• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30 
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51 
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55 
56 /*
57  * So far only bridges from Oxford Semiconductor are known to support
58  * concurrent logins. Depending on firmware, four or two concurrent logins
59  * are possible on OXFW911 and newer Oxsemi bridges.
60  *
61  * Concurrent logins are useful together with cluster filesystems.
62  */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66 		 "(default = Y, use N for concurrent initiators)");
67 
68 /*
69  * Flags for firmware oddities
70  *
71  * - 128kB max transfer
72  *   Limit transfer size. Necessary for some old bridges.
73  *
74  * - 36 byte inquiry
75  *   When scsi_mod probes the device, let the inquiry command look like that
76  *   from MS Windows.
77  *
78  * - skip mode page 8
79  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
80  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
81  *
82  * - fix capacity
83  *   Tell sd_mod to correct the last sector number reported by read_capacity.
84  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
85  *   Don't use this with devices which don't have this bug.
86  *
87  * - delay inquiry
88  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89  *
90  * - power condition
91  *   Set the power condition field in the START STOP UNIT commands sent by
92  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93  *   Some disks need this to spin down or to resume properly.
94  *
95  * - override internal blacklist
96  *   Instead of adding to the built-in blacklist, use only the workarounds
97  *   specified in the module load parameter.
98  *   Useful if a blacklist entry interfered with a non-broken device.
99  */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
101 #define SBP2_WORKAROUND_INQUIRY_36	0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8	0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY	0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
105 #define SBP2_INQUIRY_DELAY		12
106 #define SBP2_WORKAROUND_POWER_CONDITION	0x20
107 #define SBP2_WORKAROUND_OVERRIDE	0x100
108 
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
114 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117 	", set power condition in start stop unit = "
118 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120 	", or a combination)");
121 
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124 
125 static const char sbp2_driver_name[] = "sbp2";
126 
127 /*
128  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129  * and one struct scsi_device per sbp2_logical_unit.
130  */
131 struct sbp2_logical_unit {
132 	struct sbp2_target *tgt;
133 	struct list_head link;
134 	struct fw_address_handler address_handler;
135 	struct list_head orb_list;
136 
137 	u64 command_block_agent_address;
138 	u16 lun;
139 	int login_id;
140 
141 	/*
142 	 * The generation is updated once we've logged in or reconnected
143 	 * to the logical unit.  Thus, I/O to the device will automatically
144 	 * fail and get retried if it happens in a window where the device
145 	 * is not ready, e.g. after a bus reset but before we reconnect.
146 	 */
147 	int generation;
148 	int retries;
149 	struct delayed_work work;
150 	bool has_sdev;
151 	bool blocked;
152 };
153 
154 /*
155  * We create one struct sbp2_target per IEEE 1212 Unit Directory
156  * and one struct Scsi_Host per sbp2_target.
157  */
158 struct sbp2_target {
159 	struct kref kref;
160 	struct fw_unit *unit;
161 	const char *bus_id;
162 	struct list_head lu_list;
163 
164 	u64 management_agent_address;
165 	u64 guid;
166 	int directory_id;
167 	int node_id;
168 	int address_high;
169 	unsigned int workarounds;
170 	unsigned int mgt_orb_timeout;
171 	unsigned int max_payload;
172 
173 	int dont_block;	/* counter for each logical unit */
174 	int blocked;	/* ditto */
175 };
176 
177 /* Impossible login_id, to detect logout attempt before successful login */
178 #define INVALID_LOGIN_ID 0x10000
179 
180 /*
181  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
182  * provided in the config rom. Most devices do provide a value, which
183  * we'll use for login management orbs, but with some sane limits.
184  */
185 #define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
186 #define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
187 #define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
188 #define SBP2_ORB_NULL			0x80000000
189 #define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
190 #define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
191 
192 /*
193  * The default maximum s/g segment size of a FireWire controller is
194  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
195  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
196  */
197 #define SBP2_MAX_SEG_SIZE		0xfffc
198 
199 /* Unit directory keys */
200 #define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
201 #define SBP2_CSR_FIRMWARE_REVISION	0x3c
202 #define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
203 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
204 
205 /* Management orb opcodes */
206 #define SBP2_LOGIN_REQUEST		0x0
207 #define SBP2_QUERY_LOGINS_REQUEST	0x1
208 #define SBP2_RECONNECT_REQUEST		0x3
209 #define SBP2_SET_PASSWORD_REQUEST	0x4
210 #define SBP2_LOGOUT_REQUEST		0x7
211 #define SBP2_ABORT_TASK_REQUEST		0xb
212 #define SBP2_ABORT_TASK_SET		0xc
213 #define SBP2_LOGICAL_UNIT_RESET		0xe
214 #define SBP2_TARGET_RESET_REQUEST	0xf
215 
216 /* Offsets for command block agent registers */
217 #define SBP2_AGENT_STATE		0x00
218 #define SBP2_AGENT_RESET		0x04
219 #define SBP2_ORB_POINTER		0x08
220 #define SBP2_DOORBELL			0x10
221 #define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
222 
223 /* Status write response codes */
224 #define SBP2_STATUS_REQUEST_COMPLETE	0x0
225 #define SBP2_STATUS_TRANSPORT_FAILURE	0x1
226 #define SBP2_STATUS_ILLEGAL_REQUEST	0x2
227 #define SBP2_STATUS_VENDOR_DEPENDENT	0x3
228 
229 #define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
230 #define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
231 #define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
232 #define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
233 #define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
234 #define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
235 #define STATUS_GET_ORB_LOW(v)		((v).orb_low)
236 #define STATUS_GET_DATA(v)		((v).data)
237 
238 struct sbp2_status {
239 	u32 status;
240 	u32 orb_low;
241 	u8 data[24];
242 };
243 
244 struct sbp2_pointer {
245 	__be32 high;
246 	__be32 low;
247 };
248 
249 struct sbp2_orb {
250 	struct fw_transaction t;
251 	struct kref kref;
252 	dma_addr_t request_bus;
253 	int rcode;
254 	struct sbp2_pointer pointer;
255 	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
256 	struct list_head link;
257 };
258 
259 #define MANAGEMENT_ORB_LUN(v)			((v))
260 #define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
261 #define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
262 #define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
263 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
264 #define MANAGEMENT_ORB_NOTIFY			((1) << 31)
265 
266 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
267 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
268 
269 struct sbp2_management_orb {
270 	struct sbp2_orb base;
271 	struct {
272 		struct sbp2_pointer password;
273 		struct sbp2_pointer response;
274 		__be32 misc;
275 		__be32 length;
276 		struct sbp2_pointer status_fifo;
277 	} request;
278 	__be32 response[4];
279 	dma_addr_t response_bus;
280 	struct completion done;
281 	struct sbp2_status status;
282 };
283 
284 struct sbp2_login_response {
285 	__be32 misc;
286 	struct sbp2_pointer command_block_agent;
287 	__be32 reconnect_hold;
288 };
289 #define COMMAND_ORB_DATA_SIZE(v)	((v))
290 #define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
291 #define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
292 #define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
293 #define COMMAND_ORB_SPEED(v)		((v) << 24)
294 #define COMMAND_ORB_DIRECTION		((1) << 27)
295 #define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
296 #define COMMAND_ORB_NOTIFY		((1) << 31)
297 
298 struct sbp2_command_orb {
299 	struct sbp2_orb base;
300 	struct {
301 		struct sbp2_pointer next;
302 		struct sbp2_pointer data_descriptor;
303 		__be32 misc;
304 		u8 command_block[12];
305 	} request;
306 	struct scsi_cmnd *cmd;
307 	scsi_done_fn_t done;
308 	struct sbp2_logical_unit *lu;
309 
310 	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
311 	dma_addr_t page_table_bus;
312 };
313 
314 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
315 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
316 
317 /*
318  * List of devices with known bugs.
319  *
320  * The firmware_revision field, masked with 0xffff00, is the best
321  * indicator for the type of bridge chip of a device.  It yields a few
322  * false positives but this did not break correctly behaving devices
323  * so far.
324  */
325 static const struct {
326 	u32 firmware_revision;
327 	u32 model;
328 	unsigned int workarounds;
329 } sbp2_workarounds_table[] = {
330 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
331 		.firmware_revision	= 0x002800,
332 		.model			= 0x001010,
333 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
334 					  SBP2_WORKAROUND_MODE_SENSE_8 |
335 					  SBP2_WORKAROUND_POWER_CONDITION,
336 	},
337 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
338 		.firmware_revision	= 0x002800,
339 		.model			= 0x000000,
340 		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY |
341 					  SBP2_WORKAROUND_POWER_CONDITION,
342 	},
343 	/* Initio bridges, actually only needed for some older ones */ {
344 		.firmware_revision	= 0x000200,
345 		.model			= SBP2_ROM_VALUE_WILDCARD,
346 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
347 	},
348 	/* PL-3507 bridge with Prolific firmware */ {
349 		.firmware_revision	= 0x012800,
350 		.model			= SBP2_ROM_VALUE_WILDCARD,
351 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
352 	},
353 	/* Symbios bridge */ {
354 		.firmware_revision	= 0xa0b800,
355 		.model			= SBP2_ROM_VALUE_WILDCARD,
356 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
357 	},
358 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
359 		.firmware_revision	= 0x002600,
360 		.model			= SBP2_ROM_VALUE_WILDCARD,
361 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
362 	},
363 	/*
364 	 * iPod 2nd generation: needs 128k max transfer size workaround
365 	 * iPod 3rd generation: needs fix capacity workaround
366 	 */
367 	{
368 		.firmware_revision	= 0x0a2700,
369 		.model			= 0x000000,
370 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
371 					  SBP2_WORKAROUND_FIX_CAPACITY,
372 	},
373 	/* iPod 4th generation */ {
374 		.firmware_revision	= 0x0a2700,
375 		.model			= 0x000021,
376 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
377 	},
378 	/* iPod mini */ {
379 		.firmware_revision	= 0x0a2700,
380 		.model			= 0x000022,
381 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
382 	},
383 	/* iPod mini */ {
384 		.firmware_revision	= 0x0a2700,
385 		.model			= 0x000023,
386 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
387 	},
388 	/* iPod Photo */ {
389 		.firmware_revision	= 0x0a2700,
390 		.model			= 0x00007e,
391 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
392 	}
393 };
394 
395 static void
free_orb(struct kref * kref)396 free_orb(struct kref *kref)
397 {
398 	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
399 
400 	kfree(orb);
401 }
402 
403 static void
sbp2_status_write(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,int speed,unsigned long long offset,void * payload,size_t length,void * callback_data)404 sbp2_status_write(struct fw_card *card, struct fw_request *request,
405 		  int tcode, int destination, int source,
406 		  int generation, int speed,
407 		  unsigned long long offset,
408 		  void *payload, size_t length, void *callback_data)
409 {
410 	struct sbp2_logical_unit *lu = callback_data;
411 	struct sbp2_orb *orb;
412 	struct sbp2_status status;
413 	size_t header_size;
414 	unsigned long flags;
415 
416 	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417 	    length == 0 || length > sizeof(status)) {
418 		fw_send_response(card, request, RCODE_TYPE_ERROR);
419 		return;
420 	}
421 
422 	header_size = min(length, 2 * sizeof(u32));
423 	fw_memcpy_from_be32(&status, payload, header_size);
424 	if (length > header_size)
425 		memcpy(status.data, payload + 8, length - header_size);
426 	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
427 		fw_notify("non-orb related status write, not handled\n");
428 		fw_send_response(card, request, RCODE_COMPLETE);
429 		return;
430 	}
431 
432 	/* Lookup the orb corresponding to this status write. */
433 	spin_lock_irqsave(&card->lock, flags);
434 	list_for_each_entry(orb, &lu->orb_list, link) {
435 		if (STATUS_GET_ORB_HIGH(status) == 0 &&
436 		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
437 			orb->rcode = RCODE_COMPLETE;
438 			list_del(&orb->link);
439 			break;
440 		}
441 	}
442 	spin_unlock_irqrestore(&card->lock, flags);
443 
444 	if (&orb->link != &lu->orb_list)
445 		orb->callback(orb, &status);
446 	else
447 		fw_error("status write for unknown orb\n");
448 
449 	kref_put(&orb->kref, free_orb);
450 
451 	fw_send_response(card, request, RCODE_COMPLETE);
452 }
453 
454 static void
complete_transaction(struct fw_card * card,int rcode,void * payload,size_t length,void * data)455 complete_transaction(struct fw_card *card, int rcode,
456 		     void *payload, size_t length, void *data)
457 {
458 	struct sbp2_orb *orb = data;
459 	unsigned long flags;
460 
461 	/*
462 	 * This is a little tricky.  We can get the status write for
463 	 * the orb before we get this callback.  The status write
464 	 * handler above will assume the orb pointer transaction was
465 	 * successful and set the rcode to RCODE_COMPLETE for the orb.
466 	 * So this callback only sets the rcode if it hasn't already
467 	 * been set and only does the cleanup if the transaction
468 	 * failed and we didn't already get a status write.
469 	 */
470 	spin_lock_irqsave(&card->lock, flags);
471 
472 	if (orb->rcode == -1)
473 		orb->rcode = rcode;
474 	if (orb->rcode != RCODE_COMPLETE) {
475 		list_del(&orb->link);
476 		spin_unlock_irqrestore(&card->lock, flags);
477 		orb->callback(orb, NULL);
478 	} else {
479 		spin_unlock_irqrestore(&card->lock, flags);
480 	}
481 
482 	kref_put(&orb->kref, free_orb);
483 }
484 
485 static void
sbp2_send_orb(struct sbp2_orb * orb,struct sbp2_logical_unit * lu,int node_id,int generation,u64 offset)486 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
487 	      int node_id, int generation, u64 offset)
488 {
489 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
490 	unsigned long flags;
491 
492 	orb->pointer.high = 0;
493 	orb->pointer.low = cpu_to_be32(orb->request_bus);
494 
495 	spin_lock_irqsave(&device->card->lock, flags);
496 	list_add_tail(&orb->link, &lu->orb_list);
497 	spin_unlock_irqrestore(&device->card->lock, flags);
498 
499 	/* Take a ref for the orb list and for the transaction callback. */
500 	kref_get(&orb->kref);
501 	kref_get(&orb->kref);
502 
503 	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
504 			node_id, generation, device->max_speed, offset,
505 			&orb->pointer, sizeof(orb->pointer),
506 			complete_transaction, orb);
507 }
508 
sbp2_cancel_orbs(struct sbp2_logical_unit * lu)509 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
510 {
511 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
512 	struct sbp2_orb *orb, *next;
513 	struct list_head list;
514 	unsigned long flags;
515 	int retval = -ENOENT;
516 
517 	INIT_LIST_HEAD(&list);
518 	spin_lock_irqsave(&device->card->lock, flags);
519 	list_splice_init(&lu->orb_list, &list);
520 	spin_unlock_irqrestore(&device->card->lock, flags);
521 
522 	list_for_each_entry_safe(orb, next, &list, link) {
523 		retval = 0;
524 		if (fw_cancel_transaction(device->card, &orb->t) == 0)
525 			continue;
526 
527 		orb->rcode = RCODE_CANCELLED;
528 		orb->callback(orb, NULL);
529 	}
530 
531 	return retval;
532 }
533 
534 static void
complete_management_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)535 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
536 {
537 	struct sbp2_management_orb *orb =
538 		container_of(base_orb, struct sbp2_management_orb, base);
539 
540 	if (status)
541 		memcpy(&orb->status, status, sizeof(*status));
542 	complete(&orb->done);
543 }
544 
545 static int
sbp2_send_management_orb(struct sbp2_logical_unit * lu,int node_id,int generation,int function,int lun_or_login_id,void * response)546 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
547 			 int generation, int function, int lun_or_login_id,
548 			 void *response)
549 {
550 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
551 	struct sbp2_management_orb *orb;
552 	unsigned int timeout;
553 	int retval = -ENOMEM;
554 
555 	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
556 		return 0;
557 
558 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
559 	if (orb == NULL)
560 		return -ENOMEM;
561 
562 	kref_init(&orb->base.kref);
563 	orb->response_bus =
564 		dma_map_single(device->card->device, &orb->response,
565 			       sizeof(orb->response), DMA_FROM_DEVICE);
566 	if (dma_mapping_error(device->card->device, orb->response_bus))
567 		goto fail_mapping_response;
568 
569 	orb->request.response.high = 0;
570 	orb->request.response.low  = cpu_to_be32(orb->response_bus);
571 
572 	orb->request.misc = cpu_to_be32(
573 		MANAGEMENT_ORB_NOTIFY |
574 		MANAGEMENT_ORB_FUNCTION(function) |
575 		MANAGEMENT_ORB_LUN(lun_or_login_id));
576 	orb->request.length = cpu_to_be32(
577 		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
578 
579 	orb->request.status_fifo.high =
580 		cpu_to_be32(lu->address_handler.offset >> 32);
581 	orb->request.status_fifo.low  =
582 		cpu_to_be32(lu->address_handler.offset);
583 
584 	if (function == SBP2_LOGIN_REQUEST) {
585 		/* Ask for 2^2 == 4 seconds reconnect grace period */
586 		orb->request.misc |= cpu_to_be32(
587 			MANAGEMENT_ORB_RECONNECT(2) |
588 			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
589 		timeout = lu->tgt->mgt_orb_timeout;
590 	} else {
591 		timeout = SBP2_ORB_TIMEOUT;
592 	}
593 
594 	init_completion(&orb->done);
595 	orb->base.callback = complete_management_orb;
596 
597 	orb->base.request_bus =
598 		dma_map_single(device->card->device, &orb->request,
599 			       sizeof(orb->request), DMA_TO_DEVICE);
600 	if (dma_mapping_error(device->card->device, orb->base.request_bus))
601 		goto fail_mapping_request;
602 
603 	sbp2_send_orb(&orb->base, lu, node_id, generation,
604 		      lu->tgt->management_agent_address);
605 
606 	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
607 
608 	retval = -EIO;
609 	if (sbp2_cancel_orbs(lu) == 0) {
610 		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
611 			 lu->tgt->bus_id, orb->base.rcode);
612 		goto out;
613 	}
614 
615 	if (orb->base.rcode != RCODE_COMPLETE) {
616 		fw_error("%s: management write failed, rcode 0x%02x\n",
617 			 lu->tgt->bus_id, orb->base.rcode);
618 		goto out;
619 	}
620 
621 	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
622 	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
623 		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
624 			 STATUS_GET_RESPONSE(orb->status),
625 			 STATUS_GET_SBP_STATUS(orb->status));
626 		goto out;
627 	}
628 
629 	retval = 0;
630  out:
631 	dma_unmap_single(device->card->device, orb->base.request_bus,
632 			 sizeof(orb->request), DMA_TO_DEVICE);
633  fail_mapping_request:
634 	dma_unmap_single(device->card->device, orb->response_bus,
635 			 sizeof(orb->response), DMA_FROM_DEVICE);
636  fail_mapping_response:
637 	if (response)
638 		memcpy(response, orb->response, sizeof(orb->response));
639 	kref_put(&orb->base.kref, free_orb);
640 
641 	return retval;
642 }
643 
sbp2_agent_reset(struct sbp2_logical_unit * lu)644 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
645 {
646 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
647 	__be32 d = 0;
648 
649 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
650 			   lu->tgt->node_id, lu->generation, device->max_speed,
651 			   lu->command_block_agent_address + SBP2_AGENT_RESET,
652 			   &d, sizeof(d));
653 }
654 
655 static void
complete_agent_reset_write_no_wait(struct fw_card * card,int rcode,void * payload,size_t length,void * data)656 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
657 				   void *payload, size_t length, void *data)
658 {
659 	kfree(data);
660 }
661 
sbp2_agent_reset_no_wait(struct sbp2_logical_unit * lu)662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663 {
664 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
665 	struct fw_transaction *t;
666 	static __be32 d;
667 
668 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 	if (t == NULL)
670 		return;
671 
672 	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 			lu->tgt->node_id, lu->generation, device->max_speed,
674 			lu->command_block_agent_address + SBP2_AGENT_RESET,
675 			&d, sizeof(d), complete_agent_reset_write_no_wait, t);
676 }
677 
sbp2_allow_block(struct sbp2_logical_unit * lu)678 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
679 {
680 	/*
681 	 * We may access dont_block without taking card->lock here:
682 	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
683 	 * are currently serialized against each other.
684 	 * And a wrong result in sbp2_conditionally_block()'s access of
685 	 * dont_block is rather harmless, it simply misses its first chance.
686 	 */
687 	--lu->tgt->dont_block;
688 }
689 
690 /*
691  * Blocks lu->tgt if all of the following conditions are met:
692  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
693  *     logical units have been finished (indicated by dont_block == 0).
694  *   - lu->generation is stale.
695  *
696  * Note, scsi_block_requests() must be called while holding card->lock,
697  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
698  * unblock the target.
699  */
sbp2_conditionally_block(struct sbp2_logical_unit * lu)700 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
701 {
702 	struct sbp2_target *tgt = lu->tgt;
703 	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
704 	struct Scsi_Host *shost =
705 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&card->lock, flags);
709 	if (!tgt->dont_block && !lu->blocked &&
710 	    lu->generation != card->generation) {
711 		lu->blocked = true;
712 		if (++tgt->blocked == 1)
713 			scsi_block_requests(shost);
714 	}
715 	spin_unlock_irqrestore(&card->lock, flags);
716 }
717 
718 /*
719  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
720  * Note, it is harmless to run scsi_unblock_requests() outside the
721  * card->lock protected section.  On the other hand, running it inside
722  * the section might clash with shost->host_lock.
723  */
sbp2_conditionally_unblock(struct sbp2_logical_unit * lu)724 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
725 {
726 	struct sbp2_target *tgt = lu->tgt;
727 	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
728 	struct Scsi_Host *shost =
729 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
730 	unsigned long flags;
731 	bool unblock = false;
732 
733 	spin_lock_irqsave(&card->lock, flags);
734 	if (lu->blocked && lu->generation == card->generation) {
735 		lu->blocked = false;
736 		unblock = --tgt->blocked == 0;
737 	}
738 	spin_unlock_irqrestore(&card->lock, flags);
739 
740 	if (unblock)
741 		scsi_unblock_requests(shost);
742 }
743 
744 /*
745  * Prevents future blocking of tgt and unblocks it.
746  * Note, it is harmless to run scsi_unblock_requests() outside the
747  * card->lock protected section.  On the other hand, running it inside
748  * the section might clash with shost->host_lock.
749  */
sbp2_unblock(struct sbp2_target * tgt)750 static void sbp2_unblock(struct sbp2_target *tgt)
751 {
752 	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
753 	struct Scsi_Host *shost =
754 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
755 	unsigned long flags;
756 
757 	spin_lock_irqsave(&card->lock, flags);
758 	++tgt->dont_block;
759 	spin_unlock_irqrestore(&card->lock, flags);
760 
761 	scsi_unblock_requests(shost);
762 }
763 
sbp2_lun2int(u16 lun)764 static int sbp2_lun2int(u16 lun)
765 {
766 	struct scsi_lun eight_bytes_lun;
767 
768 	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
769 	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
770 	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
771 
772 	return scsilun_to_int(&eight_bytes_lun);
773 }
774 
sbp2_release_target(struct kref * kref)775 static void sbp2_release_target(struct kref *kref)
776 {
777 	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
778 	struct sbp2_logical_unit *lu, *next;
779 	struct Scsi_Host *shost =
780 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
781 	struct scsi_device *sdev;
782 	struct fw_device *device = fw_device(tgt->unit->device.parent);
783 
784 	/* prevent deadlocks */
785 	sbp2_unblock(tgt);
786 
787 	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
788 		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
789 		if (sdev) {
790 			scsi_remove_device(sdev);
791 			scsi_device_put(sdev);
792 		}
793 		if (lu->login_id != INVALID_LOGIN_ID) {
794 			int generation, node_id;
795 			/*
796 			 * tgt->node_id may be obsolete here if we failed
797 			 * during initial login or after a bus reset where
798 			 * the topology changed.
799 			 */
800 			generation = device->generation;
801 			smp_rmb(); /* node_id vs. generation */
802 			node_id    = device->node_id;
803 			sbp2_send_management_orb(lu, node_id, generation,
804 						 SBP2_LOGOUT_REQUEST,
805 						 lu->login_id, NULL);
806 		}
807 		fw_core_remove_address_handler(&lu->address_handler);
808 		list_del(&lu->link);
809 		kfree(lu);
810 	}
811 	scsi_remove_host(shost);
812 	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
813 
814 	fw_unit_put(tgt->unit);
815 	scsi_host_put(shost);
816 	fw_device_put(device);
817 }
818 
819 static struct workqueue_struct *sbp2_wq;
820 
sbp2_target_put(struct sbp2_target * tgt)821 static void sbp2_target_put(struct sbp2_target *tgt)
822 {
823 	kref_put(&tgt->kref, sbp2_release_target);
824 }
825 
826 /*
827  * Always get the target's kref when scheduling work on one its units.
828  * Each workqueue job is responsible to call sbp2_target_put() upon return.
829  */
sbp2_queue_work(struct sbp2_logical_unit * lu,unsigned long delay)830 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
831 {
832 	kref_get(&lu->tgt->kref);
833 	if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
834 		sbp2_target_put(lu->tgt);
835 }
836 
837 /*
838  * Write retransmit retry values into the BUSY_TIMEOUT register.
839  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
840  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
841  *   saner value after logging into the device.
842  * - The dual-phase retry protocol is optional to implement, and if not
843  *   supported, writes to the dual-phase portion of the register will be
844  *   ignored. We try to write the original 1394-1995 default here.
845  * - In the case of devices that are also SBP-3-compliant, all writes are
846  *   ignored, as the register is read-only, but contains single-phase retry of
847  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
848  *   write attempt is safe and yields more consistent behavior for all devices.
849  *
850  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
851  * and section 6.4 of the SBP-3 spec for further details.
852  */
sbp2_set_busy_timeout(struct sbp2_logical_unit * lu)853 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
854 {
855 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
856 	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
857 
858 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
859 			   lu->tgt->node_id, lu->generation, device->max_speed,
860 			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
861 			   &d, sizeof(d));
862 }
863 
864 static void sbp2_reconnect(struct work_struct *work);
865 
sbp2_login(struct work_struct * work)866 static void sbp2_login(struct work_struct *work)
867 {
868 	struct sbp2_logical_unit *lu =
869 		container_of(work, struct sbp2_logical_unit, work.work);
870 	struct sbp2_target *tgt = lu->tgt;
871 	struct fw_device *device = fw_device(tgt->unit->device.parent);
872 	struct Scsi_Host *shost;
873 	struct scsi_device *sdev;
874 	struct sbp2_login_response response;
875 	int generation, node_id, local_node_id;
876 
877 	if (fw_device_is_shutdown(device))
878 		goto out;
879 
880 	generation    = device->generation;
881 	smp_rmb();    /* node IDs must not be older than generation */
882 	node_id       = device->node_id;
883 	local_node_id = device->card->node_id;
884 
885 	/* If this is a re-login attempt, log out, or we might be rejected. */
886 	if (lu->has_sdev)
887 		sbp2_send_management_orb(lu, device->node_id, generation,
888 				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
889 
890 	if (sbp2_send_management_orb(lu, node_id, generation,
891 				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
892 		if (lu->retries++ < 5) {
893 			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
894 		} else {
895 			fw_error("%s: failed to login to LUN %04x\n",
896 				 tgt->bus_id, lu->lun);
897 			/* Let any waiting I/O fail from now on. */
898 			sbp2_unblock(lu->tgt);
899 		}
900 		goto out;
901 	}
902 
903 	tgt->node_id	  = node_id;
904 	tgt->address_high = local_node_id << 16;
905 	smp_wmb();	  /* node IDs must not be older than generation */
906 	lu->generation	  = generation;
907 
908 	lu->command_block_agent_address =
909 		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
910 		      << 32) | be32_to_cpu(response.command_block_agent.low);
911 	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
912 
913 	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
914 		  tgt->bus_id, lu->lun, lu->retries);
915 
916 	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
917 	sbp2_set_busy_timeout(lu);
918 
919 	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
920 	sbp2_agent_reset(lu);
921 
922 	/* This was a re-login. */
923 	if (lu->has_sdev) {
924 		sbp2_cancel_orbs(lu);
925 		sbp2_conditionally_unblock(lu);
926 		goto out;
927 	}
928 
929 	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
930 		ssleep(SBP2_INQUIRY_DELAY);
931 
932 	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
933 	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
934 	/*
935 	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
936 	 * Therefore __scsi_add_device() will get into trouble if a bus reset
937 	 * happens in parallel.  It will either fail or leave us with an
938 	 * unusable sdev.  As a workaround we check for this and retry the
939 	 * whole login and SCSI probing.
940 	 */
941 
942 	/* Reported error during __scsi_add_device() */
943 	if (IS_ERR(sdev))
944 		goto out_logout_login;
945 
946 	/* Unreported error during __scsi_add_device() */
947 	smp_rmb(); /* get current card generation */
948 	if (generation != device->card->generation) {
949 		scsi_remove_device(sdev);
950 		scsi_device_put(sdev);
951 		goto out_logout_login;
952 	}
953 
954 	/* No error during __scsi_add_device() */
955 	lu->has_sdev = true;
956 	scsi_device_put(sdev);
957 	sbp2_allow_block(lu);
958 	goto out;
959 
960  out_logout_login:
961 	smp_rmb(); /* generation may have changed */
962 	generation = device->generation;
963 	smp_rmb(); /* node_id must not be older than generation */
964 
965 	sbp2_send_management_orb(lu, device->node_id, generation,
966 				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
967 	/*
968 	 * If a bus reset happened, sbp2_update will have requeued
969 	 * lu->work already.  Reset the work from reconnect to login.
970 	 */
971 	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
972  out:
973 	sbp2_target_put(tgt);
974 }
975 
sbp2_add_logical_unit(struct sbp2_target * tgt,int lun_entry)976 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977 {
978 	struct sbp2_logical_unit *lu;
979 
980 	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981 	if (!lu)
982 		return -ENOMEM;
983 
984 	lu->address_handler.length           = 0x100;
985 	lu->address_handler.address_callback = sbp2_status_write;
986 	lu->address_handler.callback_data    = lu;
987 
988 	if (fw_core_add_address_handler(&lu->address_handler,
989 					&fw_high_memory_region) < 0) {
990 		kfree(lu);
991 		return -ENOMEM;
992 	}
993 
994 	lu->tgt      = tgt;
995 	lu->lun      = lun_entry & 0xffff;
996 	lu->login_id = INVALID_LOGIN_ID;
997 	lu->retries  = 0;
998 	lu->has_sdev = false;
999 	lu->blocked  = false;
1000 	++tgt->dont_block;
1001 	INIT_LIST_HEAD(&lu->orb_list);
1002 	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003 
1004 	list_add_tail(&lu->link, &tgt->lu_list);
1005 	return 0;
1006 }
1007 
sbp2_scan_logical_unit_dir(struct sbp2_target * tgt,u32 * directory)1008 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1009 {
1010 	struct fw_csr_iterator ci;
1011 	int key, value;
1012 
1013 	fw_csr_iterator_init(&ci, directory);
1014 	while (fw_csr_iterator_next(&ci, &key, &value))
1015 		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1016 		    sbp2_add_logical_unit(tgt, value) < 0)
1017 			return -ENOMEM;
1018 	return 0;
1019 }
1020 
sbp2_scan_unit_dir(struct sbp2_target * tgt,u32 * directory,u32 * model,u32 * firmware_revision)1021 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1022 			      u32 *model, u32 *firmware_revision)
1023 {
1024 	struct fw_csr_iterator ci;
1025 	int key, value;
1026 	unsigned int timeout;
1027 
1028 	fw_csr_iterator_init(&ci, directory);
1029 	while (fw_csr_iterator_next(&ci, &key, &value)) {
1030 		switch (key) {
1031 
1032 		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1033 			tgt->management_agent_address =
1034 					CSR_REGISTER_BASE + 4 * value;
1035 			break;
1036 
1037 		case CSR_DIRECTORY_ID:
1038 			tgt->directory_id = value;
1039 			break;
1040 
1041 		case CSR_MODEL:
1042 			*model = value;
1043 			break;
1044 
1045 		case SBP2_CSR_FIRMWARE_REVISION:
1046 			*firmware_revision = value;
1047 			break;
1048 
1049 		case SBP2_CSR_UNIT_CHARACTERISTICS:
1050 			/* the timeout value is stored in 500ms units */
1051 			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1052 			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1053 			tgt->mgt_orb_timeout =
1054 				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1055 
1056 			if (timeout > tgt->mgt_orb_timeout)
1057 				fw_notify("%s: config rom contains %ds "
1058 					  "management ORB timeout, limiting "
1059 					  "to %ds\n", tgt->bus_id,
1060 					  timeout / 1000,
1061 					  tgt->mgt_orb_timeout / 1000);
1062 			break;
1063 
1064 		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1065 			if (sbp2_add_logical_unit(tgt, value) < 0)
1066 				return -ENOMEM;
1067 			break;
1068 
1069 		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070 			/* Adjust for the increment in the iterator */
1071 			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072 				return -ENOMEM;
1073 			break;
1074 		}
1075 	}
1076 	return 0;
1077 }
1078 
sbp2_init_workarounds(struct sbp2_target * tgt,u32 model,u32 firmware_revision)1079 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1080 				  u32 firmware_revision)
1081 {
1082 	int i;
1083 	unsigned int w = sbp2_param_workarounds;
1084 
1085 	if (w)
1086 		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1087 			  "if you need the workarounds parameter for %s\n",
1088 			  tgt->bus_id);
1089 
1090 	if (w & SBP2_WORKAROUND_OVERRIDE)
1091 		goto out;
1092 
1093 	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1094 
1095 		if (sbp2_workarounds_table[i].firmware_revision !=
1096 		    (firmware_revision & 0xffffff00))
1097 			continue;
1098 
1099 		if (sbp2_workarounds_table[i].model != model &&
1100 		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1101 			continue;
1102 
1103 		w |= sbp2_workarounds_table[i].workarounds;
1104 		break;
1105 	}
1106  out:
1107 	if (w)
1108 		fw_notify("Workarounds for %s: 0x%x "
1109 			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1110 			  tgt->bus_id, w, firmware_revision, model);
1111 	tgt->workarounds = w;
1112 }
1113 
1114 static struct scsi_host_template scsi_driver_template;
1115 
sbp2_probe(struct device * dev)1116 static int sbp2_probe(struct device *dev)
1117 {
1118 	struct fw_unit *unit = fw_unit(dev);
1119 	struct fw_device *device = fw_device(unit->device.parent);
1120 	struct sbp2_target *tgt;
1121 	struct sbp2_logical_unit *lu;
1122 	struct Scsi_Host *shost;
1123 	u32 model, firmware_revision;
1124 
1125 	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1126 		BUG_ON(dma_set_max_seg_size(device->card->device,
1127 					    SBP2_MAX_SEG_SIZE));
1128 
1129 	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1130 	if (shost == NULL)
1131 		return -ENOMEM;
1132 
1133 	tgt = (struct sbp2_target *)shost->hostdata;
1134 	unit->device.driver_data = tgt;
1135 	tgt->unit = unit;
1136 	kref_init(&tgt->kref);
1137 	INIT_LIST_HEAD(&tgt->lu_list);
1138 	tgt->bus_id = dev_name(&unit->device);
1139 	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1140 
1141 	if (fw_device_enable_phys_dma(device) < 0)
1142 		goto fail_shost_put;
1143 
1144 	if (scsi_add_host(shost, &unit->device) < 0)
1145 		goto fail_shost_put;
1146 
1147 	fw_device_get(device);
1148 	fw_unit_get(unit);
1149 
1150 	/* implicit directory ID */
1151 	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1152 			     + CSR_CONFIG_ROM) & 0xffffff;
1153 
1154 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1155 	model		  = SBP2_ROM_VALUE_MISSING;
1156 
1157 	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1158 			       &firmware_revision) < 0)
1159 		goto fail_tgt_put;
1160 
1161 	sbp2_init_workarounds(tgt, model, firmware_revision);
1162 
1163 	/*
1164 	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1165 	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1166 	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1167 	 * if we set this to max_speed + 7, we get the right value.
1168 	 */
1169 	tgt->max_payload = min(device->max_speed + 7, 10U);
1170 	tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1171 
1172 	/* Do the login in a workqueue so we can easily reschedule retries. */
1173 	list_for_each_entry(lu, &tgt->lu_list, link)
1174 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1175 	return 0;
1176 
1177  fail_tgt_put:
1178 	sbp2_target_put(tgt);
1179 	return -ENOMEM;
1180 
1181  fail_shost_put:
1182 	scsi_host_put(shost);
1183 	return -ENOMEM;
1184 }
1185 
sbp2_remove(struct device * dev)1186 static int sbp2_remove(struct device *dev)
1187 {
1188 	struct fw_unit *unit = fw_unit(dev);
1189 	struct sbp2_target *tgt = unit->device.driver_data;
1190 
1191 	sbp2_target_put(tgt);
1192 	return 0;
1193 }
1194 
sbp2_reconnect(struct work_struct * work)1195 static void sbp2_reconnect(struct work_struct *work)
1196 {
1197 	struct sbp2_logical_unit *lu =
1198 		container_of(work, struct sbp2_logical_unit, work.work);
1199 	struct sbp2_target *tgt = lu->tgt;
1200 	struct fw_device *device = fw_device(tgt->unit->device.parent);
1201 	int generation, node_id, local_node_id;
1202 
1203 	if (fw_device_is_shutdown(device))
1204 		goto out;
1205 
1206 	generation    = device->generation;
1207 	smp_rmb();    /* node IDs must not be older than generation */
1208 	node_id       = device->node_id;
1209 	local_node_id = device->card->node_id;
1210 
1211 	if (sbp2_send_management_orb(lu, node_id, generation,
1212 				     SBP2_RECONNECT_REQUEST,
1213 				     lu->login_id, NULL) < 0) {
1214 		/*
1215 		 * If reconnect was impossible even though we are in the
1216 		 * current generation, fall back and try to log in again.
1217 		 *
1218 		 * We could check for "Function rejected" status, but
1219 		 * looking at the bus generation as simpler and more general.
1220 		 */
1221 		smp_rmb(); /* get current card generation */
1222 		if (generation == device->card->generation ||
1223 		    lu->retries++ >= 5) {
1224 			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1225 			lu->retries = 0;
1226 			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1227 		}
1228 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1229 		goto out;
1230 	}
1231 
1232 	tgt->node_id      = node_id;
1233 	tgt->address_high = local_node_id << 16;
1234 	smp_wmb();	  /* node IDs must not be older than generation */
1235 	lu->generation	  = generation;
1236 
1237 	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1238 		  tgt->bus_id, lu->lun, lu->retries);
1239 
1240 	sbp2_agent_reset(lu);
1241 	sbp2_cancel_orbs(lu);
1242 	sbp2_conditionally_unblock(lu);
1243  out:
1244 	sbp2_target_put(tgt);
1245 }
1246 
sbp2_update(struct fw_unit * unit)1247 static void sbp2_update(struct fw_unit *unit)
1248 {
1249 	struct sbp2_target *tgt = unit->device.driver_data;
1250 	struct sbp2_logical_unit *lu;
1251 
1252 	fw_device_enable_phys_dma(fw_device(unit->device.parent));
1253 
1254 	/*
1255 	 * Fw-core serializes sbp2_update() against sbp2_remove().
1256 	 * Iteration over tgt->lu_list is therefore safe here.
1257 	 */
1258 	list_for_each_entry(lu, &tgt->lu_list, link) {
1259 		sbp2_conditionally_block(lu);
1260 		lu->retries = 0;
1261 		sbp2_queue_work(lu, 0);
1262 	}
1263 }
1264 
1265 #define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1266 #define SBP2_SW_VERSION_ENTRY	0x00010483
1267 
1268 static const struct fw_device_id sbp2_id_table[] = {
1269 	{
1270 		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1271 		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1272 		.version      = SBP2_SW_VERSION_ENTRY,
1273 	},
1274 	{ }
1275 };
1276 
1277 static struct fw_driver sbp2_driver = {
1278 	.driver   = {
1279 		.owner  = THIS_MODULE,
1280 		.name   = sbp2_driver_name,
1281 		.bus    = &fw_bus_type,
1282 		.probe  = sbp2_probe,
1283 		.remove = sbp2_remove,
1284 	},
1285 	.update   = sbp2_update,
1286 	.id_table = sbp2_id_table,
1287 };
1288 
sbp2_unmap_scatterlist(struct device * card_device,struct sbp2_command_orb * orb)1289 static void sbp2_unmap_scatterlist(struct device *card_device,
1290 				   struct sbp2_command_orb *orb)
1291 {
1292 	if (scsi_sg_count(orb->cmd))
1293 		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1294 			     scsi_sg_count(orb->cmd),
1295 			     orb->cmd->sc_data_direction);
1296 
1297 	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1298 		dma_unmap_single(card_device, orb->page_table_bus,
1299 				 sizeof(orb->page_table), DMA_TO_DEVICE);
1300 }
1301 
1302 static unsigned int
sbp2_status_to_sense_data(u8 * sbp2_status,u8 * sense_data)1303 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1304 {
1305 	int sam_status;
1306 
1307 	sense_data[0] = 0x70;
1308 	sense_data[1] = 0x0;
1309 	sense_data[2] = sbp2_status[1];
1310 	sense_data[3] = sbp2_status[4];
1311 	sense_data[4] = sbp2_status[5];
1312 	sense_data[5] = sbp2_status[6];
1313 	sense_data[6] = sbp2_status[7];
1314 	sense_data[7] = 10;
1315 	sense_data[8] = sbp2_status[8];
1316 	sense_data[9] = sbp2_status[9];
1317 	sense_data[10] = sbp2_status[10];
1318 	sense_data[11] = sbp2_status[11];
1319 	sense_data[12] = sbp2_status[2];
1320 	sense_data[13] = sbp2_status[3];
1321 	sense_data[14] = sbp2_status[12];
1322 	sense_data[15] = sbp2_status[13];
1323 
1324 	sam_status = sbp2_status[0] & 0x3f;
1325 
1326 	switch (sam_status) {
1327 	case SAM_STAT_GOOD:
1328 	case SAM_STAT_CHECK_CONDITION:
1329 	case SAM_STAT_CONDITION_MET:
1330 	case SAM_STAT_BUSY:
1331 	case SAM_STAT_RESERVATION_CONFLICT:
1332 	case SAM_STAT_COMMAND_TERMINATED:
1333 		return DID_OK << 16 | sam_status;
1334 
1335 	default:
1336 		return DID_ERROR << 16;
1337 	}
1338 }
1339 
1340 static void
complete_command_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)1341 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1342 {
1343 	struct sbp2_command_orb *orb =
1344 		container_of(base_orb, struct sbp2_command_orb, base);
1345 	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1346 	int result;
1347 
1348 	if (status != NULL) {
1349 		if (STATUS_GET_DEAD(*status))
1350 			sbp2_agent_reset_no_wait(orb->lu);
1351 
1352 		switch (STATUS_GET_RESPONSE(*status)) {
1353 		case SBP2_STATUS_REQUEST_COMPLETE:
1354 			result = DID_OK << 16;
1355 			break;
1356 		case SBP2_STATUS_TRANSPORT_FAILURE:
1357 			result = DID_BUS_BUSY << 16;
1358 			break;
1359 		case SBP2_STATUS_ILLEGAL_REQUEST:
1360 		case SBP2_STATUS_VENDOR_DEPENDENT:
1361 		default:
1362 			result = DID_ERROR << 16;
1363 			break;
1364 		}
1365 
1366 		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1367 			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1368 							   orb->cmd->sense_buffer);
1369 	} else {
1370 		/*
1371 		 * If the orb completes with status == NULL, something
1372 		 * went wrong, typically a bus reset happened mid-orb
1373 		 * or when sending the write (less likely).
1374 		 */
1375 		result = DID_BUS_BUSY << 16;
1376 		sbp2_conditionally_block(orb->lu);
1377 	}
1378 
1379 	dma_unmap_single(device->card->device, orb->base.request_bus,
1380 			 sizeof(orb->request), DMA_TO_DEVICE);
1381 	sbp2_unmap_scatterlist(device->card->device, orb);
1382 
1383 	orb->cmd->result = result;
1384 	orb->done(orb->cmd);
1385 }
1386 
1387 static int
sbp2_map_scatterlist(struct sbp2_command_orb * orb,struct fw_device * device,struct sbp2_logical_unit * lu)1388 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1389 		     struct sbp2_logical_unit *lu)
1390 {
1391 	struct scatterlist *sg = scsi_sglist(orb->cmd);
1392 	int i, n;
1393 
1394 	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1395 		       orb->cmd->sc_data_direction);
1396 	if (n == 0)
1397 		goto fail;
1398 
1399 	/*
1400 	 * Handle the special case where there is only one element in
1401 	 * the scatter list by converting it to an immediate block
1402 	 * request. This is also a workaround for broken devices such
1403 	 * as the second generation iPod which doesn't support page
1404 	 * tables.
1405 	 */
1406 	if (n == 1) {
1407 		orb->request.data_descriptor.high =
1408 			cpu_to_be32(lu->tgt->address_high);
1409 		orb->request.data_descriptor.low  =
1410 			cpu_to_be32(sg_dma_address(sg));
1411 		orb->request.misc |=
1412 			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1413 		return 0;
1414 	}
1415 
1416 	for_each_sg(sg, sg, n, i) {
1417 		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1418 		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1419 	}
1420 
1421 	orb->page_table_bus =
1422 		dma_map_single(device->card->device, orb->page_table,
1423 			       sizeof(orb->page_table), DMA_TO_DEVICE);
1424 	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1425 		goto fail_page_table;
1426 
1427 	/*
1428 	 * The data_descriptor pointer is the one case where we need
1429 	 * to fill in the node ID part of the address.  All other
1430 	 * pointers assume that the data referenced reside on the
1431 	 * initiator (i.e. us), but data_descriptor can refer to data
1432 	 * on other nodes so we need to put our ID in descriptor.high.
1433 	 */
1434 	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1435 	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1436 	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1437 					 COMMAND_ORB_DATA_SIZE(n));
1438 
1439 	return 0;
1440 
1441  fail_page_table:
1442 	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1443 		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1444  fail:
1445 	return -ENOMEM;
1446 }
1447 
1448 /* SCSI stack integration */
1449 
sbp2_scsi_queuecommand(struct scsi_cmnd * cmd,scsi_done_fn_t done)1450 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1451 {
1452 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1453 	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1454 	struct sbp2_command_orb *orb;
1455 	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1456 
1457 	/*
1458 	 * Bidirectional commands are not yet implemented, and unknown
1459 	 * transfer direction not handled.
1460 	 */
1461 	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1462 		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1463 		cmd->result = DID_ERROR << 16;
1464 		done(cmd);
1465 		return 0;
1466 	}
1467 
1468 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1469 	if (orb == NULL) {
1470 		fw_notify("failed to alloc orb\n");
1471 		return SCSI_MLQUEUE_HOST_BUSY;
1472 	}
1473 
1474 	/* Initialize rcode to something not RCODE_COMPLETE. */
1475 	orb->base.rcode = -1;
1476 	kref_init(&orb->base.kref);
1477 
1478 	orb->lu   = lu;
1479 	orb->done = done;
1480 	orb->cmd  = cmd;
1481 
1482 	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1483 	orb->request.misc = cpu_to_be32(
1484 		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1485 		COMMAND_ORB_SPEED(device->max_speed) |
1486 		COMMAND_ORB_NOTIFY);
1487 
1488 	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1489 		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1490 
1491 	generation = device->generation;
1492 	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1493 
1494 	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1495 		goto out;
1496 
1497 	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1498 
1499 	orb->base.callback = complete_command_orb;
1500 	orb->base.request_bus =
1501 		dma_map_single(device->card->device, &orb->request,
1502 			       sizeof(orb->request), DMA_TO_DEVICE);
1503 	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1504 		sbp2_unmap_scatterlist(device->card->device, orb);
1505 		goto out;
1506 	}
1507 
1508 	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1509 		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1510 	retval = 0;
1511  out:
1512 	kref_put(&orb->base.kref, free_orb);
1513 	return retval;
1514 }
1515 
sbp2_scsi_slave_alloc(struct scsi_device * sdev)1516 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1517 {
1518 	struct sbp2_logical_unit *lu = sdev->hostdata;
1519 
1520 	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1521 	if (!lu)
1522 		return -ENOSYS;
1523 
1524 	sdev->allow_restart = 1;
1525 
1526 	/* SBP-2 requires quadlet alignment of the data buffers. */
1527 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1528 
1529 	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1530 		sdev->inquiry_len = 36;
1531 
1532 	return 0;
1533 }
1534 
sbp2_scsi_slave_configure(struct scsi_device * sdev)1535 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1536 {
1537 	struct sbp2_logical_unit *lu = sdev->hostdata;
1538 
1539 	sdev->use_10_for_rw = 1;
1540 
1541 	if (sbp2_param_exclusive_login)
1542 		sdev->manage_start_stop = 1;
1543 
1544 	if (sdev->type == TYPE_ROM)
1545 		sdev->use_10_for_ms = 1;
1546 
1547 	if (sdev->type == TYPE_DISK &&
1548 	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1549 		sdev->skip_ms_page_8 = 1;
1550 
1551 	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1552 		sdev->fix_capacity = 1;
1553 
1554 	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1555 		sdev->start_stop_pwr_cond = 1;
1556 
1557 	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1558 		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1559 
1560 	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Called by scsi stack when something has really gone wrong.  Usually
1567  * called when a command has timed-out for some reason.
1568  */
sbp2_scsi_abort(struct scsi_cmnd * cmd)1569 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1570 {
1571 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1572 
1573 	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1574 	sbp2_agent_reset(lu);
1575 	sbp2_cancel_orbs(lu);
1576 
1577 	return SUCCESS;
1578 }
1579 
1580 /*
1581  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1582  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1583  *
1584  * This is the concatenation of target port identifier and logical unit
1585  * identifier as per SAM-2...SAM-4 annex A.
1586  */
1587 static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device * dev,struct device_attribute * attr,char * buf)1588 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1589 			    char *buf)
1590 {
1591 	struct scsi_device *sdev = to_scsi_device(dev);
1592 	struct sbp2_logical_unit *lu;
1593 
1594 	if (!sdev)
1595 		return 0;
1596 
1597 	lu = sdev->hostdata;
1598 
1599 	return sprintf(buf, "%016llx:%06x:%04x\n",
1600 			(unsigned long long)lu->tgt->guid,
1601 			lu->tgt->directory_id, lu->lun);
1602 }
1603 
1604 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1605 
1606 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1607 	&dev_attr_ieee1394_id,
1608 	NULL
1609 };
1610 
1611 static struct scsi_host_template scsi_driver_template = {
1612 	.module			= THIS_MODULE,
1613 	.name			= "SBP-2 IEEE-1394",
1614 	.proc_name		= sbp2_driver_name,
1615 	.queuecommand		= sbp2_scsi_queuecommand,
1616 	.slave_alloc		= sbp2_scsi_slave_alloc,
1617 	.slave_configure	= sbp2_scsi_slave_configure,
1618 	.eh_abort_handler	= sbp2_scsi_abort,
1619 	.this_id		= -1,
1620 	.sg_tablesize		= SG_ALL,
1621 	.use_clustering		= ENABLE_CLUSTERING,
1622 	.cmd_per_lun		= 1,
1623 	.can_queue		= 1,
1624 	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1625 };
1626 
1627 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1628 MODULE_DESCRIPTION("SCSI over IEEE1394");
1629 MODULE_LICENSE("GPL");
1630 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1631 
1632 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1633 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1634 MODULE_ALIAS("sbp2");
1635 #endif
1636 
sbp2_init(void)1637 static int __init sbp2_init(void)
1638 {
1639 	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1640 	if (!sbp2_wq)
1641 		return -ENOMEM;
1642 
1643 	return driver_register(&sbp2_driver.driver);
1644 }
1645 
sbp2_cleanup(void)1646 static void __exit sbp2_cleanup(void)
1647 {
1648 	driver_unregister(&sbp2_driver.driver);
1649 	destroy_workqueue(sbp2_wq);
1650 }
1651 
1652 module_init(sbp2_init);
1653 module_exit(sbp2_cleanup);
1654