• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
22  *			 - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *			 - use spin_lock_bh instead of _irq
25  *			 - Never block on make_request.  queue
26  *			   bh's instead.
27  *			 - unregister umem from devfs at mod unload
28  *			 - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *			 - a sequence of writes that cover the card, and
34  *			 - set initialised bit then.
35  */
36 
37 #undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
51 
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54 
55 #include "umem.h"
56 
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59 
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65 
66 /*
67  * Version Information
68  */
69 
70 #define DRIVER_NAME	"umem"
71 #define DRIVER_VERSION	"v2.3"
72 #define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
74 
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78 
79 #define DEBUG_LED_ON_TRANSFER	0x01
80 #define DEBUG_BATTERY_POLLING	0x02
81 
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84 
85 static int pci_read_cmd = 0x0C;		/* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88 
89 static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92 
93 static int pci_cmds;
94 
95 static int major_nr;
96 
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99 
100 struct cardinfo {
101 	struct pci_dev	*dev;
102 
103 	unsigned char	__iomem *csr_remap;
104 	unsigned int	mm_size;  /* size in kbytes */
105 
106 	unsigned int	init_size; /* initial segment, in sectors,
107 				    * that we know to
108 				    * have been written
109 				    */
110 	struct bio	*bio, *currentbio, **biotail;
111 	int		current_idx;
112 	sector_t	current_sector;
113 
114 	struct request_queue *queue;
115 
116 	struct mm_page {
117 		dma_addr_t		page_dma;
118 		struct mm_dma_desc	*desc;
119 		int	 		cnt, headcnt;
120 		struct bio		*bio, **biotail;
121 		int			idx;
122 	} mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124 
125 	int  Active, Ready;
126 
127 	struct tasklet_struct	tasklet;
128 	unsigned int dma_status;
129 
130 	struct {
131 		int		good;
132 		int		warned;
133 		unsigned long	last_change;
134 	} battery[2];
135 
136 	spinlock_t 	lock;
137 	int		check_batteries;
138 
139 	int		flags;
140 };
141 
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct block_device_operations mm_fops;
144 static struct timer_list battery_timer;
145 
146 static int num_cards;
147 
148 static struct gendisk *mm_gendisk[MM_MAXCARDS];
149 
150 static void check_batteries(struct cardinfo *card);
151 
get_userbit(struct cardinfo * card,int bit)152 static int get_userbit(struct cardinfo *card, int bit)
153 {
154 	unsigned char led;
155 
156 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
157 	return led & bit;
158 }
159 
set_userbit(struct cardinfo * card,int bit,unsigned char state)160 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
161 {
162 	unsigned char led;
163 
164 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
165 	if (state)
166 		led |= bit;
167 	else
168 		led &= ~bit;
169 	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
170 
171 	return 0;
172 }
173 
174 /*
175  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
176  */
set_led(struct cardinfo * card,int shift,unsigned char state)177 static void set_led(struct cardinfo *card, int shift, unsigned char state)
178 {
179 	unsigned char led;
180 
181 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
182 	if (state == LED_FLIP)
183 		led ^= (1<<shift);
184 	else {
185 		led &= ~(0x03 << shift);
186 		led |= (state << shift);
187 	}
188 	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
189 
190 }
191 
192 #ifdef MM_DIAG
dump_regs(struct cardinfo * card)193 static void dump_regs(struct cardinfo *card)
194 {
195 	unsigned char *p;
196 	int i, i1;
197 
198 	p = card->csr_remap;
199 	for (i = 0; i < 8; i++) {
200 		printk(KERN_DEBUG "%p   ", p);
201 
202 		for (i1 = 0; i1 < 16; i1++)
203 			printk("%02x ", *p++);
204 
205 		printk("\n");
206 	}
207 }
208 #endif
209 
dump_dmastat(struct cardinfo * card,unsigned int dmastat)210 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
211 {
212 	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
213 	if (dmastat & DMASCR_ANY_ERR)
214 		printk(KERN_CONT "ANY_ERR ");
215 	if (dmastat & DMASCR_MBE_ERR)
216 		printk(KERN_CONT "MBE_ERR ");
217 	if (dmastat & DMASCR_PARITY_ERR_REP)
218 		printk(KERN_CONT "PARITY_ERR_REP ");
219 	if (dmastat & DMASCR_PARITY_ERR_DET)
220 		printk(KERN_CONT "PARITY_ERR_DET ");
221 	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
222 		printk(KERN_CONT "SYSTEM_ERR_SIG ");
223 	if (dmastat & DMASCR_TARGET_ABT)
224 		printk(KERN_CONT "TARGET_ABT ");
225 	if (dmastat & DMASCR_MASTER_ABT)
226 		printk(KERN_CONT "MASTER_ABT ");
227 	if (dmastat & DMASCR_CHAIN_COMPLETE)
228 		printk(KERN_CONT "CHAIN_COMPLETE ");
229 	if (dmastat & DMASCR_DMA_COMPLETE)
230 		printk(KERN_CONT "DMA_COMPLETE ");
231 	printk("\n");
232 }
233 
234 /*
235  * Theory of request handling
236  *
237  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
238  * We have two pages of mm_dma_desc, holding about 64 descriptors
239  * each.  These are allocated at init time.
240  * One page is "Ready" and is either full, or can have request added.
241  * The other page might be "Active", which DMA is happening on it.
242  *
243  * Whenever IO on the active page completes, the Ready page is activated
244  * and the ex-Active page is clean out and made Ready.
245  * Otherwise the Ready page is only activated when it becomes full, or
246  * when mm_unplug_device is called via the unplug_io_fn.
247  *
248  * If a request arrives while both pages a full, it is queued, and b_rdev is
249  * overloaded to record whether it was a read or a write.
250  *
251  * The interrupt handler only polls the device to clear the interrupt.
252  * The processing of the result is done in a tasklet.
253  */
254 
mm_start_io(struct cardinfo * card)255 static void mm_start_io(struct cardinfo *card)
256 {
257 	/* we have the lock, we know there is
258 	 * no IO active, and we know that card->Active
259 	 * is set
260 	 */
261 	struct mm_dma_desc *desc;
262 	struct mm_page *page;
263 	int offset;
264 
265 	/* make the last descriptor end the chain */
266 	page = &card->mm_pages[card->Active];
267 	pr_debug("start_io: %d %d->%d\n",
268 		card->Active, page->headcnt, page->cnt - 1);
269 	desc = &page->desc[page->cnt-1];
270 
271 	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
272 	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
273 	desc->sem_control_bits = desc->control_bits;
274 
275 
276 	if (debug & DEBUG_LED_ON_TRANSFER)
277 		set_led(card, LED_REMOVE, LED_ON);
278 
279 	desc = &page->desc[page->headcnt];
280 	writel(0, card->csr_remap + DMA_PCI_ADDR);
281 	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
282 
283 	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
284 	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
285 
286 	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
287 	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
288 
289 	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
290 	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
291 
292 	offset = ((char *)desc) - ((char *)page->desc);
293 	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
294 	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
295 	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
296 	 * and on some ports will do nothing ! */
297 	writel(cpu_to_le32(((u64)page->page_dma)>>32),
298 	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
299 
300 	/* Go, go, go */
301 	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
302 	       card->csr_remap + DMA_STATUS_CTRL);
303 }
304 
305 static int add_bio(struct cardinfo *card);
306 
activate(struct cardinfo * card)307 static void activate(struct cardinfo *card)
308 {
309 	/* if No page is Active, and Ready is
310 	 * not empty, then switch Ready page
311 	 * to active and start IO.
312 	 * Then add any bh's that are available to Ready
313 	 */
314 
315 	do {
316 		while (add_bio(card))
317 			;
318 
319 		if (card->Active == -1 &&
320 		    card->mm_pages[card->Ready].cnt > 0) {
321 			card->Active = card->Ready;
322 			card->Ready = 1-card->Ready;
323 			mm_start_io(card);
324 		}
325 
326 	} while (card->Active == -1 && add_bio(card));
327 }
328 
reset_page(struct mm_page * page)329 static inline void reset_page(struct mm_page *page)
330 {
331 	page->cnt = 0;
332 	page->headcnt = 0;
333 	page->bio = NULL;
334 	page->biotail = &page->bio;
335 }
336 
mm_unplug_device(struct request_queue * q)337 static void mm_unplug_device(struct request_queue *q)
338 {
339 	struct cardinfo *card = q->queuedata;
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&card->lock, flags);
343 	if (blk_remove_plug(q))
344 		activate(card);
345 	spin_unlock_irqrestore(&card->lock, flags);
346 }
347 
348 /*
349  * If there is room on Ready page, take
350  * one bh off list and add it.
351  * return 1 if there was room, else 0.
352  */
add_bio(struct cardinfo * card)353 static int add_bio(struct cardinfo *card)
354 {
355 	struct mm_page *p;
356 	struct mm_dma_desc *desc;
357 	dma_addr_t dma_handle;
358 	int offset;
359 	struct bio *bio;
360 	struct bio_vec *vec;
361 	int idx;
362 	int rw;
363 	int len;
364 
365 	bio = card->currentbio;
366 	if (!bio && card->bio) {
367 		card->currentbio = card->bio;
368 		card->current_idx = card->bio->bi_idx;
369 		card->current_sector = card->bio->bi_sector;
370 		card->bio = card->bio->bi_next;
371 		if (card->bio == NULL)
372 			card->biotail = &card->bio;
373 		card->currentbio->bi_next = NULL;
374 		return 1;
375 	}
376 	if (!bio)
377 		return 0;
378 	idx = card->current_idx;
379 
380 	rw = bio_rw(bio);
381 	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
382 		return 0;
383 
384 	vec = bio_iovec_idx(bio, idx);
385 	len = vec->bv_len;
386 	dma_handle = pci_map_page(card->dev,
387 				  vec->bv_page,
388 				  vec->bv_offset,
389 				  len,
390 				  (rw == READ) ?
391 				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
392 
393 	p = &card->mm_pages[card->Ready];
394 	desc = &p->desc[p->cnt];
395 	p->cnt++;
396 	if (p->bio == NULL)
397 		p->idx = idx;
398 	if ((p->biotail) != &bio->bi_next) {
399 		*(p->biotail) = bio;
400 		p->biotail = &(bio->bi_next);
401 		bio->bi_next = NULL;
402 	}
403 
404 	desc->data_dma_handle = dma_handle;
405 
406 	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
407 	desc->local_addr = cpu_to_le64(card->current_sector << 9);
408 	desc->transfer_size = cpu_to_le32(len);
409 	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
410 	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
411 	desc->zero1 = desc->zero2 = 0;
412 	offset = (((char *)(desc+1)) - ((char *)p->desc));
413 	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
414 	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
415 					 DMASCR_PARITY_INT_EN|
416 					 DMASCR_CHAIN_EN |
417 					 DMASCR_SEM_EN |
418 					 pci_cmds);
419 	if (rw == WRITE)
420 		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
421 	desc->sem_control_bits = desc->control_bits;
422 
423 	card->current_sector += (len >> 9);
424 	idx++;
425 	card->current_idx = idx;
426 	if (idx >= bio->bi_vcnt)
427 		card->currentbio = NULL;
428 
429 	return 1;
430 }
431 
process_page(unsigned long data)432 static void process_page(unsigned long data)
433 {
434 	/* check if any of the requests in the page are DMA_COMPLETE,
435 	 * and deal with them appropriately.
436 	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
437 	 * dma must have hit an error on that descriptor, so use dma_status
438 	 * instead and assume that all following descriptors must be re-tried.
439 	 */
440 	struct mm_page *page;
441 	struct bio *return_bio = NULL;
442 	struct cardinfo *card = (struct cardinfo *)data;
443 	unsigned int dma_status = card->dma_status;
444 
445 	spin_lock_bh(&card->lock);
446 	if (card->Active < 0)
447 		goto out_unlock;
448 	page = &card->mm_pages[card->Active];
449 
450 	while (page->headcnt < page->cnt) {
451 		struct bio *bio = page->bio;
452 		struct mm_dma_desc *desc = &page->desc[page->headcnt];
453 		int control = le32_to_cpu(desc->sem_control_bits);
454 		int last = 0;
455 		int idx;
456 
457 		if (!(control & DMASCR_DMA_COMPLETE)) {
458 			control = dma_status;
459 			last = 1;
460 		}
461 		page->headcnt++;
462 		idx = page->idx;
463 		page->idx++;
464 		if (page->idx >= bio->bi_vcnt) {
465 			page->bio = bio->bi_next;
466 			if (page->bio)
467 				page->idx = page->bio->bi_idx;
468 		}
469 
470 		pci_unmap_page(card->dev, desc->data_dma_handle,
471 			       bio_iovec_idx(bio, idx)->bv_len,
472 				 (control & DMASCR_TRANSFER_READ) ?
473 				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
474 		if (control & DMASCR_HARD_ERROR) {
475 			/* error */
476 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
477 			dev_printk(KERN_WARNING, &card->dev->dev,
478 				"I/O error on sector %d/%d\n",
479 				le32_to_cpu(desc->local_addr)>>9,
480 				le32_to_cpu(desc->transfer_size));
481 			dump_dmastat(card, control);
482 		} else if (test_bit(BIO_RW, &bio->bi_rw) &&
483 			   le32_to_cpu(desc->local_addr) >> 9 ==
484 				card->init_size) {
485 			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
486 			if (card->init_size >> 1 >= card->mm_size) {
487 				dev_printk(KERN_INFO, &card->dev->dev,
488 					"memory now initialised\n");
489 				set_userbit(card, MEMORY_INITIALIZED, 1);
490 			}
491 		}
492 		if (bio != page->bio) {
493 			bio->bi_next = return_bio;
494 			return_bio = bio;
495 		}
496 
497 		if (last)
498 			break;
499 	}
500 
501 	if (debug & DEBUG_LED_ON_TRANSFER)
502 		set_led(card, LED_REMOVE, LED_OFF);
503 
504 	if (card->check_batteries) {
505 		card->check_batteries = 0;
506 		check_batteries(card);
507 	}
508 	if (page->headcnt >= page->cnt) {
509 		reset_page(page);
510 		card->Active = -1;
511 		activate(card);
512 	} else {
513 		/* haven't finished with this one yet */
514 		pr_debug("do some more\n");
515 		mm_start_io(card);
516 	}
517  out_unlock:
518 	spin_unlock_bh(&card->lock);
519 
520 	while (return_bio) {
521 		struct bio *bio = return_bio;
522 
523 		return_bio = bio->bi_next;
524 		bio->bi_next = NULL;
525 		bio_endio(bio, 0);
526 	}
527 }
528 
mm_make_request(struct request_queue * q,struct bio * bio)529 static int mm_make_request(struct request_queue *q, struct bio *bio)
530 {
531 	struct cardinfo *card = q->queuedata;
532 	pr_debug("mm_make_request %llu %u\n",
533 		 (unsigned long long)bio->bi_sector, bio->bi_size);
534 
535 	spin_lock_irq(&card->lock);
536 	*card->biotail = bio;
537 	bio->bi_next = NULL;
538 	card->biotail = &bio->bi_next;
539 	blk_plug_device(q);
540 	spin_unlock_irq(&card->lock);
541 
542 	return 0;
543 }
544 
mm_interrupt(int irq,void * __card)545 static irqreturn_t mm_interrupt(int irq, void *__card)
546 {
547 	struct cardinfo *card = (struct cardinfo *) __card;
548 	unsigned int dma_status;
549 	unsigned short cfg_status;
550 
551 HW_TRACE(0x30);
552 
553 	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
554 
555 	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
556 		/* interrupt wasn't for me ... */
557 		return IRQ_NONE;
558 	}
559 
560 	/* clear COMPLETION interrupts */
561 	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
562 		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
563 		       card->csr_remap + DMA_STATUS_CTRL);
564 	else
565 		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
566 		       card->csr_remap + DMA_STATUS_CTRL + 2);
567 
568 	/* log errors and clear interrupt status */
569 	if (dma_status & DMASCR_ANY_ERR) {
570 		unsigned int	data_log1, data_log2;
571 		unsigned int	addr_log1, addr_log2;
572 		unsigned char	stat, count, syndrome, check;
573 
574 		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
575 
576 		data_log1 = le32_to_cpu(readl(card->csr_remap +
577 						ERROR_DATA_LOG));
578 		data_log2 = le32_to_cpu(readl(card->csr_remap +
579 						ERROR_DATA_LOG + 4));
580 		addr_log1 = le32_to_cpu(readl(card->csr_remap +
581 						ERROR_ADDR_LOG));
582 		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
583 
584 		count = readb(card->csr_remap + ERROR_COUNT);
585 		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
586 		check = readb(card->csr_remap + ERROR_CHECK);
587 
588 		dump_dmastat(card, dma_status);
589 
590 		if (stat & 0x01)
591 			dev_printk(KERN_ERR, &card->dev->dev,
592 				"Memory access error detected (err count %d)\n",
593 				count);
594 		if (stat & 0x02)
595 			dev_printk(KERN_ERR, &card->dev->dev,
596 				"Multi-bit EDC error\n");
597 
598 		dev_printk(KERN_ERR, &card->dev->dev,
599 			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
600 			addr_log2, addr_log1, data_log2, data_log1);
601 		dev_printk(KERN_ERR, &card->dev->dev,
602 			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
603 			check, syndrome);
604 
605 		writeb(0, card->csr_remap + ERROR_COUNT);
606 	}
607 
608 	if (dma_status & DMASCR_PARITY_ERR_REP) {
609 		dev_printk(KERN_ERR, &card->dev->dev,
610 			"PARITY ERROR REPORTED\n");
611 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
612 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
613 	}
614 
615 	if (dma_status & DMASCR_PARITY_ERR_DET) {
616 		dev_printk(KERN_ERR, &card->dev->dev,
617 			"PARITY ERROR DETECTED\n");
618 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
619 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
620 	}
621 
622 	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
623 		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
624 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
625 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
626 	}
627 
628 	if (dma_status & DMASCR_TARGET_ABT) {
629 		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
630 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
631 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
632 	}
633 
634 	if (dma_status & DMASCR_MASTER_ABT) {
635 		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
636 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
638 	}
639 
640 	/* and process the DMA descriptors */
641 	card->dma_status = dma_status;
642 	tasklet_schedule(&card->tasklet);
643 
644 HW_TRACE(0x36);
645 
646 	return IRQ_HANDLED;
647 }
648 
649 /*
650  * If both batteries are good, no LED
651  * If either battery has been warned, solid LED
652  * If both batteries are bad, flash the LED quickly
653  * If either battery is bad, flash the LED semi quickly
654  */
set_fault_to_battery_status(struct cardinfo * card)655 static void set_fault_to_battery_status(struct cardinfo *card)
656 {
657 	if (card->battery[0].good && card->battery[1].good)
658 		set_led(card, LED_FAULT, LED_OFF);
659 	else if (card->battery[0].warned || card->battery[1].warned)
660 		set_led(card, LED_FAULT, LED_ON);
661 	else if (!card->battery[0].good && !card->battery[1].good)
662 		set_led(card, LED_FAULT, LED_FLASH_7_0);
663 	else
664 		set_led(card, LED_FAULT, LED_FLASH_3_5);
665 }
666 
667 static void init_battery_timer(void);
668 
check_battery(struct cardinfo * card,int battery,int status)669 static int check_battery(struct cardinfo *card, int battery, int status)
670 {
671 	if (status != card->battery[battery].good) {
672 		card->battery[battery].good = !card->battery[battery].good;
673 		card->battery[battery].last_change = jiffies;
674 
675 		if (card->battery[battery].good) {
676 			dev_printk(KERN_ERR, &card->dev->dev,
677 				"Battery %d now good\n", battery + 1);
678 			card->battery[battery].warned = 0;
679 		} else
680 			dev_printk(KERN_ERR, &card->dev->dev,
681 				"Battery %d now FAILED\n", battery + 1);
682 
683 		return 1;
684 	} else if (!card->battery[battery].good &&
685 		   !card->battery[battery].warned &&
686 		   time_after_eq(jiffies, card->battery[battery].last_change +
687 				 (HZ * 60 * 60 * 5))) {
688 		dev_printk(KERN_ERR, &card->dev->dev,
689 			"Battery %d still FAILED after 5 hours\n", battery + 1);
690 		card->battery[battery].warned = 1;
691 
692 		return 1;
693 	}
694 
695 	return 0;
696 }
697 
check_batteries(struct cardinfo * card)698 static void check_batteries(struct cardinfo *card)
699 {
700 	/* NOTE: this must *never* be called while the card
701 	 * is doing (bus-to-card) DMA, or you will need the
702 	 * reset switch
703 	 */
704 	unsigned char status;
705 	int ret1, ret2;
706 
707 	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
708 	if (debug & DEBUG_BATTERY_POLLING)
709 		dev_printk(KERN_DEBUG, &card->dev->dev,
710 			"checking battery status, 1 = %s, 2 = %s\n",
711 		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
712 		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
713 
714 	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
715 	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
716 
717 	if (ret1 || ret2)
718 		set_fault_to_battery_status(card);
719 }
720 
check_all_batteries(unsigned long ptr)721 static void check_all_batteries(unsigned long ptr)
722 {
723 	int i;
724 
725 	for (i = 0; i < num_cards; i++)
726 		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
727 			struct cardinfo *card = &cards[i];
728 			spin_lock_bh(&card->lock);
729 			if (card->Active >= 0)
730 				card->check_batteries = 1;
731 			else
732 				check_batteries(card);
733 			spin_unlock_bh(&card->lock);
734 		}
735 
736 	init_battery_timer();
737 }
738 
init_battery_timer(void)739 static void init_battery_timer(void)
740 {
741 	init_timer(&battery_timer);
742 	battery_timer.function = check_all_batteries;
743 	battery_timer.expires = jiffies + (HZ * 60);
744 	add_timer(&battery_timer);
745 }
746 
del_battery_timer(void)747 static void del_battery_timer(void)
748 {
749 	del_timer(&battery_timer);
750 }
751 
752 /*
753  * Note no locks taken out here.  In a worst case scenario, we could drop
754  * a chunk of system memory.  But that should never happen, since validation
755  * happens at open or mount time, when locks are held.
756  *
757  *	That's crap, since doing that while some partitions are opened
758  * or mounted will give you really nasty results.
759  */
mm_revalidate(struct gendisk * disk)760 static int mm_revalidate(struct gendisk *disk)
761 {
762 	struct cardinfo *card = disk->private_data;
763 	set_capacity(disk, card->mm_size << 1);
764 	return 0;
765 }
766 
mm_getgeo(struct block_device * bdev,struct hd_geometry * geo)767 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
768 {
769 	struct cardinfo *card = bdev->bd_disk->private_data;
770 	int size = card->mm_size * (1024 / MM_HARDSECT);
771 
772 	/*
773 	 * get geometry: we have to fake one...  trim the size to a
774 	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
775 	 * whatever cylinders.
776 	 */
777 	geo->heads     = 64;
778 	geo->sectors   = 32;
779 	geo->cylinders = size / (geo->heads * geo->sectors);
780 	return 0;
781 }
782 
783 /*
784  * Future support for removable devices
785  */
mm_check_change(struct gendisk * disk)786 static int mm_check_change(struct gendisk *disk)
787 {
788 /*  struct cardinfo *dev = disk->private_data; */
789 	return 0;
790 }
791 
792 static struct block_device_operations mm_fops = {
793 	.owner		= THIS_MODULE,
794 	.getgeo		= mm_getgeo,
795 	.revalidate_disk = mm_revalidate,
796 	.media_changed	= mm_check_change,
797 };
798 
mm_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)799 static int __devinit mm_pci_probe(struct pci_dev *dev,
800 				const struct pci_device_id *id)
801 {
802 	int ret = -ENODEV;
803 	struct cardinfo *card = &cards[num_cards];
804 	unsigned char	mem_present;
805 	unsigned char	batt_status;
806 	unsigned int	saved_bar, data;
807 	unsigned long	csr_base;
808 	unsigned long	csr_len;
809 	int		magic_number;
810 	static int	printed_version;
811 
812 	if (!printed_version++)
813 		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
814 
815 	ret = pci_enable_device(dev);
816 	if (ret)
817 		return ret;
818 
819 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
820 	pci_set_master(dev);
821 
822 	card->dev         = dev;
823 
824 	csr_base = pci_resource_start(dev, 0);
825 	csr_len  = pci_resource_len(dev, 0);
826 	if (!csr_base || !csr_len)
827 		return -ENODEV;
828 
829 	dev_printk(KERN_INFO, &dev->dev,
830 	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
831 
832 	if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
833 	    pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
834 		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
835 		return  -ENOMEM;
836 	}
837 
838 	ret = pci_request_regions(dev, DRIVER_NAME);
839 	if (ret) {
840 		dev_printk(KERN_ERR, &card->dev->dev,
841 			"Unable to request memory region\n");
842 		goto failed_req_csr;
843 	}
844 
845 	card->csr_remap = ioremap_nocache(csr_base, csr_len);
846 	if (!card->csr_remap) {
847 		dev_printk(KERN_ERR, &card->dev->dev,
848 			"Unable to remap memory region\n");
849 		ret = -ENOMEM;
850 
851 		goto failed_remap_csr;
852 	}
853 
854 	dev_printk(KERN_INFO, &card->dev->dev,
855 		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
856 	       csr_base, card->csr_remap, csr_len);
857 
858 	switch (card->dev->device) {
859 	case 0x5415:
860 		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
861 		magic_number = 0x59;
862 		break;
863 
864 	case 0x5425:
865 		card->flags |= UM_FLAG_NO_BYTE_STATUS;
866 		magic_number = 0x5C;
867 		break;
868 
869 	case 0x6155:
870 		card->flags |= UM_FLAG_NO_BYTE_STATUS |
871 				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
872 		magic_number = 0x99;
873 		break;
874 
875 	default:
876 		magic_number = 0x100;
877 		break;
878 	}
879 
880 	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
881 		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
882 		ret = -ENOMEM;
883 		goto failed_magic;
884 	}
885 
886 	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
887 						PAGE_SIZE * 2,
888 						&card->mm_pages[0].page_dma);
889 	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
890 						PAGE_SIZE * 2,
891 						&card->mm_pages[1].page_dma);
892 	if (card->mm_pages[0].desc == NULL ||
893 	    card->mm_pages[1].desc == NULL) {
894 		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
895 		goto failed_alloc;
896 	}
897 	reset_page(&card->mm_pages[0]);
898 	reset_page(&card->mm_pages[1]);
899 	card->Ready = 0;	/* page 0 is ready */
900 	card->Active = -1;	/* no page is active */
901 	card->bio = NULL;
902 	card->biotail = &card->bio;
903 
904 	card->queue = blk_alloc_queue(GFP_KERNEL);
905 	if (!card->queue)
906 		goto failed_alloc;
907 
908 	blk_queue_make_request(card->queue, mm_make_request);
909 	card->queue->queuedata = card;
910 	card->queue->unplug_fn = mm_unplug_device;
911 
912 	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
913 
914 	card->check_batteries = 0;
915 
916 	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
917 	switch (mem_present) {
918 	case MEM_128_MB:
919 		card->mm_size = 1024 * 128;
920 		break;
921 	case MEM_256_MB:
922 		card->mm_size = 1024 * 256;
923 		break;
924 	case MEM_512_MB:
925 		card->mm_size = 1024 * 512;
926 		break;
927 	case MEM_1_GB:
928 		card->mm_size = 1024 * 1024;
929 		break;
930 	case MEM_2_GB:
931 		card->mm_size = 1024 * 2048;
932 		break;
933 	default:
934 		card->mm_size = 0;
935 		break;
936 	}
937 
938 	/* Clear the LED's we control */
939 	set_led(card, LED_REMOVE, LED_OFF);
940 	set_led(card, LED_FAULT, LED_OFF);
941 
942 	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
943 
944 	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
945 	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
946 	card->battery[0].last_change = card->battery[1].last_change = jiffies;
947 
948 	if (card->flags & UM_FLAG_NO_BATT)
949 		dev_printk(KERN_INFO, &card->dev->dev,
950 			"Size %d KB\n", card->mm_size);
951 	else {
952 		dev_printk(KERN_INFO, &card->dev->dev,
953 			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
954 		       card->mm_size,
955 		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
956 		       card->battery[0].good ? "OK" : "FAILURE",
957 		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
958 		       card->battery[1].good ? "OK" : "FAILURE");
959 
960 		set_fault_to_battery_status(card);
961 	}
962 
963 	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
964 	data = 0xffffffff;
965 	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
966 	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
967 	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
968 	data &= 0xfffffff0;
969 	data = ~data;
970 	data += 1;
971 
972 	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
973 			card)) {
974 		dev_printk(KERN_ERR, &card->dev->dev,
975 			"Unable to allocate IRQ\n");
976 		ret = -ENODEV;
977 		goto failed_req_irq;
978 	}
979 
980 	dev_printk(KERN_INFO, &card->dev->dev,
981 		"Window size %d bytes, IRQ %d\n", data, dev->irq);
982 
983 	spin_lock_init(&card->lock);
984 
985 	pci_set_drvdata(dev, card);
986 
987 	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
988 		pci_write_cmd = 0x07;	/* then Memory Write command */
989 
990 	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
991 		unsigned short cfg_command;
992 		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
993 		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
994 		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
995 	}
996 	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
997 
998 	num_cards++;
999 
1000 	if (!get_userbit(card, MEMORY_INITIALIZED)) {
1001 		dev_printk(KERN_INFO, &card->dev->dev,
1002 		  "memory NOT initialized. Consider over-writing whole device.\n");
1003 		card->init_size = 0;
1004 	} else {
1005 		dev_printk(KERN_INFO, &card->dev->dev,
1006 			"memory already initialized\n");
1007 		card->init_size = card->mm_size;
1008 	}
1009 
1010 	/* Enable ECC */
1011 	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1012 
1013 	return 0;
1014 
1015  failed_req_irq:
1016  failed_alloc:
1017 	if (card->mm_pages[0].desc)
1018 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1019 				    card->mm_pages[0].desc,
1020 				    card->mm_pages[0].page_dma);
1021 	if (card->mm_pages[1].desc)
1022 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1023 				    card->mm_pages[1].desc,
1024 				    card->mm_pages[1].page_dma);
1025  failed_magic:
1026 	iounmap(card->csr_remap);
1027  failed_remap_csr:
1028 	pci_release_regions(dev);
1029  failed_req_csr:
1030 
1031 	return ret;
1032 }
1033 
mm_pci_remove(struct pci_dev * dev)1034 static void mm_pci_remove(struct pci_dev *dev)
1035 {
1036 	struct cardinfo *card = pci_get_drvdata(dev);
1037 
1038 	tasklet_kill(&card->tasklet);
1039 	free_irq(dev->irq, card);
1040 	iounmap(card->csr_remap);
1041 
1042 	if (card->mm_pages[0].desc)
1043 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1044 				    card->mm_pages[0].desc,
1045 				    card->mm_pages[0].page_dma);
1046 	if (card->mm_pages[1].desc)
1047 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1048 				    card->mm_pages[1].desc,
1049 				    card->mm_pages[1].page_dma);
1050 	blk_cleanup_queue(card->queue);
1051 
1052 	pci_release_regions(dev);
1053 	pci_disable_device(dev);
1054 }
1055 
1056 static const struct pci_device_id mm_pci_ids[] = {
1057     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1058     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1059     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1060     {
1061 	.vendor	=	0x8086,
1062 	.device	=	0xB555,
1063 	.subvendor =	0x1332,
1064 	.subdevice =	0x5460,
1065 	.class =	0x050000,
1066 	.class_mask =	0,
1067     }, { /* end: all zeroes */ }
1068 };
1069 
1070 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1071 
1072 static struct pci_driver mm_pci_driver = {
1073 	.name		= DRIVER_NAME,
1074 	.id_table	= mm_pci_ids,
1075 	.probe		= mm_pci_probe,
1076 	.remove		= mm_pci_remove,
1077 };
1078 
mm_init(void)1079 static int __init mm_init(void)
1080 {
1081 	int retval, i;
1082 	int err;
1083 
1084 	retval = pci_register_driver(&mm_pci_driver);
1085 	if (retval)
1086 		return -ENOMEM;
1087 
1088 	err = major_nr = register_blkdev(0, DRIVER_NAME);
1089 	if (err < 0) {
1090 		pci_unregister_driver(&mm_pci_driver);
1091 		return -EIO;
1092 	}
1093 
1094 	for (i = 0; i < num_cards; i++) {
1095 		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1096 		if (!mm_gendisk[i])
1097 			goto out;
1098 	}
1099 
1100 	for (i = 0; i < num_cards; i++) {
1101 		struct gendisk *disk = mm_gendisk[i];
1102 		sprintf(disk->disk_name, "umem%c", 'a'+i);
1103 		spin_lock_init(&cards[i].lock);
1104 		disk->major = major_nr;
1105 		disk->first_minor  = i << MM_SHIFT;
1106 		disk->fops = &mm_fops;
1107 		disk->private_data = &cards[i];
1108 		disk->queue = cards[i].queue;
1109 		set_capacity(disk, cards[i].mm_size << 1);
1110 		add_disk(disk);
1111 	}
1112 
1113 	init_battery_timer();
1114 	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1115 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1116 	return 0;
1117 
1118 out:
1119 	pci_unregister_driver(&mm_pci_driver);
1120 	unregister_blkdev(major_nr, DRIVER_NAME);
1121 	while (i--)
1122 		put_disk(mm_gendisk[i]);
1123 	return -ENOMEM;
1124 }
1125 
mm_cleanup(void)1126 static void __exit mm_cleanup(void)
1127 {
1128 	int i;
1129 
1130 	del_battery_timer();
1131 
1132 	for (i = 0; i < num_cards ; i++) {
1133 		del_gendisk(mm_gendisk[i]);
1134 		put_disk(mm_gendisk[i]);
1135 	}
1136 
1137 	pci_unregister_driver(&mm_pci_driver);
1138 
1139 	unregister_blkdev(major_nr, DRIVER_NAME);
1140 }
1141 
1142 module_init(mm_init);
1143 module_exit(mm_cleanup);
1144 
1145 MODULE_AUTHOR(DRIVER_AUTHOR);
1146 MODULE_DESCRIPTION(DRIVER_DESC);
1147 MODULE_LICENSE("GPL");
1148