• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Xilinx SystemACE device driver
3  *
4  * Copyright 2007 Secret Lab Technologies Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  */
10 
11 /*
12  * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13  * bitstream from a file on a CF card and squirting it into FPGAs connected
14  * to the SystemACE JTAG chain.  It also has the advantage of providing an
15  * MPU interface which can be used to control the FPGA configuration process
16  * and to use the attached CF card for general purpose storage.
17  *
18  * This driver is a block device driver for the SystemACE.
19  *
20  * Initialization:
21  *    The driver registers itself as a platform_device driver at module
22  *    load time.  The platform bus will take care of calling the
23  *    ace_probe() method for all SystemACE instances in the system.  Any
24  *    number of SystemACE instances are supported.  ace_probe() calls
25  *    ace_setup() which initialized all data structures, reads the CF
26  *    id structure and registers the device.
27  *
28  * Processing:
29  *    Just about all of the heavy lifting in this driver is performed by
30  *    a Finite State Machine (FSM).  The driver needs to wait on a number
31  *    of events; some raised by interrupts, some which need to be polled
32  *    for.  Describing all of the behaviour in a FSM seems to be the
33  *    easiest way to keep the complexity low and make it easy to
34  *    understand what the driver is doing.  If the block ops or the
35  *    request function need to interact with the hardware, then they
36  *    simply need to flag the request and kick of FSM processing.
37  *
38  *    The FSM itself is atomic-safe code which can be run from any
39  *    context.  The general process flow is:
40  *    1. obtain the ace->lock spinlock.
41  *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42  *       cleared.
43  *    3. release the lock.
44  *
45  *    Individual states do not sleep in any way.  If a condition needs to
46  *    be waited for then the state much clear the fsm_continue flag and
47  *    either schedule the FSM to be run again at a later time, or expect
48  *    an interrupt to call the FSM when the desired condition is met.
49  *
50  *    In normal operation, the FSM is processed at interrupt context
51  *    either when the driver's tasklet is scheduled, or when an irq is
52  *    raised by the hardware.  The tasklet can be scheduled at any time.
53  *    The request method in particular schedules the tasklet when a new
54  *    request has been indicated by the block layer.  Once started, the
55  *    FSM proceeds as far as it can processing the request until it
56  *    needs on a hardware event.  At this point, it must yield execution.
57  *
58  *    A state has two options when yielding execution:
59  *    1. ace_fsm_yield()
60  *       - Call if need to poll for event.
61  *       - clears the fsm_continue flag to exit the processing loop
62  *       - reschedules the tasklet to run again as soon as possible
63  *    2. ace_fsm_yieldirq()
64  *       - Call if an irq is expected from the HW
65  *       - clears the fsm_continue flag to exit the processing loop
66  *       - does not reschedule the tasklet so the FSM will not be processed
67  *         again until an irq is received.
68  *    After calling a yield function, the state must return control back
69  *    to the FSM main loop.
70  *
71  *    Additionally, the driver maintains a kernel timer which can process
72  *    the FSM.  If the FSM gets stalled, typically due to a missed
73  *    interrupt, then the kernel timer will expire and the driver can
74  *    continue where it left off.
75  *
76  * To Do:
77  *    - Add FPGA configuration control interface.
78  *    - Request major number from lanana
79  */
80 
81 #undef DEBUG
82 
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/hdreg.h>
93 #include <linux/platform_device.h>
94 #if defined(CONFIG_OF)
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
97 #endif
98 
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
102 
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
105 
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK      (0x00000001)
108 #define ACE_STATUS_MPULOCK      (0x00000002)
109 #define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
110 #define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
111 #define ACE_STATUS_CFDETECT     (0x00000010)
112 #define ACE_STATUS_DATABUFRDY   (0x00000020)
113 #define ACE_STATUS_DATABUFMODE  (0x00000040)
114 #define ACE_STATUS_CFGDONE      (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD  (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN   (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY        (0x00020000)
119 #define ACE_STATUS_CFRDY        (0x00040000)
120 #define ACE_STATUS_CFDWF        (0x00080000)
121 #define ACE_STATUS_CFDSC        (0x00100000)
122 #define ACE_STATUS_CFDRQ        (0x00200000)
123 #define ACE_STATUS_CFCORR       (0x00400000)
124 #define ACE_STATUS_CFERR        (0x00800000)
125 
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
129 
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET      (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY   (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA  (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT      (0x0600)
136 
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK    (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK    (0xF000)
141 
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ   (0x0001)
144 #define ACE_CTRL_LOCKREQ        (0x0002)
145 #define ACE_CTRL_FORCECFGADDR   (0x0004)
146 #define ACE_CTRL_FORCECFGMODE   (0x0008)
147 #define ACE_CTRL_CFGMODE        (0x0010)
148 #define ACE_CTRL_CFGSTART       (0x0020)
149 #define ACE_CTRL_CFGSEL         (0x0040)
150 #define ACE_CTRL_CFGRESET       (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
152 #define ACE_CTRL_ERRORIRQ       (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ     (0x0400)
154 #define ACE_CTRL_RESETIRQ       (0x0800)
155 #define ACE_CTRL_CFGPROG        (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK   (0xe000)
157 
158 #define ACE_FATSTAT (0x1c)
159 
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
164 
165 #define ACE_BUS_WIDTH_8  0
166 #define ACE_BUS_WIDTH_16 1
167 
168 struct ace_reg_ops;
169 
170 struct ace_device {
171 	/* driver state data */
172 	int id;
173 	int media_change;
174 	int users;
175 	struct list_head list;
176 
177 	/* finite state machine data */
178 	struct tasklet_struct fsm_tasklet;
179 	uint fsm_task;		/* Current activity (ACE_TASK_*) */
180 	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
181 	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
182 	uint fsm_iter_num;
183 	struct timer_list stall_timer;
184 
185 	/* Transfer state/result, use for both id and block request */
186 	struct request *req;	/* request being processed */
187 	void *data_ptr;		/* pointer to I/O buffer */
188 	int data_count;		/* number of buffers remaining */
189 	int data_result;	/* Result of transfer; 0 := success */
190 
191 	int id_req_count;	/* count of id requests */
192 	int id_result;
193 	struct completion id_completion;	/* used when id req finishes */
194 	int in_irq;
195 
196 	/* Details of hardware device */
197 	resource_size_t physaddr;
198 	void __iomem *baseaddr;
199 	int irq;
200 	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
201 	struct ace_reg_ops *reg_ops;
202 	int lock_count;
203 
204 	/* Block device data structures */
205 	spinlock_t lock;
206 	struct device *dev;
207 	struct request_queue *queue;
208 	struct gendisk *gd;
209 
210 	/* Inserted CF card parameters */
211 	struct hd_driveid cf_id;
212 };
213 
214 static int ace_major;
215 
216 /* ---------------------------------------------------------------------
217  * Low level register access
218  */
219 
220 struct ace_reg_ops {
221 	u16(*in) (struct ace_device * ace, int reg);
222 	void (*out) (struct ace_device * ace, int reg, u16 val);
223 	void (*datain) (struct ace_device * ace);
224 	void (*dataout) (struct ace_device * ace);
225 };
226 
227 /* 8 Bit bus width */
ace_in_8(struct ace_device * ace,int reg)228 static u16 ace_in_8(struct ace_device *ace, int reg)
229 {
230 	void __iomem *r = ace->baseaddr + reg;
231 	return in_8(r) | (in_8(r + 1) << 8);
232 }
233 
ace_out_8(struct ace_device * ace,int reg,u16 val)234 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
235 {
236 	void __iomem *r = ace->baseaddr + reg;
237 	out_8(r, val);
238 	out_8(r + 1, val >> 8);
239 }
240 
ace_datain_8(struct ace_device * ace)241 static void ace_datain_8(struct ace_device *ace)
242 {
243 	void __iomem *r = ace->baseaddr + 0x40;
244 	u8 *dst = ace->data_ptr;
245 	int i = ACE_FIFO_SIZE;
246 	while (i--)
247 		*dst++ = in_8(r++);
248 	ace->data_ptr = dst;
249 }
250 
ace_dataout_8(struct ace_device * ace)251 static void ace_dataout_8(struct ace_device *ace)
252 {
253 	void __iomem *r = ace->baseaddr + 0x40;
254 	u8 *src = ace->data_ptr;
255 	int i = ACE_FIFO_SIZE;
256 	while (i--)
257 		out_8(r++, *src++);
258 	ace->data_ptr = src;
259 }
260 
261 static struct ace_reg_ops ace_reg_8_ops = {
262 	.in = ace_in_8,
263 	.out = ace_out_8,
264 	.datain = ace_datain_8,
265 	.dataout = ace_dataout_8,
266 };
267 
268 /* 16 bit big endian bus attachment */
ace_in_be16(struct ace_device * ace,int reg)269 static u16 ace_in_be16(struct ace_device *ace, int reg)
270 {
271 	return in_be16(ace->baseaddr + reg);
272 }
273 
ace_out_be16(struct ace_device * ace,int reg,u16 val)274 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
275 {
276 	out_be16(ace->baseaddr + reg, val);
277 }
278 
ace_datain_be16(struct ace_device * ace)279 static void ace_datain_be16(struct ace_device *ace)
280 {
281 	int i = ACE_FIFO_SIZE / 2;
282 	u16 *dst = ace->data_ptr;
283 	while (i--)
284 		*dst++ = in_le16(ace->baseaddr + 0x40);
285 	ace->data_ptr = dst;
286 }
287 
ace_dataout_be16(struct ace_device * ace)288 static void ace_dataout_be16(struct ace_device *ace)
289 {
290 	int i = ACE_FIFO_SIZE / 2;
291 	u16 *src = ace->data_ptr;
292 	while (i--)
293 		out_le16(ace->baseaddr + 0x40, *src++);
294 	ace->data_ptr = src;
295 }
296 
297 /* 16 bit little endian bus attachment */
ace_in_le16(struct ace_device * ace,int reg)298 static u16 ace_in_le16(struct ace_device *ace, int reg)
299 {
300 	return in_le16(ace->baseaddr + reg);
301 }
302 
ace_out_le16(struct ace_device * ace,int reg,u16 val)303 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
304 {
305 	out_le16(ace->baseaddr + reg, val);
306 }
307 
ace_datain_le16(struct ace_device * ace)308 static void ace_datain_le16(struct ace_device *ace)
309 {
310 	int i = ACE_FIFO_SIZE / 2;
311 	u16 *dst = ace->data_ptr;
312 	while (i--)
313 		*dst++ = in_be16(ace->baseaddr + 0x40);
314 	ace->data_ptr = dst;
315 }
316 
ace_dataout_le16(struct ace_device * ace)317 static void ace_dataout_le16(struct ace_device *ace)
318 {
319 	int i = ACE_FIFO_SIZE / 2;
320 	u16 *src = ace->data_ptr;
321 	while (i--)
322 		out_be16(ace->baseaddr + 0x40, *src++);
323 	ace->data_ptr = src;
324 }
325 
326 static struct ace_reg_ops ace_reg_be16_ops = {
327 	.in = ace_in_be16,
328 	.out = ace_out_be16,
329 	.datain = ace_datain_be16,
330 	.dataout = ace_dataout_be16,
331 };
332 
333 static struct ace_reg_ops ace_reg_le16_ops = {
334 	.in = ace_in_le16,
335 	.out = ace_out_le16,
336 	.datain = ace_datain_le16,
337 	.dataout = ace_dataout_le16,
338 };
339 
ace_in(struct ace_device * ace,int reg)340 static inline u16 ace_in(struct ace_device *ace, int reg)
341 {
342 	return ace->reg_ops->in(ace, reg);
343 }
344 
ace_in32(struct ace_device * ace,int reg)345 static inline u32 ace_in32(struct ace_device *ace, int reg)
346 {
347 	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
348 }
349 
ace_out(struct ace_device * ace,int reg,u16 val)350 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
351 {
352 	ace->reg_ops->out(ace, reg, val);
353 }
354 
ace_out32(struct ace_device * ace,int reg,u32 val)355 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
356 {
357 	ace_out(ace, reg, val);
358 	ace_out(ace, reg + 2, val >> 16);
359 }
360 
361 /* ---------------------------------------------------------------------
362  * Debug support functions
363  */
364 
365 #if defined(DEBUG)
ace_dump_mem(void * base,int len)366 static void ace_dump_mem(void *base, int len)
367 {
368 	const char *ptr = base;
369 	int i, j;
370 
371 	for (i = 0; i < len; i += 16) {
372 		printk(KERN_INFO "%.8x:", i);
373 		for (j = 0; j < 16; j++) {
374 			if (!(j % 4))
375 				printk(" ");
376 			printk("%.2x", ptr[i + j]);
377 		}
378 		printk(" ");
379 		for (j = 0; j < 16; j++)
380 			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
381 		printk("\n");
382 	}
383 }
384 #else
ace_dump_mem(void * base,int len)385 static inline void ace_dump_mem(void *base, int len)
386 {
387 }
388 #endif
389 
ace_dump_regs(struct ace_device * ace)390 static void ace_dump_regs(struct ace_device *ace)
391 {
392 	dev_info(ace->dev, "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
393 		 KERN_INFO "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
394 		 KERN_INFO "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
395 		 ace_in32(ace, ACE_CTRL),
396 		 ace_in(ace, ACE_SECCNTCMD),
397 		 ace_in(ace, ACE_VERSION),
398 		 ace_in32(ace, ACE_STATUS),
399 		 ace_in32(ace, ACE_MPULBA),
400 		 ace_in(ace, ACE_BUSMODE),
401 		 ace_in32(ace, ACE_ERROR),
402 		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
403 }
404 
ace_fix_driveid(struct hd_driveid * id)405 void ace_fix_driveid(struct hd_driveid *id)
406 {
407 #if defined(__BIG_ENDIAN)
408 	u16 *buf = (void *)id;
409 	int i;
410 
411 	/* All half words have wrong byte order; swap the bytes */
412 	for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
413 		*buf = le16_to_cpu(*buf);
414 
415 	/* Some of the data values are 32bit; swap the half words  */
416 	id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
417 	    ((id->lba_capacity << 16) & 0xFFFF0000);
418 	id->spg = ((id->spg >> 16) & 0x0000FFFF) |
419 	    ((id->spg << 16) & 0xFFFF0000);
420 #endif
421 }
422 
423 /* ---------------------------------------------------------------------
424  * Finite State Machine (FSM) implementation
425  */
426 
427 /* FSM tasks; used to direct state transitions */
428 #define ACE_TASK_IDLE      0
429 #define ACE_TASK_IDENTIFY  1
430 #define ACE_TASK_READ      2
431 #define ACE_TASK_WRITE     3
432 #define ACE_FSM_NUM_TASKS  4
433 
434 /* FSM state definitions */
435 #define ACE_FSM_STATE_IDLE               0
436 #define ACE_FSM_STATE_REQ_LOCK           1
437 #define ACE_FSM_STATE_WAIT_LOCK          2
438 #define ACE_FSM_STATE_WAIT_CFREADY       3
439 #define ACE_FSM_STATE_IDENTIFY_PREPARE   4
440 #define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
441 #define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
442 #define ACE_FSM_STATE_REQ_PREPARE        7
443 #define ACE_FSM_STATE_REQ_TRANSFER       8
444 #define ACE_FSM_STATE_REQ_COMPLETE       9
445 #define ACE_FSM_STATE_ERROR             10
446 #define ACE_FSM_NUM_STATES              11
447 
448 /* Set flag to exit FSM loop and reschedule tasklet */
ace_fsm_yield(struct ace_device * ace)449 static inline void ace_fsm_yield(struct ace_device *ace)
450 {
451 	dev_dbg(ace->dev, "ace_fsm_yield()\n");
452 	tasklet_schedule(&ace->fsm_tasklet);
453 	ace->fsm_continue_flag = 0;
454 }
455 
456 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
ace_fsm_yieldirq(struct ace_device * ace)457 static inline void ace_fsm_yieldirq(struct ace_device *ace)
458 {
459 	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
460 
461 	if (ace->irq == NO_IRQ)
462 		/* No IRQ assigned, so need to poll */
463 		tasklet_schedule(&ace->fsm_tasklet);
464 	ace->fsm_continue_flag = 0;
465 }
466 
467 /* Get the next read/write request; ending requests that we don't handle */
ace_get_next_request(struct request_queue * q)468 struct request *ace_get_next_request(struct request_queue * q)
469 {
470 	struct request *req;
471 
472 	while ((req = elv_next_request(q)) != NULL) {
473 		if (blk_fs_request(req))
474 			break;
475 		end_request(req, 0);
476 	}
477 	return req;
478 }
479 
ace_fsm_dostate(struct ace_device * ace)480 static void ace_fsm_dostate(struct ace_device *ace)
481 {
482 	struct request *req;
483 	u32 status;
484 	u16 val;
485 	int count;
486 
487 #if defined(DEBUG)
488 	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
489 		ace->fsm_state, ace->id_req_count);
490 #endif
491 
492 	/* Verify that there is actually a CF in the slot. If not, then
493 	 * bail out back to the idle state and wake up all the waiters */
494 	status = ace_in32(ace, ACE_STATUS);
495 	if ((status & ACE_STATUS_CFDETECT) == 0) {
496 		ace->fsm_state = ACE_FSM_STATE_IDLE;
497 		ace->media_change = 1;
498 		set_capacity(ace->gd, 0);
499 		dev_info(ace->dev, "No CF in slot\n");
500 
501 		/* Drop all pending requests */
502 		while ((req = elv_next_request(ace->queue)) != NULL)
503 			end_request(req, 0);
504 
505 		/* Drop back to IDLE state and notify waiters */
506 		ace->fsm_state = ACE_FSM_STATE_IDLE;
507 		ace->id_result = -EIO;
508 		while (ace->id_req_count) {
509 			complete(&ace->id_completion);
510 			ace->id_req_count--;
511 		}
512 	}
513 
514 	switch (ace->fsm_state) {
515 	case ACE_FSM_STATE_IDLE:
516 		/* See if there is anything to do */
517 		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
518 			ace->fsm_iter_num++;
519 			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
520 			mod_timer(&ace->stall_timer, jiffies + HZ);
521 			if (!timer_pending(&ace->stall_timer))
522 				add_timer(&ace->stall_timer);
523 			break;
524 		}
525 		del_timer(&ace->stall_timer);
526 		ace->fsm_continue_flag = 0;
527 		break;
528 
529 	case ACE_FSM_STATE_REQ_LOCK:
530 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
531 			/* Already have the lock, jump to next state */
532 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
533 			break;
534 		}
535 
536 		/* Request the lock */
537 		val = ace_in(ace, ACE_CTRL);
538 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
539 		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
540 		break;
541 
542 	case ACE_FSM_STATE_WAIT_LOCK:
543 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
544 			/* got the lock; move to next state */
545 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
546 			break;
547 		}
548 
549 		/* wait a bit for the lock */
550 		ace_fsm_yield(ace);
551 		break;
552 
553 	case ACE_FSM_STATE_WAIT_CFREADY:
554 		status = ace_in32(ace, ACE_STATUS);
555 		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
556 		    (status & ACE_STATUS_CFBSY)) {
557 			/* CF card isn't ready; it needs to be polled */
558 			ace_fsm_yield(ace);
559 			break;
560 		}
561 
562 		/* Device is ready for command; determine what to do next */
563 		if (ace->id_req_count)
564 			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
565 		else
566 			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
567 		break;
568 
569 	case ACE_FSM_STATE_IDENTIFY_PREPARE:
570 		/* Send identify command */
571 		ace->fsm_task = ACE_TASK_IDENTIFY;
572 		ace->data_ptr = &ace->cf_id;
573 		ace->data_count = ACE_BUF_PER_SECTOR;
574 		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
575 
576 		/* As per datasheet, put config controller in reset */
577 		val = ace_in(ace, ACE_CTRL);
578 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
579 
580 		/* irq handler takes over from this point; wait for the
581 		 * transfer to complete */
582 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
583 		ace_fsm_yieldirq(ace);
584 		break;
585 
586 	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
587 		/* Check that the sysace is ready to receive data */
588 		status = ace_in32(ace, ACE_STATUS);
589 		if (status & ACE_STATUS_CFBSY) {
590 			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
591 				ace->fsm_task, ace->fsm_iter_num,
592 				ace->data_count);
593 			ace_fsm_yield(ace);
594 			break;
595 		}
596 		if (!(status & ACE_STATUS_DATABUFRDY)) {
597 			ace_fsm_yield(ace);
598 			break;
599 		}
600 
601 		/* Transfer the next buffer */
602 		ace->reg_ops->datain(ace);
603 		ace->data_count--;
604 
605 		/* If there are still buffers to be transfers; jump out here */
606 		if (ace->data_count != 0) {
607 			ace_fsm_yieldirq(ace);
608 			break;
609 		}
610 
611 		/* transfer finished; kick state machine */
612 		dev_dbg(ace->dev, "identify finished\n");
613 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
614 		break;
615 
616 	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
617 		ace_fix_driveid(&ace->cf_id);
618 		ace_dump_mem(&ace->cf_id, 512);	/* Debug: Dump out disk ID */
619 
620 		if (ace->data_result) {
621 			/* Error occured, disable the disk */
622 			ace->media_change = 1;
623 			set_capacity(ace->gd, 0);
624 			dev_err(ace->dev, "error fetching CF id (%i)\n",
625 				ace->data_result);
626 		} else {
627 			ace->media_change = 0;
628 
629 			/* Record disk parameters */
630 			set_capacity(ace->gd, ace->cf_id.lba_capacity);
631 			dev_info(ace->dev, "capacity: %i sectors\n",
632 				 ace->cf_id.lba_capacity);
633 		}
634 
635 		/* We're done, drop to IDLE state and notify waiters */
636 		ace->fsm_state = ACE_FSM_STATE_IDLE;
637 		ace->id_result = ace->data_result;
638 		while (ace->id_req_count) {
639 			complete(&ace->id_completion);
640 			ace->id_req_count--;
641 		}
642 		break;
643 
644 	case ACE_FSM_STATE_REQ_PREPARE:
645 		req = ace_get_next_request(ace->queue);
646 		if (!req) {
647 			ace->fsm_state = ACE_FSM_STATE_IDLE;
648 			break;
649 		}
650 
651 		/* Okay, it's a data request, set it up for transfer */
652 		dev_dbg(ace->dev,
653 			"request: sec=%llx hcnt=%lx, ccnt=%x, dir=%i\n",
654 			(unsigned long long) req->sector, req->hard_nr_sectors,
655 			req->current_nr_sectors, rq_data_dir(req));
656 
657 		ace->req = req;
658 		ace->data_ptr = req->buffer;
659 		ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
660 		ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
661 
662 		count = req->hard_nr_sectors;
663 		if (rq_data_dir(req)) {
664 			/* Kick off write request */
665 			dev_dbg(ace->dev, "write data\n");
666 			ace->fsm_task = ACE_TASK_WRITE;
667 			ace_out(ace, ACE_SECCNTCMD,
668 				count | ACE_SECCNTCMD_WRITE_DATA);
669 		} else {
670 			/* Kick off read request */
671 			dev_dbg(ace->dev, "read data\n");
672 			ace->fsm_task = ACE_TASK_READ;
673 			ace_out(ace, ACE_SECCNTCMD,
674 				count | ACE_SECCNTCMD_READ_DATA);
675 		}
676 
677 		/* As per datasheet, put config controller in reset */
678 		val = ace_in(ace, ACE_CTRL);
679 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
680 
681 		/* Move to the transfer state.  The systemace will raise
682 		 * an interrupt once there is something to do
683 		 */
684 		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
685 		if (ace->fsm_task == ACE_TASK_READ)
686 			ace_fsm_yieldirq(ace);	/* wait for data ready */
687 		break;
688 
689 	case ACE_FSM_STATE_REQ_TRANSFER:
690 		/* Check that the sysace is ready to receive data */
691 		status = ace_in32(ace, ACE_STATUS);
692 		if (status & ACE_STATUS_CFBSY) {
693 			dev_dbg(ace->dev,
694 				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
695 				ace->fsm_task, ace->fsm_iter_num,
696 				ace->req->current_nr_sectors * 16,
697 				ace->data_count, ace->in_irq);
698 			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
699 			break;
700 		}
701 		if (!(status & ACE_STATUS_DATABUFRDY)) {
702 			dev_dbg(ace->dev,
703 				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
704 				ace->fsm_task, ace->fsm_iter_num,
705 				ace->req->current_nr_sectors * 16,
706 				ace->data_count, ace->in_irq);
707 			ace_fsm_yieldirq(ace);
708 			break;
709 		}
710 
711 		/* Transfer the next buffer */
712 		if (ace->fsm_task == ACE_TASK_WRITE)
713 			ace->reg_ops->dataout(ace);
714 		else
715 			ace->reg_ops->datain(ace);
716 		ace->data_count--;
717 
718 		/* If there are still buffers to be transfers; jump out here */
719 		if (ace->data_count != 0) {
720 			ace_fsm_yieldirq(ace);
721 			break;
722 		}
723 
724 		/* bio finished; is there another one? */
725 		if (__blk_end_request(ace->req, 0,
726 					blk_rq_cur_bytes(ace->req))) {
727 			/* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
728 			 *      ace->req->hard_nr_sectors,
729 			 *      ace->req->current_nr_sectors);
730 			 */
731 			ace->data_ptr = ace->req->buffer;
732 			ace->data_count = ace->req->current_nr_sectors * 16;
733 			ace_fsm_yieldirq(ace);
734 			break;
735 		}
736 
737 		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
738 		break;
739 
740 	case ACE_FSM_STATE_REQ_COMPLETE:
741 		ace->req = NULL;
742 
743 		/* Finished request; go to idle state */
744 		ace->fsm_state = ACE_FSM_STATE_IDLE;
745 		break;
746 
747 	default:
748 		ace->fsm_state = ACE_FSM_STATE_IDLE;
749 		break;
750 	}
751 }
752 
ace_fsm_tasklet(unsigned long data)753 static void ace_fsm_tasklet(unsigned long data)
754 {
755 	struct ace_device *ace = (void *)data;
756 	unsigned long flags;
757 
758 	spin_lock_irqsave(&ace->lock, flags);
759 
760 	/* Loop over state machine until told to stop */
761 	ace->fsm_continue_flag = 1;
762 	while (ace->fsm_continue_flag)
763 		ace_fsm_dostate(ace);
764 
765 	spin_unlock_irqrestore(&ace->lock, flags);
766 }
767 
ace_stall_timer(unsigned long data)768 static void ace_stall_timer(unsigned long data)
769 {
770 	struct ace_device *ace = (void *)data;
771 	unsigned long flags;
772 
773 	dev_warn(ace->dev,
774 		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
775 		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
776 		 ace->data_count);
777 	spin_lock_irqsave(&ace->lock, flags);
778 
779 	/* Rearm the stall timer *before* entering FSM (which may then
780 	 * delete the timer) */
781 	mod_timer(&ace->stall_timer, jiffies + HZ);
782 
783 	/* Loop over state machine until told to stop */
784 	ace->fsm_continue_flag = 1;
785 	while (ace->fsm_continue_flag)
786 		ace_fsm_dostate(ace);
787 
788 	spin_unlock_irqrestore(&ace->lock, flags);
789 }
790 
791 /* ---------------------------------------------------------------------
792  * Interrupt handling routines
793  */
ace_interrupt_checkstate(struct ace_device * ace)794 static int ace_interrupt_checkstate(struct ace_device *ace)
795 {
796 	u32 sreg = ace_in32(ace, ACE_STATUS);
797 	u16 creg = ace_in(ace, ACE_CTRL);
798 
799 	/* Check for error occurance */
800 	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
801 	    (creg & ACE_CTRL_ERRORIRQ)) {
802 		dev_err(ace->dev, "transfer failure\n");
803 		ace_dump_regs(ace);
804 		return -EIO;
805 	}
806 
807 	return 0;
808 }
809 
ace_interrupt(int irq,void * dev_id)810 static irqreturn_t ace_interrupt(int irq, void *dev_id)
811 {
812 	u16 creg;
813 	struct ace_device *ace = dev_id;
814 
815 	/* be safe and get the lock */
816 	spin_lock(&ace->lock);
817 	ace->in_irq = 1;
818 
819 	/* clear the interrupt */
820 	creg = ace_in(ace, ACE_CTRL);
821 	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
822 	ace_out(ace, ACE_CTRL, creg);
823 
824 	/* check for IO failures */
825 	if (ace_interrupt_checkstate(ace))
826 		ace->data_result = -EIO;
827 
828 	if (ace->fsm_task == 0) {
829 		dev_err(ace->dev,
830 			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
831 			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
832 			ace_in(ace, ACE_SECCNTCMD));
833 		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
834 			ace->fsm_task, ace->fsm_state, ace->data_count);
835 	}
836 
837 	/* Loop over state machine until told to stop */
838 	ace->fsm_continue_flag = 1;
839 	while (ace->fsm_continue_flag)
840 		ace_fsm_dostate(ace);
841 
842 	/* done with interrupt; drop the lock */
843 	ace->in_irq = 0;
844 	spin_unlock(&ace->lock);
845 
846 	return IRQ_HANDLED;
847 }
848 
849 /* ---------------------------------------------------------------------
850  * Block ops
851  */
ace_request(struct request_queue * q)852 static void ace_request(struct request_queue * q)
853 {
854 	struct request *req;
855 	struct ace_device *ace;
856 
857 	req = ace_get_next_request(q);
858 
859 	if (req) {
860 		ace = req->rq_disk->private_data;
861 		tasklet_schedule(&ace->fsm_tasklet);
862 	}
863 }
864 
ace_media_changed(struct gendisk * gd)865 static int ace_media_changed(struct gendisk *gd)
866 {
867 	struct ace_device *ace = gd->private_data;
868 	dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
869 
870 	return ace->media_change;
871 }
872 
ace_revalidate_disk(struct gendisk * gd)873 static int ace_revalidate_disk(struct gendisk *gd)
874 {
875 	struct ace_device *ace = gd->private_data;
876 	unsigned long flags;
877 
878 	dev_dbg(ace->dev, "ace_revalidate_disk()\n");
879 
880 	if (ace->media_change) {
881 		dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
882 
883 		spin_lock_irqsave(&ace->lock, flags);
884 		ace->id_req_count++;
885 		spin_unlock_irqrestore(&ace->lock, flags);
886 
887 		tasklet_schedule(&ace->fsm_tasklet);
888 		wait_for_completion(&ace->id_completion);
889 	}
890 
891 	dev_dbg(ace->dev, "revalidate complete\n");
892 	return ace->id_result;
893 }
894 
ace_open(struct block_device * bdev,fmode_t mode)895 static int ace_open(struct block_device *bdev, fmode_t mode)
896 {
897 	struct ace_device *ace = bdev->bd_disk->private_data;
898 	unsigned long flags;
899 
900 	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
901 
902 	spin_lock_irqsave(&ace->lock, flags);
903 	ace->users++;
904 	spin_unlock_irqrestore(&ace->lock, flags);
905 
906 	check_disk_change(bdev);
907 	return 0;
908 }
909 
ace_release(struct gendisk * disk,fmode_t mode)910 static int ace_release(struct gendisk *disk, fmode_t mode)
911 {
912 	struct ace_device *ace = disk->private_data;
913 	unsigned long flags;
914 	u16 val;
915 
916 	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
917 
918 	spin_lock_irqsave(&ace->lock, flags);
919 	ace->users--;
920 	if (ace->users == 0) {
921 		val = ace_in(ace, ACE_CTRL);
922 		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
923 	}
924 	spin_unlock_irqrestore(&ace->lock, flags);
925 	return 0;
926 }
927 
ace_getgeo(struct block_device * bdev,struct hd_geometry * geo)928 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
929 {
930 	struct ace_device *ace = bdev->bd_disk->private_data;
931 
932 	dev_dbg(ace->dev, "ace_getgeo()\n");
933 
934 	geo->heads = ace->cf_id.heads;
935 	geo->sectors = ace->cf_id.sectors;
936 	geo->cylinders = ace->cf_id.cyls;
937 
938 	return 0;
939 }
940 
941 static struct block_device_operations ace_fops = {
942 	.owner = THIS_MODULE,
943 	.open = ace_open,
944 	.release = ace_release,
945 	.media_changed = ace_media_changed,
946 	.revalidate_disk = ace_revalidate_disk,
947 	.getgeo = ace_getgeo,
948 };
949 
950 /* --------------------------------------------------------------------
951  * SystemACE device setup/teardown code
952  */
ace_setup(struct ace_device * ace)953 static int __devinit ace_setup(struct ace_device *ace)
954 {
955 	u16 version;
956 	u16 val;
957 	int rc;
958 
959 	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
960 	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
961 		(unsigned long long)ace->physaddr, ace->irq);
962 
963 	spin_lock_init(&ace->lock);
964 	init_completion(&ace->id_completion);
965 
966 	/*
967 	 * Map the device
968 	 */
969 	ace->baseaddr = ioremap(ace->physaddr, 0x80);
970 	if (!ace->baseaddr)
971 		goto err_ioremap;
972 
973 	/*
974 	 * Initialize the state machine tasklet and stall timer
975 	 */
976 	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
977 	setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
978 
979 	/*
980 	 * Initialize the request queue
981 	 */
982 	ace->queue = blk_init_queue(ace_request, &ace->lock);
983 	if (ace->queue == NULL)
984 		goto err_blk_initq;
985 	blk_queue_hardsect_size(ace->queue, 512);
986 
987 	/*
988 	 * Allocate and initialize GD structure
989 	 */
990 	ace->gd = alloc_disk(ACE_NUM_MINORS);
991 	if (!ace->gd)
992 		goto err_alloc_disk;
993 
994 	ace->gd->major = ace_major;
995 	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
996 	ace->gd->fops = &ace_fops;
997 	ace->gd->queue = ace->queue;
998 	ace->gd->private_data = ace;
999 	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1000 
1001 	/* set bus width */
1002 	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1003 		/* 0x0101 should work regardless of endianess */
1004 		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1005 
1006 		/* read it back to determine endianess */
1007 		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1008 			ace->reg_ops = &ace_reg_le16_ops;
1009 		else
1010 			ace->reg_ops = &ace_reg_be16_ops;
1011 	} else {
1012 		ace_out_8(ace, ACE_BUSMODE, 0x00);
1013 		ace->reg_ops = &ace_reg_8_ops;
1014 	}
1015 
1016 	/* Make sure version register is sane */
1017 	version = ace_in(ace, ACE_VERSION);
1018 	if ((version == 0) || (version == 0xFFFF))
1019 		goto err_read;
1020 
1021 	/* Put sysace in a sane state by clearing most control reg bits */
1022 	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1023 		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1024 
1025 	/* Now we can hook up the irq handler */
1026 	if (ace->irq != NO_IRQ) {
1027 		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1028 		if (rc) {
1029 			/* Failure - fall back to polled mode */
1030 			dev_err(ace->dev, "request_irq failed\n");
1031 			ace->irq = NO_IRQ;
1032 		}
1033 	}
1034 
1035 	/* Enable interrupts */
1036 	val = ace_in(ace, ACE_CTRL);
1037 	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1038 	ace_out(ace, ACE_CTRL, val);
1039 
1040 	/* Print the identification */
1041 	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1042 		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1043 	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1044 		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1045 
1046 	ace->media_change = 1;
1047 	ace_revalidate_disk(ace->gd);
1048 
1049 	/* Make the sysace device 'live' */
1050 	add_disk(ace->gd);
1051 
1052 	return 0;
1053 
1054 err_read:
1055 	put_disk(ace->gd);
1056 err_alloc_disk:
1057 	blk_cleanup_queue(ace->queue);
1058 err_blk_initq:
1059 	iounmap(ace->baseaddr);
1060 err_ioremap:
1061 	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1062 		 (unsigned long long) ace->physaddr);
1063 	return -ENOMEM;
1064 }
1065 
ace_teardown(struct ace_device * ace)1066 static void __devexit ace_teardown(struct ace_device *ace)
1067 {
1068 	if (ace->gd) {
1069 		del_gendisk(ace->gd);
1070 		put_disk(ace->gd);
1071 	}
1072 
1073 	if (ace->queue)
1074 		blk_cleanup_queue(ace->queue);
1075 
1076 	tasklet_kill(&ace->fsm_tasklet);
1077 
1078 	if (ace->irq != NO_IRQ)
1079 		free_irq(ace->irq, ace);
1080 
1081 	iounmap(ace->baseaddr);
1082 }
1083 
1084 static int __devinit
ace_alloc(struct device * dev,int id,resource_size_t physaddr,int irq,int bus_width)1085 ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1086 	  int irq, int bus_width)
1087 {
1088 	struct ace_device *ace;
1089 	int rc;
1090 	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1091 
1092 	if (!physaddr) {
1093 		rc = -ENODEV;
1094 		goto err_noreg;
1095 	}
1096 
1097 	/* Allocate and initialize the ace device structure */
1098 	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1099 	if (!ace) {
1100 		rc = -ENOMEM;
1101 		goto err_alloc;
1102 	}
1103 
1104 	ace->dev = dev;
1105 	ace->id = id;
1106 	ace->physaddr = physaddr;
1107 	ace->irq = irq;
1108 	ace->bus_width = bus_width;
1109 
1110 	/* Call the setup code */
1111 	rc = ace_setup(ace);
1112 	if (rc)
1113 		goto err_setup;
1114 
1115 	dev_set_drvdata(dev, ace);
1116 	return 0;
1117 
1118 err_setup:
1119 	dev_set_drvdata(dev, NULL);
1120 	kfree(ace);
1121 err_alloc:
1122 err_noreg:
1123 	dev_err(dev, "could not initialize device, err=%i\n", rc);
1124 	return rc;
1125 }
1126 
ace_free(struct device * dev)1127 static void __devexit ace_free(struct device *dev)
1128 {
1129 	struct ace_device *ace = dev_get_drvdata(dev);
1130 	dev_dbg(dev, "ace_free(%p)\n", dev);
1131 
1132 	if (ace) {
1133 		ace_teardown(ace);
1134 		dev_set_drvdata(dev, NULL);
1135 		kfree(ace);
1136 	}
1137 }
1138 
1139 /* ---------------------------------------------------------------------
1140  * Platform Bus Support
1141  */
1142 
ace_probe(struct platform_device * dev)1143 static int __devinit ace_probe(struct platform_device *dev)
1144 {
1145 	resource_size_t physaddr = 0;
1146 	int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1147 	int id = dev->id;
1148 	int irq = NO_IRQ;
1149 	int i;
1150 
1151 	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1152 
1153 	for (i = 0; i < dev->num_resources; i++) {
1154 		if (dev->resource[i].flags & IORESOURCE_MEM)
1155 			physaddr = dev->resource[i].start;
1156 		if (dev->resource[i].flags & IORESOURCE_IRQ)
1157 			irq = dev->resource[i].start;
1158 	}
1159 
1160 	/* Call the bus-independant setup code */
1161 	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1162 }
1163 
1164 /*
1165  * Platform bus remove() method
1166  */
ace_remove(struct platform_device * dev)1167 static int __devexit ace_remove(struct platform_device *dev)
1168 {
1169 	ace_free(&dev->dev);
1170 	return 0;
1171 }
1172 
1173 static struct platform_driver ace_platform_driver = {
1174 	.probe = ace_probe,
1175 	.remove = __devexit_p(ace_remove),
1176 	.driver = {
1177 		.owner = THIS_MODULE,
1178 		.name = "xsysace",
1179 	},
1180 };
1181 
1182 /* ---------------------------------------------------------------------
1183  * OF_Platform Bus Support
1184  */
1185 
1186 #if defined(CONFIG_OF)
1187 static int __devinit
ace_of_probe(struct of_device * op,const struct of_device_id * match)1188 ace_of_probe(struct of_device *op, const struct of_device_id *match)
1189 {
1190 	struct resource res;
1191 	resource_size_t physaddr;
1192 	const u32 *id;
1193 	int irq, bus_width, rc;
1194 
1195 	dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
1196 
1197 	/* device id */
1198 	id = of_get_property(op->node, "port-number", NULL);
1199 
1200 	/* physaddr */
1201 	rc = of_address_to_resource(op->node, 0, &res);
1202 	if (rc) {
1203 		dev_err(&op->dev, "invalid address\n");
1204 		return rc;
1205 	}
1206 	physaddr = res.start;
1207 
1208 	/* irq */
1209 	irq = irq_of_parse_and_map(op->node, 0);
1210 
1211 	/* bus width */
1212 	bus_width = ACE_BUS_WIDTH_16;
1213 	if (of_find_property(op->node, "8-bit", NULL))
1214 		bus_width = ACE_BUS_WIDTH_8;
1215 
1216 	/* Call the bus-independant setup code */
1217 	return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
1218 }
1219 
ace_of_remove(struct of_device * op)1220 static int __devexit ace_of_remove(struct of_device *op)
1221 {
1222 	ace_free(&op->dev);
1223 	return 0;
1224 }
1225 
1226 /* Match table for of_platform binding */
1227 static struct of_device_id ace_of_match[] __devinitdata = {
1228 	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1229 	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1230 	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1231 	{ .compatible = "xlnx,sysace", },
1232 	{},
1233 };
1234 MODULE_DEVICE_TABLE(of, ace_of_match);
1235 
1236 static struct of_platform_driver ace_of_driver = {
1237 	.owner = THIS_MODULE,
1238 	.name = "xsysace",
1239 	.match_table = ace_of_match,
1240 	.probe = ace_of_probe,
1241 	.remove = __devexit_p(ace_of_remove),
1242 	.driver = {
1243 		.name = "xsysace",
1244 	},
1245 };
1246 
1247 /* Registration helpers to keep the number of #ifdefs to a minimum */
ace_of_register(void)1248 static inline int __init ace_of_register(void)
1249 {
1250 	pr_debug("xsysace: registering OF binding\n");
1251 	return of_register_platform_driver(&ace_of_driver);
1252 }
1253 
ace_of_unregister(void)1254 static inline void __exit ace_of_unregister(void)
1255 {
1256 	of_unregister_platform_driver(&ace_of_driver);
1257 }
1258 #else /* CONFIG_OF */
1259 /* CONFIG_OF not enabled; do nothing helpers */
ace_of_register(void)1260 static inline int __init ace_of_register(void) { return 0; }
ace_of_unregister(void)1261 static inline void __exit ace_of_unregister(void) { }
1262 #endif /* CONFIG_OF */
1263 
1264 /* ---------------------------------------------------------------------
1265  * Module init/exit routines
1266  */
ace_init(void)1267 static int __init ace_init(void)
1268 {
1269 	int rc;
1270 
1271 	ace_major = register_blkdev(ace_major, "xsysace");
1272 	if (ace_major <= 0) {
1273 		rc = -ENOMEM;
1274 		goto err_blk;
1275 	}
1276 
1277 	rc = ace_of_register();
1278 	if (rc)
1279 		goto err_of;
1280 
1281 	pr_debug("xsysace: registering platform binding\n");
1282 	rc = platform_driver_register(&ace_platform_driver);
1283 	if (rc)
1284 		goto err_plat;
1285 
1286 	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1287 	return 0;
1288 
1289 err_plat:
1290 	ace_of_unregister();
1291 err_of:
1292 	unregister_blkdev(ace_major, "xsysace");
1293 err_blk:
1294 	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1295 	return rc;
1296 }
1297 
ace_exit(void)1298 static void __exit ace_exit(void)
1299 {
1300 	pr_debug("Unregistering Xilinx SystemACE driver\n");
1301 	platform_driver_unregister(&ace_platform_driver);
1302 	ace_of_unregister();
1303 	unregister_blkdev(ace_major, "xsysace");
1304 }
1305 
1306 module_init(ace_init);
1307 module_exit(ace_exit);
1308