• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6 
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13 
14 
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *
23  *   - The third channel may be used to provide a 16-bit clockevent
24  *     source, used in either periodic or oneshot mode.  This runs
25  *     at 32 KiHZ, and can handle delays of up to two seconds.
26  *
27  * A boot clocksource and clockevent source are also currently needed,
28  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29  * this code can be used when init_timers() is called, well before most
30  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
31  * have only the timers in one TC block... they currently don't support
32  * the tclib code, because of that initialization issue.)
33  *
34  * REVISIT behavior during system suspend states... we should disable
35  * all clocks and save the power.  Easily done for clockevent devices,
36  * but clocksources won't necessarily get the needed notifications.
37  * For deeper system sleep states, this will be mandatory...
38  */
39 
40 static void __iomem *tcaddr;
41 
tc_get_cycles(void)42 static cycle_t tc_get_cycles(void)
43 {
44 	unsigned long	flags;
45 	u32		lower, upper;
46 
47 	raw_local_irq_save(flags);
48 	do {
49 		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
50 		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
51 	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
52 
53 	raw_local_irq_restore(flags);
54 	return (upper << 16) | lower;
55 }
56 
57 static struct clocksource clksrc = {
58 	.name           = "tcb_clksrc",
59 	.rating         = 200,
60 	.read           = tc_get_cycles,
61 	.mask           = CLOCKSOURCE_MASK(32),
62 	.shift          = 18,
63 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
64 };
65 
66 #ifdef CONFIG_GENERIC_CLOCKEVENTS
67 
68 struct tc_clkevt_device {
69 	struct clock_event_device	clkevt;
70 	struct clk			*clk;
71 	void __iomem			*regs;
72 };
73 
to_tc_clkevt(struct clock_event_device * clkevt)74 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
75 {
76 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
77 }
78 
79 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
80  * because using one of the divided clocks would usually mean the
81  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
82  *
83  * A divided clock could be good for high resolution timers, since
84  * 30.5 usec resolution can seem "low".
85  */
86 static u32 timer_clock;
87 
tc_mode(enum clock_event_mode m,struct clock_event_device * d)88 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
89 {
90 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
91 	void __iomem		*regs = tcd->regs;
92 
93 	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
94 			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
95 		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
96 		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
97 		clk_disable(tcd->clk);
98 	}
99 
100 	switch (m) {
101 
102 	/* By not making the gentime core emulate periodic mode on top
103 	 * of oneshot, we get lower overhead and improved accuracy.
104 	 */
105 	case CLOCK_EVT_MODE_PERIODIC:
106 		clk_enable(tcd->clk);
107 
108 		/* slow clock, count up to RC, then irq and restart */
109 		__raw_writel(timer_clock
110 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
111 				regs + ATMEL_TC_REG(2, CMR));
112 		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
113 
114 		/* Enable clock and interrupts on RC compare */
115 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
116 
117 		/* go go gadget! */
118 		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
119 				regs + ATMEL_TC_REG(2, CCR));
120 		break;
121 
122 	case CLOCK_EVT_MODE_ONESHOT:
123 		clk_enable(tcd->clk);
124 
125 		/* slow clock, count up to RC, then irq and stop */
126 		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
127 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
128 				regs + ATMEL_TC_REG(2, CMR));
129 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
130 
131 		/* set_next_event() configures and starts the timer */
132 		break;
133 
134 	default:
135 		break;
136 	}
137 }
138 
tc_next_event(unsigned long delta,struct clock_event_device * d)139 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
140 {
141 	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
142 
143 	/* go go gadget! */
144 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
145 			tcaddr + ATMEL_TC_REG(2, CCR));
146 	return 0;
147 }
148 
149 static struct tc_clkevt_device clkevt = {
150 	.clkevt	= {
151 		.name		= "tc_clkevt",
152 		.features	= CLOCK_EVT_FEAT_PERIODIC
153 					| CLOCK_EVT_FEAT_ONESHOT,
154 		.shift		= 32,
155 		/* Should be lower than at91rm9200's system timer */
156 		.rating		= 125,
157 		.set_next_event	= tc_next_event,
158 		.set_mode	= tc_mode,
159 	},
160 };
161 
ch2_irq(int irq,void * handle)162 static irqreturn_t ch2_irq(int irq, void *handle)
163 {
164 	struct tc_clkevt_device	*dev = handle;
165 	unsigned int		sr;
166 
167 	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
168 	if (sr & ATMEL_TC_CPCS) {
169 		dev->clkevt.event_handler(&dev->clkevt);
170 		return IRQ_HANDLED;
171 	}
172 
173 	return IRQ_NONE;
174 }
175 
176 static struct irqaction tc_irqaction = {
177 	.name		= "tc_clkevt",
178 	.flags		= IRQF_TIMER | IRQF_DISABLED,
179 	.handler	= ch2_irq,
180 };
181 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)182 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
183 {
184 	struct clk *t2_clk = tc->clk[2];
185 	int irq = tc->irq[2];
186 
187 	clkevt.regs = tc->regs;
188 	clkevt.clk = t2_clk;
189 	tc_irqaction.dev_id = &clkevt;
190 
191 	timer_clock = clk32k_divisor_idx;
192 
193 	clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
194 	clkevt.clkevt.max_delta_ns
195 		= clockevent_delta2ns(0xffff, &clkevt.clkevt);
196 	clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
197 	clkevt.clkevt.cpumask = cpumask_of(0);
198 
199 	setup_irq(irq, &tc_irqaction);
200 
201 	clockevents_register_device(&clkevt.clkevt);
202 }
203 
204 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
205 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)206 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
207 {
208 	/* NOTHING */
209 }
210 
211 #endif
212 
tcb_clksrc_init(void)213 static int __init tcb_clksrc_init(void)
214 {
215 	static char bootinfo[] __initdata
216 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
217 
218 	struct platform_device *pdev;
219 	struct atmel_tc *tc;
220 	struct clk *t0_clk;
221 	u32 rate, divided_rate = 0;
222 	int best_divisor_idx = -1;
223 	int clk32k_divisor_idx = -1;
224 	int i;
225 
226 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
227 	if (!tc) {
228 		pr_debug("can't alloc TC for clocksource\n");
229 		return -ENODEV;
230 	}
231 	tcaddr = tc->regs;
232 	pdev = tc->pdev;
233 
234 	t0_clk = tc->clk[0];
235 	clk_enable(t0_clk);
236 
237 	/* How fast will we be counting?  Pick something over 5 MHz.  */
238 	rate = (u32) clk_get_rate(t0_clk);
239 	for (i = 0; i < 5; i++) {
240 		unsigned divisor = atmel_tc_divisors[i];
241 		unsigned tmp;
242 
243 		/* remember 32 KiHz clock for later */
244 		if (!divisor) {
245 			clk32k_divisor_idx = i;
246 			continue;
247 		}
248 
249 		tmp = rate / divisor;
250 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
251 		if (best_divisor_idx > 0) {
252 			if (tmp < 5 * 1000 * 1000)
253 				continue;
254 		}
255 		divided_rate = tmp;
256 		best_divisor_idx = i;
257 	}
258 
259 	clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
260 
261 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
262 			divided_rate / 1000000,
263 			((divided_rate + 500000) % 1000000) / 1000);
264 
265 	/* tclib will give us three clocks no matter what the
266 	 * underlying platform supports.
267 	 */
268 	clk_enable(tc->clk[1]);
269 
270 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
271 	__raw_writel(best_divisor_idx			/* likely divide-by-8 */
272 			| ATMEL_TC_WAVE
273 			| ATMEL_TC_WAVESEL_UP		/* free-run */
274 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
275 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
276 			tcaddr + ATMEL_TC_REG(0, CMR));
277 	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
278 	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
279 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
280 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
281 
282 	/* channel 1:  waveform mode, input TIOA0 */
283 	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
284 			| ATMEL_TC_WAVE
285 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
286 			tcaddr + ATMEL_TC_REG(1, CMR));
287 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
288 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
289 
290 	/* chain channel 0 to channel 1, then reset all the timers */
291 	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
292 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
293 
294 	/* and away we go! */
295 	clocksource_register(&clksrc);
296 
297 	/* channel 2:  periodic and oneshot timer support */
298 	setup_clkevents(tc, clk32k_divisor_idx);
299 
300 	return 0;
301 }
302 arch_initcall(tcb_clksrc_init);
303