• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	IDE I/O functions
3  *
4  *	Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25 
26 
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52 
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57 
__ide_end_request(ide_drive_t * drive,struct request * rq,int uptodate,unsigned int nr_bytes,int dequeue)58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 			     int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61 	int ret = 1;
62 	int error = 0;
63 
64 	if (uptodate <= 0)
65 		error = uptodate ? uptodate : -EIO;
66 
67 	/*
68 	 * if failfast is set on a request, override number of sectors and
69 	 * complete the whole request right now
70 	 */
71 	if (blk_noretry_request(rq) && error)
72 		nr_bytes = rq->hard_nr_sectors << 9;
73 
74 	if (!blk_fs_request(rq) && error && !rq->errors)
75 		rq->errors = -EIO;
76 
77 	/*
78 	 * decide whether to reenable DMA -- 3 is a random magic for now,
79 	 * if we DMA timeout more than 3 times, just stay in PIO
80 	 */
81 	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 	    drive->retry_pio <= 3) {
83 		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84 		ide_dma_on(drive);
85 	}
86 
87 	if (!blk_end_request(rq, error, nr_bytes))
88 		ret = 0;
89 
90 	if (ret == 0 && dequeue)
91 		drive->hwif->rq = NULL;
92 
93 	return ret;
94 }
95 
96 /**
97  *	ide_end_request		-	complete an IDE I/O
98  *	@drive: IDE device for the I/O
99  *	@uptodate:
100  *	@nr_sectors: number of sectors completed
101  *
102  *	This is our end_request wrapper function. We complete the I/O
103  *	update random number input and dequeue the request, which if
104  *	it was tagged may be out of order.
105  */
106 
ide_end_request(ide_drive_t * drive,int uptodate,int nr_sectors)107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109 	unsigned int nr_bytes = nr_sectors << 9;
110 	struct request *rq = drive->hwif->rq;
111 
112 	if (!nr_bytes) {
113 		if (blk_pc_request(rq))
114 			nr_bytes = rq->data_len;
115 		else
116 			nr_bytes = rq->hard_cur_sectors << 9;
117 	}
118 
119 	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122 
123 /**
124  *	ide_end_dequeued_request	-	complete an IDE I/O
125  *	@drive: IDE device for the I/O
126  *	@uptodate:
127  *	@nr_sectors: number of sectors completed
128  *
129  *	Complete an I/O that is no longer on the request queue. This
130  *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131  *	We must still finish the old request but we must not tamper with the
132  *	queue in the meantime.
133  *
134  *	NOTE: This path does not handle barrier, but barrier is not supported
135  *	on ide-cd anyway.
136  */
137 
ide_end_dequeued_request(ide_drive_t * drive,struct request * rq,int uptodate,int nr_sectors)138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 			     int uptodate, int nr_sectors)
140 {
141 	BUG_ON(!blk_rq_started(rq));
142 
143 	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146 
147 /**
148  *	ide_end_drive_cmd	-	end an explicit drive command
149  *	@drive: command
150  *	@stat: status bits
151  *	@err: error bits
152  *
153  *	Clean up after success/failure of an explicit drive command.
154  *	These get thrown onto the queue so they are synchronized with
155  *	real I/O operations on the drive.
156  *
157  *	In LBA48 mode we have to read the register set twice to get
158  *	all the extra information out.
159  */
160 
ide_end_drive_cmd(ide_drive_t * drive,u8 stat,u8 err)161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162 {
163 	ide_hwif_t *hwif = drive->hwif;
164 	struct request *rq = hwif->rq;
165 
166 	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 		ide_task_t *task = (ide_task_t *)rq->special;
168 
169 		if (task) {
170 			struct ide_taskfile *tf = &task->tf;
171 
172 			tf->error = err;
173 			tf->status = stat;
174 
175 			drive->hwif->tp_ops->tf_read(drive, task);
176 
177 			if (task->tf_flags & IDE_TFLAG_DYN)
178 				kfree(task);
179 		}
180 	} else if (blk_pm_request(rq)) {
181 		struct request_pm_state *pm = rq->data;
182 
183 		ide_complete_power_step(drive, rq);
184 		if (pm->pm_step == IDE_PM_COMPLETED)
185 			ide_complete_pm_request(drive, rq);
186 		return;
187 	}
188 
189 	hwif->rq = NULL;
190 
191 	rq->errors = err;
192 
193 	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194 				     blk_rq_bytes(rq))))
195 		BUG();
196 }
197 EXPORT_SYMBOL(ide_end_drive_cmd);
198 
ide_kill_rq(ide_drive_t * drive,struct request * rq)199 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200 {
201 	if (rq->rq_disk) {
202 		struct ide_driver *drv;
203 
204 		drv = *(struct ide_driver **)rq->rq_disk->private_data;
205 		drv->end_request(drive, 0, 0);
206 	} else
207 		ide_end_request(drive, 0, 0);
208 }
209 
ide_ata_error(ide_drive_t * drive,struct request * rq,u8 stat,u8 err)210 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211 {
212 	ide_hwif_t *hwif = drive->hwif;
213 
214 	if ((stat & ATA_BUSY) ||
215 	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216 		/* other bits are useless when BUSY */
217 		rq->errors |= ERROR_RESET;
218 	} else if (stat & ATA_ERR) {
219 		/* err has different meaning on cdrom and tape */
220 		if (err == ATA_ABORTED) {
221 			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222 			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223 			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224 				return ide_stopped;
225 		} else if ((err & BAD_CRC) == BAD_CRC) {
226 			/* UDMA crc error, just retry the operation */
227 			drive->crc_count++;
228 		} else if (err & (ATA_BBK | ATA_UNC)) {
229 			/* retries won't help these */
230 			rq->errors = ERROR_MAX;
231 		} else if (err & ATA_TRK0NF) {
232 			/* help it find track zero */
233 			rq->errors |= ERROR_RECAL;
234 		}
235 	}
236 
237 	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238 	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239 		int nsect = drive->mult_count ? drive->mult_count : 1;
240 
241 		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242 	}
243 
244 	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245 		ide_kill_rq(drive, rq);
246 		return ide_stopped;
247 	}
248 
249 	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250 		rq->errors |= ERROR_RESET;
251 
252 	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253 		++rq->errors;
254 		return ide_do_reset(drive);
255 	}
256 
257 	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258 		drive->special.b.recalibrate = 1;
259 
260 	++rq->errors;
261 
262 	return ide_stopped;
263 }
264 
ide_atapi_error(ide_drive_t * drive,struct request * rq,u8 stat,u8 err)265 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266 {
267 	ide_hwif_t *hwif = drive->hwif;
268 
269 	if ((stat & ATA_BUSY) ||
270 	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271 		/* other bits are useless when BUSY */
272 		rq->errors |= ERROR_RESET;
273 	} else {
274 		/* add decoding error stuff */
275 	}
276 
277 	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278 		/* force an abort */
279 		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280 
281 	if (rq->errors >= ERROR_MAX) {
282 		ide_kill_rq(drive, rq);
283 	} else {
284 		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285 			++rq->errors;
286 			return ide_do_reset(drive);
287 		}
288 		++rq->errors;
289 	}
290 
291 	return ide_stopped;
292 }
293 
294 static ide_startstop_t
__ide_error(ide_drive_t * drive,struct request * rq,u8 stat,u8 err)295 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296 {
297 	if (drive->media == ide_disk)
298 		return ide_ata_error(drive, rq, stat, err);
299 	return ide_atapi_error(drive, rq, stat, err);
300 }
301 
302 /**
303  *	ide_error	-	handle an error on the IDE
304  *	@drive: drive the error occurred on
305  *	@msg: message to report
306  *	@stat: status bits
307  *
308  *	ide_error() takes action based on the error returned by the drive.
309  *	For normal I/O that may well include retries. We deal with
310  *	both new-style (taskfile) and old style command handling here.
311  *	In the case of taskfile command handling there is work left to
312  *	do
313  */
314 
ide_error(ide_drive_t * drive,const char * msg,u8 stat)315 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
316 {
317 	struct request *rq;
318 	u8 err;
319 
320 	err = ide_dump_status(drive, msg, stat);
321 
322 	rq = drive->hwif->rq;
323 	if (rq == NULL)
324 		return ide_stopped;
325 
326 	/* retry only "normal" I/O: */
327 	if (!blk_fs_request(rq)) {
328 		rq->errors = 1;
329 		ide_end_drive_cmd(drive, stat, err);
330 		return ide_stopped;
331 	}
332 
333 	return __ide_error(drive, rq, stat, err);
334 }
335 EXPORT_SYMBOL_GPL(ide_error);
336 
ide_tf_set_specify_cmd(ide_drive_t * drive,struct ide_taskfile * tf)337 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
338 {
339 	tf->nsect   = drive->sect;
340 	tf->lbal    = drive->sect;
341 	tf->lbam    = drive->cyl;
342 	tf->lbah    = drive->cyl >> 8;
343 	tf->device  = (drive->head - 1) | drive->select;
344 	tf->command = ATA_CMD_INIT_DEV_PARAMS;
345 }
346 
ide_tf_set_restore_cmd(ide_drive_t * drive,struct ide_taskfile * tf)347 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
348 {
349 	tf->nsect   = drive->sect;
350 	tf->command = ATA_CMD_RESTORE;
351 }
352 
ide_tf_set_setmult_cmd(ide_drive_t * drive,struct ide_taskfile * tf)353 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
354 {
355 	tf->nsect   = drive->mult_req;
356 	tf->command = ATA_CMD_SET_MULTI;
357 }
358 
ide_disk_special(ide_drive_t * drive)359 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
360 {
361 	special_t *s = &drive->special;
362 	ide_task_t args;
363 
364 	memset(&args, 0, sizeof(ide_task_t));
365 	args.data_phase = TASKFILE_NO_DATA;
366 
367 	if (s->b.set_geometry) {
368 		s->b.set_geometry = 0;
369 		ide_tf_set_specify_cmd(drive, &args.tf);
370 	} else if (s->b.recalibrate) {
371 		s->b.recalibrate = 0;
372 		ide_tf_set_restore_cmd(drive, &args.tf);
373 	} else if (s->b.set_multmode) {
374 		s->b.set_multmode = 0;
375 		ide_tf_set_setmult_cmd(drive, &args.tf);
376 	} else if (s->all) {
377 		int special = s->all;
378 		s->all = 0;
379 		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
380 		return ide_stopped;
381 	}
382 
383 	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
384 			IDE_TFLAG_CUSTOM_HANDLER;
385 
386 	do_rw_taskfile(drive, &args);
387 
388 	return ide_started;
389 }
390 
391 /**
392  *	do_special		-	issue some special commands
393  *	@drive: drive the command is for
394  *
395  *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396  *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
397  *
398  *	It used to do much more, but has been scaled back.
399  */
400 
do_special(ide_drive_t * drive)401 static ide_startstop_t do_special (ide_drive_t *drive)
402 {
403 	special_t *s = &drive->special;
404 
405 #ifdef DEBUG
406 	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
407 #endif
408 	if (drive->media == ide_disk)
409 		return ide_disk_special(drive);
410 
411 	s->all = 0;
412 	drive->mult_req = 0;
413 	return ide_stopped;
414 }
415 
ide_map_sg(ide_drive_t * drive,struct request * rq)416 void ide_map_sg(ide_drive_t *drive, struct request *rq)
417 {
418 	ide_hwif_t *hwif = drive->hwif;
419 	struct scatterlist *sg = hwif->sg_table;
420 
421 	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
422 		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
423 		hwif->sg_nents = 1;
424 	} else if (!rq->bio) {
425 		sg_init_one(sg, rq->data, rq->data_len);
426 		hwif->sg_nents = 1;
427 	} else {
428 		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
429 	}
430 }
431 
432 EXPORT_SYMBOL_GPL(ide_map_sg);
433 
ide_init_sg_cmd(ide_drive_t * drive,struct request * rq)434 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
435 {
436 	ide_hwif_t *hwif = drive->hwif;
437 
438 	hwif->nsect = hwif->nleft = rq->nr_sectors;
439 	hwif->cursg_ofs = 0;
440 	hwif->cursg = NULL;
441 }
442 
443 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
444 
445 /**
446  *	execute_drive_command	-	issue special drive command
447  *	@drive: the drive to issue the command on
448  *	@rq: the request structure holding the command
449  *
450  *	execute_drive_cmd() issues a special drive command,  usually
451  *	initiated by ioctl() from the external hdparm program. The
452  *	command can be a drive command, drive task or taskfile
453  *	operation. Weirdly you can call it with NULL to wait for
454  *	all commands to finish. Don't do this as that is due to change
455  */
456 
execute_drive_cmd(ide_drive_t * drive,struct request * rq)457 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
458 		struct request *rq)
459 {
460 	ide_hwif_t *hwif = drive->hwif;
461 	ide_task_t *task = rq->special;
462 
463 	if (task) {
464 		hwif->data_phase = task->data_phase;
465 
466 		switch (hwif->data_phase) {
467 		case TASKFILE_MULTI_OUT:
468 		case TASKFILE_OUT:
469 		case TASKFILE_MULTI_IN:
470 		case TASKFILE_IN:
471 			ide_init_sg_cmd(drive, rq);
472 			ide_map_sg(drive, rq);
473 		default:
474 			break;
475 		}
476 
477 		return do_rw_taskfile(drive, task);
478 	}
479 
480  	/*
481  	 * NULL is actually a valid way of waiting for
482  	 * all current requests to be flushed from the queue.
483  	 */
484 #ifdef DEBUG
485  	printk("%s: DRIVE_CMD (null)\n", drive->name);
486 #endif
487 	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
488 			  ide_read_error(drive));
489 
490  	return ide_stopped;
491 }
492 
ide_devset_execute(ide_drive_t * drive,const struct ide_devset * setting,int arg)493 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
494 		       int arg)
495 {
496 	struct request_queue *q = drive->queue;
497 	struct request *rq;
498 	int ret = 0;
499 
500 	if (!(setting->flags & DS_SYNC))
501 		return setting->set(drive, arg);
502 
503 	rq = blk_get_request(q, READ, __GFP_WAIT);
504 	rq->cmd_type = REQ_TYPE_SPECIAL;
505 	rq->cmd_len = 5;
506 	rq->cmd[0] = REQ_DEVSET_EXEC;
507 	*(int *)&rq->cmd[1] = arg;
508 	rq->special = setting->set;
509 
510 	if (blk_execute_rq(q, NULL, rq, 0))
511 		ret = rq->errors;
512 	blk_put_request(rq);
513 
514 	return ret;
515 }
516 EXPORT_SYMBOL_GPL(ide_devset_execute);
517 
ide_special_rq(ide_drive_t * drive,struct request * rq)518 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
519 {
520 	u8 cmd = rq->cmd[0];
521 
522 	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
523 		ide_task_t task;
524 		struct ide_taskfile *tf = &task.tf;
525 
526 		memset(&task, 0, sizeof(task));
527 		if (cmd == REQ_PARK_HEADS) {
528 			drive->sleep = *(unsigned long *)rq->special;
529 			drive->dev_flags |= IDE_DFLAG_SLEEPING;
530 			tf->command = ATA_CMD_IDLEIMMEDIATE;
531 			tf->feature = 0x44;
532 			tf->lbal = 0x4c;
533 			tf->lbam = 0x4e;
534 			tf->lbah = 0x55;
535 			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
536 		} else		/* cmd == REQ_UNPARK_HEADS */
537 			tf->command = ATA_CMD_CHK_POWER;
538 
539 		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
540 		task.rq = rq;
541 		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
542 		return do_rw_taskfile(drive, &task);
543 	}
544 
545 	switch (cmd) {
546 	case REQ_DEVSET_EXEC:
547 	{
548 		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
549 
550 		err = setfunc(drive, *(int *)&rq->cmd[1]);
551 		if (err)
552 			rq->errors = err;
553 		else
554 			err = 1;
555 		ide_end_request(drive, err, 0);
556 		return ide_stopped;
557 	}
558 	case REQ_DRIVE_RESET:
559 		return ide_do_reset(drive);
560 	default:
561 		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
562 		ide_end_request(drive, 0, 0);
563 		return ide_stopped;
564 	}
565 }
566 
567 /**
568  *	start_request	-	start of I/O and command issuing for IDE
569  *
570  *	start_request() initiates handling of a new I/O request. It
571  *	accepts commands and I/O (read/write) requests.
572  *
573  *	FIXME: this function needs a rename
574  */
575 
start_request(ide_drive_t * drive,struct request * rq)576 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
577 {
578 	ide_startstop_t startstop;
579 
580 	BUG_ON(!blk_rq_started(rq));
581 
582 #ifdef DEBUG
583 	printk("%s: start_request: current=0x%08lx\n",
584 		drive->hwif->name, (unsigned long) rq);
585 #endif
586 
587 	/* bail early if we've exceeded max_failures */
588 	if (drive->max_failures && (drive->failures > drive->max_failures)) {
589 		rq->cmd_flags |= REQ_FAILED;
590 		goto kill_rq;
591 	}
592 
593 	if (blk_pm_request(rq))
594 		ide_check_pm_state(drive, rq);
595 
596 	SELECT_DRIVE(drive);
597 	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
598 			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
599 		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
600 		return startstop;
601 	}
602 	if (!drive->special.all) {
603 		struct ide_driver *drv;
604 
605 		/*
606 		 * We reset the drive so we need to issue a SETFEATURES.
607 		 * Do it _after_ do_special() restored device parameters.
608 		 */
609 		if (drive->current_speed == 0xff)
610 			ide_config_drive_speed(drive, drive->desired_speed);
611 
612 		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
613 			return execute_drive_cmd(drive, rq);
614 		else if (blk_pm_request(rq)) {
615 			struct request_pm_state *pm = rq->data;
616 #ifdef DEBUG_PM
617 			printk("%s: start_power_step(step: %d)\n",
618 				drive->name, pm->pm_step);
619 #endif
620 			startstop = ide_start_power_step(drive, rq);
621 			if (startstop == ide_stopped &&
622 			    pm->pm_step == IDE_PM_COMPLETED)
623 				ide_complete_pm_request(drive, rq);
624 			return startstop;
625 		} else if (!rq->rq_disk && blk_special_request(rq))
626 			/*
627 			 * TODO: Once all ULDs have been modified to
628 			 * check for specific op codes rather than
629 			 * blindly accepting any special request, the
630 			 * check for ->rq_disk above may be replaced
631 			 * by a more suitable mechanism or even
632 			 * dropped entirely.
633 			 */
634 			return ide_special_rq(drive, rq);
635 
636 		drv = *(struct ide_driver **)rq->rq_disk->private_data;
637 
638 		return drv->do_request(drive, rq, rq->sector);
639 	}
640 	return do_special(drive);
641 kill_rq:
642 	ide_kill_rq(drive, rq);
643 	return ide_stopped;
644 }
645 
646 /**
647  *	ide_stall_queue		-	pause an IDE device
648  *	@drive: drive to stall
649  *	@timeout: time to stall for (jiffies)
650  *
651  *	ide_stall_queue() can be used by a drive to give excess bandwidth back
652  *	to the port by sleeping for timeout jiffies.
653  */
654 
ide_stall_queue(ide_drive_t * drive,unsigned long timeout)655 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
656 {
657 	if (timeout > WAIT_WORSTCASE)
658 		timeout = WAIT_WORSTCASE;
659 	drive->sleep = timeout + jiffies;
660 	drive->dev_flags |= IDE_DFLAG_SLEEPING;
661 }
662 EXPORT_SYMBOL(ide_stall_queue);
663 
ide_lock_port(ide_hwif_t * hwif)664 static inline int ide_lock_port(ide_hwif_t *hwif)
665 {
666 	if (hwif->busy)
667 		return 1;
668 
669 	hwif->busy = 1;
670 
671 	return 0;
672 }
673 
ide_unlock_port(ide_hwif_t * hwif)674 static inline void ide_unlock_port(ide_hwif_t *hwif)
675 {
676 	hwif->busy = 0;
677 }
678 
ide_lock_host(struct ide_host * host,ide_hwif_t * hwif)679 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
680 {
681 	int rc = 0;
682 
683 	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
684 		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
685 		if (rc == 0) {
686 			/* for atari only */
687 			ide_get_lock(ide_intr, hwif);
688 		}
689 	}
690 	return rc;
691 }
692 
ide_unlock_host(struct ide_host * host)693 static inline void ide_unlock_host(struct ide_host *host)
694 {
695 	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
696 		/* for atari only */
697 		ide_release_lock();
698 		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
699 	}
700 }
701 
702 /*
703  * Issue a new request to a device.
704  */
do_ide_request(struct request_queue * q)705 void do_ide_request(struct request_queue *q)
706 {
707 	ide_drive_t	*drive = q->queuedata;
708 	ide_hwif_t	*hwif = drive->hwif;
709 	struct ide_host *host = hwif->host;
710 	struct request	*rq = NULL;
711 	ide_startstop_t	startstop;
712 
713 	/*
714 	 * drive is doing pre-flush, ordered write, post-flush sequence. even
715 	 * though that is 3 requests, it must be seen as a single transaction.
716 	 * we must not preempt this drive until that is complete
717 	 */
718 	if (blk_queue_flushing(q))
719 		/*
720 		 * small race where queue could get replugged during
721 		 * the 3-request flush cycle, just yank the plug since
722 		 * we want it to finish asap
723 		 */
724 		blk_remove_plug(q);
725 
726 	spin_unlock_irq(q->queue_lock);
727 
728 	if (ide_lock_host(host, hwif))
729 		goto plug_device_2;
730 
731 	spin_lock_irq(&hwif->lock);
732 
733 	if (!ide_lock_port(hwif)) {
734 		ide_hwif_t *prev_port;
735 repeat:
736 		prev_port = hwif->host->cur_port;
737 		hwif->rq = NULL;
738 
739 		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
740 			if (time_before(drive->sleep, jiffies)) {
741 				ide_unlock_port(hwif);
742 				goto plug_device;
743 			}
744 		}
745 
746 		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
747 		    hwif != prev_port) {
748 			/*
749 			 * set nIEN for previous port, drives in the
750 			 * quirk_list may not like intr setups/cleanups
751 			 */
752 			if (prev_port && prev_port->cur_dev->quirk_list == 0)
753 				prev_port->tp_ops->set_irq(prev_port, 0);
754 
755 			hwif->host->cur_port = hwif;
756 		}
757 		hwif->cur_dev = drive;
758 		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
759 
760 		spin_unlock_irq(&hwif->lock);
761 		spin_lock_irq(q->queue_lock);
762 		/*
763 		 * we know that the queue isn't empty, but this can happen
764 		 * if the q->prep_rq_fn() decides to kill a request
765 		 */
766 		rq = elv_next_request(drive->queue);
767 		spin_unlock_irq(q->queue_lock);
768 		spin_lock_irq(&hwif->lock);
769 
770 		if (!rq) {
771 			ide_unlock_port(hwif);
772 			goto out;
773 		}
774 
775 		/*
776 		 * Sanity: don't accept a request that isn't a PM request
777 		 * if we are currently power managed. This is very important as
778 		 * blk_stop_queue() doesn't prevent the elv_next_request()
779 		 * above to return us whatever is in the queue. Since we call
780 		 * ide_do_request() ourselves, we end up taking requests while
781 		 * the queue is blocked...
782 		 *
783 		 * We let requests forced at head of queue with ide-preempt
784 		 * though. I hope that doesn't happen too much, hopefully not
785 		 * unless the subdriver triggers such a thing in its own PM
786 		 * state machine.
787 		 */
788 		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
789 		    blk_pm_request(rq) == 0 &&
790 		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
791 			/* there should be no pending command at this point */
792 			ide_unlock_port(hwif);
793 			goto plug_device;
794 		}
795 
796 		hwif->rq = rq;
797 
798 		spin_unlock_irq(&hwif->lock);
799 		startstop = start_request(drive, rq);
800 		spin_lock_irq(&hwif->lock);
801 
802 		if (startstop == ide_stopped)
803 			goto repeat;
804 	} else
805 		goto plug_device;
806 out:
807 	spin_unlock_irq(&hwif->lock);
808 	if (rq == NULL)
809 		ide_unlock_host(host);
810 	spin_lock_irq(q->queue_lock);
811 	return;
812 
813 plug_device:
814 	spin_unlock_irq(&hwif->lock);
815 	ide_unlock_host(host);
816 plug_device_2:
817 	spin_lock_irq(q->queue_lock);
818 
819 	if (!elv_queue_empty(q))
820 		blk_plug_device(q);
821 }
822 
823 /*
824  * un-busy the port etc, and clear any pending DMA status. we want to
825  * retry the current request in pio mode instead of risking tossing it
826  * all away
827  */
ide_dma_timeout_retry(ide_drive_t * drive,int error)828 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
829 {
830 	ide_hwif_t *hwif = drive->hwif;
831 	struct request *rq;
832 	ide_startstop_t ret = ide_stopped;
833 
834 	/*
835 	 * end current dma transaction
836 	 */
837 
838 	if (error < 0) {
839 		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
840 		(void)hwif->dma_ops->dma_end(drive);
841 		ret = ide_error(drive, "dma timeout error",
842 				hwif->tp_ops->read_status(hwif));
843 	} else {
844 		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
845 		hwif->dma_ops->dma_timeout(drive);
846 	}
847 
848 	/*
849 	 * disable dma for now, but remember that we did so because of
850 	 * a timeout -- we'll reenable after we finish this next request
851 	 * (or rather the first chunk of it) in pio.
852 	 */
853 	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
854 	drive->retry_pio++;
855 	ide_dma_off_quietly(drive);
856 
857 	/*
858 	 * un-busy drive etc and make sure request is sane
859 	 */
860 
861 	rq = hwif->rq;
862 	if (!rq)
863 		goto out;
864 
865 	hwif->rq = NULL;
866 
867 	rq->errors = 0;
868 
869 	if (!rq->bio)
870 		goto out;
871 
872 	rq->sector = rq->bio->bi_sector;
873 	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
874 	rq->hard_cur_sectors = rq->current_nr_sectors;
875 	rq->buffer = bio_data(rq->bio);
876 out:
877 	return ret;
878 }
879 
ide_plug_device(ide_drive_t * drive)880 static void ide_plug_device(ide_drive_t *drive)
881 {
882 	struct request_queue *q = drive->queue;
883 	unsigned long flags;
884 
885 	spin_lock_irqsave(q->queue_lock, flags);
886 	if (!elv_queue_empty(q))
887 		blk_plug_device(q);
888 	spin_unlock_irqrestore(q->queue_lock, flags);
889 }
890 
891 /**
892  *	ide_timer_expiry	-	handle lack of an IDE interrupt
893  *	@data: timer callback magic (hwif)
894  *
895  *	An IDE command has timed out before the expected drive return
896  *	occurred. At this point we attempt to clean up the current
897  *	mess. If the current handler includes an expiry handler then
898  *	we invoke the expiry handler, and providing it is happy the
899  *	work is done. If that fails we apply generic recovery rules
900  *	invoking the handler and checking the drive DMA status. We
901  *	have an excessively incestuous relationship with the DMA
902  *	logic that wants cleaning up.
903  */
904 
ide_timer_expiry(unsigned long data)905 void ide_timer_expiry (unsigned long data)
906 {
907 	ide_hwif_t	*hwif = (ide_hwif_t *)data;
908 	ide_drive_t	*uninitialized_var(drive);
909 	ide_handler_t	*handler;
910 	unsigned long	flags;
911 	int		wait = -1;
912 	int		plug_device = 0;
913 
914 	spin_lock_irqsave(&hwif->lock, flags);
915 
916 	handler = hwif->handler;
917 
918 	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
919 		/*
920 		 * Either a marginal timeout occurred
921 		 * (got the interrupt just as timer expired),
922 		 * or we were "sleeping" to give other devices a chance.
923 		 * Either way, we don't really want to complain about anything.
924 		 */
925 	} else {
926 		ide_expiry_t *expiry = hwif->expiry;
927 		ide_startstop_t startstop = ide_stopped;
928 
929 		drive = hwif->cur_dev;
930 
931 		if (expiry) {
932 			wait = expiry(drive);
933 			if (wait > 0) { /* continue */
934 				/* reset timer */
935 				hwif->timer.expires = jiffies + wait;
936 				hwif->req_gen_timer = hwif->req_gen;
937 				add_timer(&hwif->timer);
938 				spin_unlock_irqrestore(&hwif->lock, flags);
939 				return;
940 			}
941 		}
942 		hwif->handler = NULL;
943 		/*
944 		 * We need to simulate a real interrupt when invoking
945 		 * the handler() function, which means we need to
946 		 * globally mask the specific IRQ:
947 		 */
948 		spin_unlock(&hwif->lock);
949 		/* disable_irq_nosync ?? */
950 		disable_irq(hwif->irq);
951 		/* local CPU only, as if we were handling an interrupt */
952 		local_irq_disable();
953 		if (hwif->polling) {
954 			startstop = handler(drive);
955 		} else if (drive_is_ready(drive)) {
956 			if (drive->waiting_for_dma)
957 				hwif->dma_ops->dma_lost_irq(drive);
958 			(void)ide_ack_intr(hwif);
959 			printk(KERN_WARNING "%s: lost interrupt\n",
960 				drive->name);
961 			startstop = handler(drive);
962 		} else {
963 			if (drive->waiting_for_dma)
964 				startstop = ide_dma_timeout_retry(drive, wait);
965 			else
966 				startstop = ide_error(drive, "irq timeout",
967 					hwif->tp_ops->read_status(hwif));
968 		}
969 		spin_lock_irq(&hwif->lock);
970 		enable_irq(hwif->irq);
971 		if (startstop == ide_stopped) {
972 			ide_unlock_port(hwif);
973 			plug_device = 1;
974 		}
975 	}
976 	spin_unlock_irqrestore(&hwif->lock, flags);
977 
978 	if (plug_device) {
979 		ide_unlock_host(hwif->host);
980 		ide_plug_device(drive);
981 	}
982 }
983 
984 /**
985  *	unexpected_intr		-	handle an unexpected IDE interrupt
986  *	@irq: interrupt line
987  *	@hwif: port being processed
988  *
989  *	There's nothing really useful we can do with an unexpected interrupt,
990  *	other than reading the status register (to clear it), and logging it.
991  *	There should be no way that an irq can happen before we're ready for it,
992  *	so we needn't worry much about losing an "important" interrupt here.
993  *
994  *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
995  *	the drive enters "idle", "standby", or "sleep" mode, so if the status
996  *	looks "good", we just ignore the interrupt completely.
997  *
998  *	This routine assumes __cli() is in effect when called.
999  *
1000  *	If an unexpected interrupt happens on irq15 while we are handling irq14
1001  *	and if the two interfaces are "serialized" (CMD640), then it looks like
1002  *	we could screw up by interfering with a new request being set up for
1003  *	irq15.
1004  *
1005  *	In reality, this is a non-issue.  The new command is not sent unless
1006  *	the drive is ready to accept one, in which case we know the drive is
1007  *	not trying to interrupt us.  And ide_set_handler() is always invoked
1008  *	before completing the issuance of any new drive command, so we will not
1009  *	be accidentally invoked as a result of any valid command completion
1010  *	interrupt.
1011  */
1012 
unexpected_intr(int irq,ide_hwif_t * hwif)1013 static void unexpected_intr(int irq, ide_hwif_t *hwif)
1014 {
1015 	u8 stat = hwif->tp_ops->read_status(hwif);
1016 
1017 	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1018 		/* Try to not flood the console with msgs */
1019 		static unsigned long last_msgtime, count;
1020 		++count;
1021 
1022 		if (time_after(jiffies, last_msgtime + HZ)) {
1023 			last_msgtime = jiffies;
1024 			printk(KERN_ERR "%s: unexpected interrupt, "
1025 				"status=0x%02x, count=%ld\n",
1026 				hwif->name, stat, count);
1027 		}
1028 	}
1029 }
1030 
1031 /**
1032  *	ide_intr	-	default IDE interrupt handler
1033  *	@irq: interrupt number
1034  *	@dev_id: hwif
1035  *	@regs: unused weirdness from the kernel irq layer
1036  *
1037  *	This is the default IRQ handler for the IDE layer. You should
1038  *	not need to override it. If you do be aware it is subtle in
1039  *	places
1040  *
1041  *	hwif is the interface in the group currently performing
1042  *	a command. hwif->cur_dev is the drive and hwif->handler is
1043  *	the IRQ handler to call. As we issue a command the handlers
1044  *	step through multiple states, reassigning the handler to the
1045  *	next step in the process. Unlike a smart SCSI controller IDE
1046  *	expects the main processor to sequence the various transfer
1047  *	stages. We also manage a poll timer to catch up with most
1048  *	timeout situations. There are still a few where the handlers
1049  *	don't ever decide to give up.
1050  *
1051  *	The handler eventually returns ide_stopped to indicate the
1052  *	request completed. At this point we issue the next request
1053  *	on the port and the process begins again.
1054  */
1055 
ide_intr(int irq,void * dev_id)1056 irqreturn_t ide_intr (int irq, void *dev_id)
1057 {
1058 	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1059 	ide_drive_t *uninitialized_var(drive);
1060 	ide_handler_t *handler;
1061 	unsigned long flags;
1062 	ide_startstop_t startstop;
1063 	irqreturn_t irq_ret = IRQ_NONE;
1064 	int plug_device = 0;
1065 
1066 	if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1067 		if (hwif != hwif->host->cur_port)
1068 			goto out_early;
1069 	}
1070 
1071 	spin_lock_irqsave(&hwif->lock, flags);
1072 
1073 	if (!ide_ack_intr(hwif))
1074 		goto out;
1075 
1076 	handler = hwif->handler;
1077 
1078 	if (handler == NULL || hwif->polling) {
1079 		/*
1080 		 * Not expecting an interrupt from this drive.
1081 		 * That means this could be:
1082 		 *	(1) an interrupt from another PCI device
1083 		 *	sharing the same PCI INT# as us.
1084 		 * or	(2) a drive just entered sleep or standby mode,
1085 		 *	and is interrupting to let us know.
1086 		 * or	(3) a spurious interrupt of unknown origin.
1087 		 *
1088 		 * For PCI, we cannot tell the difference,
1089 		 * so in that case we just ignore it and hope it goes away.
1090 		 *
1091 		 * FIXME: unexpected_intr should be hwif-> then we can
1092 		 * remove all the ifdef PCI crap
1093 		 */
1094 #ifdef CONFIG_BLK_DEV_IDEPCI
1095 		if (hwif->chipset != ide_pci)
1096 #endif	/* CONFIG_BLK_DEV_IDEPCI */
1097 		{
1098 			/*
1099 			 * Probably not a shared PCI interrupt,
1100 			 * so we can safely try to do something about it:
1101 			 */
1102 			unexpected_intr(irq, hwif);
1103 #ifdef CONFIG_BLK_DEV_IDEPCI
1104 		} else {
1105 			/*
1106 			 * Whack the status register, just in case
1107 			 * we have a leftover pending IRQ.
1108 			 */
1109 			(void)hwif->tp_ops->read_status(hwif);
1110 #endif /* CONFIG_BLK_DEV_IDEPCI */
1111 		}
1112 		goto out;
1113 	}
1114 
1115 	drive = hwif->cur_dev;
1116 
1117 	if (!drive_is_ready(drive))
1118 		/*
1119 		 * This happens regularly when we share a PCI IRQ with
1120 		 * another device.  Unfortunately, it can also happen
1121 		 * with some buggy drives that trigger the IRQ before
1122 		 * their status register is up to date.  Hopefully we have
1123 		 * enough advance overhead that the latter isn't a problem.
1124 		 */
1125 		goto out;
1126 
1127 	hwif->handler = NULL;
1128 	hwif->req_gen++;
1129 	del_timer(&hwif->timer);
1130 	spin_unlock(&hwif->lock);
1131 
1132 	if (hwif->port_ops && hwif->port_ops->clear_irq)
1133 		hwif->port_ops->clear_irq(drive);
1134 
1135 	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1136 		local_irq_enable_in_hardirq();
1137 
1138 	/* service this interrupt, may set handler for next interrupt */
1139 	startstop = handler(drive);
1140 
1141 	spin_lock_irq(&hwif->lock);
1142 	/*
1143 	 * Note that handler() may have set things up for another
1144 	 * interrupt to occur soon, but it cannot happen until
1145 	 * we exit from this routine, because it will be the
1146 	 * same irq as is currently being serviced here, and Linux
1147 	 * won't allow another of the same (on any CPU) until we return.
1148 	 */
1149 	if (startstop == ide_stopped) {
1150 		BUG_ON(hwif->handler);
1151 		ide_unlock_port(hwif);
1152 		plug_device = 1;
1153 	}
1154 	irq_ret = IRQ_HANDLED;
1155 out:
1156 	spin_unlock_irqrestore(&hwif->lock, flags);
1157 out_early:
1158 	if (plug_device) {
1159 		ide_unlock_host(hwif->host);
1160 		ide_plug_device(drive);
1161 	}
1162 
1163 	return irq_ret;
1164 }
1165 EXPORT_SYMBOL_GPL(ide_intr);
1166 
1167 /**
1168  *	ide_do_drive_cmd	-	issue IDE special command
1169  *	@drive: device to issue command
1170  *	@rq: request to issue
1171  *
1172  *	This function issues a special IDE device request
1173  *	onto the request queue.
1174  *
1175  *	the rq is queued at the head of the request queue, displacing
1176  *	the currently-being-processed request and this function
1177  *	returns immediately without waiting for the new rq to be
1178  *	completed.  This is VERY DANGEROUS, and is intended for
1179  *	careful use by the ATAPI tape/cdrom driver code.
1180  */
1181 
ide_do_drive_cmd(ide_drive_t * drive,struct request * rq)1182 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1183 {
1184 	struct request_queue *q = drive->queue;
1185 	unsigned long flags;
1186 
1187 	drive->hwif->rq = NULL;
1188 
1189 	spin_lock_irqsave(q->queue_lock, flags);
1190 	__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1191 	spin_unlock_irqrestore(q->queue_lock, flags);
1192 }
1193 EXPORT_SYMBOL(ide_do_drive_cmd);
1194 
ide_pktcmd_tf_load(ide_drive_t * drive,u32 tf_flags,u16 bcount,u8 dma)1195 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1196 {
1197 	ide_hwif_t *hwif = drive->hwif;
1198 	ide_task_t task;
1199 
1200 	memset(&task, 0, sizeof(task));
1201 	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1202 			IDE_TFLAG_OUT_FEATURE | tf_flags;
1203 	task.tf.feature = dma;		/* Use PIO/DMA */
1204 	task.tf.lbam    = bcount & 0xff;
1205 	task.tf.lbah    = (bcount >> 8) & 0xff;
1206 
1207 	ide_tf_dump(drive->name, &task.tf);
1208 	hwif->tp_ops->set_irq(hwif, 1);
1209 	SELECT_MASK(drive, 0);
1210 	hwif->tp_ops->tf_load(drive, &task);
1211 }
1212 
1213 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1214 
ide_pad_transfer(ide_drive_t * drive,int write,int len)1215 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1216 {
1217 	ide_hwif_t *hwif = drive->hwif;
1218 	u8 buf[4] = { 0 };
1219 
1220 	while (len > 0) {
1221 		if (write)
1222 			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1223 		else
1224 			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1225 		len -= 4;
1226 	}
1227 }
1228 EXPORT_SYMBOL_GPL(ide_pad_transfer);
1229