• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Real Time Clock interface for Linux
3  *
4  *	Copyright (C) 1996 Paul Gortmaker
5  *
6  *	This driver allows use of the real time clock (built into
7  *	nearly all computers) from user space. It exports the /dev/rtc
8  *	interface supporting various ioctl() and also the
9  *	/proc/driver/rtc pseudo-file for status information.
10  *
11  *	The ioctls can be used to set the interrupt behaviour and
12  *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13  *	interface can be used to make use of these timer interrupts,
14  *	be they interval or alarm based.
15  *
16  *	The /dev/rtc interface will block on reads until an interrupt
17  *	has been received. If a RTC interrupt has already happened,
18  *	it will output an unsigned long and then block. The output value
19  *	contains the interrupt status in the low byte and the number of
20  *	interrupts since the last read in the remaining high bytes. The
21  *	/dev/rtc interface can also be used with the select(2) call.
22  *
23  *	This program is free software; you can redistribute it and/or
24  *	modify it under the terms of the GNU General Public License
25  *	as published by the Free Software Foundation; either version
26  *	2 of the License, or (at your option) any later version.
27  *
28  *	Based on other minimal char device drivers, like Alan's
29  *	watchdog, Ted's random, etc. etc.
30  *
31  *	1.07	Paul Gortmaker.
32  *	1.08	Miquel van Smoorenburg: disallow certain things on the
33  *		DEC Alpha as the CMOS clock is also used for other things.
34  *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35  *	1.09a	Pete Zaitcev: Sun SPARC
36  *	1.09b	Jeff Garzik: Modularize, init cleanup
37  *	1.09c	Jeff Garzik: SMP cleanup
38  *	1.10	Paul Barton-Davis: add support for async I/O
39  *	1.10a	Andrea Arcangeli: Alpha updates
40  *	1.10b	Andrew Morton: SMP lock fix
41  *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42  *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43  *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44  *	1.11	Takashi Iwai: Kernel access functions
45  *			      rtc_register/rtc_unregister/rtc_control
46  *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47  *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48  *		CONFIG_HPET_EMULATE_RTC
49  *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50  *	1.12ac	Alan Cox: Allow read access to the day of week register
51  *	1.12b	David John: Remove calls to the BKL.
52  */
53 
54 #define RTC_VERSION		"1.12b"
55 
56 /*
57  *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58  *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59  *	design of the RTC, we don't want two different things trying to
60  *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61  *	this driver.)
62  */
63 
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sysctl.h>
78 #include <linux/wait.h>
79 #include <linux/bcd.h>
80 #include <linux/delay.h>
81 #include <linux/uaccess.h>
82 
83 #include <asm/current.h>
84 #include <asm/system.h>
85 
86 #ifdef CONFIG_X86
87 #include <asm/hpet.h>
88 #endif
89 
90 #ifdef CONFIG_SPARC32
91 #include <linux/of.h>
92 #include <linux/of_device.h>
93 #include <asm/io.h>
94 
95 static unsigned long rtc_port;
96 static int rtc_irq;
97 #endif
98 
99 #ifdef	CONFIG_HPET_EMULATE_RTC
100 #undef	RTC_IRQ
101 #endif
102 
103 #ifdef RTC_IRQ
104 static int rtc_has_irq = 1;
105 #endif
106 
107 #ifndef CONFIG_HPET_EMULATE_RTC
108 #define is_hpet_enabled()			0
109 #define hpet_set_alarm_time(hrs, min, sec)	0
110 #define hpet_set_periodic_freq(arg)		0
111 #define hpet_mask_rtc_irq_bit(arg)		0
112 #define hpet_set_rtc_irq_bit(arg)		0
113 #define hpet_rtc_timer_init()			do { } while (0)
114 #define hpet_rtc_dropped_irq()			0
115 #define hpet_register_irq_handler(h)		({ 0; })
116 #define hpet_unregister_irq_handler(h)		({ 0; })
117 #ifdef RTC_IRQ
hpet_rtc_interrupt(int irq,void * dev_id)118 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
119 {
120 	return 0;
121 }
122 #endif
123 #endif
124 
125 /*
126  *	We sponge a minor off of the misc major. No need slurping
127  *	up another valuable major dev number for this. If you add
128  *	an ioctl, make sure you don't conflict with SPARC's RTC
129  *	ioctls.
130  */
131 
132 static struct fasync_struct *rtc_async_queue;
133 
134 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
135 
136 #ifdef RTC_IRQ
137 static void rtc_dropped_irq(unsigned long data);
138 
139 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
140 #endif
141 
142 static ssize_t rtc_read(struct file *file, char __user *buf,
143 			size_t count, loff_t *ppos);
144 
145 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
147 
148 #ifdef RTC_IRQ
149 static unsigned int rtc_poll(struct file *file, poll_table *wait);
150 #endif
151 
152 static void get_rtc_alm_time(struct rtc_time *alm_tm);
153 #ifdef RTC_IRQ
154 static void set_rtc_irq_bit_locked(unsigned char bit);
155 static void mask_rtc_irq_bit_locked(unsigned char bit);
156 
set_rtc_irq_bit(unsigned char bit)157 static inline void set_rtc_irq_bit(unsigned char bit)
158 {
159 	spin_lock_irq(&rtc_lock);
160 	set_rtc_irq_bit_locked(bit);
161 	spin_unlock_irq(&rtc_lock);
162 }
163 
mask_rtc_irq_bit(unsigned char bit)164 static void mask_rtc_irq_bit(unsigned char bit)
165 {
166 	spin_lock_irq(&rtc_lock);
167 	mask_rtc_irq_bit_locked(bit);
168 	spin_unlock_irq(&rtc_lock);
169 }
170 #endif
171 
172 #ifdef CONFIG_PROC_FS
173 static int rtc_proc_open(struct inode *inode, struct file *file);
174 #endif
175 
176 /*
177  *	Bits in rtc_status. (6 bits of room for future expansion)
178  */
179 
180 #define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
181 #define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
182 
183 /*
184  * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185  * protected by the spin lock rtc_lock. However, ioctl can still disable the
186  * timer in rtc_status and then with del_timer after the interrupt has read
187  * rtc_status but before mod_timer is called, which would then reenable the
188  * timer (but you would need to have an awful timing before you'd trip on it)
189  */
190 static unsigned long rtc_status;	/* bitmapped status byte.	*/
191 static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
192 static unsigned long rtc_irq_data;	/* our output to the world	*/
193 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
194 
195 #ifdef RTC_IRQ
196 /*
197  * rtc_task_lock nests inside rtc_lock.
198  */
199 static DEFINE_SPINLOCK(rtc_task_lock);
200 static rtc_task_t *rtc_callback;
201 #endif
202 
203 /*
204  *	If this driver ever becomes modularised, it will be really nice
205  *	to make the epoch retain its value across module reload...
206  */
207 
208 static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
209 
210 static const unsigned char days_in_mo[] =
211 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212 
213 /*
214  * Returns true if a clock update is in progress
215  */
rtc_is_updating(void)216 static inline unsigned char rtc_is_updating(void)
217 {
218 	unsigned long flags;
219 	unsigned char uip;
220 
221 	spin_lock_irqsave(&rtc_lock, flags);
222 	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
223 	spin_unlock_irqrestore(&rtc_lock, flags);
224 	return uip;
225 }
226 
227 #ifdef RTC_IRQ
228 /*
229  *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230  *	but there is possibility of conflicting with the set_rtc_mmss()
231  *	call (the rtc irq and the timer irq can easily run at the same
232  *	time in two different CPUs). So we need to serialize
233  *	accesses to the chip with the rtc_lock spinlock that each
234  *	architecture should implement in the timer code.
235  *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236  */
237 
rtc_interrupt(int irq,void * dev_id)238 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
239 {
240 	/*
241 	 *	Can be an alarm interrupt, update complete interrupt,
242 	 *	or a periodic interrupt. We store the status in the
243 	 *	low byte and the number of interrupts received since
244 	 *	the last read in the remainder of rtc_irq_data.
245 	 */
246 
247 	spin_lock(&rtc_lock);
248 	rtc_irq_data += 0x100;
249 	rtc_irq_data &= ~0xff;
250 	if (is_hpet_enabled()) {
251 		/*
252 		 * In this case it is HPET RTC interrupt handler
253 		 * calling us, with the interrupt information
254 		 * passed as arg1, instead of irq.
255 		 */
256 		rtc_irq_data |= (unsigned long)irq & 0xF0;
257 	} else {
258 		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259 	}
260 
261 	if (rtc_status & RTC_TIMER_ON)
262 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
263 
264 	spin_unlock(&rtc_lock);
265 
266 	/* Now do the rest of the actions */
267 	spin_lock(&rtc_task_lock);
268 	if (rtc_callback)
269 		rtc_callback->func(rtc_callback->private_data);
270 	spin_unlock(&rtc_task_lock);
271 	wake_up_interruptible(&rtc_wait);
272 
273 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
274 
275 	return IRQ_HANDLED;
276 }
277 #endif
278 
279 /*
280  * sysctl-tuning infrastructure.
281  */
282 static ctl_table rtc_table[] = {
283 	{
284 		.ctl_name	= CTL_UNNUMBERED,
285 		.procname	= "max-user-freq",
286 		.data		= &rtc_max_user_freq,
287 		.maxlen		= sizeof(int),
288 		.mode		= 0644,
289 		.proc_handler	= &proc_dointvec,
290 	},
291 	{ .ctl_name = 0 }
292 };
293 
294 static ctl_table rtc_root[] = {
295 	{
296 		.ctl_name	= CTL_UNNUMBERED,
297 		.procname	= "rtc",
298 		.mode		= 0555,
299 		.child		= rtc_table,
300 	},
301 	{ .ctl_name = 0 }
302 };
303 
304 static ctl_table dev_root[] = {
305 	{
306 		.ctl_name	= CTL_DEV,
307 		.procname	= "dev",
308 		.mode		= 0555,
309 		.child		= rtc_root,
310 	},
311 	{ .ctl_name = 0 }
312 };
313 
314 static struct ctl_table_header *sysctl_header;
315 
init_sysctl(void)316 static int __init init_sysctl(void)
317 {
318     sysctl_header = register_sysctl_table(dev_root);
319     return 0;
320 }
321 
cleanup_sysctl(void)322 static void __exit cleanup_sysctl(void)
323 {
324     unregister_sysctl_table(sysctl_header);
325 }
326 
327 /*
328  *	Now all the various file operations that we export.
329  */
330 
rtc_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)331 static ssize_t rtc_read(struct file *file, char __user *buf,
332 			size_t count, loff_t *ppos)
333 {
334 #ifndef RTC_IRQ
335 	return -EIO;
336 #else
337 	DECLARE_WAITQUEUE(wait, current);
338 	unsigned long data;
339 	ssize_t retval;
340 
341 	if (rtc_has_irq == 0)
342 		return -EIO;
343 
344 	/*
345 	 * Historically this function used to assume that sizeof(unsigned long)
346 	 * is the same in userspace and kernelspace.  This lead to problems
347 	 * for configurations with multiple ABIs such a the MIPS o32 and 64
348 	 * ABIs supported on the same kernel.  So now we support read of both
349 	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 	 * userspace ABI.
351 	 */
352 	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
353 		return -EINVAL;
354 
355 	add_wait_queue(&rtc_wait, &wait);
356 
357 	do {
358 		/* First make it right. Then make it fast. Putting this whole
359 		 * block within the parentheses of a while would be too
360 		 * confusing. And no, xchg() is not the answer. */
361 
362 		__set_current_state(TASK_INTERRUPTIBLE);
363 
364 		spin_lock_irq(&rtc_lock);
365 		data = rtc_irq_data;
366 		rtc_irq_data = 0;
367 		spin_unlock_irq(&rtc_lock);
368 
369 		if (data != 0)
370 			break;
371 
372 		if (file->f_flags & O_NONBLOCK) {
373 			retval = -EAGAIN;
374 			goto out;
375 		}
376 		if (signal_pending(current)) {
377 			retval = -ERESTARTSYS;
378 			goto out;
379 		}
380 		schedule();
381 	} while (1);
382 
383 	if (count == sizeof(unsigned int)) {
384 		retval = put_user(data,
385 				  (unsigned int __user *)buf) ?: sizeof(int);
386 	} else {
387 		retval = put_user(data,
388 				  (unsigned long __user *)buf) ?: sizeof(long);
389 	}
390 	if (!retval)
391 		retval = count;
392  out:
393 	__set_current_state(TASK_RUNNING);
394 	remove_wait_queue(&rtc_wait, &wait);
395 
396 	return retval;
397 #endif
398 }
399 
rtc_do_ioctl(unsigned int cmd,unsigned long arg,int kernel)400 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401 {
402 	struct rtc_time wtime;
403 
404 #ifdef RTC_IRQ
405 	if (rtc_has_irq == 0) {
406 		switch (cmd) {
407 		case RTC_AIE_OFF:
408 		case RTC_AIE_ON:
409 		case RTC_PIE_OFF:
410 		case RTC_PIE_ON:
411 		case RTC_UIE_OFF:
412 		case RTC_UIE_ON:
413 		case RTC_IRQP_READ:
414 		case RTC_IRQP_SET:
415 			return -EINVAL;
416 		};
417 	}
418 #endif
419 
420 	switch (cmd) {
421 #ifdef RTC_IRQ
422 	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
423 	{
424 		mask_rtc_irq_bit(RTC_AIE);
425 		return 0;
426 	}
427 	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
428 	{
429 		set_rtc_irq_bit(RTC_AIE);
430 		return 0;
431 	}
432 	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
433 	{
434 		/* can be called from isr via rtc_control() */
435 		unsigned long flags;
436 
437 		spin_lock_irqsave(&rtc_lock, flags);
438 		mask_rtc_irq_bit_locked(RTC_PIE);
439 		if (rtc_status & RTC_TIMER_ON) {
440 			rtc_status &= ~RTC_TIMER_ON;
441 			del_timer(&rtc_irq_timer);
442 		}
443 		spin_unlock_irqrestore(&rtc_lock, flags);
444 
445 		return 0;
446 	}
447 	case RTC_PIE_ON:	/* Allow periodic ints		*/
448 	{
449 		/* can be called from isr via rtc_control() */
450 		unsigned long flags;
451 
452 		/*
453 		 * We don't really want Joe User enabling more
454 		 * than 64Hz of interrupts on a multi-user machine.
455 		 */
456 		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
457 						(!capable(CAP_SYS_RESOURCE)))
458 			return -EACCES;
459 
460 		spin_lock_irqsave(&rtc_lock, flags);
461 		if (!(rtc_status & RTC_TIMER_ON)) {
462 			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463 					2*HZ/100);
464 			rtc_status |= RTC_TIMER_ON;
465 		}
466 		set_rtc_irq_bit_locked(RTC_PIE);
467 		spin_unlock_irqrestore(&rtc_lock, flags);
468 
469 		return 0;
470 	}
471 	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
472 	{
473 		mask_rtc_irq_bit(RTC_UIE);
474 		return 0;
475 	}
476 	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
477 	{
478 		set_rtc_irq_bit(RTC_UIE);
479 		return 0;
480 	}
481 #endif
482 	case RTC_ALM_READ:	/* Read the present alarm time */
483 	{
484 		/*
485 		 * This returns a struct rtc_time. Reading >= 0xc0
486 		 * means "don't care" or "match all". Only the tm_hour,
487 		 * tm_min, and tm_sec values are filled in.
488 		 */
489 		memset(&wtime, 0, sizeof(struct rtc_time));
490 		get_rtc_alm_time(&wtime);
491 		break;
492 	}
493 	case RTC_ALM_SET:	/* Store a time into the alarm */
494 	{
495 		/*
496 		 * This expects a struct rtc_time. Writing 0xff means
497 		 * "don't care" or "match all". Only the tm_hour,
498 		 * tm_min and tm_sec are used.
499 		 */
500 		unsigned char hrs, min, sec;
501 		struct rtc_time alm_tm;
502 
503 		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504 				   sizeof(struct rtc_time)))
505 			return -EFAULT;
506 
507 		hrs = alm_tm.tm_hour;
508 		min = alm_tm.tm_min;
509 		sec = alm_tm.tm_sec;
510 
511 		spin_lock_irq(&rtc_lock);
512 		if (hpet_set_alarm_time(hrs, min, sec)) {
513 			/*
514 			 * Fallthru and set alarm time in CMOS too,
515 			 * so that we will get proper value in RTC_ALM_READ
516 			 */
517 		}
518 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
519 							RTC_ALWAYS_BCD) {
520 			if (sec < 60)
521 				sec = bin2bcd(sec);
522 			else
523 				sec = 0xff;
524 
525 			if (min < 60)
526 				min = bin2bcd(min);
527 			else
528 				min = 0xff;
529 
530 			if (hrs < 24)
531 				hrs = bin2bcd(hrs);
532 			else
533 				hrs = 0xff;
534 		}
535 		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536 		CMOS_WRITE(min, RTC_MINUTES_ALARM);
537 		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538 		spin_unlock_irq(&rtc_lock);
539 
540 		return 0;
541 	}
542 	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
543 	{
544 		memset(&wtime, 0, sizeof(struct rtc_time));
545 		rtc_get_rtc_time(&wtime);
546 		break;
547 	}
548 	case RTC_SET_TIME:	/* Set the RTC */
549 	{
550 		struct rtc_time rtc_tm;
551 		unsigned char mon, day, hrs, min, sec, leap_yr;
552 		unsigned char save_control, save_freq_select;
553 		unsigned int yrs;
554 #ifdef CONFIG_MACH_DECSTATION
555 		unsigned int real_yrs;
556 #endif
557 
558 		if (!capable(CAP_SYS_TIME))
559 			return -EACCES;
560 
561 		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562 				   sizeof(struct rtc_time)))
563 			return -EFAULT;
564 
565 		yrs = rtc_tm.tm_year + 1900;
566 		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
567 		day = rtc_tm.tm_mday;
568 		hrs = rtc_tm.tm_hour;
569 		min = rtc_tm.tm_min;
570 		sec = rtc_tm.tm_sec;
571 
572 		if (yrs < 1970)
573 			return -EINVAL;
574 
575 		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
576 
577 		if ((mon > 12) || (day == 0))
578 			return -EINVAL;
579 
580 		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581 			return -EINVAL;
582 
583 		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584 			return -EINVAL;
585 
586 		yrs -= epoch;
587 		if (yrs > 255)		/* They are unsigned */
588 			return -EINVAL;
589 
590 		spin_lock_irq(&rtc_lock);
591 #ifdef CONFIG_MACH_DECSTATION
592 		real_yrs = yrs;
593 		yrs = 72;
594 
595 		/*
596 		 * We want to keep the year set to 73 until March
597 		 * for non-leap years, so that Feb, 29th is handled
598 		 * correctly.
599 		 */
600 		if (!leap_yr && mon < 3) {
601 			real_yrs--;
602 			yrs = 73;
603 		}
604 #endif
605 		/* These limits and adjustments are independent of
606 		 * whether the chip is in binary mode or not.
607 		 */
608 		if (yrs > 169) {
609 			spin_unlock_irq(&rtc_lock);
610 			return -EINVAL;
611 		}
612 		if (yrs >= 100)
613 			yrs -= 100;
614 
615 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616 		    || RTC_ALWAYS_BCD) {
617 			sec = bin2bcd(sec);
618 			min = bin2bcd(min);
619 			hrs = bin2bcd(hrs);
620 			day = bin2bcd(day);
621 			mon = bin2bcd(mon);
622 			yrs = bin2bcd(yrs);
623 		}
624 
625 		save_control = CMOS_READ(RTC_CONTROL);
626 		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627 		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628 		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
629 
630 #ifdef CONFIG_MACH_DECSTATION
631 		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632 #endif
633 		CMOS_WRITE(yrs, RTC_YEAR);
634 		CMOS_WRITE(mon, RTC_MONTH);
635 		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636 		CMOS_WRITE(hrs, RTC_HOURS);
637 		CMOS_WRITE(min, RTC_MINUTES);
638 		CMOS_WRITE(sec, RTC_SECONDS);
639 
640 		CMOS_WRITE(save_control, RTC_CONTROL);
641 		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
642 
643 		spin_unlock_irq(&rtc_lock);
644 		return 0;
645 	}
646 #ifdef RTC_IRQ
647 	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
648 	{
649 		return put_user(rtc_freq, (unsigned long __user *)arg);
650 	}
651 	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
652 	{
653 		int tmp = 0;
654 		unsigned char val;
655 		/* can be called from isr via rtc_control() */
656 		unsigned long flags;
657 
658 		/*
659 		 * The max we can do is 8192Hz.
660 		 */
661 		if ((arg < 2) || (arg > 8192))
662 			return -EINVAL;
663 		/*
664 		 * We don't really want Joe User generating more
665 		 * than 64Hz of interrupts on a multi-user machine.
666 		 */
667 		if (!kernel && (arg > rtc_max_user_freq) &&
668 					!capable(CAP_SYS_RESOURCE))
669 			return -EACCES;
670 
671 		while (arg > (1<<tmp))
672 			tmp++;
673 
674 		/*
675 		 * Check that the input was really a power of 2.
676 		 */
677 		if (arg != (1<<tmp))
678 			return -EINVAL;
679 
680 		rtc_freq = arg;
681 
682 		spin_lock_irqsave(&rtc_lock, flags);
683 		if (hpet_set_periodic_freq(arg)) {
684 			spin_unlock_irqrestore(&rtc_lock, flags);
685 			return 0;
686 		}
687 
688 		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689 		val |= (16 - tmp);
690 		CMOS_WRITE(val, RTC_FREQ_SELECT);
691 		spin_unlock_irqrestore(&rtc_lock, flags);
692 		return 0;
693 	}
694 #endif
695 	case RTC_EPOCH_READ:	/* Read the epoch.	*/
696 	{
697 		return put_user(epoch, (unsigned long __user *)arg);
698 	}
699 	case RTC_EPOCH_SET:	/* Set the epoch.	*/
700 	{
701 		/*
702 		 * There were no RTC clocks before 1900.
703 		 */
704 		if (arg < 1900)
705 			return -EINVAL;
706 
707 		if (!capable(CAP_SYS_TIME))
708 			return -EACCES;
709 
710 		epoch = arg;
711 		return 0;
712 	}
713 	default:
714 		return -ENOTTY;
715 	}
716 	return copy_to_user((void __user *)arg,
717 			    &wtime, sizeof wtime) ? -EFAULT : 0;
718 }
719 
rtc_ioctl(struct file * file,unsigned int cmd,unsigned long arg)720 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
721 {
722 	long ret;
723 	ret = rtc_do_ioctl(cmd, arg, 0);
724 	return ret;
725 }
726 
727 /*
728  *	We enforce only one user at a time here with the open/close.
729  *	Also clear the previous interrupt data on an open, and clean
730  *	up things on a close.
731  */
rtc_open(struct inode * inode,struct file * file)732 static int rtc_open(struct inode *inode, struct file *file)
733 {
734 	spin_lock_irq(&rtc_lock);
735 
736 	if (rtc_status & RTC_IS_OPEN)
737 		goto out_busy;
738 
739 	rtc_status |= RTC_IS_OPEN;
740 
741 	rtc_irq_data = 0;
742 	spin_unlock_irq(&rtc_lock);
743 	return 0;
744 
745 out_busy:
746 	spin_unlock_irq(&rtc_lock);
747 	return -EBUSY;
748 }
749 
rtc_fasync(int fd,struct file * filp,int on)750 static int rtc_fasync(int fd, struct file *filp, int on)
751 {
752 	return fasync_helper(fd, filp, on, &rtc_async_queue);
753 }
754 
rtc_release(struct inode * inode,struct file * file)755 static int rtc_release(struct inode *inode, struct file *file)
756 {
757 #ifdef RTC_IRQ
758 	unsigned char tmp;
759 
760 	if (rtc_has_irq == 0)
761 		goto no_irq;
762 
763 	/*
764 	 * Turn off all interrupts once the device is no longer
765 	 * in use, and clear the data.
766 	 */
767 
768 	spin_lock_irq(&rtc_lock);
769 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
770 		tmp = CMOS_READ(RTC_CONTROL);
771 		tmp &=  ~RTC_PIE;
772 		tmp &=  ~RTC_AIE;
773 		tmp &=  ~RTC_UIE;
774 		CMOS_WRITE(tmp, RTC_CONTROL);
775 		CMOS_READ(RTC_INTR_FLAGS);
776 	}
777 	if (rtc_status & RTC_TIMER_ON) {
778 		rtc_status &= ~RTC_TIMER_ON;
779 		del_timer(&rtc_irq_timer);
780 	}
781 	spin_unlock_irq(&rtc_lock);
782 
783 no_irq:
784 #endif
785 
786 	spin_lock_irq(&rtc_lock);
787 	rtc_irq_data = 0;
788 	rtc_status &= ~RTC_IS_OPEN;
789 	spin_unlock_irq(&rtc_lock);
790 
791 	return 0;
792 }
793 
794 #ifdef RTC_IRQ
rtc_poll(struct file * file,poll_table * wait)795 static unsigned int rtc_poll(struct file *file, poll_table *wait)
796 {
797 	unsigned long l;
798 
799 	if (rtc_has_irq == 0)
800 		return 0;
801 
802 	poll_wait(file, &rtc_wait, wait);
803 
804 	spin_lock_irq(&rtc_lock);
805 	l = rtc_irq_data;
806 	spin_unlock_irq(&rtc_lock);
807 
808 	if (l != 0)
809 		return POLLIN | POLLRDNORM;
810 	return 0;
811 }
812 #endif
813 
rtc_register(rtc_task_t * task)814 int rtc_register(rtc_task_t *task)
815 {
816 #ifndef RTC_IRQ
817 	return -EIO;
818 #else
819 	if (task == NULL || task->func == NULL)
820 		return -EINVAL;
821 	spin_lock_irq(&rtc_lock);
822 	if (rtc_status & RTC_IS_OPEN) {
823 		spin_unlock_irq(&rtc_lock);
824 		return -EBUSY;
825 	}
826 	spin_lock(&rtc_task_lock);
827 	if (rtc_callback) {
828 		spin_unlock(&rtc_task_lock);
829 		spin_unlock_irq(&rtc_lock);
830 		return -EBUSY;
831 	}
832 	rtc_status |= RTC_IS_OPEN;
833 	rtc_callback = task;
834 	spin_unlock(&rtc_task_lock);
835 	spin_unlock_irq(&rtc_lock);
836 	return 0;
837 #endif
838 }
839 EXPORT_SYMBOL(rtc_register);
840 
rtc_unregister(rtc_task_t * task)841 int rtc_unregister(rtc_task_t *task)
842 {
843 #ifndef RTC_IRQ
844 	return -EIO;
845 #else
846 	unsigned char tmp;
847 
848 	spin_lock_irq(&rtc_lock);
849 	spin_lock(&rtc_task_lock);
850 	if (rtc_callback != task) {
851 		spin_unlock(&rtc_task_lock);
852 		spin_unlock_irq(&rtc_lock);
853 		return -ENXIO;
854 	}
855 	rtc_callback = NULL;
856 
857 	/* disable controls */
858 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
859 		tmp = CMOS_READ(RTC_CONTROL);
860 		tmp &= ~RTC_PIE;
861 		tmp &= ~RTC_AIE;
862 		tmp &= ~RTC_UIE;
863 		CMOS_WRITE(tmp, RTC_CONTROL);
864 		CMOS_READ(RTC_INTR_FLAGS);
865 	}
866 	if (rtc_status & RTC_TIMER_ON) {
867 		rtc_status &= ~RTC_TIMER_ON;
868 		del_timer(&rtc_irq_timer);
869 	}
870 	rtc_status &= ~RTC_IS_OPEN;
871 	spin_unlock(&rtc_task_lock);
872 	spin_unlock_irq(&rtc_lock);
873 	return 0;
874 #endif
875 }
876 EXPORT_SYMBOL(rtc_unregister);
877 
rtc_control(rtc_task_t * task,unsigned int cmd,unsigned long arg)878 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
879 {
880 #ifndef RTC_IRQ
881 	return -EIO;
882 #else
883 	unsigned long flags;
884 	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
885 		return -EINVAL;
886 	spin_lock_irqsave(&rtc_task_lock, flags);
887 	if (rtc_callback != task) {
888 		spin_unlock_irqrestore(&rtc_task_lock, flags);
889 		return -ENXIO;
890 	}
891 	spin_unlock_irqrestore(&rtc_task_lock, flags);
892 	return rtc_do_ioctl(cmd, arg, 1);
893 #endif
894 }
895 EXPORT_SYMBOL(rtc_control);
896 
897 /*
898  *	The various file operations we support.
899  */
900 
901 static const struct file_operations rtc_fops = {
902 	.owner		= THIS_MODULE,
903 	.llseek		= no_llseek,
904 	.read		= rtc_read,
905 #ifdef RTC_IRQ
906 	.poll		= rtc_poll,
907 #endif
908 	.unlocked_ioctl	= rtc_ioctl,
909 	.open		= rtc_open,
910 	.release	= rtc_release,
911 	.fasync		= rtc_fasync,
912 };
913 
914 static struct miscdevice rtc_dev = {
915 	.minor		= RTC_MINOR,
916 	.name		= "rtc",
917 	.fops		= &rtc_fops,
918 };
919 
920 #ifdef CONFIG_PROC_FS
921 static const struct file_operations rtc_proc_fops = {
922 	.owner		= THIS_MODULE,
923 	.open		= rtc_proc_open,
924 	.read		= seq_read,
925 	.llseek		= seq_lseek,
926 	.release	= single_release,
927 };
928 #endif
929 
930 static resource_size_t rtc_size;
931 
rtc_request_region(resource_size_t size)932 static struct resource * __init rtc_request_region(resource_size_t size)
933 {
934 	struct resource *r;
935 
936 	if (RTC_IOMAPPED)
937 		r = request_region(RTC_PORT(0), size, "rtc");
938 	else
939 		r = request_mem_region(RTC_PORT(0), size, "rtc");
940 
941 	if (r)
942 		rtc_size = size;
943 
944 	return r;
945 }
946 
rtc_release_region(void)947 static void rtc_release_region(void)
948 {
949 	if (RTC_IOMAPPED)
950 		release_region(RTC_PORT(0), rtc_size);
951 	else
952 		release_mem_region(RTC_PORT(0), rtc_size);
953 }
954 
rtc_init(void)955 static int __init rtc_init(void)
956 {
957 #ifdef CONFIG_PROC_FS
958 	struct proc_dir_entry *ent;
959 #endif
960 #if defined(__alpha__) || defined(__mips__)
961 	unsigned int year, ctrl;
962 	char *guess = NULL;
963 #endif
964 #ifdef CONFIG_SPARC32
965 	struct device_node *ebus_dp;
966 	struct of_device *op;
967 #else
968 	void *r;
969 #ifdef RTC_IRQ
970 	irq_handler_t rtc_int_handler_ptr;
971 #endif
972 #endif
973 
974 #ifdef CONFIG_SPARC32
975 	for_each_node_by_name(ebus_dp, "ebus") {
976 		struct device_node *dp;
977 		for (dp = ebus_dp; dp; dp = dp->sibling) {
978 			if (!strcmp(dp->name, "rtc")) {
979 				op = of_find_device_by_node(dp);
980 				if (op) {
981 					rtc_port = op->resource[0].start;
982 					rtc_irq = op->irqs[0];
983 					goto found;
984 				}
985 			}
986 		}
987 	}
988 	rtc_has_irq = 0;
989 	printk(KERN_ERR "rtc_init: no PC rtc found\n");
990 	return -EIO;
991 
992 found:
993 	if (!rtc_irq) {
994 		rtc_has_irq = 0;
995 		goto no_irq;
996 	}
997 
998 	/*
999 	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1000 	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1001 	 */
1002 	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1003 			(void *)&rtc_port)) {
1004 		rtc_has_irq = 0;
1005 		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1006 		return -EIO;
1007 	}
1008 no_irq:
1009 #else
1010 	r = rtc_request_region(RTC_IO_EXTENT);
1011 
1012 	/*
1013 	 * If we've already requested a smaller range (for example, because
1014 	 * PNPBIOS or ACPI told us how the device is configured), the request
1015 	 * above might fail because it's too big.
1016 	 *
1017 	 * If so, request just the range we actually use.
1018 	 */
1019 	if (!r)
1020 		r = rtc_request_region(RTC_IO_EXTENT_USED);
1021 	if (!r) {
1022 #ifdef RTC_IRQ
1023 		rtc_has_irq = 0;
1024 #endif
1025 		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1026 		       (long)(RTC_PORT(0)));
1027 		return -EIO;
1028 	}
1029 
1030 #ifdef RTC_IRQ
1031 	if (is_hpet_enabled()) {
1032 		int err;
1033 
1034 		rtc_int_handler_ptr = hpet_rtc_interrupt;
1035 		err = hpet_register_irq_handler(rtc_interrupt);
1036 		if (err != 0) {
1037 			printk(KERN_WARNING "hpet_register_irq_handler failed "
1038 					"in rtc_init().");
1039 			return err;
1040 		}
1041 	} else {
1042 		rtc_int_handler_ptr = rtc_interrupt;
1043 	}
1044 
1045 	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1046 			"rtc", NULL)) {
1047 		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1048 		rtc_has_irq = 0;
1049 		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1050 		rtc_release_region();
1051 
1052 		return -EIO;
1053 	}
1054 	hpet_rtc_timer_init();
1055 
1056 #endif
1057 
1058 #endif /* CONFIG_SPARC32 vs. others */
1059 
1060 	if (misc_register(&rtc_dev)) {
1061 #ifdef RTC_IRQ
1062 		free_irq(RTC_IRQ, NULL);
1063 		hpet_unregister_irq_handler(rtc_interrupt);
1064 		rtc_has_irq = 0;
1065 #endif
1066 		rtc_release_region();
1067 		return -ENODEV;
1068 	}
1069 
1070 #ifdef CONFIG_PROC_FS
1071 	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1072 	if (!ent)
1073 		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1074 #endif
1075 
1076 #if defined(__alpha__) || defined(__mips__)
1077 	rtc_freq = HZ;
1078 
1079 	/* Each operating system on an Alpha uses its own epoch.
1080 	   Let's try to guess which one we are using now. */
1081 
1082 	if (rtc_is_updating() != 0)
1083 		msleep(20);
1084 
1085 	spin_lock_irq(&rtc_lock);
1086 	year = CMOS_READ(RTC_YEAR);
1087 	ctrl = CMOS_READ(RTC_CONTROL);
1088 	spin_unlock_irq(&rtc_lock);
1089 
1090 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1091 		year = bcd2bin(year);       /* This should never happen... */
1092 
1093 	if (year < 20) {
1094 		epoch = 2000;
1095 		guess = "SRM (post-2000)";
1096 	} else if (year >= 20 && year < 48) {
1097 		epoch = 1980;
1098 		guess = "ARC console";
1099 	} else if (year >= 48 && year < 72) {
1100 		epoch = 1952;
1101 		guess = "Digital UNIX";
1102 #if defined(__mips__)
1103 	} else if (year >= 72 && year < 74) {
1104 		epoch = 2000;
1105 		guess = "Digital DECstation";
1106 #else
1107 	} else if (year >= 70) {
1108 		epoch = 1900;
1109 		guess = "Standard PC (1900)";
1110 #endif
1111 	}
1112 	if (guess)
1113 		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1114 			guess, epoch);
1115 #endif
1116 #ifdef RTC_IRQ
1117 	if (rtc_has_irq == 0)
1118 		goto no_irq2;
1119 
1120 	spin_lock_irq(&rtc_lock);
1121 	rtc_freq = 1024;
1122 	if (!hpet_set_periodic_freq(rtc_freq)) {
1123 		/*
1124 		 * Initialize periodic frequency to CMOS reset default,
1125 		 * which is 1024Hz
1126 		 */
1127 		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1128 			   RTC_FREQ_SELECT);
1129 	}
1130 	spin_unlock_irq(&rtc_lock);
1131 no_irq2:
1132 #endif
1133 
1134 	(void) init_sysctl();
1135 
1136 	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1137 
1138 	return 0;
1139 }
1140 
rtc_exit(void)1141 static void __exit rtc_exit(void)
1142 {
1143 	cleanup_sysctl();
1144 	remove_proc_entry("driver/rtc", NULL);
1145 	misc_deregister(&rtc_dev);
1146 
1147 #ifdef CONFIG_SPARC32
1148 	if (rtc_has_irq)
1149 		free_irq(rtc_irq, &rtc_port);
1150 #else
1151 	rtc_release_region();
1152 #ifdef RTC_IRQ
1153 	if (rtc_has_irq) {
1154 		free_irq(RTC_IRQ, NULL);
1155 		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1156 	}
1157 #endif
1158 #endif /* CONFIG_SPARC32 */
1159 }
1160 
1161 module_init(rtc_init);
1162 module_exit(rtc_exit);
1163 
1164 #ifdef RTC_IRQ
1165 /*
1166  *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1167  *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1168  *	Since the interrupt handler doesn't get called, the IRQ status
1169  *	byte doesn't get read, and the RTC stops generating interrupts.
1170  *	A timer is set, and will call this function if/when that happens.
1171  *	To get it out of this stalled state, we just read the status.
1172  *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1173  *	(You *really* shouldn't be trying to use a non-realtime system
1174  *	for something that requires a steady > 1KHz signal anyways.)
1175  */
1176 
rtc_dropped_irq(unsigned long data)1177 static void rtc_dropped_irq(unsigned long data)
1178 {
1179 	unsigned long freq;
1180 
1181 	spin_lock_irq(&rtc_lock);
1182 
1183 	if (hpet_rtc_dropped_irq()) {
1184 		spin_unlock_irq(&rtc_lock);
1185 		return;
1186 	}
1187 
1188 	/* Just in case someone disabled the timer from behind our back... */
1189 	if (rtc_status & RTC_TIMER_ON)
1190 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1191 
1192 	rtc_irq_data += ((rtc_freq/HZ)<<8);
1193 	rtc_irq_data &= ~0xff;
1194 	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1195 
1196 	freq = rtc_freq;
1197 
1198 	spin_unlock_irq(&rtc_lock);
1199 
1200 	if (printk_ratelimit()) {
1201 		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1202 			freq);
1203 	}
1204 
1205 	/* Now we have new data */
1206 	wake_up_interruptible(&rtc_wait);
1207 
1208 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1209 }
1210 #endif
1211 
1212 #ifdef CONFIG_PROC_FS
1213 /*
1214  *	Info exported via "/proc/driver/rtc".
1215  */
1216 
rtc_proc_show(struct seq_file * seq,void * v)1217 static int rtc_proc_show(struct seq_file *seq, void *v)
1218 {
1219 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1220 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1221 	struct rtc_time tm;
1222 	unsigned char batt, ctrl;
1223 	unsigned long freq;
1224 
1225 	spin_lock_irq(&rtc_lock);
1226 	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1227 	ctrl = CMOS_READ(RTC_CONTROL);
1228 	freq = rtc_freq;
1229 	spin_unlock_irq(&rtc_lock);
1230 
1231 
1232 	rtc_get_rtc_time(&tm);
1233 
1234 	/*
1235 	 * There is no way to tell if the luser has the RTC set for local
1236 	 * time or for Universal Standard Time (GMT). Probably local though.
1237 	 */
1238 	seq_printf(seq,
1239 		   "rtc_time\t: %02d:%02d:%02d\n"
1240 		   "rtc_date\t: %04d-%02d-%02d\n"
1241 		   "rtc_epoch\t: %04lu\n",
1242 		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1243 		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1244 
1245 	get_rtc_alm_time(&tm);
1246 
1247 	/*
1248 	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1249 	 * match any value for that particular field. Values that are
1250 	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1251 	 */
1252 	seq_puts(seq, "alarm\t\t: ");
1253 	if (tm.tm_hour <= 24)
1254 		seq_printf(seq, "%02d:", tm.tm_hour);
1255 	else
1256 		seq_puts(seq, "**:");
1257 
1258 	if (tm.tm_min <= 59)
1259 		seq_printf(seq, "%02d:", tm.tm_min);
1260 	else
1261 		seq_puts(seq, "**:");
1262 
1263 	if (tm.tm_sec <= 59)
1264 		seq_printf(seq, "%02d\n", tm.tm_sec);
1265 	else
1266 		seq_puts(seq, "**\n");
1267 
1268 	seq_printf(seq,
1269 		   "DST_enable\t: %s\n"
1270 		   "BCD\t\t: %s\n"
1271 		   "24hr\t\t: %s\n"
1272 		   "square_wave\t: %s\n"
1273 		   "alarm_IRQ\t: %s\n"
1274 		   "update_IRQ\t: %s\n"
1275 		   "periodic_IRQ\t: %s\n"
1276 		   "periodic_freq\t: %ld\n"
1277 		   "batt_status\t: %s\n",
1278 		   YN(RTC_DST_EN),
1279 		   NY(RTC_DM_BINARY),
1280 		   YN(RTC_24H),
1281 		   YN(RTC_SQWE),
1282 		   YN(RTC_AIE),
1283 		   YN(RTC_UIE),
1284 		   YN(RTC_PIE),
1285 		   freq,
1286 		   batt ? "okay" : "dead");
1287 
1288 	return  0;
1289 #undef YN
1290 #undef NY
1291 }
1292 
rtc_proc_open(struct inode * inode,struct file * file)1293 static int rtc_proc_open(struct inode *inode, struct file *file)
1294 {
1295 	return single_open(file, rtc_proc_show, NULL);
1296 }
1297 #endif
1298 
rtc_get_rtc_time(struct rtc_time * rtc_tm)1299 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1300 {
1301 	unsigned long uip_watchdog = jiffies, flags;
1302 	unsigned char ctrl;
1303 #ifdef CONFIG_MACH_DECSTATION
1304 	unsigned int real_year;
1305 #endif
1306 
1307 	/*
1308 	 * read RTC once any update in progress is done. The update
1309 	 * can take just over 2ms. We wait 20ms. There is no need to
1310 	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1311 	 * If you need to know *exactly* when a second has started, enable
1312 	 * periodic update complete interrupts, (via ioctl) and then
1313 	 * immediately read /dev/rtc which will block until you get the IRQ.
1314 	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1315 	 */
1316 
1317 	while (rtc_is_updating() != 0 &&
1318 	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1319 		cpu_relax();
1320 
1321 	/*
1322 	 * Only the values that we read from the RTC are set. We leave
1323 	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1324 	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1325 	 * only updated by the RTC when initially set to a non-zero value.
1326 	 */
1327 	spin_lock_irqsave(&rtc_lock, flags);
1328 	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1329 	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1330 	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1331 	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1332 	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1333 	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1334 	/* Only set from 2.6.16 onwards */
1335 	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1336 
1337 #ifdef CONFIG_MACH_DECSTATION
1338 	real_year = CMOS_READ(RTC_DEC_YEAR);
1339 #endif
1340 	ctrl = CMOS_READ(RTC_CONTROL);
1341 	spin_unlock_irqrestore(&rtc_lock, flags);
1342 
1343 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1344 		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1345 		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1346 		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1347 		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1348 		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1349 		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1350 		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1351 	}
1352 
1353 #ifdef CONFIG_MACH_DECSTATION
1354 	rtc_tm->tm_year += real_year - 72;
1355 #endif
1356 
1357 	/*
1358 	 * Account for differences between how the RTC uses the values
1359 	 * and how they are defined in a struct rtc_time;
1360 	 */
1361 	rtc_tm->tm_year += epoch - 1900;
1362 	if (rtc_tm->tm_year <= 69)
1363 		rtc_tm->tm_year += 100;
1364 
1365 	rtc_tm->tm_mon--;
1366 }
1367 
get_rtc_alm_time(struct rtc_time * alm_tm)1368 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1369 {
1370 	unsigned char ctrl;
1371 
1372 	/*
1373 	 * Only the values that we read from the RTC are set. That
1374 	 * means only tm_hour, tm_min, and tm_sec.
1375 	 */
1376 	spin_lock_irq(&rtc_lock);
1377 	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1378 	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1379 	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1380 	ctrl = CMOS_READ(RTC_CONTROL);
1381 	spin_unlock_irq(&rtc_lock);
1382 
1383 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1384 		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1385 		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1386 		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1387 	}
1388 }
1389 
1390 #ifdef RTC_IRQ
1391 /*
1392  * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1393  * Rumour has it that if you frob the interrupt enable/disable
1394  * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1395  * ensure you actually start getting interrupts. Probably for
1396  * compatibility with older/broken chipset RTC implementations.
1397  * We also clear out any old irq data after an ioctl() that
1398  * meddles with the interrupt enable/disable bits.
1399  */
1400 
mask_rtc_irq_bit_locked(unsigned char bit)1401 static void mask_rtc_irq_bit_locked(unsigned char bit)
1402 {
1403 	unsigned char val;
1404 
1405 	if (hpet_mask_rtc_irq_bit(bit))
1406 		return;
1407 	val = CMOS_READ(RTC_CONTROL);
1408 	val &=  ~bit;
1409 	CMOS_WRITE(val, RTC_CONTROL);
1410 	CMOS_READ(RTC_INTR_FLAGS);
1411 
1412 	rtc_irq_data = 0;
1413 }
1414 
set_rtc_irq_bit_locked(unsigned char bit)1415 static void set_rtc_irq_bit_locked(unsigned char bit)
1416 {
1417 	unsigned char val;
1418 
1419 	if (hpet_set_rtc_irq_bit(bit))
1420 		return;
1421 	val = CMOS_READ(RTC_CONTROL);
1422 	val |= bit;
1423 	CMOS_WRITE(val, RTC_CONTROL);
1424 	CMOS_READ(RTC_INTR_FLAGS);
1425 
1426 	rtc_irq_data = 0;
1427 }
1428 #endif
1429 
1430 MODULE_AUTHOR("Paul Gortmaker");
1431 MODULE_LICENSE("GPL");
1432 MODULE_ALIAS_MISCDEV(RTC_MINOR);
1433