• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33 
34 #include <asm/page.h>
35 #include <asm/system.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43 
44 #define DESCRIPTOR_OUTPUT_MORE		0
45 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
46 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
47 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
48 #define DESCRIPTOR_STATUS		(1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
50 #define DESCRIPTOR_PING			(1 << 7)
51 #define DESCRIPTOR_YY			(1 << 6)
52 #define DESCRIPTOR_NO_IRQ		(0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
56 #define DESCRIPTOR_WAIT			(3 << 0)
57 
58 struct descriptor {
59 	__le16 req_count;
60 	__le16 control;
61 	__le32 data_address;
62 	__le32 branch_address;
63 	__le16 res_count;
64 	__le16 transfer_status;
65 } __attribute__((aligned(16)));
66 
67 struct db_descriptor {
68 	__le16 first_size;
69 	__le16 control;
70 	__le16 second_req_count;
71 	__le16 first_req_count;
72 	__le32 branch_address;
73 	__le16 second_res_count;
74 	__le16 first_res_count;
75 	__le32 reserved0;
76 	__le32 first_buffer;
77 	__le32 second_buffer;
78 	__le32 reserved1;
79 } __attribute__((aligned(16)));
80 
81 #define CONTROL_SET(regs)	(regs)
82 #define CONTROL_CLEAR(regs)	((regs) + 4)
83 #define COMMAND_PTR(regs)	((regs) + 12)
84 #define CONTEXT_MATCH(regs)	((regs) + 16)
85 
86 struct ar_buffer {
87 	struct descriptor descriptor;
88 	struct ar_buffer *next;
89 	__le32 data[0];
90 };
91 
92 struct ar_context {
93 	struct fw_ohci *ohci;
94 	struct ar_buffer *current_buffer;
95 	struct ar_buffer *last_buffer;
96 	void *pointer;
97 	u32 regs;
98 	struct tasklet_struct tasklet;
99 };
100 
101 struct context;
102 
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104 				     struct descriptor *d,
105 				     struct descriptor *last);
106 
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112 	struct list_head list;
113 	dma_addr_t buffer_bus;
114 	size_t buffer_size;
115 	size_t used;
116 	struct descriptor buffer[0];
117 };
118 
119 struct context {
120 	struct fw_ohci *ohci;
121 	u32 regs;
122 	int total_allocation;
123 
124 	/*
125 	 * List of page-sized buffers for storing DMA descriptors.
126 	 * Head of list contains buffers in use and tail of list contains
127 	 * free buffers.
128 	 */
129 	struct list_head buffer_list;
130 
131 	/*
132 	 * Pointer to a buffer inside buffer_list that contains the tail
133 	 * end of the current DMA program.
134 	 */
135 	struct descriptor_buffer *buffer_tail;
136 
137 	/*
138 	 * The descriptor containing the branch address of the first
139 	 * descriptor that has not yet been filled by the device.
140 	 */
141 	struct descriptor *last;
142 
143 	/*
144 	 * The last descriptor in the DMA program.  It contains the branch
145 	 * address that must be updated upon appending a new descriptor.
146 	 */
147 	struct descriptor *prev;
148 
149 	descriptor_callback_t callback;
150 
151 	struct tasklet_struct tasklet;
152 };
153 
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 
161 struct iso_context {
162 	struct fw_iso_context base;
163 	struct context context;
164 	int excess_bytes;
165 	void *header;
166 	size_t header_length;
167 };
168 
169 #define CONFIG_ROM_SIZE 1024
170 
171 struct fw_ohci {
172 	struct fw_card card;
173 
174 	__iomem char *registers;
175 	dma_addr_t self_id_bus;
176 	__le32 *self_id_cpu;
177 	struct tasklet_struct bus_reset_tasklet;
178 	int node_id;
179 	int generation;
180 	int request_generation;	/* for timestamping incoming requests */
181 	u32 bus_seconds;
182 
183 	bool use_dualbuffer;
184 	bool old_uninorth;
185 	bool bus_reset_packet_quirk;
186 
187 	/*
188 	 * Spinlock for accessing fw_ohci data.  Never call out of
189 	 * this driver with this lock held.
190 	 */
191 	spinlock_t lock;
192 	u32 self_id_buffer[512];
193 
194 	/* Config rom buffers */
195 	__be32 *config_rom;
196 	dma_addr_t config_rom_bus;
197 	__be32 *next_config_rom;
198 	dma_addr_t next_config_rom_bus;
199 	u32 next_header;
200 
201 	struct ar_context ar_request_ctx;
202 	struct ar_context ar_response_ctx;
203 	struct context at_request_ctx;
204 	struct context at_response_ctx;
205 
206 	u32 it_context_mask;
207 	struct iso_context *it_context_list;
208 	u32 ir_context_mask;
209 	struct iso_context *ir_context_list;
210 };
211 
fw_ohci(struct fw_card * card)212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214 	return container_of(card, struct fw_ohci, card);
215 }
216 
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
218 #define IR_CONTEXT_BUFFER_FILL		0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
223 
224 #define CONTEXT_RUN	0x8000
225 #define CONTEXT_WAKE	0x1000
226 #define CONTEXT_DEAD	0x0800
227 #define CONTEXT_ACTIVE	0x0400
228 
229 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
230 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
232 
233 #define FW_OHCI_MAJOR			240
234 #define OHCI1394_REGISTER_SIZE		0x800
235 #define OHCI_LOOP_COUNT			500
236 #define OHCI1394_PCI_HCI_Control	0x40
237 #define SELF_ID_BUF_SIZE		0x800
238 #define OHCI_TCODE_PHY_PACKET		0x0e
239 #define OHCI_VERSION_1_1		0x010010
240 
241 static char ohci_driver_name[] = KBUILD_MODNAME;
242 
243 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244 
245 #define OHCI_PARAM_DEBUG_AT_AR		1
246 #define OHCI_PARAM_DEBUG_SELFIDS	2
247 #define OHCI_PARAM_DEBUG_IRQS		4
248 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
249 
250 static int param_debug;
251 module_param_named(debug, param_debug, int, 0644);
252 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
253 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
254 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
255 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
256 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
257 	", or a combination, or all = -1)");
258 
log_irqs(u32 evt)259 static void log_irqs(u32 evt)
260 {
261 	if (likely(!(param_debug &
262 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
263 		return;
264 
265 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
266 	    !(evt & OHCI1394_busReset))
267 		return;
268 
269 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
270 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
271 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
272 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
273 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
274 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
275 	    evt & OHCI1394_isochRx		? " IR"			: "",
276 	    evt & OHCI1394_isochTx		? " IT"			: "",
277 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
278 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
279 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
280 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
281 	    evt & OHCI1394_busReset		? " busReset"		: "",
282 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
285 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
286 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287 		    OHCI1394_regAccessFail | OHCI1394_busReset)
288 						? " ?"			: "");
289 }
290 
291 static const char *speed[] = {
292 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299 
_p(u32 * s,int shift)300 static char _p(u32 *s, int shift)
301 {
302 	return port[*s >> shift & 3];
303 }
304 
log_selfids(int node_id,int generation,int self_id_count,u32 * s)305 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
306 {
307 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308 		return;
309 
310 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
311 		  self_id_count, generation, node_id);
312 
313 	for (; self_id_count--; ++s)
314 		if ((*s & 1 << 23) == 0)
315 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
316 			    "%s gc=%d %s %s%s%s\n",
317 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318 			    speed[*s >> 14 & 3], *s >> 16 & 63,
319 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321 		else
322 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
323 			    *s, *s >> 24 & 63,
324 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
325 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
326 }
327 
328 static const char *evts[] = {
329 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
330 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
331 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
332 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
333 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
334 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
335 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
336 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
337 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
338 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
339 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
340 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
341 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
342 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
343 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
344 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
345 	[0x20] = "pending/cancelled",
346 };
347 static const char *tcodes[] = {
348 	[0x0] = "QW req",		[0x1] = "BW req",
349 	[0x2] = "W resp",		[0x3] = "-reserved-",
350 	[0x4] = "QR req",		[0x5] = "BR req",
351 	[0x6] = "QR resp",		[0x7] = "BR resp",
352 	[0x8] = "cycle start",		[0x9] = "Lk req",
353 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
354 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
355 	[0xe] = "link internal",	[0xf] = "-reserved-",
356 };
357 static const char *phys[] = {
358 	[0x0] = "phy config packet",	[0x1] = "link-on packet",
359 	[0x2] = "self-id packet",	[0x3] = "-reserved-",
360 };
361 
log_ar_at_event(char dir,int speed,u32 * header,int evt)362 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
363 {
364 	int tcode = header[0] >> 4 & 0xf;
365 	char specific[12];
366 
367 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
368 		return;
369 
370 	if (unlikely(evt >= ARRAY_SIZE(evts)))
371 			evt = 0x1f;
372 
373 	if (evt == OHCI1394_evt_bus_reset) {
374 		fw_notify("A%c evt_bus_reset, generation %d\n",
375 		    dir, (header[2] >> 16) & 0xff);
376 		return;
377 	}
378 
379 	if (header[0] == ~header[1]) {
380 		fw_notify("A%c %s, %s, %08x\n",
381 		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
382 		return;
383 	}
384 
385 	switch (tcode) {
386 	case 0x0: case 0x6: case 0x8:
387 		snprintf(specific, sizeof(specific), " = %08x",
388 			 be32_to_cpu((__force __be32)header[3]));
389 		break;
390 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
391 		snprintf(specific, sizeof(specific), " %x,%x",
392 			 header[3] >> 16, header[3] & 0xffff);
393 		break;
394 	default:
395 		specific[0] = '\0';
396 	}
397 
398 	switch (tcode) {
399 	case 0xe: case 0xa:
400 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
401 		break;
402 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
403 		fw_notify("A%c spd %x tl %02x, "
404 		    "%04x -> %04x, %s, "
405 		    "%s, %04x%08x%s\n",
406 		    dir, speed, header[0] >> 10 & 0x3f,
407 		    header[1] >> 16, header[0] >> 16, evts[evt],
408 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
409 		break;
410 	default:
411 		fw_notify("A%c spd %x tl %02x, "
412 		    "%04x -> %04x, %s, "
413 		    "%s%s\n",
414 		    dir, speed, header[0] >> 10 & 0x3f,
415 		    header[1] >> 16, header[0] >> 16, evts[evt],
416 		    tcodes[tcode], specific);
417 	}
418 }
419 
420 #else
421 
422 #define log_irqs(evt)
423 #define log_selfids(node_id, generation, self_id_count, sid)
424 #define log_ar_at_event(dir, speed, header, evt)
425 
426 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
427 
reg_write(const struct fw_ohci * ohci,int offset,u32 data)428 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
429 {
430 	writel(data, ohci->registers + offset);
431 }
432 
reg_read(const struct fw_ohci * ohci,int offset)433 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
434 {
435 	return readl(ohci->registers + offset);
436 }
437 
flush_writes(const struct fw_ohci * ohci)438 static inline void flush_writes(const struct fw_ohci *ohci)
439 {
440 	/* Do a dummy read to flush writes. */
441 	reg_read(ohci, OHCI1394_Version);
442 }
443 
444 static int
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)445 ohci_update_phy_reg(struct fw_card *card, int addr,
446 		    int clear_bits, int set_bits)
447 {
448 	struct fw_ohci *ohci = fw_ohci(card);
449 	u32 val, old;
450 
451 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
452 	flush_writes(ohci);
453 	msleep(2);
454 	val = reg_read(ohci, OHCI1394_PhyControl);
455 	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456 		fw_error("failed to set phy reg bits.\n");
457 		return -EBUSY;
458 	}
459 
460 	old = OHCI1394_PhyControl_ReadData(val);
461 	old = (old & ~clear_bits) | set_bits;
462 	reg_write(ohci, OHCI1394_PhyControl,
463 		  OHCI1394_PhyControl_Write(addr, old));
464 
465 	return 0;
466 }
467 
ar_context_add_page(struct ar_context * ctx)468 static int ar_context_add_page(struct ar_context *ctx)
469 {
470 	struct device *dev = ctx->ohci->card.device;
471 	struct ar_buffer *ab;
472 	dma_addr_t uninitialized_var(ab_bus);
473 	size_t offset;
474 
475 	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
476 	if (ab == NULL)
477 		return -ENOMEM;
478 
479 	ab->next = NULL;
480 	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
481 	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
482 						    DESCRIPTOR_STATUS |
483 						    DESCRIPTOR_BRANCH_ALWAYS);
484 	offset = offsetof(struct ar_buffer, data);
485 	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
486 	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
487 	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
488 	ab->descriptor.branch_address = 0;
489 
490 	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
491 	ctx->last_buffer->next = ab;
492 	ctx->last_buffer = ab;
493 
494 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
495 	flush_writes(ctx->ohci);
496 
497 	return 0;
498 }
499 
ar_context_release(struct ar_context * ctx)500 static void ar_context_release(struct ar_context *ctx)
501 {
502 	struct ar_buffer *ab, *ab_next;
503 	size_t offset;
504 	dma_addr_t ab_bus;
505 
506 	for (ab = ctx->current_buffer; ab; ab = ab_next) {
507 		ab_next = ab->next;
508 		offset = offsetof(struct ar_buffer, data);
509 		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
510 		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
511 				  ab, ab_bus);
512 	}
513 }
514 
515 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
516 #define cond_le32_to_cpu(v) \
517 	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
518 #else
519 #define cond_le32_to_cpu(v) le32_to_cpu(v)
520 #endif
521 
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)522 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
523 {
524 	struct fw_ohci *ohci = ctx->ohci;
525 	struct fw_packet p;
526 	u32 status, length, tcode;
527 	int evt;
528 
529 	p.header[0] = cond_le32_to_cpu(buffer[0]);
530 	p.header[1] = cond_le32_to_cpu(buffer[1]);
531 	p.header[2] = cond_le32_to_cpu(buffer[2]);
532 
533 	tcode = (p.header[0] >> 4) & 0x0f;
534 	switch (tcode) {
535 	case TCODE_WRITE_QUADLET_REQUEST:
536 	case TCODE_READ_QUADLET_RESPONSE:
537 		p.header[3] = (__force __u32) buffer[3];
538 		p.header_length = 16;
539 		p.payload_length = 0;
540 		break;
541 
542 	case TCODE_READ_BLOCK_REQUEST :
543 		p.header[3] = cond_le32_to_cpu(buffer[3]);
544 		p.header_length = 16;
545 		p.payload_length = 0;
546 		break;
547 
548 	case TCODE_WRITE_BLOCK_REQUEST:
549 	case TCODE_READ_BLOCK_RESPONSE:
550 	case TCODE_LOCK_REQUEST:
551 	case TCODE_LOCK_RESPONSE:
552 		p.header[3] = cond_le32_to_cpu(buffer[3]);
553 		p.header_length = 16;
554 		p.payload_length = p.header[3] >> 16;
555 		break;
556 
557 	case TCODE_WRITE_RESPONSE:
558 	case TCODE_READ_QUADLET_REQUEST:
559 	case OHCI_TCODE_PHY_PACKET:
560 		p.header_length = 12;
561 		p.payload_length = 0;
562 		break;
563 
564 	default:
565 		/* FIXME: Stop context, discard everything, and restart? */
566 		p.header_length = 0;
567 		p.payload_length = 0;
568 	}
569 
570 	p.payload = (void *) buffer + p.header_length;
571 
572 	/* FIXME: What to do about evt_* errors? */
573 	length = (p.header_length + p.payload_length + 3) / 4;
574 	status = cond_le32_to_cpu(buffer[length]);
575 	evt    = (status >> 16) & 0x1f;
576 
577 	p.ack        = evt - 16;
578 	p.speed      = (status >> 21) & 0x7;
579 	p.timestamp  = status & 0xffff;
580 	p.generation = ohci->request_generation;
581 
582 	log_ar_at_event('R', p.speed, p.header, evt);
583 
584 	/*
585 	 * The OHCI bus reset handler synthesizes a phy packet with
586 	 * the new generation number when a bus reset happens (see
587 	 * section 8.4.2.3).  This helps us determine when a request
588 	 * was received and make sure we send the response in the same
589 	 * generation.  We only need this for requests; for responses
590 	 * we use the unique tlabel for finding the matching
591 	 * request.
592 	 *
593 	 * Alas some chips sometimes emit bus reset packets with a
594 	 * wrong generation.  We set the correct generation for these
595 	 * at a slightly incorrect time (in bus_reset_tasklet).
596 	 */
597 	if (evt == OHCI1394_evt_bus_reset) {
598 		if (!ohci->bus_reset_packet_quirk)
599 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
600 	} else if (ctx == &ohci->ar_request_ctx) {
601 		fw_core_handle_request(&ohci->card, &p);
602 	} else {
603 		fw_core_handle_response(&ohci->card, &p);
604 	}
605 
606 	return buffer + length + 1;
607 }
608 
ar_context_tasklet(unsigned long data)609 static void ar_context_tasklet(unsigned long data)
610 {
611 	struct ar_context *ctx = (struct ar_context *)data;
612 	struct fw_ohci *ohci = ctx->ohci;
613 	struct ar_buffer *ab;
614 	struct descriptor *d;
615 	void *buffer, *end;
616 
617 	ab = ctx->current_buffer;
618 	d = &ab->descriptor;
619 
620 	if (d->res_count == 0) {
621 		size_t size, rest, offset;
622 		dma_addr_t start_bus;
623 		void *start;
624 
625 		/*
626 		 * This descriptor is finished and we may have a
627 		 * packet split across this and the next buffer. We
628 		 * reuse the page for reassembling the split packet.
629 		 */
630 
631 		offset = offsetof(struct ar_buffer, data);
632 		start = buffer = ab;
633 		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
634 
635 		ab = ab->next;
636 		d = &ab->descriptor;
637 		size = buffer + PAGE_SIZE - ctx->pointer;
638 		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
639 		memmove(buffer, ctx->pointer, size);
640 		memcpy(buffer + size, ab->data, rest);
641 		ctx->current_buffer = ab;
642 		ctx->pointer = (void *) ab->data + rest;
643 		end = buffer + size + rest;
644 
645 		while (buffer < end)
646 			buffer = handle_ar_packet(ctx, buffer);
647 
648 		dma_free_coherent(ohci->card.device, PAGE_SIZE,
649 				  start, start_bus);
650 		ar_context_add_page(ctx);
651 	} else {
652 		buffer = ctx->pointer;
653 		ctx->pointer = end =
654 			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
655 
656 		while (buffer < end)
657 			buffer = handle_ar_packet(ctx, buffer);
658 	}
659 }
660 
661 static int
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,u32 regs)662 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
663 {
664 	struct ar_buffer ab;
665 
666 	ctx->regs        = regs;
667 	ctx->ohci        = ohci;
668 	ctx->last_buffer = &ab;
669 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
670 
671 	ar_context_add_page(ctx);
672 	ar_context_add_page(ctx);
673 	ctx->current_buffer = ab.next;
674 	ctx->pointer = ctx->current_buffer->data;
675 
676 	return 0;
677 }
678 
ar_context_run(struct ar_context * ctx)679 static void ar_context_run(struct ar_context *ctx)
680 {
681 	struct ar_buffer *ab = ctx->current_buffer;
682 	dma_addr_t ab_bus;
683 	size_t offset;
684 
685 	offset = offsetof(struct ar_buffer, data);
686 	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
687 
688 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
689 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
690 	flush_writes(ctx->ohci);
691 }
692 
693 static struct descriptor *
find_branch_descriptor(struct descriptor * d,int z)694 find_branch_descriptor(struct descriptor *d, int z)
695 {
696 	int b, key;
697 
698 	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
699 	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
700 
701 	/* figure out which descriptor the branch address goes in */
702 	if (z == 2 && (b == 3 || key == 2))
703 		return d;
704 	else
705 		return d + z - 1;
706 }
707 
context_tasklet(unsigned long data)708 static void context_tasklet(unsigned long data)
709 {
710 	struct context *ctx = (struct context *) data;
711 	struct descriptor *d, *last;
712 	u32 address;
713 	int z;
714 	struct descriptor_buffer *desc;
715 
716 	desc = list_entry(ctx->buffer_list.next,
717 			struct descriptor_buffer, list);
718 	last = ctx->last;
719 	while (last->branch_address != 0) {
720 		struct descriptor_buffer *old_desc = desc;
721 		address = le32_to_cpu(last->branch_address);
722 		z = address & 0xf;
723 		address &= ~0xf;
724 
725 		/* If the branch address points to a buffer outside of the
726 		 * current buffer, advance to the next buffer. */
727 		if (address < desc->buffer_bus ||
728 				address >= desc->buffer_bus + desc->used)
729 			desc = list_entry(desc->list.next,
730 					struct descriptor_buffer, list);
731 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
732 		last = find_branch_descriptor(d, z);
733 
734 		if (!ctx->callback(ctx, d, last))
735 			break;
736 
737 		if (old_desc != desc) {
738 			/* If we've advanced to the next buffer, move the
739 			 * previous buffer to the free list. */
740 			unsigned long flags;
741 			old_desc->used = 0;
742 			spin_lock_irqsave(&ctx->ohci->lock, flags);
743 			list_move_tail(&old_desc->list, &ctx->buffer_list);
744 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
745 		}
746 		ctx->last = last;
747 	}
748 }
749 
750 /*
751  * Allocate a new buffer and add it to the list of free buffers for this
752  * context.  Must be called with ohci->lock held.
753  */
754 static int
context_add_buffer(struct context * ctx)755 context_add_buffer(struct context *ctx)
756 {
757 	struct descriptor_buffer *desc;
758 	dma_addr_t uninitialized_var(bus_addr);
759 	int offset;
760 
761 	/*
762 	 * 16MB of descriptors should be far more than enough for any DMA
763 	 * program.  This will catch run-away userspace or DoS attacks.
764 	 */
765 	if (ctx->total_allocation >= 16*1024*1024)
766 		return -ENOMEM;
767 
768 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
769 			&bus_addr, GFP_ATOMIC);
770 	if (!desc)
771 		return -ENOMEM;
772 
773 	offset = (void *)&desc->buffer - (void *)desc;
774 	desc->buffer_size = PAGE_SIZE - offset;
775 	desc->buffer_bus = bus_addr + offset;
776 	desc->used = 0;
777 
778 	list_add_tail(&desc->list, &ctx->buffer_list);
779 	ctx->total_allocation += PAGE_SIZE;
780 
781 	return 0;
782 }
783 
784 static int
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)785 context_init(struct context *ctx, struct fw_ohci *ohci,
786 	     u32 regs, descriptor_callback_t callback)
787 {
788 	ctx->ohci = ohci;
789 	ctx->regs = regs;
790 	ctx->total_allocation = 0;
791 
792 	INIT_LIST_HEAD(&ctx->buffer_list);
793 	if (context_add_buffer(ctx) < 0)
794 		return -ENOMEM;
795 
796 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
797 			struct descriptor_buffer, list);
798 
799 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
800 	ctx->callback = callback;
801 
802 	/*
803 	 * We put a dummy descriptor in the buffer that has a NULL
804 	 * branch address and looks like it's been sent.  That way we
805 	 * have a descriptor to append DMA programs to.
806 	 */
807 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
808 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
809 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
810 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
811 	ctx->last = ctx->buffer_tail->buffer;
812 	ctx->prev = ctx->buffer_tail->buffer;
813 
814 	return 0;
815 }
816 
817 static void
context_release(struct context * ctx)818 context_release(struct context *ctx)
819 {
820 	struct fw_card *card = &ctx->ohci->card;
821 	struct descriptor_buffer *desc, *tmp;
822 
823 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
824 		dma_free_coherent(card->device, PAGE_SIZE, desc,
825 			desc->buffer_bus -
826 			((void *)&desc->buffer - (void *)desc));
827 }
828 
829 /* Must be called with ohci->lock held */
830 static struct descriptor *
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)831 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
832 {
833 	struct descriptor *d = NULL;
834 	struct descriptor_buffer *desc = ctx->buffer_tail;
835 
836 	if (z * sizeof(*d) > desc->buffer_size)
837 		return NULL;
838 
839 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
840 		/* No room for the descriptor in this buffer, so advance to the
841 		 * next one. */
842 
843 		if (desc->list.next == &ctx->buffer_list) {
844 			/* If there is no free buffer next in the list,
845 			 * allocate one. */
846 			if (context_add_buffer(ctx) < 0)
847 				return NULL;
848 		}
849 		desc = list_entry(desc->list.next,
850 				struct descriptor_buffer, list);
851 		ctx->buffer_tail = desc;
852 	}
853 
854 	d = desc->buffer + desc->used / sizeof(*d);
855 	memset(d, 0, z * sizeof(*d));
856 	*d_bus = desc->buffer_bus + desc->used;
857 
858 	return d;
859 }
860 
context_run(struct context * ctx,u32 extra)861 static void context_run(struct context *ctx, u32 extra)
862 {
863 	struct fw_ohci *ohci = ctx->ohci;
864 
865 	reg_write(ohci, COMMAND_PTR(ctx->regs),
866 		  le32_to_cpu(ctx->last->branch_address));
867 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
868 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
869 	flush_writes(ohci);
870 }
871 
context_append(struct context * ctx,struct descriptor * d,int z,int extra)872 static void context_append(struct context *ctx,
873 			   struct descriptor *d, int z, int extra)
874 {
875 	dma_addr_t d_bus;
876 	struct descriptor_buffer *desc = ctx->buffer_tail;
877 
878 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
879 
880 	desc->used += (z + extra) * sizeof(*d);
881 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
882 	ctx->prev = find_branch_descriptor(d, z);
883 
884 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
885 	flush_writes(ctx->ohci);
886 }
887 
context_stop(struct context * ctx)888 static void context_stop(struct context *ctx)
889 {
890 	u32 reg;
891 	int i;
892 
893 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
894 	flush_writes(ctx->ohci);
895 
896 	for (i = 0; i < 10; i++) {
897 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
898 		if ((reg & CONTEXT_ACTIVE) == 0)
899 			return;
900 
901 		mdelay(1);
902 	}
903 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
904 }
905 
906 struct driver_data {
907 	struct fw_packet *packet;
908 };
909 
910 /*
911  * This function apppends a packet to the DMA queue for transmission.
912  * Must always be called with the ochi->lock held to ensure proper
913  * generation handling and locking around packet queue manipulation.
914  */
915 static int
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)916 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
917 {
918 	struct fw_ohci *ohci = ctx->ohci;
919 	dma_addr_t d_bus, uninitialized_var(payload_bus);
920 	struct driver_data *driver_data;
921 	struct descriptor *d, *last;
922 	__le32 *header;
923 	int z, tcode;
924 	u32 reg;
925 
926 	d = context_get_descriptors(ctx, 4, &d_bus);
927 	if (d == NULL) {
928 		packet->ack = RCODE_SEND_ERROR;
929 		return -1;
930 	}
931 
932 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
933 	d[0].res_count = cpu_to_le16(packet->timestamp);
934 
935 	/*
936 	 * The DMA format for asyncronous link packets is different
937 	 * from the IEEE1394 layout, so shift the fields around
938 	 * accordingly.  If header_length is 8, it's a PHY packet, to
939 	 * which we need to prepend an extra quadlet.
940 	 */
941 
942 	header = (__le32 *) &d[1];
943 	if (packet->header_length > 8) {
944 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
945 					(packet->speed << 16));
946 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
947 					(packet->header[0] & 0xffff0000));
948 		header[2] = cpu_to_le32(packet->header[2]);
949 
950 		tcode = (packet->header[0] >> 4) & 0x0f;
951 		if (TCODE_IS_BLOCK_PACKET(tcode))
952 			header[3] = cpu_to_le32(packet->header[3]);
953 		else
954 			header[3] = (__force __le32) packet->header[3];
955 
956 		d[0].req_count = cpu_to_le16(packet->header_length);
957 	} else {
958 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
959 					(packet->speed << 16));
960 		header[1] = cpu_to_le32(packet->header[0]);
961 		header[2] = cpu_to_le32(packet->header[1]);
962 		d[0].req_count = cpu_to_le16(12);
963 	}
964 
965 	driver_data = (struct driver_data *) &d[3];
966 	driver_data->packet = packet;
967 	packet->driver_data = driver_data;
968 
969 	if (packet->payload_length > 0) {
970 		payload_bus =
971 			dma_map_single(ohci->card.device, packet->payload,
972 				       packet->payload_length, DMA_TO_DEVICE);
973 		if (dma_mapping_error(ohci->card.device, payload_bus)) {
974 			packet->ack = RCODE_SEND_ERROR;
975 			return -1;
976 		}
977 		packet->payload_bus = payload_bus;
978 
979 		d[2].req_count    = cpu_to_le16(packet->payload_length);
980 		d[2].data_address = cpu_to_le32(payload_bus);
981 		last = &d[2];
982 		z = 3;
983 	} else {
984 		last = &d[0];
985 		z = 2;
986 	}
987 
988 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
989 				     DESCRIPTOR_IRQ_ALWAYS |
990 				     DESCRIPTOR_BRANCH_ALWAYS);
991 
992 	/*
993 	 * If the controller and packet generations don't match, we need to
994 	 * bail out and try again.  If IntEvent.busReset is set, the AT context
995 	 * is halted, so appending to the context and trying to run it is
996 	 * futile.  Most controllers do the right thing and just flush the AT
997 	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
998 	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
999 	 * up stalling out.  So we just bail out in software and try again
1000 	 * later, and everyone is happy.
1001 	 * FIXME: Document how the locking works.
1002 	 */
1003 	if (ohci->generation != packet->generation ||
1004 	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1005 		if (packet->payload_length > 0)
1006 			dma_unmap_single(ohci->card.device, payload_bus,
1007 					 packet->payload_length, DMA_TO_DEVICE);
1008 		packet->ack = RCODE_GENERATION;
1009 		return -1;
1010 	}
1011 
1012 	context_append(ctx, d, z, 4 - z);
1013 
1014 	/* If the context isn't already running, start it up. */
1015 	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1016 	if ((reg & CONTEXT_RUN) == 0)
1017 		context_run(ctx, 0);
1018 
1019 	return 0;
1020 }
1021 
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1022 static int handle_at_packet(struct context *context,
1023 			    struct descriptor *d,
1024 			    struct descriptor *last)
1025 {
1026 	struct driver_data *driver_data;
1027 	struct fw_packet *packet;
1028 	struct fw_ohci *ohci = context->ohci;
1029 	int evt;
1030 
1031 	if (last->transfer_status == 0)
1032 		/* This descriptor isn't done yet, stop iteration. */
1033 		return 0;
1034 
1035 	driver_data = (struct driver_data *) &d[3];
1036 	packet = driver_data->packet;
1037 	if (packet == NULL)
1038 		/* This packet was cancelled, just continue. */
1039 		return 1;
1040 
1041 	if (packet->payload_bus)
1042 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1043 				 packet->payload_length, DMA_TO_DEVICE);
1044 
1045 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1046 	packet->timestamp = le16_to_cpu(last->res_count);
1047 
1048 	log_ar_at_event('T', packet->speed, packet->header, evt);
1049 
1050 	switch (evt) {
1051 	case OHCI1394_evt_timeout:
1052 		/* Async response transmit timed out. */
1053 		packet->ack = RCODE_CANCELLED;
1054 		break;
1055 
1056 	case OHCI1394_evt_flushed:
1057 		/*
1058 		 * The packet was flushed should give same error as
1059 		 * when we try to use a stale generation count.
1060 		 */
1061 		packet->ack = RCODE_GENERATION;
1062 		break;
1063 
1064 	case OHCI1394_evt_missing_ack:
1065 		/*
1066 		 * Using a valid (current) generation count, but the
1067 		 * node is not on the bus or not sending acks.
1068 		 */
1069 		packet->ack = RCODE_NO_ACK;
1070 		break;
1071 
1072 	case ACK_COMPLETE + 0x10:
1073 	case ACK_PENDING + 0x10:
1074 	case ACK_BUSY_X + 0x10:
1075 	case ACK_BUSY_A + 0x10:
1076 	case ACK_BUSY_B + 0x10:
1077 	case ACK_DATA_ERROR + 0x10:
1078 	case ACK_TYPE_ERROR + 0x10:
1079 		packet->ack = evt - 0x10;
1080 		break;
1081 
1082 	default:
1083 		packet->ack = RCODE_SEND_ERROR;
1084 		break;
1085 	}
1086 
1087 	packet->callback(packet, &ohci->card, packet->ack);
1088 
1089 	return 1;
1090 }
1091 
1092 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1093 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1094 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1095 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1096 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1097 
1098 static void
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1099 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1100 {
1101 	struct fw_packet response;
1102 	int tcode, length, i;
1103 
1104 	tcode = HEADER_GET_TCODE(packet->header[0]);
1105 	if (TCODE_IS_BLOCK_PACKET(tcode))
1106 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1107 	else
1108 		length = 4;
1109 
1110 	i = csr - CSR_CONFIG_ROM;
1111 	if (i + length > CONFIG_ROM_SIZE) {
1112 		fw_fill_response(&response, packet->header,
1113 				 RCODE_ADDRESS_ERROR, NULL, 0);
1114 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1115 		fw_fill_response(&response, packet->header,
1116 				 RCODE_TYPE_ERROR, NULL, 0);
1117 	} else {
1118 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1119 				 (void *) ohci->config_rom + i, length);
1120 	}
1121 
1122 	fw_core_handle_response(&ohci->card, &response);
1123 }
1124 
1125 static void
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1126 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1127 {
1128 	struct fw_packet response;
1129 	int tcode, length, ext_tcode, sel;
1130 	__be32 *payload, lock_old;
1131 	u32 lock_arg, lock_data;
1132 
1133 	tcode = HEADER_GET_TCODE(packet->header[0]);
1134 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1135 	payload = packet->payload;
1136 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1137 
1138 	if (tcode == TCODE_LOCK_REQUEST &&
1139 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1140 		lock_arg = be32_to_cpu(payload[0]);
1141 		lock_data = be32_to_cpu(payload[1]);
1142 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1143 		lock_arg = 0;
1144 		lock_data = 0;
1145 	} else {
1146 		fw_fill_response(&response, packet->header,
1147 				 RCODE_TYPE_ERROR, NULL, 0);
1148 		goto out;
1149 	}
1150 
1151 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1152 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1153 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1154 	reg_write(ohci, OHCI1394_CSRControl, sel);
1155 
1156 	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1157 		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1158 	else
1159 		fw_notify("swap not done yet\n");
1160 
1161 	fw_fill_response(&response, packet->header,
1162 			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1163  out:
1164 	fw_core_handle_response(&ohci->card, &response);
1165 }
1166 
1167 static void
handle_local_request(struct context * ctx,struct fw_packet * packet)1168 handle_local_request(struct context *ctx, struct fw_packet *packet)
1169 {
1170 	u64 offset;
1171 	u32 csr;
1172 
1173 	if (ctx == &ctx->ohci->at_request_ctx) {
1174 		packet->ack = ACK_PENDING;
1175 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1176 	}
1177 
1178 	offset =
1179 		((unsigned long long)
1180 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1181 		packet->header[2];
1182 	csr = offset - CSR_REGISTER_BASE;
1183 
1184 	/* Handle config rom reads. */
1185 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1186 		handle_local_rom(ctx->ohci, packet, csr);
1187 	else switch (csr) {
1188 	case CSR_BUS_MANAGER_ID:
1189 	case CSR_BANDWIDTH_AVAILABLE:
1190 	case CSR_CHANNELS_AVAILABLE_HI:
1191 	case CSR_CHANNELS_AVAILABLE_LO:
1192 		handle_local_lock(ctx->ohci, packet, csr);
1193 		break;
1194 	default:
1195 		if (ctx == &ctx->ohci->at_request_ctx)
1196 			fw_core_handle_request(&ctx->ohci->card, packet);
1197 		else
1198 			fw_core_handle_response(&ctx->ohci->card, packet);
1199 		break;
1200 	}
1201 
1202 	if (ctx == &ctx->ohci->at_response_ctx) {
1203 		packet->ack = ACK_COMPLETE;
1204 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1205 	}
1206 }
1207 
1208 static void
at_context_transmit(struct context * ctx,struct fw_packet * packet)1209 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1210 {
1211 	unsigned long flags;
1212 	int retval;
1213 
1214 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1215 
1216 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1217 	    ctx->ohci->generation == packet->generation) {
1218 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1219 		handle_local_request(ctx, packet);
1220 		return;
1221 	}
1222 
1223 	retval = at_context_queue_packet(ctx, packet);
1224 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1225 
1226 	if (retval < 0)
1227 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1228 
1229 }
1230 
bus_reset_tasklet(unsigned long data)1231 static void bus_reset_tasklet(unsigned long data)
1232 {
1233 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1234 	int self_id_count, i, j, reg;
1235 	int generation, new_generation;
1236 	unsigned long flags;
1237 	void *free_rom = NULL;
1238 	dma_addr_t free_rom_bus = 0;
1239 
1240 	reg = reg_read(ohci, OHCI1394_NodeID);
1241 	if (!(reg & OHCI1394_NodeID_idValid)) {
1242 		fw_notify("node ID not valid, new bus reset in progress\n");
1243 		return;
1244 	}
1245 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1246 		fw_notify("malconfigured bus\n");
1247 		return;
1248 	}
1249 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1250 			       OHCI1394_NodeID_nodeNumber);
1251 
1252 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1253 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1254 		fw_notify("inconsistent self IDs\n");
1255 		return;
1256 	}
1257 	/*
1258 	 * The count in the SelfIDCount register is the number of
1259 	 * bytes in the self ID receive buffer.  Since we also receive
1260 	 * the inverted quadlets and a header quadlet, we shift one
1261 	 * bit extra to get the actual number of self IDs.
1262 	 */
1263 	self_id_count = (reg >> 3) & 0x3ff;
1264 	if (self_id_count == 0) {
1265 		fw_notify("inconsistent self IDs\n");
1266 		return;
1267 	}
1268 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1269 	rmb();
1270 
1271 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1272 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1273 			fw_notify("inconsistent self IDs\n");
1274 			return;
1275 		}
1276 		ohci->self_id_buffer[j] =
1277 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1278 	}
1279 	rmb();
1280 
1281 	/*
1282 	 * Check the consistency of the self IDs we just read.  The
1283 	 * problem we face is that a new bus reset can start while we
1284 	 * read out the self IDs from the DMA buffer. If this happens,
1285 	 * the DMA buffer will be overwritten with new self IDs and we
1286 	 * will read out inconsistent data.  The OHCI specification
1287 	 * (section 11.2) recommends a technique similar to
1288 	 * linux/seqlock.h, where we remember the generation of the
1289 	 * self IDs in the buffer before reading them out and compare
1290 	 * it to the current generation after reading them out.  If
1291 	 * the two generations match we know we have a consistent set
1292 	 * of self IDs.
1293 	 */
1294 
1295 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1296 	if (new_generation != generation) {
1297 		fw_notify("recursive bus reset detected, "
1298 			  "discarding self ids\n");
1299 		return;
1300 	}
1301 
1302 	/* FIXME: Document how the locking works. */
1303 	spin_lock_irqsave(&ohci->lock, flags);
1304 
1305 	ohci->generation = generation;
1306 	context_stop(&ohci->at_request_ctx);
1307 	context_stop(&ohci->at_response_ctx);
1308 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1309 
1310 	if (ohci->bus_reset_packet_quirk)
1311 		ohci->request_generation = generation;
1312 
1313 	/*
1314 	 * This next bit is unrelated to the AT context stuff but we
1315 	 * have to do it under the spinlock also.  If a new config rom
1316 	 * was set up before this reset, the old one is now no longer
1317 	 * in use and we can free it. Update the config rom pointers
1318 	 * to point to the current config rom and clear the
1319 	 * next_config_rom pointer so a new udpate can take place.
1320 	 */
1321 
1322 	if (ohci->next_config_rom != NULL) {
1323 		if (ohci->next_config_rom != ohci->config_rom) {
1324 			free_rom      = ohci->config_rom;
1325 			free_rom_bus  = ohci->config_rom_bus;
1326 		}
1327 		ohci->config_rom      = ohci->next_config_rom;
1328 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1329 		ohci->next_config_rom = NULL;
1330 
1331 		/*
1332 		 * Restore config_rom image and manually update
1333 		 * config_rom registers.  Writing the header quadlet
1334 		 * will indicate that the config rom is ready, so we
1335 		 * do that last.
1336 		 */
1337 		reg_write(ohci, OHCI1394_BusOptions,
1338 			  be32_to_cpu(ohci->config_rom[2]));
1339 		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1340 		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1341 	}
1342 
1343 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1344 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1345 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1346 #endif
1347 
1348 	spin_unlock_irqrestore(&ohci->lock, flags);
1349 
1350 	if (free_rom)
1351 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1352 				  free_rom, free_rom_bus);
1353 
1354 	log_selfids(ohci->node_id, generation,
1355 		    self_id_count, ohci->self_id_buffer);
1356 
1357 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1358 				 self_id_count, ohci->self_id_buffer);
1359 }
1360 
irq_handler(int irq,void * data)1361 static irqreturn_t irq_handler(int irq, void *data)
1362 {
1363 	struct fw_ohci *ohci = data;
1364 	u32 event, iso_event, cycle_time;
1365 	int i;
1366 
1367 	event = reg_read(ohci, OHCI1394_IntEventClear);
1368 
1369 	if (!event || !~event)
1370 		return IRQ_NONE;
1371 
1372 	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1373 	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1374 	log_irqs(event);
1375 
1376 	if (event & OHCI1394_selfIDComplete)
1377 		tasklet_schedule(&ohci->bus_reset_tasklet);
1378 
1379 	if (event & OHCI1394_RQPkt)
1380 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1381 
1382 	if (event & OHCI1394_RSPkt)
1383 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1384 
1385 	if (event & OHCI1394_reqTxComplete)
1386 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1387 
1388 	if (event & OHCI1394_respTxComplete)
1389 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1390 
1391 	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1392 	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1393 
1394 	while (iso_event) {
1395 		i = ffs(iso_event) - 1;
1396 		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1397 		iso_event &= ~(1 << i);
1398 	}
1399 
1400 	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1401 	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1402 
1403 	while (iso_event) {
1404 		i = ffs(iso_event) - 1;
1405 		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1406 		iso_event &= ~(1 << i);
1407 	}
1408 
1409 	if (unlikely(event & OHCI1394_regAccessFail))
1410 		fw_error("Register access failure - "
1411 			 "please notify linux1394-devel@lists.sf.net\n");
1412 
1413 	if (unlikely(event & OHCI1394_postedWriteErr))
1414 		fw_error("PCI posted write error\n");
1415 
1416 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1417 		if (printk_ratelimit())
1418 			fw_notify("isochronous cycle too long\n");
1419 		reg_write(ohci, OHCI1394_LinkControlSet,
1420 			  OHCI1394_LinkControl_cycleMaster);
1421 	}
1422 
1423 	if (event & OHCI1394_cycle64Seconds) {
1424 		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1425 		if ((cycle_time & 0x80000000) == 0)
1426 			ohci->bus_seconds++;
1427 	}
1428 
1429 	return IRQ_HANDLED;
1430 }
1431 
software_reset(struct fw_ohci * ohci)1432 static int software_reset(struct fw_ohci *ohci)
1433 {
1434 	int i;
1435 
1436 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1437 
1438 	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1439 		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1440 		     OHCI1394_HCControl_softReset) == 0)
1441 			return 0;
1442 		msleep(1);
1443 	}
1444 
1445 	return -EBUSY;
1446 }
1447 
ohci_enable(struct fw_card * card,u32 * config_rom,size_t length)1448 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1449 {
1450 	struct fw_ohci *ohci = fw_ohci(card);
1451 	struct pci_dev *dev = to_pci_dev(card->device);
1452 	u32 lps;
1453 	int i;
1454 
1455 	if (software_reset(ohci)) {
1456 		fw_error("Failed to reset ohci card.\n");
1457 		return -EBUSY;
1458 	}
1459 
1460 	/*
1461 	 * Now enable LPS, which we need in order to start accessing
1462 	 * most of the registers.  In fact, on some cards (ALI M5251),
1463 	 * accessing registers in the SClk domain without LPS enabled
1464 	 * will lock up the machine.  Wait 50msec to make sure we have
1465 	 * full link enabled.  However, with some cards (well, at least
1466 	 * a JMicron PCIe card), we have to try again sometimes.
1467 	 */
1468 	reg_write(ohci, OHCI1394_HCControlSet,
1469 		  OHCI1394_HCControl_LPS |
1470 		  OHCI1394_HCControl_postedWriteEnable);
1471 	flush_writes(ohci);
1472 
1473 	for (lps = 0, i = 0; !lps && i < 3; i++) {
1474 		msleep(50);
1475 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1476 		      OHCI1394_HCControl_LPS;
1477 	}
1478 
1479 	if (!lps) {
1480 		fw_error("Failed to set Link Power Status\n");
1481 		return -EIO;
1482 	}
1483 
1484 	reg_write(ohci, OHCI1394_HCControlClear,
1485 		  OHCI1394_HCControl_noByteSwapData);
1486 
1487 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1488 	reg_write(ohci, OHCI1394_LinkControlClear,
1489 		  OHCI1394_LinkControl_rcvPhyPkt);
1490 	reg_write(ohci, OHCI1394_LinkControlSet,
1491 		  OHCI1394_LinkControl_rcvSelfID |
1492 		  OHCI1394_LinkControl_cycleTimerEnable |
1493 		  OHCI1394_LinkControl_cycleMaster);
1494 
1495 	reg_write(ohci, OHCI1394_ATRetries,
1496 		  OHCI1394_MAX_AT_REQ_RETRIES |
1497 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1498 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1499 
1500 	ar_context_run(&ohci->ar_request_ctx);
1501 	ar_context_run(&ohci->ar_response_ctx);
1502 
1503 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1504 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1505 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1506 	reg_write(ohci, OHCI1394_IntMaskSet,
1507 		  OHCI1394_selfIDComplete |
1508 		  OHCI1394_RQPkt | OHCI1394_RSPkt |
1509 		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1510 		  OHCI1394_isochRx | OHCI1394_isochTx |
1511 		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1512 		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1513 		  OHCI1394_masterIntEnable);
1514 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1515 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1516 
1517 	/* Activate link_on bit and contender bit in our self ID packets.*/
1518 	if (ohci_update_phy_reg(card, 4, 0,
1519 				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1520 		return -EIO;
1521 
1522 	/*
1523 	 * When the link is not yet enabled, the atomic config rom
1524 	 * update mechanism described below in ohci_set_config_rom()
1525 	 * is not active.  We have to update ConfigRomHeader and
1526 	 * BusOptions manually, and the write to ConfigROMmap takes
1527 	 * effect immediately.  We tie this to the enabling of the
1528 	 * link, so we have a valid config rom before enabling - the
1529 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
1530 	 * values before enabling.
1531 	 *
1532 	 * However, when the ConfigROMmap is written, some controllers
1533 	 * always read back quadlets 0 and 2 from the config rom to
1534 	 * the ConfigRomHeader and BusOptions registers on bus reset.
1535 	 * They shouldn't do that in this initial case where the link
1536 	 * isn't enabled.  This means we have to use the same
1537 	 * workaround here, setting the bus header to 0 and then write
1538 	 * the right values in the bus reset tasklet.
1539 	 */
1540 
1541 	if (config_rom) {
1542 		ohci->next_config_rom =
1543 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1544 					   &ohci->next_config_rom_bus,
1545 					   GFP_KERNEL);
1546 		if (ohci->next_config_rom == NULL)
1547 			return -ENOMEM;
1548 
1549 		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1550 		fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1551 	} else {
1552 		/*
1553 		 * In the suspend case, config_rom is NULL, which
1554 		 * means that we just reuse the old config rom.
1555 		 */
1556 		ohci->next_config_rom = ohci->config_rom;
1557 		ohci->next_config_rom_bus = ohci->config_rom_bus;
1558 	}
1559 
1560 	ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1561 	ohci->next_config_rom[0] = 0;
1562 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1563 	reg_write(ohci, OHCI1394_BusOptions,
1564 		  be32_to_cpu(ohci->next_config_rom[2]));
1565 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1566 
1567 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1568 
1569 	if (request_irq(dev->irq, irq_handler,
1570 			IRQF_SHARED, ohci_driver_name, ohci)) {
1571 		fw_error("Failed to allocate shared interrupt %d.\n",
1572 			 dev->irq);
1573 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1574 				  ohci->config_rom, ohci->config_rom_bus);
1575 		return -EIO;
1576 	}
1577 
1578 	reg_write(ohci, OHCI1394_HCControlSet,
1579 		  OHCI1394_HCControl_linkEnable |
1580 		  OHCI1394_HCControl_BIBimageValid);
1581 	flush_writes(ohci);
1582 
1583 	/*
1584 	 * We are ready to go, initiate bus reset to finish the
1585 	 * initialization.
1586 	 */
1587 
1588 	fw_core_initiate_bus_reset(&ohci->card, 1);
1589 
1590 	return 0;
1591 }
1592 
1593 static int
ohci_set_config_rom(struct fw_card * card,u32 * config_rom,size_t length)1594 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1595 {
1596 	struct fw_ohci *ohci;
1597 	unsigned long flags;
1598 	int retval = -EBUSY;
1599 	__be32 *next_config_rom;
1600 	dma_addr_t uninitialized_var(next_config_rom_bus);
1601 
1602 	ohci = fw_ohci(card);
1603 
1604 	/*
1605 	 * When the OHCI controller is enabled, the config rom update
1606 	 * mechanism is a bit tricky, but easy enough to use.  See
1607 	 * section 5.5.6 in the OHCI specification.
1608 	 *
1609 	 * The OHCI controller caches the new config rom address in a
1610 	 * shadow register (ConfigROMmapNext) and needs a bus reset
1611 	 * for the changes to take place.  When the bus reset is
1612 	 * detected, the controller loads the new values for the
1613 	 * ConfigRomHeader and BusOptions registers from the specified
1614 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1615 	 * shadow register. All automatically and atomically.
1616 	 *
1617 	 * Now, there's a twist to this story.  The automatic load of
1618 	 * ConfigRomHeader and BusOptions doesn't honor the
1619 	 * noByteSwapData bit, so with a be32 config rom, the
1620 	 * controller will load be32 values in to these registers
1621 	 * during the atomic update, even on litte endian
1622 	 * architectures.  The workaround we use is to put a 0 in the
1623 	 * header quadlet; 0 is endian agnostic and means that the
1624 	 * config rom isn't ready yet.  In the bus reset tasklet we
1625 	 * then set up the real values for the two registers.
1626 	 *
1627 	 * We use ohci->lock to avoid racing with the code that sets
1628 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1629 	 */
1630 
1631 	next_config_rom =
1632 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1633 				   &next_config_rom_bus, GFP_KERNEL);
1634 	if (next_config_rom == NULL)
1635 		return -ENOMEM;
1636 
1637 	spin_lock_irqsave(&ohci->lock, flags);
1638 
1639 	if (ohci->next_config_rom == NULL) {
1640 		ohci->next_config_rom = next_config_rom;
1641 		ohci->next_config_rom_bus = next_config_rom_bus;
1642 
1643 		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1644 		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1645 				  length * 4);
1646 
1647 		ohci->next_header = config_rom[0];
1648 		ohci->next_config_rom[0] = 0;
1649 
1650 		reg_write(ohci, OHCI1394_ConfigROMmap,
1651 			  ohci->next_config_rom_bus);
1652 		retval = 0;
1653 	}
1654 
1655 	spin_unlock_irqrestore(&ohci->lock, flags);
1656 
1657 	/*
1658 	 * Now initiate a bus reset to have the changes take
1659 	 * effect. We clean up the old config rom memory and DMA
1660 	 * mappings in the bus reset tasklet, since the OHCI
1661 	 * controller could need to access it before the bus reset
1662 	 * takes effect.
1663 	 */
1664 	if (retval == 0)
1665 		fw_core_initiate_bus_reset(&ohci->card, 1);
1666 	else
1667 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1668 				  next_config_rom, next_config_rom_bus);
1669 
1670 	return retval;
1671 }
1672 
ohci_send_request(struct fw_card * card,struct fw_packet * packet)1673 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1674 {
1675 	struct fw_ohci *ohci = fw_ohci(card);
1676 
1677 	at_context_transmit(&ohci->at_request_ctx, packet);
1678 }
1679 
ohci_send_response(struct fw_card * card,struct fw_packet * packet)1680 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1681 {
1682 	struct fw_ohci *ohci = fw_ohci(card);
1683 
1684 	at_context_transmit(&ohci->at_response_ctx, packet);
1685 }
1686 
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)1687 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1688 {
1689 	struct fw_ohci *ohci = fw_ohci(card);
1690 	struct context *ctx = &ohci->at_request_ctx;
1691 	struct driver_data *driver_data = packet->driver_data;
1692 	int retval = -ENOENT;
1693 
1694 	tasklet_disable(&ctx->tasklet);
1695 
1696 	if (packet->ack != 0)
1697 		goto out;
1698 
1699 	if (packet->payload_bus)
1700 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1701 				 packet->payload_length, DMA_TO_DEVICE);
1702 
1703 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1704 	driver_data->packet = NULL;
1705 	packet->ack = RCODE_CANCELLED;
1706 	packet->callback(packet, &ohci->card, packet->ack);
1707 	retval = 0;
1708 
1709  out:
1710 	tasklet_enable(&ctx->tasklet);
1711 
1712 	return retval;
1713 }
1714 
1715 static int
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)1716 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1717 {
1718 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1719 	return 0;
1720 #else
1721 	struct fw_ohci *ohci = fw_ohci(card);
1722 	unsigned long flags;
1723 	int n, retval = 0;
1724 
1725 	/*
1726 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1727 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1728 	 */
1729 
1730 	spin_lock_irqsave(&ohci->lock, flags);
1731 
1732 	if (ohci->generation != generation) {
1733 		retval = -ESTALE;
1734 		goto out;
1735 	}
1736 
1737 	/*
1738 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
1739 	 * enabled for _all_ nodes on remote buses.
1740 	 */
1741 
1742 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1743 	if (n < 32)
1744 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1745 	else
1746 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1747 
1748 	flush_writes(ohci);
1749  out:
1750 	spin_unlock_irqrestore(&ohci->lock, flags);
1751 	return retval;
1752 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1753 }
1754 
1755 static u64
ohci_get_bus_time(struct fw_card * card)1756 ohci_get_bus_time(struct fw_card *card)
1757 {
1758 	struct fw_ohci *ohci = fw_ohci(card);
1759 	u32 cycle_time;
1760 	u64 bus_time;
1761 
1762 	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1763 	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1764 
1765 	return bus_time;
1766 }
1767 
handle_ir_dualbuffer_packet(struct context * context,struct descriptor * d,struct descriptor * last)1768 static int handle_ir_dualbuffer_packet(struct context *context,
1769 				       struct descriptor *d,
1770 				       struct descriptor *last)
1771 {
1772 	struct iso_context *ctx =
1773 		container_of(context, struct iso_context, context);
1774 	struct db_descriptor *db = (struct db_descriptor *) d;
1775 	__le32 *ir_header;
1776 	size_t header_length;
1777 	void *p, *end;
1778 	int i;
1779 
1780 	if (db->first_res_count != 0 && db->second_res_count != 0) {
1781 		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1782 			/* This descriptor isn't done yet, stop iteration. */
1783 			return 0;
1784 		}
1785 		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1786 	}
1787 
1788 	header_length = le16_to_cpu(db->first_req_count) -
1789 		le16_to_cpu(db->first_res_count);
1790 
1791 	i = ctx->header_length;
1792 	p = db + 1;
1793 	end = p + header_length;
1794 	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1795 		/*
1796 		 * The iso header is byteswapped to little endian by
1797 		 * the controller, but the remaining header quadlets
1798 		 * are big endian.  We want to present all the headers
1799 		 * as big endian, so we have to swap the first
1800 		 * quadlet.
1801 		 */
1802 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1803 		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1804 		i += ctx->base.header_size;
1805 		ctx->excess_bytes +=
1806 			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1807 		p += ctx->base.header_size + 4;
1808 	}
1809 	ctx->header_length = i;
1810 
1811 	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1812 		le16_to_cpu(db->second_res_count);
1813 
1814 	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1815 		ir_header = (__le32 *) (db + 1);
1816 		ctx->base.callback(&ctx->base,
1817 				   le32_to_cpu(ir_header[0]) & 0xffff,
1818 				   ctx->header_length, ctx->header,
1819 				   ctx->base.callback_data);
1820 		ctx->header_length = 0;
1821 	}
1822 
1823 	return 1;
1824 }
1825 
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)1826 static int handle_ir_packet_per_buffer(struct context *context,
1827 				       struct descriptor *d,
1828 				       struct descriptor *last)
1829 {
1830 	struct iso_context *ctx =
1831 		container_of(context, struct iso_context, context);
1832 	struct descriptor *pd;
1833 	__le32 *ir_header;
1834 	void *p;
1835 	int i;
1836 
1837 	for (pd = d; pd <= last; pd++) {
1838 		if (pd->transfer_status)
1839 			break;
1840 	}
1841 	if (pd > last)
1842 		/* Descriptor(s) not done yet, stop iteration */
1843 		return 0;
1844 
1845 	i   = ctx->header_length;
1846 	p   = last + 1;
1847 
1848 	if (ctx->base.header_size > 0 &&
1849 			i + ctx->base.header_size <= PAGE_SIZE) {
1850 		/*
1851 		 * The iso header is byteswapped to little endian by
1852 		 * the controller, but the remaining header quadlets
1853 		 * are big endian.  We want to present all the headers
1854 		 * as big endian, so we have to swap the first quadlet.
1855 		 */
1856 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1857 		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1858 		ctx->header_length += ctx->base.header_size;
1859 	}
1860 
1861 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1862 		ir_header = (__le32 *) p;
1863 		ctx->base.callback(&ctx->base,
1864 				   le32_to_cpu(ir_header[0]) & 0xffff,
1865 				   ctx->header_length, ctx->header,
1866 				   ctx->base.callback_data);
1867 		ctx->header_length = 0;
1868 	}
1869 
1870 	return 1;
1871 }
1872 
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)1873 static int handle_it_packet(struct context *context,
1874 			    struct descriptor *d,
1875 			    struct descriptor *last)
1876 {
1877 	struct iso_context *ctx =
1878 		container_of(context, struct iso_context, context);
1879 
1880 	if (last->transfer_status == 0)
1881 		/* This descriptor isn't done yet, stop iteration. */
1882 		return 0;
1883 
1884 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1885 		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1886 				   0, NULL, ctx->base.callback_data);
1887 
1888 	return 1;
1889 }
1890 
1891 static struct fw_iso_context *
ohci_allocate_iso_context(struct fw_card * card,int type,size_t header_size)1892 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1893 {
1894 	struct fw_ohci *ohci = fw_ohci(card);
1895 	struct iso_context *ctx, *list;
1896 	descriptor_callback_t callback;
1897 	u32 *mask, regs;
1898 	unsigned long flags;
1899 	int index, retval = -ENOMEM;
1900 
1901 	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1902 		mask = &ohci->it_context_mask;
1903 		list = ohci->it_context_list;
1904 		callback = handle_it_packet;
1905 	} else {
1906 		mask = &ohci->ir_context_mask;
1907 		list = ohci->ir_context_list;
1908 		if (ohci->use_dualbuffer)
1909 			callback = handle_ir_dualbuffer_packet;
1910 		else
1911 			callback = handle_ir_packet_per_buffer;
1912 	}
1913 
1914 	spin_lock_irqsave(&ohci->lock, flags);
1915 	index = ffs(*mask) - 1;
1916 	if (index >= 0)
1917 		*mask &= ~(1 << index);
1918 	spin_unlock_irqrestore(&ohci->lock, flags);
1919 
1920 	if (index < 0)
1921 		return ERR_PTR(-EBUSY);
1922 
1923 	if (type == FW_ISO_CONTEXT_TRANSMIT)
1924 		regs = OHCI1394_IsoXmitContextBase(index);
1925 	else
1926 		regs = OHCI1394_IsoRcvContextBase(index);
1927 
1928 	ctx = &list[index];
1929 	memset(ctx, 0, sizeof(*ctx));
1930 	ctx->header_length = 0;
1931 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
1932 	if (ctx->header == NULL)
1933 		goto out;
1934 
1935 	retval = context_init(&ctx->context, ohci, regs, callback);
1936 	if (retval < 0)
1937 		goto out_with_header;
1938 
1939 	return &ctx->base;
1940 
1941  out_with_header:
1942 	free_page((unsigned long)ctx->header);
1943  out:
1944 	spin_lock_irqsave(&ohci->lock, flags);
1945 	*mask |= 1 << index;
1946 	spin_unlock_irqrestore(&ohci->lock, flags);
1947 
1948 	return ERR_PTR(retval);
1949 }
1950 
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)1951 static int ohci_start_iso(struct fw_iso_context *base,
1952 			  s32 cycle, u32 sync, u32 tags)
1953 {
1954 	struct iso_context *ctx = container_of(base, struct iso_context, base);
1955 	struct fw_ohci *ohci = ctx->context.ohci;
1956 	u32 control, match;
1957 	int index;
1958 
1959 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1960 		index = ctx - ohci->it_context_list;
1961 		match = 0;
1962 		if (cycle >= 0)
1963 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1964 				(cycle & 0x7fff) << 16;
1965 
1966 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1967 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1968 		context_run(&ctx->context, match);
1969 	} else {
1970 		index = ctx - ohci->ir_context_list;
1971 		control = IR_CONTEXT_ISOCH_HEADER;
1972 		if (ohci->use_dualbuffer)
1973 			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1974 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
1975 		if (cycle >= 0) {
1976 			match |= (cycle & 0x07fff) << 12;
1977 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1978 		}
1979 
1980 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1981 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1982 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1983 		context_run(&ctx->context, control);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
ohci_stop_iso(struct fw_iso_context * base)1989 static int ohci_stop_iso(struct fw_iso_context *base)
1990 {
1991 	struct fw_ohci *ohci = fw_ohci(base->card);
1992 	struct iso_context *ctx = container_of(base, struct iso_context, base);
1993 	int index;
1994 
1995 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1996 		index = ctx - ohci->it_context_list;
1997 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1998 	} else {
1999 		index = ctx - ohci->ir_context_list;
2000 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2001 	}
2002 	flush_writes(ohci);
2003 	context_stop(&ctx->context);
2004 
2005 	return 0;
2006 }
2007 
ohci_free_iso_context(struct fw_iso_context * base)2008 static void ohci_free_iso_context(struct fw_iso_context *base)
2009 {
2010 	struct fw_ohci *ohci = fw_ohci(base->card);
2011 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2012 	unsigned long flags;
2013 	int index;
2014 
2015 	ohci_stop_iso(base);
2016 	context_release(&ctx->context);
2017 	free_page((unsigned long)ctx->header);
2018 
2019 	spin_lock_irqsave(&ohci->lock, flags);
2020 
2021 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2022 		index = ctx - ohci->it_context_list;
2023 		ohci->it_context_mask |= 1 << index;
2024 	} else {
2025 		index = ctx - ohci->ir_context_list;
2026 		ohci->ir_context_mask |= 1 << index;
2027 	}
2028 
2029 	spin_unlock_irqrestore(&ohci->lock, flags);
2030 }
2031 
2032 static int
ohci_queue_iso_transmit(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)2033 ohci_queue_iso_transmit(struct fw_iso_context *base,
2034 			struct fw_iso_packet *packet,
2035 			struct fw_iso_buffer *buffer,
2036 			unsigned long payload)
2037 {
2038 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2039 	struct descriptor *d, *last, *pd;
2040 	struct fw_iso_packet *p;
2041 	__le32 *header;
2042 	dma_addr_t d_bus, page_bus;
2043 	u32 z, header_z, payload_z, irq;
2044 	u32 payload_index, payload_end_index, next_page_index;
2045 	int page, end_page, i, length, offset;
2046 
2047 	/*
2048 	 * FIXME: Cycle lost behavior should be configurable: lose
2049 	 * packet, retransmit or terminate..
2050 	 */
2051 
2052 	p = packet;
2053 	payload_index = payload;
2054 
2055 	if (p->skip)
2056 		z = 1;
2057 	else
2058 		z = 2;
2059 	if (p->header_length > 0)
2060 		z++;
2061 
2062 	/* Determine the first page the payload isn't contained in. */
2063 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2064 	if (p->payload_length > 0)
2065 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2066 	else
2067 		payload_z = 0;
2068 
2069 	z += payload_z;
2070 
2071 	/* Get header size in number of descriptors. */
2072 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2073 
2074 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2075 	if (d == NULL)
2076 		return -ENOMEM;
2077 
2078 	if (!p->skip) {
2079 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2080 		d[0].req_count = cpu_to_le16(8);
2081 
2082 		header = (__le32 *) &d[1];
2083 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2084 					IT_HEADER_TAG(p->tag) |
2085 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2086 					IT_HEADER_CHANNEL(ctx->base.channel) |
2087 					IT_HEADER_SPEED(ctx->base.speed));
2088 		header[1] =
2089 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2090 							  p->payload_length));
2091 	}
2092 
2093 	if (p->header_length > 0) {
2094 		d[2].req_count    = cpu_to_le16(p->header_length);
2095 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2096 		memcpy(&d[z], p->header, p->header_length);
2097 	}
2098 
2099 	pd = d + z - payload_z;
2100 	payload_end_index = payload_index + p->payload_length;
2101 	for (i = 0; i < payload_z; i++) {
2102 		page               = payload_index >> PAGE_SHIFT;
2103 		offset             = payload_index & ~PAGE_MASK;
2104 		next_page_index    = (page + 1) << PAGE_SHIFT;
2105 		length             =
2106 			min(next_page_index, payload_end_index) - payload_index;
2107 		pd[i].req_count    = cpu_to_le16(length);
2108 
2109 		page_bus = page_private(buffer->pages[page]);
2110 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2111 
2112 		payload_index += length;
2113 	}
2114 
2115 	if (p->interrupt)
2116 		irq = DESCRIPTOR_IRQ_ALWAYS;
2117 	else
2118 		irq = DESCRIPTOR_NO_IRQ;
2119 
2120 	last = z == 2 ? d : d + z - 1;
2121 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2122 				     DESCRIPTOR_STATUS |
2123 				     DESCRIPTOR_BRANCH_ALWAYS |
2124 				     irq);
2125 
2126 	context_append(&ctx->context, d, z, header_z);
2127 
2128 	return 0;
2129 }
2130 
2131 static int
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)2132 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2133 				  struct fw_iso_packet *packet,
2134 				  struct fw_iso_buffer *buffer,
2135 				  unsigned long payload)
2136 {
2137 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2138 	struct db_descriptor *db = NULL;
2139 	struct descriptor *d;
2140 	struct fw_iso_packet *p;
2141 	dma_addr_t d_bus, page_bus;
2142 	u32 z, header_z, length, rest;
2143 	int page, offset, packet_count, header_size;
2144 
2145 	/*
2146 	 * FIXME: Cycle lost behavior should be configurable: lose
2147 	 * packet, retransmit or terminate..
2148 	 */
2149 
2150 	p = packet;
2151 	z = 2;
2152 
2153 	/*
2154 	 * The OHCI controller puts the status word in the header
2155 	 * buffer too, so we need 4 extra bytes per packet.
2156 	 */
2157 	packet_count = p->header_length / ctx->base.header_size;
2158 	header_size = packet_count * (ctx->base.header_size + 4);
2159 
2160 	/* Get header size in number of descriptors. */
2161 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2162 	page     = payload >> PAGE_SHIFT;
2163 	offset   = payload & ~PAGE_MASK;
2164 	rest     = p->payload_length;
2165 
2166 	/* FIXME: make packet-per-buffer/dual-buffer a context option */
2167 	while (rest > 0) {
2168 		d = context_get_descriptors(&ctx->context,
2169 					    z + header_z, &d_bus);
2170 		if (d == NULL)
2171 			return -ENOMEM;
2172 
2173 		db = (struct db_descriptor *) d;
2174 		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2175 					  DESCRIPTOR_BRANCH_ALWAYS);
2176 		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2177 		if (p->skip && rest == p->payload_length) {
2178 			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2179 			db->first_req_count = db->first_size;
2180 		} else {
2181 			db->first_req_count = cpu_to_le16(header_size);
2182 		}
2183 		db->first_res_count = db->first_req_count;
2184 		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2185 
2186 		if (p->skip && rest == p->payload_length)
2187 			length = 4;
2188 		else if (offset + rest < PAGE_SIZE)
2189 			length = rest;
2190 		else
2191 			length = PAGE_SIZE - offset;
2192 
2193 		db->second_req_count = cpu_to_le16(length);
2194 		db->second_res_count = db->second_req_count;
2195 		page_bus = page_private(buffer->pages[page]);
2196 		db->second_buffer = cpu_to_le32(page_bus + offset);
2197 
2198 		if (p->interrupt && length == rest)
2199 			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2200 
2201 		context_append(&ctx->context, d, z, header_z);
2202 		offset = (offset + length) & ~PAGE_MASK;
2203 		rest -= length;
2204 		if (offset == 0)
2205 			page++;
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)2212 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2213 					 struct fw_iso_packet *packet,
2214 					 struct fw_iso_buffer *buffer,
2215 					 unsigned long payload)
2216 {
2217 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2218 	struct descriptor *d = NULL, *pd = NULL;
2219 	struct fw_iso_packet *p = packet;
2220 	dma_addr_t d_bus, page_bus;
2221 	u32 z, header_z, rest;
2222 	int i, j, length;
2223 	int page, offset, packet_count, header_size, payload_per_buffer;
2224 
2225 	/*
2226 	 * The OHCI controller puts the status word in the
2227 	 * buffer too, so we need 4 extra bytes per packet.
2228 	 */
2229 	packet_count = p->header_length / ctx->base.header_size;
2230 	header_size  = ctx->base.header_size + 4;
2231 
2232 	/* Get header size in number of descriptors. */
2233 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2234 	page     = payload >> PAGE_SHIFT;
2235 	offset   = payload & ~PAGE_MASK;
2236 	payload_per_buffer = p->payload_length / packet_count;
2237 
2238 	for (i = 0; i < packet_count; i++) {
2239 		/* d points to the header descriptor */
2240 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2241 		d = context_get_descriptors(&ctx->context,
2242 				z + header_z, &d_bus);
2243 		if (d == NULL)
2244 			return -ENOMEM;
2245 
2246 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2247 					      DESCRIPTOR_INPUT_MORE);
2248 		if (p->skip && i == 0)
2249 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2250 		d->req_count    = cpu_to_le16(header_size);
2251 		d->res_count    = d->req_count;
2252 		d->transfer_status = 0;
2253 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2254 
2255 		rest = payload_per_buffer;
2256 		for (j = 1; j < z; j++) {
2257 			pd = d + j;
2258 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2259 						  DESCRIPTOR_INPUT_MORE);
2260 
2261 			if (offset + rest < PAGE_SIZE)
2262 				length = rest;
2263 			else
2264 				length = PAGE_SIZE - offset;
2265 			pd->req_count = cpu_to_le16(length);
2266 			pd->res_count = pd->req_count;
2267 			pd->transfer_status = 0;
2268 
2269 			page_bus = page_private(buffer->pages[page]);
2270 			pd->data_address = cpu_to_le32(page_bus + offset);
2271 
2272 			offset = (offset + length) & ~PAGE_MASK;
2273 			rest -= length;
2274 			if (offset == 0)
2275 				page++;
2276 		}
2277 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2278 					  DESCRIPTOR_INPUT_LAST |
2279 					  DESCRIPTOR_BRANCH_ALWAYS);
2280 		if (p->interrupt && i == packet_count - 1)
2281 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2282 
2283 		context_append(&ctx->context, d, z, header_z);
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)2290 ohci_queue_iso(struct fw_iso_context *base,
2291 	       struct fw_iso_packet *packet,
2292 	       struct fw_iso_buffer *buffer,
2293 	       unsigned long payload)
2294 {
2295 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2296 	unsigned long flags;
2297 	int retval;
2298 
2299 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2300 	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2301 		retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2302 	else if (ctx->context.ohci->use_dualbuffer)
2303 		retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2304 							 buffer, payload);
2305 	else
2306 		retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2307 								buffer,
2308 								payload);
2309 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2310 
2311 	return retval;
2312 }
2313 
2314 static const struct fw_card_driver ohci_driver = {
2315 	.enable			= ohci_enable,
2316 	.update_phy_reg		= ohci_update_phy_reg,
2317 	.set_config_rom		= ohci_set_config_rom,
2318 	.send_request		= ohci_send_request,
2319 	.send_response		= ohci_send_response,
2320 	.cancel_packet		= ohci_cancel_packet,
2321 	.enable_phys_dma	= ohci_enable_phys_dma,
2322 	.get_bus_time		= ohci_get_bus_time,
2323 
2324 	.allocate_iso_context	= ohci_allocate_iso_context,
2325 	.free_iso_context	= ohci_free_iso_context,
2326 	.queue_iso		= ohci_queue_iso,
2327 	.start_iso		= ohci_start_iso,
2328 	.stop_iso		= ohci_stop_iso,
2329 };
2330 
2331 #ifdef CONFIG_PPC_PMAC
ohci_pmac_on(struct pci_dev * dev)2332 static void ohci_pmac_on(struct pci_dev *dev)
2333 {
2334 	if (machine_is(powermac)) {
2335 		struct device_node *ofn = pci_device_to_OF_node(dev);
2336 
2337 		if (ofn) {
2338 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2339 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2340 		}
2341 	}
2342 }
2343 
ohci_pmac_off(struct pci_dev * dev)2344 static void ohci_pmac_off(struct pci_dev *dev)
2345 {
2346 	if (machine_is(powermac)) {
2347 		struct device_node *ofn = pci_device_to_OF_node(dev);
2348 
2349 		if (ofn) {
2350 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2351 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2352 		}
2353 	}
2354 }
2355 #else
2356 #define ohci_pmac_on(dev)
2357 #define ohci_pmac_off(dev)
2358 #endif /* CONFIG_PPC_PMAC */
2359 
2360 static int __devinit
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)2361 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2362 {
2363 	struct fw_ohci *ohci;
2364 	u32 bus_options, max_receive, link_speed, version;
2365 	u64 guid;
2366 	int err;
2367 	size_t size;
2368 
2369 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2370 	if (ohci == NULL) {
2371 		err = -ENOMEM;
2372 		goto fail;
2373 	}
2374 
2375 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2376 
2377 	ohci_pmac_on(dev);
2378 
2379 	err = pci_enable_device(dev);
2380 	if (err) {
2381 		fw_error("Failed to enable OHCI hardware\n");
2382 		goto fail_free;
2383 	}
2384 
2385 	pci_set_master(dev);
2386 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2387 	pci_set_drvdata(dev, ohci);
2388 
2389 	spin_lock_init(&ohci->lock);
2390 
2391 	tasklet_init(&ohci->bus_reset_tasklet,
2392 		     bus_reset_tasklet, (unsigned long)ohci);
2393 
2394 	err = pci_request_region(dev, 0, ohci_driver_name);
2395 	if (err) {
2396 		fw_error("MMIO resource unavailable\n");
2397 		goto fail_disable;
2398 	}
2399 
2400 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2401 	if (ohci->registers == NULL) {
2402 		fw_error("Failed to remap registers\n");
2403 		err = -ENXIO;
2404 		goto fail_iomem;
2405 	}
2406 
2407 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2408 	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2409 
2410 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2411 #if !defined(CONFIG_X86_32)
2412 	/* dual-buffer mode is broken with descriptor addresses above 2G */
2413 	if (dev->vendor == PCI_VENDOR_ID_TI &&
2414 	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2415 		ohci->use_dualbuffer = false;
2416 #endif
2417 
2418 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2419 	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2420 			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2421 #endif
2422 	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2423 
2424 	ar_context_init(&ohci->ar_request_ctx, ohci,
2425 			OHCI1394_AsReqRcvContextControlSet);
2426 
2427 	ar_context_init(&ohci->ar_response_ctx, ohci,
2428 			OHCI1394_AsRspRcvContextControlSet);
2429 
2430 	context_init(&ohci->at_request_ctx, ohci,
2431 		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2432 
2433 	context_init(&ohci->at_response_ctx, ohci,
2434 		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2435 
2436 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2437 	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2438 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2439 	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2440 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2441 
2442 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2443 	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2444 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2445 	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2446 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2447 
2448 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2449 		err = -ENOMEM;
2450 		goto fail_contexts;
2451 	}
2452 
2453 	/* self-id dma buffer allocation */
2454 	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2455 					       SELF_ID_BUF_SIZE,
2456 					       &ohci->self_id_bus,
2457 					       GFP_KERNEL);
2458 	if (ohci->self_id_cpu == NULL) {
2459 		err = -ENOMEM;
2460 		goto fail_contexts;
2461 	}
2462 
2463 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2464 	max_receive = (bus_options >> 12) & 0xf;
2465 	link_speed = bus_options & 0x7;
2466 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2467 		reg_read(ohci, OHCI1394_GUIDLo);
2468 
2469 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2470 	if (err < 0)
2471 		goto fail_self_id;
2472 
2473 	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2474 		  dev_name(&dev->dev), version >> 16, version & 0xff);
2475 	return 0;
2476 
2477  fail_self_id:
2478 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2479 			  ohci->self_id_cpu, ohci->self_id_bus);
2480  fail_contexts:
2481 	kfree(ohci->ir_context_list);
2482 	kfree(ohci->it_context_list);
2483 	context_release(&ohci->at_response_ctx);
2484 	context_release(&ohci->at_request_ctx);
2485 	ar_context_release(&ohci->ar_response_ctx);
2486 	ar_context_release(&ohci->ar_request_ctx);
2487 	pci_iounmap(dev, ohci->registers);
2488  fail_iomem:
2489 	pci_release_region(dev, 0);
2490  fail_disable:
2491 	pci_disable_device(dev);
2492  fail_free:
2493 	kfree(&ohci->card);
2494 	ohci_pmac_off(dev);
2495  fail:
2496 	if (err == -ENOMEM)
2497 		fw_error("Out of memory\n");
2498 
2499 	return err;
2500 }
2501 
pci_remove(struct pci_dev * dev)2502 static void pci_remove(struct pci_dev *dev)
2503 {
2504 	struct fw_ohci *ohci;
2505 
2506 	ohci = pci_get_drvdata(dev);
2507 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2508 	flush_writes(ohci);
2509 	fw_core_remove_card(&ohci->card);
2510 
2511 	/*
2512 	 * FIXME: Fail all pending packets here, now that the upper
2513 	 * layers can't queue any more.
2514 	 */
2515 
2516 	software_reset(ohci);
2517 	free_irq(dev->irq, ohci);
2518 
2519 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2520 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2521 				  ohci->next_config_rom, ohci->next_config_rom_bus);
2522 	if (ohci->config_rom)
2523 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524 				  ohci->config_rom, ohci->config_rom_bus);
2525 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2526 			  ohci->self_id_cpu, ohci->self_id_bus);
2527 	ar_context_release(&ohci->ar_request_ctx);
2528 	ar_context_release(&ohci->ar_response_ctx);
2529 	context_release(&ohci->at_request_ctx);
2530 	context_release(&ohci->at_response_ctx);
2531 	kfree(ohci->it_context_list);
2532 	kfree(ohci->ir_context_list);
2533 	pci_iounmap(dev, ohci->registers);
2534 	pci_release_region(dev, 0);
2535 	pci_disable_device(dev);
2536 	kfree(&ohci->card);
2537 	ohci_pmac_off(dev);
2538 
2539 	fw_notify("Removed fw-ohci device.\n");
2540 }
2541 
2542 #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)2543 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2544 {
2545 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2546 	int err;
2547 
2548 	software_reset(ohci);
2549 	free_irq(dev->irq, ohci);
2550 	err = pci_save_state(dev);
2551 	if (err) {
2552 		fw_error("pci_save_state failed\n");
2553 		return err;
2554 	}
2555 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2556 	if (err)
2557 		fw_error("pci_set_power_state failed with %d\n", err);
2558 	ohci_pmac_off(dev);
2559 
2560 	return 0;
2561 }
2562 
pci_resume(struct pci_dev * dev)2563 static int pci_resume(struct pci_dev *dev)
2564 {
2565 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2566 	int err;
2567 
2568 	ohci_pmac_on(dev);
2569 	pci_set_power_state(dev, PCI_D0);
2570 	pci_restore_state(dev);
2571 	err = pci_enable_device(dev);
2572 	if (err) {
2573 		fw_error("pci_enable_device failed\n");
2574 		return err;
2575 	}
2576 
2577 	return ohci_enable(&ohci->card, NULL, 0);
2578 }
2579 #endif
2580 
2581 static struct pci_device_id pci_table[] = {
2582 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2583 	{ }
2584 };
2585 
2586 MODULE_DEVICE_TABLE(pci, pci_table);
2587 
2588 static struct pci_driver fw_ohci_pci_driver = {
2589 	.name		= ohci_driver_name,
2590 	.id_table	= pci_table,
2591 	.probe		= pci_probe,
2592 	.remove		= pci_remove,
2593 #ifdef CONFIG_PM
2594 	.resume		= pci_resume,
2595 	.suspend	= pci_suspend,
2596 #endif
2597 };
2598 
2599 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2600 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2601 MODULE_LICENSE("GPL");
2602 
2603 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2604 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2605 MODULE_ALIAS("ohci1394");
2606 #endif
2607 
fw_ohci_init(void)2608 static int __init fw_ohci_init(void)
2609 {
2610 	return pci_register_driver(&fw_ohci_pci_driver);
2611 }
2612 
fw_ohci_cleanup(void)2613 static void __exit fw_ohci_cleanup(void)
2614 {
2615 	pci_unregister_driver(&fw_ohci_pci_driver);
2616 }
2617 
2618 module_init(fw_ohci_init);
2619 module_exit(fw_ohci_cleanup);
2620