• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** -----------------------------------------------------------------------------
3 **
4 **  Perle Specialix driver for Linux
5 **  Ported from existing RIO Driver for SCO sources.
6  *
7  *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8  *
9  *      This program is free software; you can redistribute it and/or modify
10  *      it under the terms of the GNU General Public License as published by
11  *      the Free Software Foundation; either version 2 of the License, or
12  *      (at your option) any later version.
13  *
14  *      This program is distributed in the hope that it will be useful,
15  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *      GNU General Public License for more details.
18  *
19  *      You should have received a copy of the GNU General Public License
20  *      along with this program; if not, write to the Free Software
21  *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **
23 **	Module		: rioboot.c
24 **	SID		: 1.3
25 **	Last Modified	: 11/6/98 10:33:36
26 **	Retrieved	: 11/6/98 10:33:48
27 **
28 **  ident @(#)rioboot.c	1.3
29 **
30 ** -----------------------------------------------------------------------------
31 */
32 
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/termios.h>
36 #include <linux/serial.h>
37 #include <linux/vmalloc.h>
38 #include <linux/generic_serial.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/delay.h>
42 #include <asm/io.h>
43 #include <asm/system.h>
44 #include <asm/string.h>
45 #include <asm/uaccess.h>
46 
47 
48 #include "linux_compat.h"
49 #include "rio_linux.h"
50 #include "pkt.h"
51 #include "daemon.h"
52 #include "rio.h"
53 #include "riospace.h"
54 #include "cmdpkt.h"
55 #include "map.h"
56 #include "rup.h"
57 #include "port.h"
58 #include "riodrvr.h"
59 #include "rioinfo.h"
60 #include "func.h"
61 #include "errors.h"
62 #include "pci.h"
63 
64 #include "parmmap.h"
65 #include "unixrup.h"
66 #include "board.h"
67 #include "host.h"
68 #include "phb.h"
69 #include "link.h"
70 #include "cmdblk.h"
71 #include "route.h"
72 
73 static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
74 
75 static const unsigned char RIOAtVec2Ctrl[] = {
76 	/* 0 */ INTERRUPT_DISABLE,
77 	/* 1 */ INTERRUPT_DISABLE,
78 	/* 2 */ INTERRUPT_DISABLE,
79 	/* 3 */ INTERRUPT_DISABLE,
80 	/* 4 */ INTERRUPT_DISABLE,
81 	/* 5 */ INTERRUPT_DISABLE,
82 	/* 6 */ INTERRUPT_DISABLE,
83 	/* 7 */ INTERRUPT_DISABLE,
84 	/* 8 */ INTERRUPT_DISABLE,
85 	/* 9 */ IRQ_9 | INTERRUPT_ENABLE,
86 	/* 10 */ INTERRUPT_DISABLE,
87 	/* 11 */ IRQ_11 | INTERRUPT_ENABLE,
88 	/* 12 */ IRQ_12 | INTERRUPT_ENABLE,
89 	/* 13 */ INTERRUPT_DISABLE,
90 	/* 14 */ INTERRUPT_DISABLE,
91 	/* 15 */ IRQ_15 | INTERRUPT_ENABLE
92 };
93 
94 /**
95  *	RIOBootCodeRTA		-	Load RTA boot code
96  *	@p: RIO to load
97  *	@rbp: Download descriptor
98  *
99  *	Called when the user process initiates booting of the card firmware.
100  *	Lads the firmware
101  */
102 
RIOBootCodeRTA(struct rio_info * p,struct DownLoad * rbp)103 int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
104 {
105 	int offset;
106 
107 	func_enter();
108 
109 	rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
110 
111 	/*
112 	 ** Check that we have set asside enough memory for this
113 	 */
114 	if (rbp->Count > SIXTY_FOUR_K) {
115 		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
116 		p->RIOError.Error = HOST_FILE_TOO_LARGE;
117 		func_exit();
118 		return -ENOMEM;
119 	}
120 
121 	if (p->RIOBooting) {
122 		rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
123 		p->RIOError.Error = BOOT_IN_PROGRESS;
124 		func_exit();
125 		return -EBUSY;
126 	}
127 
128 	/*
129 	 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
130 	 ** so calculate how far we have to move the data up the buffer
131 	 ** to achieve this.
132 	 */
133 	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
134 
135 	/*
136 	 ** Be clean, and clear the 'unused' portion of the boot buffer,
137 	 ** because it will (eventually) be part of the Rta run time environment
138 	 ** and so should be zeroed.
139 	 */
140 	memset(p->RIOBootPackets, 0, offset);
141 
142 	/*
143 	 ** Copy the data from user space into the array
144 	 */
145 
146 	if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
147 		rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
148 		p->RIOError.Error = COPYIN_FAILED;
149 		func_exit();
150 		return -EFAULT;
151 	}
152 
153 	/*
154 	 ** Make sure that our copy of the size includes that offset we discussed
155 	 ** earlier.
156 	 */
157 	p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
158 	p->RIOBootCount = rbp->Count;
159 
160 	func_exit();
161 	return 0;
162 }
163 
164 /**
165  *	rio_start_card_running		-	host card start
166  *	@HostP: The RIO to kick off
167  *
168  *	Start a RIO processor unit running. Encapsulates the knowledge
169  *	of the card type.
170  */
171 
rio_start_card_running(struct Host * HostP)172 void rio_start_card_running(struct Host *HostP)
173 {
174 	switch (HostP->Type) {
175 	case RIO_AT:
176 		rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
177 		writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
178 		break;
179 	case RIO_PCI:
180 		/*
181 		 ** PCI is much the same as MCA. Everything is once again memory
182 		 ** mapped, so we are writing to memory registers instead of io
183 		 ** ports.
184 		 */
185 		rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
186 		writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
187 		break;
188 	default:
189 		rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
190 		break;
191 	}
192 	return;
193 }
194 
195 /*
196 ** Load in the host boot code - load it directly onto all halted hosts
197 ** of the correct type.
198 **
199 ** Put your rubber pants on before messing with this code - even the magic
200 ** numbers have trouble understanding what they are doing here.
201 */
202 
RIOBootCodeHOST(struct rio_info * p,struct DownLoad * rbp)203 int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
204 {
205 	struct Host *HostP;
206 	u8 __iomem *Cad;
207 	PARM_MAP __iomem *ParmMapP;
208 	int RupN;
209 	int PortN;
210 	unsigned int host;
211 	u8 __iomem *StartP;
212 	u8 __iomem *DestP;
213 	int wait_count;
214 	u16 OldParmMap;
215 	u16 offset;		/* It is very important that this is a u16 */
216 	u8 *DownCode = NULL;
217 	unsigned long flags;
218 
219 	HostP = NULL;		/* Assure the compiler we've initialized it */
220 
221 
222 	/* Walk the hosts */
223 	for (host = 0; host < p->RIONumHosts; host++) {
224 		rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
225 		HostP = &p->RIOHosts[host];
226 
227 		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
228 
229 		/* Don't boot hosts already running */
230 		if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
231 			rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
232 			continue;
233 		}
234 
235 		/*
236 		 ** Grab a pointer to the card (ioremapped)
237 		 */
238 		Cad = HostP->Caddr;
239 
240 		/*
241 		 ** We are going to (try) and load in rbp->Count bytes.
242 		 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
243 		 ** Therefore, we need to start copying at address
244 		 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
245 		 */
246 		StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
247 
248 		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
249 		rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
250 		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
251 		rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
252 
253 		/* Make sure it fits */
254 		if (p->RIOConf.HostLoadBase < rbp->Count) {
255 			rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
256 			p->RIOError.Error = HOST_FILE_TOO_LARGE;
257 			func_exit();
258 			return -EFBIG;
259 		}
260 		/*
261 		 ** Ensure that the host really is stopped.
262 		 ** Disable it's external bus & twang its reset line.
263 		 */
264 		RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
265 
266 		/*
267 		 ** Copy the data directly from user space to the SRAM.
268 		 ** This ain't going to be none too clever if the download
269 		 ** code is bigger than this segment.
270 		 */
271 		rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
272 
273 		/* Buffer to local memory as we want to use I/O space and
274 		   some cards only do 8 or 16 bit I/O */
275 
276 		DownCode = vmalloc(rbp->Count);
277 		if (!DownCode) {
278 			p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
279 			func_exit();
280 			return -ENOMEM;
281 		}
282 		if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
283 			kfree(DownCode);
284 			p->RIOError.Error = COPYIN_FAILED;
285 			func_exit();
286 			return -EFAULT;
287 		}
288 		HostP->Copy(DownCode, StartP, rbp->Count);
289 		vfree(DownCode);
290 
291 		rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
292 
293 		/*
294 		 **                     S T O P !
295 		 **
296 		 ** Upto this point the code has been fairly rational, and possibly
297 		 ** even straight forward. What follows is a pile of crud that will
298 		 ** magically turn into six bytes of transputer assembler. Normally
299 		 ** you would expect an array or something, but, being me, I have
300 		 ** chosen [been told] to use a technique whereby the startup code
301 		 ** will be correct if we change the loadbase for the code. Which
302 		 ** brings us onto another issue - the loadbase is the *end* of the
303 		 ** code, not the start.
304 		 **
305 		 ** If I were you I wouldn't start from here.
306 		 */
307 
308 		/*
309 		 ** We now need to insert a short boot section into
310 		 ** the memory at the end of Sram2. This is normally (de)composed
311 		 ** of the last eight bytes of the download code. The
312 		 ** download has been assembled/compiled to expect to be
313 		 ** loaded from 0x7FFF downwards. We have loaded it
314 		 ** at some other address. The startup code goes into the small
315 		 ** ram window at Sram2, in the last 8 bytes, which are really
316 		 ** at addresses 0x7FF8-0x7FFF.
317 		 **
318 		 ** If the loadbase is, say, 0x7C00, then we need to branch to
319 		 ** address 0x7BFE to run the host.bin startup code. We assemble
320 		 ** this jump manually.
321 		 **
322 		 ** The two byte sequence 60 08 is loaded into memory at address
323 		 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
324 		 ** which adds '0' to the .O register, complements .O, and then shifts
325 		 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
326 		 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
327 		 ** location. Now, the branch starts from the value of .PC (or .IP or
328 		 ** whatever the bloody register is called on this chip), and the .PC
329 		 ** will be pointing to the location AFTER the branch, in this case
330 		 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
331 		 **
332 		 ** A long branch is coded at 0x7FF8. This consists of loading a four
333 		 ** byte offset into .O using nfix (as above) and pfix operators. The
334 		 ** pfix operates in exactly the same way as the nfix operator, but
335 		 ** without the complement operation. The offset, of course, must be
336 		 ** relative to the address of the byte AFTER the branch instruction,
337 		 ** which will be (urm) 0x7FFC, so, our final destination of the branch
338 		 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
339 		 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
340 		 ** is the first byte of the initial two byte short local branch of the
341 		 ** download code).
342 		 **
343 		 ** To code a jump from 0x7FFC (which is where the branch will start
344 		 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
345 		 ** 0x7BFE.
346 		 ** This will be coded as four bytes:
347 		 ** 60 2C 20 02
348 		 ** being nfix .O+0
349 		 **        pfix .O+C
350 		 **        pfix .O+0
351 		 **        jump .O+2
352 		 **
353 		 ** The nfix operator is used, so that the startup code will be
354 		 ** compatible with the whole Tp family. (lies, damn lies, it'll never
355 		 ** work in a month of Sundays).
356 		 **
357 		 ** The nfix nyble is the 1s complement of the nyble value you
358 		 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
359 		 */
360 
361 
362 		/*
363 		 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
364 		 ** to 0x7FFE at reset time, and starts executing. This is
365 		 ** a short branch to 0x7FF8, where a long branch is coded.
366 		 */
367 
368 		DestP = &Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */
369 
370 #define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
371 #define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
372 #define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O      */
373 
374 		/*
375 		 ** 0x7FFC is the address of the location following the last byte of
376 		 ** the four byte jump instruction.
377 		 ** READ THE ABOVE COMMENTS
378 		 **
379 		 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
380 		 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
381 		 ** cos I don't understand 2's complement).
382 		 */
383 		offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
384 
385 		writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
386 		writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
387 		writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
388 		writeb(JUMP(offset & 0xF), DestP + 3);
389 
390 		writeb(NFIX(0), DestP + 6);
391 		writeb(JUMP(8), DestP + 7);
392 
393 		rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
394 		rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
395 
396 		/*
397 		 ** Flag what is going on
398 		 */
399 		HostP->Flags &= ~RUN_STATE;
400 		HostP->Flags |= RC_STARTUP;
401 
402 		/*
403 		 ** Grab a copy of the current ParmMap pointer, so we
404 		 ** can tell when it has changed.
405 		 */
406 		OldParmMap = readw(&HostP->__ParmMapR);
407 
408 		rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
409 
410 		/*
411 		 ** And start it running (I hope).
412 		 ** As there is nothing dodgy or obscure about the
413 		 ** above code, this is guaranteed to work every time.
414 		 */
415 		rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
416 
417 		rio_start_card_running(HostP);
418 
419 		rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
420 
421 		/*
422 		 ** Now, wait for upto five seconds for the Tp to setup the parmmap
423 		 ** pointer:
424 		 */
425 		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
426 			rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
427 			mdelay(100);
428 
429 		}
430 
431 		/*
432 		 ** If the parmmap pointer is unchanged, then the host code
433 		 ** has crashed & burned in a really spectacular way
434 		 */
435 		if (readw(&HostP->__ParmMapR) == OldParmMap) {
436 			rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
437 			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
438 			HostP->Flags &= ~RUN_STATE;
439 			HostP->Flags |= RC_STUFFED;
440 			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
441 			continue;
442 		}
443 
444 		rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
445 
446 		/*
447 		 ** Well, the board thought it was OK, and setup its parmmap
448 		 ** pointer. For the time being, we will pretend that this
449 		 ** board is running, and check out what the error flag says.
450 		 */
451 
452 		/*
453 		 ** Grab a 32 bit pointer to the parmmap structure
454 		 */
455 		ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
456 		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
457 		ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
458 		rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
459 
460 		/*
461 		 ** The links entry should be 0xFFFF; we set it up
462 		 ** with a mask to say how many PHBs to use, and
463 		 ** which links to use.
464 		 */
465 		if (readw(&ParmMapP->links) != 0xFFFF) {
466 			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
467 			rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
468 			HostP->Flags &= ~RUN_STATE;
469 			HostP->Flags |= RC_STUFFED;
470 			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
471 			continue;
472 		}
473 
474 		writew(RIO_LINK_ENABLE, &ParmMapP->links);
475 
476 		/*
477 		 ** now wait for the card to set all the parmmap->XXX stuff
478 		 ** this is a wait of upto two seconds....
479 		 */
480 		rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
481 		HostP->timeout_id = 0;
482 		for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
483 			rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
484 			mdelay(100);
485 		}
486 		rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
487 
488 		if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
489 			rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
490 			rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
491 			HostP->Flags &= ~RUN_STATE;
492 			HostP->Flags |= RC_STUFFED;
493 			RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
494 			continue;
495 		}
496 
497 		rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
498 
499 		/*
500 		 ** It runs! It runs!
501 		 */
502 		rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
503 
504 		/*
505 		 ** set the time period between interrupts.
506 		 */
507 		writew(p->RIOConf.Timer, &ParmMapP->timer);
508 
509 		/*
510 		 ** Translate all the 16 bit pointers in the __ParmMapR into
511 		 ** 32 bit pointers for the driver in ioremap space.
512 		 */
513 		HostP->ParmMapP = ParmMapP;
514 		HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
515 		HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
516 		HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
517 		HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
518 
519 		/*
520 		 ** point the UnixRups at the real Rups
521 		 */
522 		for (RupN = 0; RupN < MAX_RUP; RupN++) {
523 			HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
524 			HostP->UnixRups[RupN].Id = RupN + 1;
525 			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
526 			spin_lock_init(&HostP->UnixRups[RupN].RupLock);
527 		}
528 
529 		for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
530 			HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
531 			HostP->UnixRups[RupN + MAX_RUP].Id = 0;
532 			HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
533 			spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
534 		}
535 
536 		/*
537 		 ** point the PortP->Phbs at the real Phbs
538 		 */
539 		for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
540 			if (p->RIOPortp[PortN]->HostP == HostP) {
541 				struct Port *PortP = p->RIOPortp[PortN];
542 				struct PHB __iomem *PhbP;
543 				/* int oldspl; */
544 
545 				if (!PortP->Mapped)
546 					continue;
547 
548 				PhbP = &HostP->PhbP[PortP->HostPort];
549 				rio_spin_lock_irqsave(&PortP->portSem, flags);
550 
551 				PortP->PhbP = PhbP;
552 
553 				PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
554 				PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
555 				PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
556 				PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
557 				PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
558 				PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
559 
560 				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
561 				/*
562 				 ** point the UnixRup at the base SysPort
563 				 */
564 				if (!(PortN % PORTS_PER_RTA))
565 					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
566 			}
567 		}
568 
569 		rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
570 		/*
571 		 ** last thing - show the world that everything is in place
572 		 */
573 		HostP->Flags &= ~RUN_STATE;
574 		HostP->Flags |= RC_RUNNING;
575 	}
576 	/*
577 	 ** MPX always uses a poller. This is actually patched into the system
578 	 ** configuration and called directly from each clock tick.
579 	 **
580 	 */
581 	p->RIOPolling = 1;
582 
583 	p->RIOSystemUp++;
584 
585 	rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
586 	func_exit();
587 	return 0;
588 }
589 
590 
591 
592 /**
593  *	RIOBootRup		-	Boot an RTA
594  *	@p: rio we are working with
595  *	@Rup: Rup number
596  *	@HostP: host object
597  *	@PacketP: packet to use
598  *
599  *	If we have successfully processed this boot, then
600  *	return 1. If we havent, then return 0.
601  */
602 
RIOBootRup(struct rio_info * p,unsigned int Rup,struct Host * HostP,struct PKT __iomem * PacketP)603 int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
604 {
605 	struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
606 	struct PktCmd_M *PktReplyP;
607 	struct CmdBlk *CmdBlkP;
608 	unsigned int sequence;
609 
610 	/*
611 	 ** If we haven't been told what to boot, we can't boot it.
612 	 */
613 	if (p->RIONumBootPkts == 0) {
614 		rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
615 		return 0;
616 	}
617 
618 	/*
619 	 ** Special case of boot completed - if we get one of these then we
620 	 ** don't need a command block. For all other cases we do, so handle
621 	 ** this first and then get a command block, then handle every other
622 	 ** case, relinquishing the command block if disaster strikes!
623 	 */
624 	if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
625 		return RIOBootComplete(p, HostP, Rup, PktCmdP);
626 
627 	/*
628 	 ** Try to allocate a command block. This is in kernel space
629 	 */
630 	if (!(CmdBlkP = RIOGetCmdBlk())) {
631 		rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
632 		return 0;
633 	}
634 
635 	/*
636 	 ** Fill in the default info on the command block
637 	 */
638 	CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
639 	CmdBlkP->Packet.dest_port = BOOT_RUP;
640 	CmdBlkP->Packet.src_unit = 0;
641 	CmdBlkP->Packet.src_port = BOOT_RUP;
642 
643 	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
644 	PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
645 
646 	/*
647 	 ** process COMMANDS on the boot rup!
648 	 */
649 	if (readb(&PacketP->len) & PKT_CMD_BIT) {
650 		/*
651 		 ** We only expect one type of command - a BOOT_REQUEST!
652 		 */
653 		if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
654 			rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
655 			RIOFreeCmdBlk(CmdBlkP);
656 			return 1;
657 		}
658 
659 		/*
660 		 ** Build a Boot Sequence command block
661 		 **
662 		 ** We no longer need to use "Boot Mode", we'll always allow
663 		 ** boot requests - the boot will not complete if the device
664 		 ** appears in the bindings table.
665 		 **
666 		 ** We'll just (always) set the command field in packet reply
667 		 ** to allow an attempted boot sequence :
668 		 */
669 		PktReplyP->Command = BOOT_SEQUENCE;
670 
671 		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
672 		PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
673 		PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
674 
675 		CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
676 
677 		memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
678 
679 		rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
680 
681 		/*
682 		 ** If this host is in slave mode, send the RTA an invalid boot
683 		 ** sequence command block to force it to kill the boot. We wait
684 		 ** for half a second before sending this packet to prevent the RTA
685 		 ** attempting to boot too often. The master host should then grab
686 		 ** the RTA and make it its own.
687 		 */
688 		p->RIOBooting++;
689 		RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
690 		return 1;
691 	}
692 
693 	/*
694 	 ** It is a request for boot data.
695 	 */
696 	sequence = readw(&PktCmdP->Sequence);
697 
698 	rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
699 
700 	if (sequence >= p->RIONumBootPkts) {
701 		rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
702 	}
703 
704 	PktReplyP->Sequence = sequence;
705 	memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
706 	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
707 	RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
708 	return 1;
709 }
710 
711 /**
712  *	RIOBootComplete		-	RTA boot is done
713  *	@p: RIO we are working with
714  *	@HostP: Host structure
715  *	@Rup: RUP being used
716  *	@PktCmdP: Packet command that was used
717  *
718  *	This function is called when an RTA been booted.
719  *	If booted by a host, HostP->HostUniqueNum is the booting host.
720  *	If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
721  *	RtaUniq is the booted RTA.
722  */
723 
RIOBootComplete(struct rio_info * p,struct Host * HostP,unsigned int Rup,struct PktCmd __iomem * PktCmdP)724 static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
725 {
726 	struct Map *MapP = NULL;
727 	struct Map *MapP2 = NULL;
728 	int Flag;
729 	int found;
730 	int host, rta;
731 	int EmptySlot = -1;
732 	int entry, entry2;
733 	char *MyType, *MyName;
734 	unsigned int MyLink;
735 	unsigned short RtaType;
736 	u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
737 
738 	p->RIOBooting = 0;
739 
740 	rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
741 
742 	/*
743 	 ** Determine type of unit (16/8 port RTA).
744 	 */
745 
746 	RtaType = GetUnitType(RtaUniq);
747 	if (Rup >= (unsigned short) MAX_RUP)
748 		rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
749 	else
750 		rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
751 
752 	rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
753 
754 	if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
755 		rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
756 		return 1;
757 	}
758 
759 	/*
760 	 ** If this RTA has just booted an RTA which doesn't belong to this
761 	 ** system, or the system is in slave mode, do not attempt to create
762 	 ** a new table entry for it.
763 	 */
764 
765 	if (!RIOBootOk(p, HostP, RtaUniq)) {
766 		MyLink = readb(&PktCmdP->LinkNum);
767 		if (Rup < (unsigned short) MAX_RUP) {
768 			/*
769 			 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
770 			 ** to hold off further attempts to boot on this link for 30
771 			 ** seconds.
772 			 */
773 			if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
774 				rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
775 			}
776 		} else
777 			/*
778 			 ** RtaUniq was booted by this host. Set the booting link
779 			 ** to hold off for 30 seconds to give another unit a
780 			 ** chance to boot it.
781 			 */
782 			writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
783 		rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
784 		return 1;
785 	}
786 
787 	/*
788 	 ** Check for a SLOT_IN_USE entry for this RTA attached to the
789 	 ** current host card in the driver table.
790 	 **
791 	 ** If it exists, make a note that we have booted it. Other parts of
792 	 ** the driver are interested in this information at a later date,
793 	 ** in particular when the booting RTA asks for an ID for this unit,
794 	 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
795 	 ** to force an open on any ports that where previously open on this
796 	 ** unit.
797 	 */
798 	for (entry = 0; entry < MAX_RUP; entry++) {
799 		unsigned int sysport;
800 
801 		if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
802 			HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
803 			if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
804 				if (sysport < p->RIOFirstPortsBooted)
805 					p->RIOFirstPortsBooted = sysport;
806 				if (sysport > p->RIOLastPortsBooted)
807 					p->RIOLastPortsBooted = sysport;
808 				/*
809 				 ** For a 16 port RTA, check the second bank of 8 ports
810 				 */
811 				if (RtaType == TYPE_RTA16) {
812 					entry2 = HostP->Mapping[entry].ID2 - 1;
813 					HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
814 					sysport = HostP->Mapping[entry2].SysPort;
815 					if (sysport < p->RIOFirstPortsBooted)
816 						p->RIOFirstPortsBooted = sysport;
817 					if (sysport > p->RIOLastPortsBooted)
818 						p->RIOLastPortsBooted = sysport;
819 				}
820 			}
821 			if (RtaType == TYPE_RTA16)
822 				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
823 			else
824 				rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
825 			return 1;
826 		}
827 	}
828 
829 	rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
830 
831 	if (Rup >= (unsigned short) MAX_RUP) {
832 		/*
833 		 ** It was a host that did the booting
834 		 */
835 		MyType = "Host";
836 		MyName = HostP->Name;
837 	} else {
838 		/*
839 		 ** It was an RTA that did the booting
840 		 */
841 		MyType = "RTA";
842 		MyName = HostP->Mapping[Rup].Name;
843 	}
844 	MyLink = readb(&PktCmdP->LinkNum);
845 
846 	/*
847 	 ** There is no SLOT_IN_USE entry for this RTA attached to the current
848 	 ** host card in the driver table.
849 	 **
850 	 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
851 	 ** current host card in the driver table.
852 	 **
853 	 ** If we find one, then we re-use that slot.
854 	 */
855 	for (entry = 0; entry < MAX_RUP; entry++) {
856 		if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
857 			if (RtaType == TYPE_RTA16) {
858 				entry2 = HostP->Mapping[entry].ID2 - 1;
859 				if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
860 					rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
861 				else
862 					continue;
863 			} else
864 				rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
865 			if (!p->RIONoMessage)
866 				printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
867 			return 1;
868 		}
869 	}
870 
871 	/*
872 	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
873 	 ** attached to the current host card in the driver table.
874 	 **
875 	 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
876 	 ** host for this RTA in the driver table.
877 	 **
878 	 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
879 	 ** entry from the other host and add it to this host (using some of
880 	 ** the functions from table.c which do this).
881 	 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
882 	 ** following scenario:
883 	 **
884 	 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
885 	 **   in table)
886 	 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
887 	 **   entries)
888 	 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
889 	 ** + Unplug RTA and plug back into host A.
890 	 ** + Configure RTA on host A. We now have the same RTA configured
891 	 **   with different ports on two different hosts.
892 	 */
893 	rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
894 	found = 0;
895 	Flag = 0;		/* Convince the compiler this variable is initialized */
896 	for (host = 0; !found && (host < p->RIONumHosts); host++) {
897 		for (rta = 0; rta < MAX_RUP; rta++) {
898 			if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
899 				Flag = p->RIOHosts[host].Mapping[rta].Flags;
900 				MapP = &p->RIOHosts[host].Mapping[rta];
901 				if (RtaType == TYPE_RTA16) {
902 					MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
903 					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
904 				} else
905 					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
906 				found = 1;
907 				break;
908 			}
909 		}
910 	}
911 
912 	/*
913 	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
914 	 ** attached to the current host card in the driver table.
915 	 **
916 	 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
917 	 ** another host for this RTA in the driver table...
918 	 **
919 	 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
920 	 */
921 	if (!MapP) {
922 		rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
923 		for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
924 			rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
925 
926 			if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
927 				MapP = &p->RIOSavedTable[rta];
928 				Flag = p->RIOSavedTable[rta].Flags;
929 				if (RtaType == TYPE_RTA16) {
930 					for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
931 						if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
932 							break;
933 					}
934 					MapP2 = &p->RIOSavedTable[entry2];
935 					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
936 				} else
937 					rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
938 				break;
939 			}
940 		}
941 	}
942 
943 	/*
944 	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
945 	 ** attached to the current host card in the driver table.
946 	 **
947 	 ** We may have found a SLOT_IN_USE entry on another host for this
948 	 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
949 	 ** on another host for this RTA in the driver table.
950 	 **
951 	 ** Check the driver table for room to fit this newly discovered RTA.
952 	 ** RIOFindFreeID() first looks for free slots and if it does not
953 	 ** find any free slots it will then attempt to oust any
954 	 ** tentative entry in the table.
955 	 */
956 	EmptySlot = 1;
957 	if (RtaType == TYPE_RTA16) {
958 		if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
959 			RIODefaultName(p, HostP, entry);
960 			rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
961 			EmptySlot = 0;
962 		}
963 	} else {
964 		if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
965 			RIODefaultName(p, HostP, entry);
966 			rio_fill_host_slot(entry, 0, RtaUniq, HostP);
967 			EmptySlot = 0;
968 		}
969 	}
970 
971 	/*
972 	 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
973 	 ** attached to the current host card in the driver table.
974 	 **
975 	 ** If we found a SLOT_IN_USE entry on another host for this
976 	 ** RTA in the config or driver table, and there are enough free
977 	 ** slots in the driver table, then we need to move it over and
978 	 ** delete it from the other host.
979 	 ** If we found a SLOT_TENTATIVE entry on another host for this
980 	 ** RTA in the driver table, just delete the other host entry.
981 	 */
982 	if (EmptySlot == 0) {
983 		if (MapP) {
984 			if (Flag & SLOT_IN_USE) {
985 				rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
986 				HostP->Mapping[entry].SysPort = MapP->SysPort;
987 				memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
988 				HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
989 				RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
990 				if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
991 					p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
992 				if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
993 					p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
994 				rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
995 			} else {
996 				rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
997 				HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
998 			}
999 			if (RtaType == TYPE_RTA16) {
1000 				if (Flag & SLOT_IN_USE) {
1001 					HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1002 					HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1003 					/*
1004 					 ** Map second block of ttys for 16 port RTA
1005 					 */
1006 					RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1007 					if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1008 						p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1009 					if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1010 						p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1011 					rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1012 				} else
1013 					HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1014 				memset(MapP2, 0, sizeof(struct Map));
1015 			}
1016 			memset(MapP, 0, sizeof(struct Map));
1017 			if (!p->RIONoMessage)
1018 				printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1019 		} else if (!p->RIONoMessage)
1020 			printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1021 		RIOSetChange(p);
1022 		return 1;
1023 	}
1024 
1025 	/*
1026 	 ** There is no room in the driver table to make an entry for the
1027 	 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1028 	 ** so we can ignore it's ID requests.
1029 	 */
1030 	if (!p->RIONoMessage)
1031 		printk("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1032 	for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1033 		if (HostP->ExtraUnits[entry] == RtaUniq) {
1034 			/*
1035 			 ** already got it!
1036 			 */
1037 			return 1;
1038 		}
1039 	}
1040 	/*
1041 	 ** If there is room, add the unit to the list of extras
1042 	 */
1043 	if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1044 		HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1045 	return 1;
1046 }
1047 
1048 
1049 /*
1050 ** If the RTA or its host appears in the RIOBindTab[] structure then
1051 ** we mustn't boot the RTA and should return 0.
1052 ** This operation is slightly different from the other drivers for RIO
1053 ** in that this is designed to work with the new utilities
1054 ** not config.rio and is FAR SIMPLER.
1055 ** We no longer support the RIOBootMode variable. It is all done from the
1056 ** "boot/noboot" field in the rio.cf file.
1057 */
RIOBootOk(struct rio_info * p,struct Host * HostP,unsigned long RtaUniq)1058 int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1059 {
1060 	int Entry;
1061 	unsigned int HostUniq = HostP->UniqueNum;
1062 
1063 	/*
1064 	 ** Search bindings table for RTA or its parent.
1065 	 ** If it exists, return 0, else 1.
1066 	 */
1067 	for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1068 		if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1069 			return 0;
1070 	}
1071 	return 1;
1072 }
1073 
1074 /*
1075 ** Make an empty slot tentative. If this is a 16 port RTA, make both
1076 ** slots tentative, and the second one RTA_SECOND_SLOT as well.
1077 */
1078 
rio_fill_host_slot(int entry,int entry2,unsigned int rta_uniq,struct Host * host)1079 void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1080 {
1081 	int link;
1082 
1083 	rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1084 
1085 	host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1086 	host->Mapping[entry].SysPort = NO_PORT;
1087 	host->Mapping[entry].RtaUniqueNum = rta_uniq;
1088 	host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1089 	host->Mapping[entry].ID = entry + 1;
1090 	host->Mapping[entry].ID2 = 0;
1091 	if (entry2) {
1092 		host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1093 		host->Mapping[entry2].SysPort = NO_PORT;
1094 		host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1095 		host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1096 		host->Mapping[entry2].Name[0] = '\0';
1097 		host->Mapping[entry2].ID = entry2 + 1;
1098 		host->Mapping[entry2].ID2 = entry + 1;
1099 		host->Mapping[entry].ID2 = entry2 + 1;
1100 	}
1101 	/*
1102 	 ** Must set these up, so that utilities show
1103 	 ** topology of 16 port RTAs correctly
1104 	 */
1105 	for (link = 0; link < LINKS_PER_UNIT; link++) {
1106 		host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1107 		host->Mapping[entry].Topology[link].Link = NO_LINK;
1108 		if (entry2) {
1109 			host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1110 			host->Mapping[entry2].Topology[link].Link = NO_LINK;
1111 		}
1112 	}
1113 }
1114