HSM to the next state.
1177  *	@ap: the target ata_port
1178  *	@qc: qc on going
1179  *	@status: current device status
1180  *	@in_wq: 1 if called from workqueue, 0 otherwise
1181  *
1182  *	RETURNS:
1183  *	1 when poll next status needed, 0 otherwise.
1184  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1185 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1186 		     u8 status, int in_wq)
1187 {
1188 	struct ata_eh_info *ehi = &ap->link.eh_info;
1189 	unsigned long flags = 0;
1190 	int poll_next;
1191 
1192 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1193 
1194 	/* Make sure ata_sff_qc_issue() does not throw things
1195 	 * like DMA polling into the workqueue. Notice that
1196 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1197 	 */
1198 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1199 
1200 fsm_start:
1201 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1202 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1203 
1204 	switch (ap->hsm_task_state) {
1205 	case HSM_ST_FIRST:
1206 		/* Send first data block or PACKET CDB */
1207 
1208 		/* If polling, we will stay in the work queue after
1209 		 * sending the data. Otherwise, interrupt handler
1210 		 * takes over after sending the data.
1211 		 */
1212 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1213 
1214 		/* check device status */
1215 		if (unlikely((status & ATA_DRQ) == 0)) {
1216 			/* handle BSY=0, DRQ=0 as error */
1217 			if (likely(status & (ATA_ERR | ATA_DF)))
1218 				/* device stops HSM for abort/error */
1219 				qc->err_mask |= AC_ERR_DEV;
1220 			else {
1221 				/* HSM violation. Let EH handle this */
1222 				ata_ehi_push_desc(ehi,
1223 					"ST_FIRST: !(DRQ|ERR|DF)");
1224 				qc->err_mask |= AC_ERR_HSM;
1225 			}
1226 
1227 			ap->hsm_task_state = HSM_ST_ERR;
1228 			goto fsm_start;
1229 		}
1230 
1231 		/* Device should not ask for data transfer (DRQ=1)
1232 		 * when it finds something wrong.
1233 		 * We ignore DRQ here and stop the HSM by
1234 		 * changing hsm_task_state to HSM_ST_ERR and
1235 		 * let the EH abort the command or reset the device.
1236 		 */
1237 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1238 			/* Some ATAPI tape drives forget to clear the ERR bit
1239 			 * when doing the next command (mostly request sense).
1240 			 * We ignore ERR here to workaround and proceed sending
1241 			 * the CDB.
1242 			 */
1243 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1244 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1245 					"DRQ=1 with device error, "
1246 					"dev_stat 0x%X", status);
1247 				qc->err_mask |= AC_ERR_HSM;
1248 				ap->hsm_task_state = HSM_ST_ERR;
1249 				goto fsm_start;
1250 			}
1251 		}
1252 
1253 		/* Send the CDB (atapi) or the first data block (ata pio out).
1254 		 * During the state transition, interrupt handler shouldn't
1255 		 * be invoked before the data transfer is complete and
1256 		 * hsm_task_state is changed. Hence, the following locking.
1257 		 */
1258 		if (in_wq)
1259 			spin_lock_irqsave(ap->lock, flags);
1260 
1261 		if (qc->tf.protocol == ATA_PROT_PIO) {
1262 			/* PIO data out protocol.
1263 			 * send first data block.
1264 			 */
1265 
1266 			/* ata_pio_sectors() might change the state
1267 			 * to HSM_ST_LAST. so, the state is changed here
1268 			 * before ata_pio_sectors().
1269 			 */
1270 			ap->hsm_task_state = HSM_ST;
1271 			ata_pio_sectors(qc);
1272 		} else
1273 			/* send CDB */
1274 			atapi_send_cdb(ap, qc);
1275 
1276 		if (in_wq)
1277 			spin_unlock_irqrestore(ap->lock, flags);
1278 
1279 		/* if polling, ata_pio_task() handles the rest.
1280 		 * otherwise, interrupt handler takes over from here.
1281 		 */
1282 		break;
1283 
1284 	case HSM_ST:
1285 		/* complete command or read/write the data register */
1286 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1287 			/* ATAPI PIO protocol */
1288 			if ((status & ATA_DRQ) == 0) {
1289 				/* No more data to transfer or device error.
1290 				 * Device error will be tagged in HSM_ST_LAST.
1291 				 */
1292 				ap->hsm_task_state = HSM_ST_LAST;
1293 				goto fsm_start;
1294 			}
1295 
1296 			/* Device should not ask for data transfer (DRQ=1)
1297 			 * when it finds something wrong.
1298 			 * We ignore DRQ here and stop the HSM by
1299 			 * changing hsm_task_state to HSM_ST_ERR and
1300 			 * let the EH abort the command or reset the device.
1301 			 */
1302 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1303 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1304 					"DRQ=1 with device error, "
1305 					"dev_stat 0x%X", status);
1306 				qc->err_mask |= AC_ERR_HSM;
1307 				ap->hsm_task_state = HSM_ST_ERR;
1308 				goto fsm_start;
1309 			}
1310 
1311 			atapi_pio_bytes(qc);
1312 
1313 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1314 				/* bad ireason reported by device */
1315 				goto fsm_start;
1316 
1317 		} else {
1318 			/* ATA PIO protocol */
1319 			if (unlikely((status & ATA_DRQ) == 0)) {
1320 				/* handle BSY=0, DRQ=0 as error */
1321 				if (likely(status & (ATA_ERR | ATA_DF))) {
1322 					/* device stops HSM for abort/error */
1323 					qc->err_mask |= AC_ERR_DEV;
1324 
1325 					/* If diagnostic failed and this is
1326 					 * IDENTIFY, it's likely a phantom
1327 					 * device.  Mark hint.
1328 					 */
1329 					if (qc->dev->horkage &
1330 					    ATA_HORKAGE_DIAGNOSTIC)
1331 						qc->err_mask |=
1332 							AC_ERR_NODEV_HINT;
1333 				} else {
1334 					/* HSM violation. Let EH handle this.
1335 					 * Phantom devices also trigger this
1336 					 * condition.  Mark hint.
1337 					 */
1338 					ata_ehi_push_desc(ehi, "ST-ATA: "
1339 						"DRQ=0 without device error, "
1340 						"dev_stat 0x%X", status);
1341 					qc->err_mask |= AC_ERR_HSM |
1342 							AC_ERR_NODEV_HINT;
1343 				}
1344 
1345 				ap->hsm_task_state = HSM_ST_ERR;
1346 				goto fsm_start;
1347 			}
1348 
1349 			/* For PIO reads, some devices may ask for
1350 			 * data transfer (DRQ=1) alone with ERR=1.
1351 			 * We respect DRQ here and transfer one
1352 			 * block of junk data before changing the
1353 			 * hsm_task_state to HSM_ST_ERR.
1354 			 *
1355 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1356 			 * sense since the data block has been
1357 			 * transferred to the device.
1358 			 */
1359 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1360 				/* data might be corrputed */
1361 				qc->err_mask |= AC_ERR_DEV;
1362 
1363 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1364 					ata_pio_sectors(qc);
1365 					status = ata_wait_idle(ap);
1366 				}
1367 
1368 				if (status & (ATA_BUSY | ATA_DRQ)) {
1369 					ata_ehi_push_desc(ehi, "ST-ATA: "
1370 						"BUSY|DRQ persists on ERR|DF, "
1371 						"dev_stat 0x%X", status);
1372 					qc->err_mask |= AC_ERR_HSM;
1373 				}
1374 
1375 				/* There are oddball controllers with
1376 				 * status register stuck at 0x7f and
1377 				 * lbal/m/h at zero which makes it
1378 				 * pass all other presence detection
1379 				 * mechanisms we have.  Set NODEV_HINT
1380 				 * for it.  Kernel bz#7241.
1381 				 */
1382 				if (status == 0x7f)
1383 					qc->err_mask |= AC_ERR_NODEV_HINT;
1384 
1385 				/* ata_pio_sectors() might change the
1386 				 * state to HSM_ST_LAST. so, the state
1387 				 * is changed after ata_pio_sectors().
1388 				 */
1389 				ap->hsm_task_state = HSM_ST_ERR;
1390 				goto fsm_start;
1391 			}
1392 
1393 			ata_pio_sectors(qc);
1394 
1395 			if (ap->hsm_task_state == HSM_ST_LAST &&
1396 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1397 				/* all data read */
1398 				status = ata_wait_idle(ap);
1399 				goto fsm_start;
1400 			}
1401 		}
1402 
1403 		poll_next = 1;
1404 		break;
1405 
1406 	case HSM_ST_LAST:
1407 		if (unlikely(!ata_ok(status))) {
1408 			qc->err_mask |= __ac_err_mask(status);
1409 			ap->hsm_task_state = HSM_ST_ERR;
1410 			goto fsm_start;
1411 		}
1412 
1413 		/* no more data to transfer */
1414 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1415 			ap->print_id, qc->dev->devno, status);
1416 
1417 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1418 
1419 		ap->hsm_task_state = HSM_ST_IDLE;
1420 
1421 		/* complete taskfile transaction */
1422 		ata_hsm_qc_complete(qc, in_wq);
1423 
1424 		poll_next = 0;
1425 		break;
1426 
1427 	case HSM_ST_ERR:
1428 		ap->hsm_task_state = HSM_ST_IDLE;
1429 
1430 		/* complete taskfile transaction */
1431 		ata_hsm_qc_complete(qc, in_wq);
1432 
1433 		poll_next = 0;
1434 		break;
1435 	default:
1436 		poll_next = 0;
1437 		BUG();
1438 	}
1439 
1440 	return poll_next;
1441 }
1442 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1443 
ata_pio_task(struct work_struct * work)1444 void ata_pio_task(struct work_struct *work)
1445 {
1446 	struct ata_port *ap =
1447 		container_of(work, struct ata_port, port_task.work);
1448 	struct ata_queued_cmd *qc = ap->port_task_data;
1449 	u8 status;
1450 	int poll_next;
1451 
1452 fsm_start:
1453 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1454 
1455 	/*
1456 	 * This is purely heuristic.  This is a fast path.
1457 	 * Sometimes when we enter, BSY will be cleared in
1458 	 * a chk-status or two.  If not, the drive is probably seeking
1459 	 * or something.  Snooze for a couple msecs, then
1460 	 * chk-status again.  If still busy, queue delayed work.
1461 	 */
1462 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1463 	if (status & ATA_BUSY) {
1464 		msleep(2);
1465 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1466 		if (status & ATA_BUSY) {
1467 			ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1468 			return;
1469 		}
1470 	}
1471 
1472 	/* move the HSM */
1473 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1474 
1475 	/* another command or interrupt handler
1476 	 * may be running at this point.
1477 	 */
1478 	if (poll_next)
1479 		goto fsm_start;
1480 }
1481 
1482 /**
1483  *	ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1484  *	@qc: command to issue to device
1485  *
1486  *	Using various libata functions and hooks, this function
1487  *	starts an ATA command.  ATA commands are grouped into
1488  *	classes called "protocols", and issuing each type of protocol
1489  *	is slightly different.
1490  *
1491  *	May be used as the qc_issue() entry in ata_port_operations.
1492  *
1493  *	LOCKING:
1494  *	spin_lock_irqsave(host lock)
1495  *
1496  *	RETURNS:
1497  *	Zero on success, AC_ERR_* mask on failure
1498  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1499 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1500 {
1501 	struct ata_port *ap = qc->ap;
1502 
1503 	/* Use polling pio if the LLD doesn't handle
1504 	 * interrupt driven pio and atapi CDB interrupt.
1505 	 */
1506 	if (ap->flags & ATA_FLAG_PIO_POLLING) {
1507 		switch (qc->tf.protocol) {
1508 		case ATA_PROT_PIO:
1509 		case ATA_PROT_NODATA:
1510 		case ATAPI_PROT_PIO:
1511 		case ATAPI_PROT_NODATA:
1512 			qc->tf.flags |= ATA_TFLAG_POLLING;
1513 			break;
1514 		case ATAPI_PROT_DMA:
1515 			if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1516 				/* see ata_dma_blacklisted() */
1517 				BUG();
1518 			break;
1519 		default:
1520 			break;
1521 		}
1522 	}
1523 
1524 	/* select the device */
1525 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1526 
1527 	/* start the command */
1528 	switch (qc->tf.protocol) {
1529 	case ATA_PROT_NODATA:
1530 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1531 			ata_qc_set_polling(qc);
1532 
1533 		ata_tf_to_host(ap, &qc->tf);
1534 		ap->hsm_task_state = HSM_ST_LAST;
1535 
1536 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1537 			ata_pio_queue_task(ap, qc, 0);
1538 
1539 		break;
1540 
1541 	case ATA_PROT_DMA:
1542 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1543 
1544 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1545 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1546 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
1547 		ap->hsm_task_state = HSM_ST_LAST;
1548 		break;
1549 
1550 	case ATA_PROT_PIO:
1551 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1552 			ata_qc_set_polling(qc);
1553 
1554 		ata_tf_to_host(ap, &qc->tf);
1555 
1556 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1557 			/* PIO data out protocol */
1558 			ap->hsm_task_state = HSM_ST_FIRST;
1559 			ata_pio_queue_task(ap, qc, 0);
1560 
1561 			/* always send first data block using
1562 			 * the ata_pio_task() codepath.
1563 			 */
1564 		} else {
1565 			/* PIO data in protocol */
1566 			ap->hsm_task_state = HSM_ST;
1567 
1568 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1569 				ata_pio_queue_task(ap, qc, 0);
1570 
1571 			/* if polling, ata_pio_task() handles the rest.
1572 			 * otherwise, interrupt handler takes over from here.
1573 			 */
1574 		}
1575 
1576 		break;
1577 
1578 	case ATAPI_PROT_PIO:
1579 	case ATAPI_PROT_NODATA:
1580 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1581 			ata_qc_set_polling(qc);
1582 
1583 		ata_tf_to_host(ap, &qc->tf);
1584 
1585 		ap->hsm_task_state = HSM_ST_FIRST;
1586 
1587 		/* send cdb by polling if no cdb interrupt */
1588 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1589 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1590 			ata_pio_queue_task(ap, qc, 0);
1591 		break;
1592 
1593 	case ATAPI_PROT_DMA:
1594 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1595 
1596 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
1597 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
1598 		ap->hsm_task_state = HSM_ST_FIRST;
1599 
1600 		/* send cdb by polling if no cdb interrupt */
1601 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1602 			ata_pio_queue_task(ap, qc, 0);
1603 		break;
1604 
1605 	default:
1606 		WARN_ON_ONCE(1);
1607 		return AC_ERR_SYSTEM;
1608 	}
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1613 
1614 /**
1615  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1616  *	@qc: qc to fill result TF for
1617  *
1618  *	@qc is finished and result TF needs to be filled.  Fill it
1619  *	using ->sff_tf_read.
1620  *
1621  *	LOCKING:
1622  *	spin_lock_irqsave(host lock)
1623  *
1624  *	RETURNS:
1625  *	true indicating that result TF is successfully filled.
1626  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1627 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1628 {
1629 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1630 	return true;
1631 }
1632 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1633 
1634 /**
1635  *	ata_sff_host_intr - Handle host interrupt for given (port, task)
1636  *	@ap: Port on which interrupt arrived (possibly...)
1637  *	@qc: Taskfile currently active in engine
1638  *
1639  *	Handle host interrupt for given queued command.  Currently,
1640  *	only DMA interrupts are handled.  All other commands are
1641  *	handled via polling with interrupts disabled (nIEN bit).
1642  *
1643  *	LOCKING:
1644  *	spin_lock_irqsave(host lock)
1645  *
1646  *	RETURNS:
1647  *	One if interrupt was handled, zero if not (shared irq).
1648  */
ata_sff_host_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1649 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1650 				      struct ata_queued_cmd *qc)
1651 {
1652 	struct ata_eh_info *ehi = &ap->link.eh_info;
1653 	u8 status, host_stat = 0;
1654 
1655 	VPRINTK("ata%u: protocol %d task_state %d\n",
1656 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1657 
1658 	/* Check whether we are expecting interrupt in this state */
1659 	switch (ap->hsm_task_state) {
1660 	case HSM_ST_FIRST:
1661 		/* Some pre-ATAPI-4 devices assert INTRQ
1662 		 * at this state when ready to receive CDB.
1663 		 */
1664 
1665 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1666 		 * The flag was turned on only for atapi devices.  No
1667 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1668 		 */
1669 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1670 			goto idle_irq;
1671 		break;
1672 	case HSM_ST_LAST:
1673 		if (qc->tf.protocol == ATA_PROT_DMA ||
1674 		    qc->tf.protocol == ATAPI_PROT_DMA) {
1675 			/* check status of DMA engine */
1676 			host_stat = ap->ops->bmdma_status(ap);
1677 			VPRINTK("ata%u: host_stat 0x%X\n",
1678 				ap->print_id, host_stat);
1679 
1680 			/* if it's not our irq... */
1681 			if (!(host_stat & ATA_DMA_INTR))
1682 				goto idle_irq;
1683 
1684 			/* before we do anything else, clear DMA-Start bit */
1685 			ap->ops->bmdma_stop(qc);
1686 
1687 			if (unlikely(host_stat & ATA_DMA_ERR)) {
1688 				/* error when transfering data to/from memory */
1689 				qc->err_mask |= AC_ERR_HOST_BUS;
1690 				ap->hsm_task_state = HSM_ST_ERR;
1691 			}
1692 		}
1693 		break;
1694 	case HSM_ST:
1695 		break;
1696 	default:
1697 		goto idle_irq;
1698 	}
1699 
1700 
1701 	/* check main status, clearing INTRQ if needed */
1702 	status = ata_sff_irq_status(ap);
1703 	if (status & ATA_BUSY)
1704 		goto idle_irq;
1705 
1706 	/* ack bmdma irq events */
1707 	ap->ops->sff_irq_clear(ap);
1708 
1709 	ata_sff_hsm_move(ap, qc, status, 0);
1710 
1711 	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1712 				       qc->tf.protocol == ATAPI_PROT_DMA))
1713 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1714 
1715 	return 1;	/* irq handled */
1716 
1717 idle_irq:
1718 	ap->stats.idle_irq++;
1719 
1720 #ifdef ATA_IRQ_TRAP
1721 	if ((ap->stats.idle_irq % 1000) == 0) {
1722 		ap->ops->sff_check_status(ap);
1723 		ap->ops->sff_irq_clear(ap);
1724 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1725 		return 1;
1726 	}
1727 #endif
1728 	return 0;	/* irq not handled */
1729 }
1730 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1731 
1732 /**
1733  *	ata_sff_interrupt - Default ATA host interrupt handler
1734  *	@irq: irq line (unused)
1735  *	@dev_instance: pointer to our ata_host information structure
1736  *
1737  *	Default interrupt handler for PCI IDE devices.  Calls
1738  *	ata_sff_host_intr() for each port that is not disabled.
1739  *
1740  *	LOCKING:
1741  *	Obtains host lock during operation.
1742  *
1743  *	RETURNS:
1744  *	IRQ_NONE or IRQ_HANDLED.
1745  */
ata_sff_interrupt(int irq,void * dev_instance)1746 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1747 {
1748 	struct ata_host *host = dev_instance;
1749 	unsigned int i;
1750 	unsigned int handled = 0;
1751 	unsigned long flags;
1752 
1753 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1754 	spin_lock_irqsave(&host->lock, flags);
1755 
1756 	for (i = 0; i < host->n_ports; i++) {
1757 		struct ata_port *ap;
1758 
1759 		ap = host->ports[i];
1760 		if (ap &&
1761 		    !(ap->flags & ATA_FLAG_DISABLED)) {
1762 			struct ata_queued_cmd *qc;
1763 
1764 			qc = ata_qc_from_tag(ap, ap->link.active_tag);
1765 			if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1766 			    (qc->flags & ATA_QCFLAG_ACTIVE))
1767 				handled |= ata_sff_host_intr(ap, qc);
1768 		}
1769 	}
1770 
1771 	spin_unlock_irqrestore(&host->lock, flags);
1772 
1773 	return IRQ_RETVAL(handled);
1774 }
1775 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1776 
1777 /**
1778  *	ata_sff_freeze - Freeze SFF controller port
1779  *	@ap: port to freeze
1780  *
1781  *	Freeze BMDMA controller port.
1782  *
1783  *	LOCKING:
1784  *	Inherited from caller.
1785  */
ata_sff_freeze(struct ata_port * ap)1786 void ata_sff_freeze(struct ata_port *ap)
1787 {
1788 	struct ata_ioports *ioaddr = &ap->ioaddr;
1789 
1790 	ap->ctl |= ATA_NIEN;
1791 	ap->last_ctl = ap->ctl;
1792 
1793 	if (ioaddr->ctl_addr)
1794 		iowrite8(ap->ctl, ioaddr->ctl_addr);
1795 
1796 	/* Under certain circumstances, some controllers raise IRQ on
1797 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1798 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1799 	 */
1800 	ap->ops->sff_check_status(ap);
1801 
1802 	ap->ops->sff_irq_clear(ap);
1803 }
1804 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1805 
1806 /**
1807  *	ata_sff_thaw - Thaw SFF controller port
1808  *	@ap: port to thaw
1809  *
1810  *	Thaw SFF controller port.
1811  *
1812  *	LOCKING:
1813  *	Inherited from caller.
1814  */
ata_sff_thaw(struct ata_port * ap)1815 void ata_sff_thaw(struct ata_port *ap)
1816 {
1817 	/* clear & re-enable interrupts */
1818 	ap->ops->sff_check_status(ap);
1819 	ap->ops->sff_irq_clear(ap);
1820 	ap->ops->sff_irq_on(ap);
1821 }
1822 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1823 
1824 /**
1825  *	ata_sff_prereset - prepare SFF link for reset
1826  *	@link: SFF link to be reset
1827  *	@deadline: deadline jiffies for the operation
1828  *
1829  *	SFF link @link is about to be reset.  Initialize it.  It first
1830  *	calls ata_std_prereset() and wait for !BSY if the port is
1831  *	being softreset.
1832  *
1833  *	LOCKING:
1834  *	Kernel thread context (may sleep)
1835  *
1836  *	RETURNS:
1837  *	0 on success, -errno otherwise.
1838  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1839 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1840 {
1841 	struct ata_eh_context *ehc = &link->eh_context;
1842 	int rc;
1843 
1844 	rc = ata_std_prereset(link, deadline);
1845 	if (rc)
1846 		return rc;
1847 
1848 	/* if we're about to do hardreset, nothing more to do */
1849 	if (ehc->i.action & ATA_EH_HARDRESET)
1850 		return 0;
1851 
1852 	/* wait for !BSY if we don't know that no device is attached */
1853 	if (!ata_link_offline(link)) {
1854 		rc = ata_sff_wait_ready(link, deadline);
1855 		if (rc && rc != -ENODEV) {
1856 			ata_link_printk(link, KERN_WARNING, "device not ready "
1857 					"(errno=%d), forcing hardreset\n", rc);
1858 			ehc->i.action |= ATA_EH_HARDRESET;
1859 		}
1860 	}
1861 
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1865 
1866 /**
1867  *	ata_devchk - PATA device presence detection
1868  *	@ap: ATA channel to examine
1869  *	@device: Device to examine (starting at zero)
1870  *
1871  *	This technique was originally described in
1872  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1873  *	later found its way into the ATA/ATAPI spec.
1874  *
1875  *	Write a pattern to the ATA shadow registers,
1876  *	and if a device is present, it will respond by
1877  *	correctly storing and echoing back the
1878  *	ATA shadow register contents.
1879  *
1880  *	LOCKING:
1881  *	caller.
1882  */
ata_devchk(struct ata_port * ap,unsigned int device)1883 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1884 {
1885 	struct ata_ioports *ioaddr = &ap->ioaddr;
1886 	u8 nsect, lbal;
1887 
1888 	ap->ops->sff_dev_select(ap, device);
1889 
1890 	iowrite8(0x55, ioaddr->nsect_addr);
1891 	iowrite8(0xaa, ioaddr->lbal_addr);
1892 
1893 	iowrite8(0xaa, ioaddr->nsect_addr);
1894 	iowrite8(0x55, ioaddr->lbal_addr);
1895 
1896 	iowrite8(0x55, ioaddr->nsect_addr);
1897 	iowrite8(0xaa, ioaddr->lbal_addr);
1898 
1899 	nsect = ioread8(ioaddr->nsect_addr);
1900 	lbal = ioread8(ioaddr->lbal_addr);
1901 
1902 	if ((nsect == 0x55) && (lbal == 0xaa))
1903 		return 1;	/* we found a device */
1904 
1905 	return 0;		/* nothing found */
1906 }
1907 
1908 /**
1909  *	ata_sff_dev_classify - Parse returned ATA device signature
1910  *	@dev: ATA device to classify (starting at zero)
1911  *	@present: device seems present
1912  *	@r_err: Value of error register on completion
1913  *
1914  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1915  *	an ATA/ATAPI-defined set of values is placed in the ATA
1916  *	shadow registers, indicating the results of device detection
1917  *	and diagnostics.
1918  *
1919  *	Select the ATA device, and read the values from the ATA shadow
1920  *	registers.  Then parse according to the Error register value,
1921  *	and the spec-defined values examined by ata_dev_classify().
1922  *
1923  *	LOCKING:
1924  *	caller.
1925  *
1926  *	RETURNS:
1927  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1928  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1929 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1930 				  u8 *r_err)
1931 {
1932 	struct ata_port *ap = dev->link->ap;
1933 	struct ata_taskfile tf;
1934 	unsigned int class;
1935 	u8 err;
1936 
1937 	ap->ops->sff_dev_select(ap, dev->devno);
1938 
1939 	memset(&tf, 0, sizeof(tf));
1940 
1941 	ap->ops->sff_tf_read(ap, &tf);
1942 	err = tf.feature;
1943 	if (r_err)
1944 		*r_err = err;
1945 
1946 	/* see if device passed diags: continue and warn later */
1947 	if (err == 0)
1948 		/* diagnostic fail : do nothing _YET_ */
1949 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1950 	else if (err == 1)
1951 		/* do nothing */ ;
1952 	else if ((dev->devno == 0) && (err == 0x81))
1953 		/* do nothing */ ;
1954 	else
1955 		return ATA_DEV_NONE;
1956 
1957 	/* determine if device is ATA or ATAPI */
1958 	class = ata_dev_classify(&tf);
1959 
1960 	if (class == ATA_DEV_UNKNOWN) {
1961 		/* If the device failed diagnostic, it's likely to
1962 		 * have reported incorrect device signature too.
1963 		 * Assume ATA device if the device seems present but
1964 		 * device signature is invalid with diagnostic
1965 		 * failure.
1966 		 */
1967 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1968 			class = ATA_DEV_ATA;
1969 		else
1970 			class = ATA_DEV_NONE;
1971 	} else if ((class == ATA_DEV_ATA) &&
1972 		   (ap->ops->sff_check_status(ap) == 0))
1973 		class = ATA_DEV_NONE;
1974 
1975 	return class;
1976 }
1977 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1978 
1979 /**
1980  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1981  *	@link: SFF link which is just reset
1982  *	@devmask: mask of present devices
1983  *	@deadline: deadline jiffies for the operation
1984  *
1985  *	Wait devices attached to SFF @link to become ready after
1986  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1987  *	status register too early.
1988  *
1989  *	LOCKING:
1990  *	Kernel thread context (may sleep).
1991  *
1992  *	RETURNS:
1993  *	0 on success, -ENODEV if some or all of devices in @devmask
1994  *	don't seem to exist.  -errno on other errors.
1995  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1996 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1997 			     unsigned long deadline)
1998 {
1999 	struct ata_port *ap = link->ap;
2000 	struct ata_ioports *ioaddr = &ap->ioaddr;
2001 	unsigned int dev0 = devmask & (1 << 0);
2002 	unsigned int dev1 = devmask & (1 << 1);
2003 	int rc, ret = 0;
2004 
2005 	msleep(ATA_WAIT_AFTER_RESET);
2006 
2007 	/* always check readiness of the master device */
2008 	rc = ata_sff_wait_ready(link, deadline);
2009 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
2010 	 * and TF status is 0xff, bail out on it too.
2011 	 */
2012 	if (rc)
2013 		return rc;
2014 
2015 	/* if device 1 was found in ata_devchk, wait for register
2016 	 * access briefly, then wait for BSY to clear.
2017 	 */
2018 	if (dev1) {
2019 		int i;
2020 
2021 		ap->ops->sff_dev_select(ap, 1);
2022 
2023 		/* Wait for register access.  Some ATAPI devices fail
2024 		 * to set nsect/lbal after reset, so don't waste too
2025 		 * much time on it.  We're gonna wait for !BSY anyway.
2026 		 */
2027 		for (i = 0; i < 2; i++) {
2028 			u8 nsect, lbal;
2029 
2030 			nsect = ioread8(ioaddr->nsect_addr);
2031 			lbal = ioread8(ioaddr->lbal_addr);
2032 			if ((nsect == 1) && (lbal == 1))
2033 				break;
2034 			msleep(50);	/* give drive a breather */
2035 		}
2036 
2037 		rc = ata_sff_wait_ready(link, deadline);
2038 		if (rc) {
2039 			if (rc != -ENODEV)
2040 				return rc;
2041 			ret = rc;
2042 		}
2043 	}
2044 
2045 	/* is all this really necessary? */
2046 	ap->ops->sff_dev_select(ap, 0);
2047 	if (dev1)
2048 		ap->ops->sff_dev_select(ap, 1);
2049 	if (dev0)
2050 		ap->ops->sff_dev_select(ap, 0);
2051 
2052 	return ret;
2053 }
2054 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2055 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2056 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2057 			     unsigned long deadline)
2058 {
2059 	struct ata_ioports *ioaddr = &ap->ioaddr;
2060 
2061 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2062 
2063 	/* software reset.  causes dev0 to be selected */
2064 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2065 	udelay(20);	/* FIXME: flush */
2066 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2067 	udelay(20);	/* FIXME: flush */
2068 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2069 	ap->last_ctl = ap->ctl;
2070 
2071 	/* wait the port to become ready */
2072 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2073 }
2074 
2075 /**
2076  *	ata_sff_softreset - reset host port via ATA SRST
2077  *	@link: ATA link to reset
2078  *	@classes: resulting classes of attached devices
2079  *	@deadline: deadline jiffies for the operation
2080  *
2081  *	Reset host port using ATA SRST.
2082  *
2083  *	LOCKING:
2084  *	Kernel thread context (may sleep)
2085  *
2086  *	RETURNS:
2087  *	0 on success, -errno otherwise.
2088  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2089 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2090 		      unsigned long deadline)
2091 {
2092 	struct ata_port *ap = link->ap;
2093 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2094 	unsigned int devmask = 0;
2095 	int rc;
2096 	u8 err;
2097 
2098 	DPRINTK("ENTER\n");
2099 
2100 	/* determine if device 0/1 are present */
2101 	if (ata_devchk(ap, 0))
2102 		devmask |= (1 << 0);
2103 	if (slave_possible && ata_devchk(ap, 1))
2104 		devmask |= (1 << 1);
2105 
2106 	/* select device 0 again */
2107 	ap->ops->sff_dev_select(ap, 0);
2108 
2109 	/* issue bus reset */
2110 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2111 	rc = ata_bus_softreset(ap, devmask, deadline);
2112 	/* if link is occupied, -ENODEV too is an error */
2113 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2114 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2115 		return rc;
2116 	}
2117 
2118 	/* determine by signature whether we have ATA or ATAPI devices */
2119 	classes[0] = ata_sff_dev_classify(&link->device[0],
2120 					  devmask & (1 << 0), &err);
2121 	if (slave_possible && err != 0x81)
2122 		classes[1] = ata_sff_dev_classify(&link->device[1],
2123 						  devmask & (1 << 1), &err);
2124 
2125 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2129 
2130 /**
2131  *	sata_sff_hardreset - reset host port via SATA phy reset
2132  *	@link: link to reset
2133  *	@class: resulting class of attached device
2134  *	@deadline: deadline jiffies for the operation
2135  *
2136  *	SATA phy-reset host port using DET bits of SControl register,
2137  *	wait for !BSY and classify the attached device.
2138  *
2139  *	LOCKING:
2140  *	Kernel thread context (may sleep)
2141  *
2142  *	RETURNS:
2143  *	0 on success, -errno otherwise.
2144  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2145 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2146 		       unsigned long deadline)
2147 {
2148 	struct ata_eh_context *ehc = &link->eh_context;
2149 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2150 	bool online;
2151 	int rc;
2152 
2153 	rc = sata_link_hardreset(link, timing, deadline, &online,
2154 				 ata_sff_check_ready);
2155 	if (online)
2156 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2157 
2158 	DPRINTK("EXIT, class=%u\n", *class);
2159 	return rc;
2160 }
2161 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2162 
2163 /**
2164  *	ata_sff_postreset - SFF postreset callback
2165  *	@link: the target SFF ata_link
2166  *	@classes: classes of attached devices
2167  *
2168  *	This function is invoked after a successful reset.  It first
2169  *	calls ata_std_postreset() and performs SFF specific postreset
2170  *	processing.
2171  *
2172  *	LOCKING:
2173  *	Kernel thread context (may sleep)
2174  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2175 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2176 {
2177 	struct ata_port *ap = link->ap;
2178 
2179 	ata_std_postreset(link, classes);
2180 
2181 	/* is double-select really necessary? */
2182 	if (classes[0] != ATA_DEV_NONE)
2183 		ap->ops->sff_dev_select(ap, 1);
2184 	if (classes[1] != ATA_DEV_NONE)
2185 		ap->ops->sff_dev_select(ap, 0);
2186 
2187 	/* bail out if no device is present */
2188 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2189 		DPRINTK("EXIT, no device\n");
2190 		return;
2191 	}
2192 
2193 	/* set up device control */
2194 	if (ap->ioaddr.ctl_addr) {
2195 		iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2196 		ap->last_ctl = ap->ctl;
2197 	}
2198 }
2199 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2200 
2201 /**
2202  *	ata_sff_error_handler - Stock error handler for BMDMA controller
2203  *	@ap: port to handle error for
2204  *
2205  *	Stock error handler for SFF controller.  It can handle both
2206  *	PATA and SATA controllers.  Many controllers should be able to
2207  *	use this EH as-is or with some added handling before and
2208  *	after.
2209  *
2210  *	LOCKING:
2211  *	Kernel thread context (may sleep)
2212  */
ata_sff_error_handler(struct ata_port * ap)2213 void ata_sff_error_handler(struct ata_port *ap)
2214 {
2215 	ata_reset_fn_t softreset = ap->ops->softreset;
2216 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2217 	struct ata_queued_cmd *qc;
2218 	unsigned long flags;
2219 	int thaw = 0;
2220 
2221 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2222 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2223 		qc = NULL;
2224 
2225 	/* reset PIO HSM and stop DMA engine */
2226 	spin_lock_irqsave(ap->lock, flags);
2227 
2228 	ap->hsm_task_state = HSM_ST_IDLE;
2229 
2230 	if (ap->ioaddr.bmdma_addr &&
2231 	    qc && (qc->tf.protocol == ATA_PROT_DMA ||
2232 		   qc->tf.protocol == ATAPI_PROT_DMA)) {
2233 		u8 host_stat;
2234 
2235 		host_stat = ap->ops->bmdma_status(ap);
2236 
2237 		/* BMDMA controllers indicate host bus error by
2238 		 * setting DMA_ERR bit and timing out.  As it wasn't
2239 		 * really a timeout event, adjust error mask and
2240 		 * cancel frozen state.
2241 		 */
2242 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2243 			qc->err_mask = AC_ERR_HOST_BUS;
2244 			thaw = 1;
2245 		}
2246 
2247 		ap->ops->bmdma_stop(qc);
2248 	}
2249 
2250 	ata_sff_sync(ap);		/* FIXME: We don't need this */
2251 	ap->ops->sff_check_status(ap);
2252 	ap->ops->sff_irq_clear(ap);
2253 
2254 	spin_unlock_irqrestore(ap->lock, flags);
2255 
2256 	if (thaw)
2257 		ata_eh_thaw_port(ap);
2258 
2259 	/* PIO and DMA engines have been stopped, perform recovery */
2260 
2261 	/* Ignore ata_sff_softreset if ctl isn't accessible and
2262 	 * built-in hardresets if SCR access isn't available.
2263 	 */
2264 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2265 		softreset = NULL;
2266 	if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2267 		hardreset = NULL;
2268 
2269 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2270 		  ap->ops->postreset);
2271 }
2272 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2273 
2274 /**
2275  *	ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2276  *	@qc: internal command to clean up
2277  *
2278  *	LOCKING:
2279  *	Kernel thread context (may sleep)
2280  */
ata_sff_post_internal_cmd(struct ata_queued_cmd * qc)2281 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2282 {
2283 	struct ata_port *ap = qc->ap;
2284 	unsigned long flags;
2285 
2286 	spin_lock_irqsave(ap->lock, flags);
2287 
2288 	ap->hsm_task_state = HSM_ST_IDLE;
2289 
2290 	if (ap->ioaddr.bmdma_addr)
2291 		ata_bmdma_stop(qc);
2292 
2293 	spin_unlock_irqrestore(ap->lock, flags);
2294 }
2295 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2296 
2297 /**
2298  *	ata_sff_port_start - Set port up for dma.
2299  *	@ap: Port to initialize
2300  *
2301  *	Called just after data structures for each port are
2302  *	initialized.  Allocates space for PRD table if the device
2303  *	is DMA capable SFF.
2304  *
2305  *	May be used as the port_start() entry in ata_port_operations.
2306  *
2307  *	LOCKING:
2308  *	Inherited from caller.
2309  */
ata_sff_port_start(struct ata_port * ap)2310 int ata_sff_port_start(struct ata_port *ap)
2311 {
2312 	if (ap->ioaddr.bmdma_addr)
2313 		return ata_port_start(ap);
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2317 
2318 /**
2319  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2320  *	@ioaddr: IO address structure to be initialized
2321  *
2322  *	Utility function which initializes data_addr, error_addr,
2323  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2324  *	device_addr, status_addr, and command_addr to standard offsets
2325  *	relative to cmd_addr.
2326  *
2327  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2328  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2329 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2330 {
2331 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2332 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2333 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2334 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2335 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2336 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2337 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2338 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2339 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2340 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2341 }
2342 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2343 
ata_bmdma_mode_filter(struct ata_device * adev,unsigned long xfer_mask)2344 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2345 				    unsigned long xfer_mask)
2346 {
2347 	/* Filter out DMA modes if the device has been configured by
2348 	   the BIOS as PIO only */
2349 
2350 	if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2351 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2352 	return xfer_mask;
2353 }
2354 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2355 
2356 /**
2357  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2358  *	@qc: Info associated with this ATA transaction.
2359  *
2360  *	LOCKING:
2361  *	spin_lock_irqsave(host lock)
2362  */
ata_bmdma_setup(struct ata_queued_cmd * qc)2363 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2364 {
2365 	struct ata_port *ap = qc->ap;
2366 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2367 	u8 dmactl;
2368 
2369 	/* load PRD table addr. */
2370 	mb();	/* make sure PRD table writes are visible to controller */
2371 	iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2372 
2373 	/* specify data direction, triple-check start bit is clear */
2374 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2375 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2376 	if (!rw)
2377 		dmactl |= ATA_DMA_WR;
2378 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2379 
2380 	/* issue r/w command */
2381 	ap->ops->sff_exec_command(ap, &qc->tf);
2382 }
2383 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2384 
2385 /**
2386  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2387  *	@qc: Info associated with this ATA transaction.
2388  *
2389  *	LOCKING:
2390  *	spin_lock_irqsave(host lock)
2391  */
ata_bmdma_start(struct ata_queued_cmd * qc)2392 void ata_bmdma_start(struct ata_queued_cmd *qc)
2393 {
2394 	struct ata_port *ap = qc->ap;
2395 	u8 dmactl;
2396 
2397 	/* start host DMA transaction */
2398 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2399 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2400 
2401 	/* Strictly, one may wish to issue an ioread8() here, to
2402 	 * flush the mmio write.  However, control also passes
2403 	 * to the hardware at this point, and it will interrupt
2404 	 * us when we are to resume control.  So, in effect,
2405 	 * we don't care when the mmio write flushes.
2406 	 * Further, a read of the DMA status register _immediately_
2407 	 * following the write may not be what certain flaky hardware
2408 	 * is expected, so I think it is best to not add a readb()
2409 	 * without first all the MMIO ATA cards/mobos.
2410 	 * Or maybe I'm just being paranoid.
2411 	 *
2412 	 * FIXME: The posting of this write means I/O starts are
2413 	 * unneccessarily delayed for MMIO
2414 	 */
2415 }
2416 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2417 
2418 /**
2419  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2420  *	@qc: Command we are ending DMA for
2421  *
2422  *	Clears the ATA_DMA_START flag in the dma control register
2423  *
2424  *	May be used as the bmdma_stop() entry in ata_port_operations.
2425  *
2426  *	LOCKING:
2427  *	spin_lock_irqsave(host lock)
2428  */
ata_bmdma_stop(struct ata_queued_cmd * qc)2429 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2430 {
2431 	struct ata_port *ap = qc->ap;
2432 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2433 
2434 	/* clear start/stop bit */
2435 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2436 		 mmio + ATA_DMA_CMD);
2437 
2438 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2439 	ata_sff_dma_pause(ap);
2440 }
2441 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2442 
2443 /**
2444  *	ata_bmdma_status - Read PCI IDE BMDMA status
2445  *	@ap: Port associated with this ATA transaction.
2446  *
2447  *	Read and return BMDMA status register.
2448  *
2449  *	May be used as the bmdma_status() entry in ata_port_operations.
2450  *
2451  *	LOCKING:
2452  *	spin_lock_irqsave(host lock)
2453  */
ata_bmdma_status(struct ata_port * ap)2454 u8 ata_bmdma_status(struct ata_port *ap)
2455 {
2456 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2457 }
2458 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2459 
2460 /**
2461  *	ata_bus_reset - reset host port and associated ATA channel
2462  *	@ap: port to reset
2463  *
2464  *	This is typically the first time we actually start issuing
2465  *	commands to the ATA channel.  We wait for BSY to clear, then
2466  *	issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2467  *	result.  Determine what devices, if any, are on the channel
2468  *	by looking at the device 0/1 error register.  Look at the signature
2469  *	stored in each device's taskfile registers, to determine if
2470  *	the device is ATA or ATAPI.
2471  *
2472  *	LOCKING:
2473  *	PCI/etc. bus probe sem.
2474  *	Obtains host lock.
2475  *
2476  *	SIDE EFFECTS:
2477  *	Sets ATA_FLAG_DISABLED if bus reset fails.
2478  *
2479  *	DEPRECATED:
2480  *	This function is only for drivers which still use old EH and
2481  *	will be removed soon.
2482  */
ata_bus_reset(struct ata_port * ap)2483 void ata_bus_reset(struct ata_port *ap)
2484 {
2485 	struct ata_device *device = ap->link.device;
2486 	struct ata_ioports *ioaddr = &ap->ioaddr;
2487 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2488 	u8 err;
2489 	unsigned int dev0, dev1 = 0, devmask = 0;
2490 	int rc;
2491 
2492 	DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2493 
2494 	/* determine if device 0/1 are present */
2495 	if (ap->flags & ATA_FLAG_SATA_RESET)
2496 		dev0 = 1;
2497 	else {
2498 		dev0 = ata_devchk(ap, 0);
2499 		if (slave_possible)
2500 			dev1 = ata_devchk(ap, 1);
2501 	}
2502 
2503 	if (dev0)
2504 		devmask |= (1 << 0);
2505 	if (dev1)
2506 		devmask |= (1 << 1);
2507 
2508 	/* select device 0 again */
2509 	ap->ops->sff_dev_select(ap, 0);
2510 
2511 	/* issue bus reset */
2512 	if (ap->flags & ATA_FLAG_SRST) {
2513 		rc = ata_bus_softreset(ap, devmask,
2514 				       ata_deadline(jiffies, 40000));
2515 		if (rc && rc != -ENODEV)
2516 			goto err_out;
2517 	}
2518 
2519 	/*
2520 	 * determine by signature whether we have ATA or ATAPI devices
2521 	 */
2522 	device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2523 	if ((slave_possible) && (err != 0x81))
2524 		device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2525 
2526 	/* is double-select really necessary? */
2527 	if (device[1].class != ATA_DEV_NONE)
2528 		ap->ops->sff_dev_select(ap, 1);
2529 	if (device[0].class != ATA_DEV_NONE)
2530 		ap->ops->sff_dev_select(ap, 0);
2531 
2532 	/* if no devices were detected, disable this port */
2533 	if ((device[0].class == ATA_DEV_NONE) &&
2534 	    (device[1].class == ATA_DEV_NONE))
2535 		goto err_out;
2536 
2537 	if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2538 		/* set up device control for ATA_FLAG_SATA_RESET */
2539 		iowrite8(ap->ctl, ioaddr->ctl_addr);
2540 		ap->last_ctl = ap->ctl;
2541 	}
2542 
2543 	DPRINTK("EXIT\n");
2544 	return;
2545 
2546 err_out:
2547 	ata_port_printk(ap, KERN_ERR, "disabling port\n");
2548 	ata_port_disable(ap);
2549 
2550 	DPRINTK("EXIT\n");
2551 }
2552 EXPORT_SYMBOL_GPL(ata_bus_reset);
2553 
2554 #ifdef CONFIG_PCI
2555 
2556 /**
2557  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
2558  *	@pdev: PCI device
2559  *
2560  *	Some PCI ATA devices report simplex mode but in fact can be told to
2561  *	enter non simplex mode. This implements the necessary logic to
2562  *	perform the task on such devices. Calling it on other devices will
2563  *	have -undefined- behaviour.
2564  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)2565 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2566 {
2567 	unsigned long bmdma = pci_resource_start(pdev, 4);
2568 	u8 simplex;
2569 
2570 	if (bmdma == 0)
2571 		return -ENOENT;
2572 
2573 	simplex = inb(bmdma + 0x02);
2574 	outb(simplex & 0x60, bmdma + 0x02);
2575 	simplex = inb(bmdma + 0x02);
2576 	if (simplex & 0x80)
2577 		return -EOPNOTSUPP;
2578 	return 0;
2579 }
2580 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2581 
2582 /**
2583  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2584  *	@host: target ATA host
2585  *
2586  *	Acquire PCI BMDMA resources and initialize @host accordingly.
2587  *
2588  *	LOCKING:
2589  *	Inherited from calling layer (may sleep).
2590  *
2591  *	RETURNS:
2592  *	0 on success, -errno otherwise.
2593  */
ata_pci_bmdma_init(struct ata_host * host)2594 int ata_pci_bmdma_init(struct ata_host *host)
2595 {
2596 	struct device *gdev = host->dev;
2597 	struct pci_dev *pdev = to_pci_dev(gdev);
2598 	int i, rc;
2599 
2600 	/* No BAR4 allocation: No DMA */
2601 	if (pci_resource_start(pdev, 4) == 0)
2602 		return 0;
2603 
2604 	/* TODO: If we get no DMA mask we should fall back to PIO */
2605 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2606 	if (rc)
2607 		return rc;
2608 	rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2609 	if (rc)
2610 		return rc;
2611 
2612 	/* request and iomap DMA region */
2613 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2614 	if (rc) {
2615 		dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2616 		return -ENOMEM;
2617 	}
2618 	host->iomap = pcim_iomap_table(pdev);
2619 
2620 	for (i = 0; i < 2; i++) {
2621 		struct ata_port *ap = host->ports[i];
2622 		void __iomem *bmdma = host->iomap[4] + 8 * i;
2623 
2624 		if (ata_port_is_dummy(ap))
2625 			continue;
2626 
2627 		ap->ioaddr.bmdma_addr = bmdma;
2628 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2629 		    (ioread8(bmdma + 2) & 0x80))
2630 			host->flags |= ATA_HOST_SIMPLEX;
2631 
2632 		ata_port_desc(ap, "bmdma 0x%llx",
2633 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2634 	}
2635 
2636 	return 0;
2637 }
2638 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2639 
ata_resources_present(struct pci_dev * pdev,int port)2640 static int ata_resources_present(struct pci_dev *pdev, int port)
2641 {
2642 	int i;
2643 
2644 	/* Check the PCI resources for this channel are enabled */
2645 	port = port * 2;
2646 	for (i = 0; i < 2; i++) {
2647 		if (pci_resource_start(pdev, port + i) == 0 ||
2648 		    pci_resource_len(pdev, port + i) == 0)
2649 			return 0;
2650 	}
2651 	return 1;
2652 }
2653 
2654 /**
2655  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2656  *	@host: target ATA host
2657  *
2658  *	Acquire native PCI ATA resources for @host and initialize the
2659  *	first two ports of @host accordingly.  Ports marked dummy are
2660  *	skipped and allocation failure makes the port dummy.
2661  *
2662  *	Note that native PCI resources are valid even for legacy hosts
2663  *	as we fix up pdev resources array early in boot, so this
2664  *	function can be used for both native and legacy SFF hosts.
2665  *
2666  *	LOCKING:
2667  *	Inherited from calling layer (may sleep).
2668  *
2669  *	RETURNS:
2670  *	0 if at least one port is initialized, -ENODEV if no port is
2671  *	available.
2672  */
ata_pci_sff_init_host(struct ata_host * host)2673 int ata_pci_sff_init_host(struct ata_host *host)
2674 {
2675 	struct device *gdev = host->dev;
2676 	struct pci_dev *pdev = to_pci_dev(gdev);
2677 	unsigned int mask = 0;
2678 	int i, rc;
2679 
2680 	/* request, iomap BARs and init port addresses accordingly */
2681 	for (i = 0; i < 2; i++) {
2682 		struct ata_port *ap = host->ports[i];
2683 		int base = i * 2;
2684 		void __iomem * const *iomap;
2685 
2686 		if (ata_port_is_dummy(ap))
2687 			continue;
2688 
2689 		/* Discard disabled ports.  Some controllers show
2690 		 * their unused channels this way.  Disabled ports are
2691 		 * made dummy.
2692 		 */
2693 		if (!ata_resources_present(pdev, i)) {
2694 			ap->ops = &ata_dummy_port_ops;
2695 			continue;
2696 		}
2697 
2698 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2699 					dev_driver_string(gdev));
2700 		if (rc) {
2701 			dev_printk(KERN_WARNING, gdev,
2702 				   "failed to request/iomap BARs for port %d "
2703 				   "(errno=%d)\n", i, rc);
2704 			if (rc == -EBUSY)
2705 				pcim_pin_device(pdev);
2706 			ap->ops = &ata_dummy_port_ops;
2707 			continue;
2708 		}
2709 		host->iomap = iomap = pcim_iomap_table(pdev);
2710 
2711 		ap->ioaddr.cmd_addr = iomap[base];
2712 		ap->ioaddr.altstatus_addr =
2713 		ap->ioaddr.ctl_addr = (void __iomem *)
2714 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2715 		ata_sff_std_ports(&ap->ioaddr);
2716 
2717 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2718 			(unsigned long long)pci_resource_start(pdev, base),
2719 			(unsigned long long)pci_resource_start(pdev, base + 1));
2720 
2721 		mask |= 1 << i;
2722 	}
2723 
2724 	if (!mask) {
2725 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2726 		return -ENODEV;
2727 	}
2728 
2729 	return 0;
2730 }
2731 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2732 
2733 /**
2734  *	ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2735  *	@pdev: target PCI device
2736  *	@ppi: array of port_info, must be enough for two ports
2737  *	@r_host: out argument for the initialized ATA host
2738  *
2739  *	Helper to allocate ATA host for @pdev, acquire all native PCI
2740  *	resources and initialize it accordingly in one go.
2741  *
2742  *	LOCKING:
2743  *	Inherited from calling layer (may sleep).
2744  *
2745  *	RETURNS:
2746  *	0 on success, -errno otherwise.
2747  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2748 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2749 			     const struct ata_port_info * const *ppi,
2750 			     struct ata_host **r_host)
2751 {
2752 	struct ata_host *host;
2753 	int rc;
2754 
2755 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2756 		return -ENOMEM;
2757 
2758 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2759 	if (!host) {
2760 		dev_printk(KERN_ERR, &pdev->dev,
2761 			   "failed to allocate ATA host\n");
2762 		rc = -ENOMEM;
2763 		goto err_out;
2764 	}
2765 
2766 	rc = ata_pci_sff_init_host(host);
2767 	if (rc)
2768 		goto err_out;
2769 
2770 	/* init DMA related stuff */
2771 	rc = ata_pci_bmdma_init(host);
2772 	if (rc)
2773 		goto err_bmdma;
2774 
2775 	devres_remove_group(&pdev->dev, NULL);
2776 	*r_host = host;
2777 	return 0;
2778 
2779 err_bmdma:
2780 	/* This is necessary because PCI and iomap resources are
2781 	 * merged and releasing the top group won't release the
2782 	 * acquired resources if some of those have been acquired
2783 	 * before entering this function.
2784 	 */
2785 	pcim_iounmap_regions(pdev, 0xf);
2786 err_out:
2787 	devres_release_group(&pdev->dev, NULL);
2788 	return rc;
2789 }
2790 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2791 
2792 /**
2793  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2794  *	@host: target SFF ATA host
2795  *	@irq_handler: irq_handler used when requesting IRQ(s)
2796  *	@sht: scsi_host_template to use when registering the host
2797  *
2798  *	This is the counterpart of ata_host_activate() for SFF ATA
2799  *	hosts.  This separate helper is necessary because SFF hosts
2800  *	use two separate interrupts in legacy mode.
2801  *
2802  *	LOCKING:
2803  *	Inherited from calling layer (may sleep).
2804  *
2805  *	RETURNS:
2806  *	0 on success, -errno otherwise.
2807  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2808 int ata_pci_sff_activate_host(struct ata_host *host,
2809 			      irq_handler_t irq_handler,
2810 			      struct scsi_host_template *sht)
2811 {
2812 	struct device *dev = host->dev;
2813 	struct pci_dev *pdev = to_pci_dev(dev);
2814 	const char *drv_name = dev_driver_string(host->dev);
2815 	int legacy_mode = 0, rc;
2816 
2817 	rc = ata_host_start(host);
2818 	if (rc)
2819 		return rc;
2820 
2821 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2822 		u8 tmp8, mask;
2823 
2824 		/* TODO: What if one channel is in native mode ... */
2825 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2826 		mask = (1 << 2) | (1 << 0);
2827 		if ((tmp8 & mask) != mask)
2828 			legacy_mode = 1;
2829 #if defined(CONFIG_NO_ATA_LEGACY)
2830 		/* Some platforms with PCI limits cannot address compat
2831 		   port space. In that case we punt if their firmware has
2832 		   left a device in compatibility mode */
2833 		if (legacy_mode) {
2834 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2835 			return -EOPNOTSUPP;
2836 		}
2837 #endif
2838 	}
2839 
2840 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2841 		return -ENOMEM;
2842 
2843 	if (!legacy_mode && pdev->irq) {
2844 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2845 				      IRQF_SHARED, drv_name, host);
2846 		if (rc)
2847 			goto out;
2848 
2849 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2850 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2851 	} else if (legacy_mode) {
2852 		if (!ata_port_is_dummy(host->ports[0])) {
2853 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2854 					      irq_handler, IRQF_SHARED,
2855 					      drv_name, host);
2856 			if (rc)
2857 				goto out;
2858 
2859 			ata_port_desc(host->ports[0], "irq %d",
2860 				      ATA_PRIMARY_IRQ(pdev));
2861 		}
2862 
2863 		if (!ata_port_is_dummy(host->ports[1])) {
2864 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2865 					      irq_handler, IRQF_SHARED,
2866 					      drv_name, host);
2867 			if (rc)
2868 				goto out;
2869 
2870 			ata_port_desc(host->ports[1], "irq %d",
2871 				      ATA_SECONDARY_IRQ(pdev));
2872 		}
2873 	}
2874 
2875 	rc = ata_host_register(host, sht);
2876 out:
2877 	if (rc == 0)
2878 		devres_remove_group(dev, NULL);
2879 	else
2880 		devres_release_group(dev, NULL);
2881 
2882 	return rc;
2883 }
2884 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2885 
2886 /**
2887  *	ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2888  *	@pdev: Controller to be initialized
2889  *	@ppi: array of port_info, must be enough for two ports
2890  *	@sht: scsi_host_template to use when registering the host
2891  *	@host_priv: host private_data
2892  *
2893  *	This is a helper function which can be called from a driver's
2894  *	xxx_init_one() probe function if the hardware uses traditional
2895  *	IDE taskfile registers.
2896  *
2897  *	This function calls pci_enable_device(), reserves its register
2898  *	regions, sets the dma mask, enables bus master mode, and calls
2899  *	ata_device_add()
2900  *
2901  *	ASSUMPTION:
2902  *	Nobody makes a single channel controller that appears solely as
2903  *	the secondary legacy port on PCI.
2904  *
2905  *	LOCKING:
2906  *	Inherited from PCI layer (may sleep).
2907  *
2908  *	RETURNS:
2909  *	Zero on success, negative on errno-based value on error.
2910  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv)2911 int ata_pci_sff_init_one(struct pci_dev *pdev,
2912 			 const struct ata_port_info * const *ppi,
2913 			 struct scsi_host_template *sht, void *host_priv)
2914 {
2915 	struct device *dev = &pdev->dev;
2916 	const struct ata_port_info *pi = NULL;
2917 	struct ata_host *host = NULL;
2918 	int i, rc;
2919 
2920 	DPRINTK("ENTER\n");
2921 
2922 	/* look up the first valid port_info */
2923 	for (i = 0; i < 2 && ppi[i]; i++) {
2924 		if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2925 			pi = ppi[i];
2926 			break;
2927 		}
2928 	}
2929 
2930 	if (!pi) {
2931 		dev_printk(KERN_ERR, &pdev->dev,
2932 			   "no valid port_info specified\n");
2933 		return -EINVAL;
2934 	}
2935 
2936 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2937 		return -ENOMEM;
2938 
2939 	rc = pcim_enable_device(pdev);
2940 	if (rc)
2941 		goto out;
2942 
2943 	/* prepare and activate SFF host */
2944 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2945 	if (rc)
2946 		goto out;
2947 	host->private_data = host_priv;
2948 
2949 	pci_set_master(pdev);
2950 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2951 out:
2952 	if (rc == 0)
2953 		devres_remove_group(&pdev->dev, NULL);
2954 	else
2955 		devres_release_group(&pdev->dev, NULL);
2956 
2957 	return rc;
2958 }
2959 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2960 
2961 #endif /* CONFIG_PCI */
2962 
2963