1 /*
2 * Promise TX2/TX4/TX2000/133 IDE driver
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Split from:
10 * linux/drivers/ide/pdc202xx.c Version 0.35 Mar. 30, 2002
11 * Copyright (C) 1998-2002 Andre Hedrick <andre@linux-ide.org>
12 * Copyright (C) 2005-2007 MontaVista Software, Inc.
13 * Portions Copyright (C) 1999 Promise Technology, Inc.
14 * Author: Frank Tiernan (frankt@promise.com)
15 * Released under terms of General Public License
16 */
17
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/delay.h>
22 #include <linux/pci.h>
23 #include <linux/init.h>
24 #include <linux/ide.h>
25
26 #include <asm/io.h>
27
28 #ifdef CONFIG_PPC_PMAC
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #endif
32
33 #define DRV_NAME "pdc202xx_new"
34
35 #undef DEBUG
36
37 #ifdef DEBUG
38 #define DBG(fmt, args...) printk("%s: " fmt, __func__, ## args)
39 #else
40 #define DBG(fmt, args...)
41 #endif
42
43 static const char *pdc_quirk_drives[] = {
44 "QUANTUM FIREBALLlct08 08",
45 "QUANTUM FIREBALLP KA6.4",
46 "QUANTUM FIREBALLP KA9.1",
47 "QUANTUM FIREBALLP LM20.4",
48 "QUANTUM FIREBALLP KX13.6",
49 "QUANTUM FIREBALLP KX20.5",
50 "QUANTUM FIREBALLP KX27.3",
51 "QUANTUM FIREBALLP LM20.5",
52 NULL
53 };
54
max_dma_rate(struct pci_dev * pdev)55 static u8 max_dma_rate(struct pci_dev *pdev)
56 {
57 u8 mode;
58
59 switch(pdev->device) {
60 case PCI_DEVICE_ID_PROMISE_20277:
61 case PCI_DEVICE_ID_PROMISE_20276:
62 case PCI_DEVICE_ID_PROMISE_20275:
63 case PCI_DEVICE_ID_PROMISE_20271:
64 case PCI_DEVICE_ID_PROMISE_20269:
65 mode = 4;
66 break;
67 case PCI_DEVICE_ID_PROMISE_20270:
68 case PCI_DEVICE_ID_PROMISE_20268:
69 mode = 3;
70 break;
71 default:
72 return 0;
73 }
74
75 return mode;
76 }
77
78 /**
79 * get_indexed_reg - Get indexed register
80 * @hwif: for the port address
81 * @index: index of the indexed register
82 */
get_indexed_reg(ide_hwif_t * hwif,u8 index)83 static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
84 {
85 u8 value;
86
87 outb(index, hwif->dma_base + 1);
88 value = inb(hwif->dma_base + 3);
89
90 DBG("index[%02X] value[%02X]\n", index, value);
91 return value;
92 }
93
94 /**
95 * set_indexed_reg - Set indexed register
96 * @hwif: for the port address
97 * @index: index of the indexed register
98 */
set_indexed_reg(ide_hwif_t * hwif,u8 index,u8 value)99 static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
100 {
101 outb(index, hwif->dma_base + 1);
102 outb(value, hwif->dma_base + 3);
103 DBG("index[%02X] value[%02X]\n", index, value);
104 }
105
106 /*
107 * ATA Timing Tables based on 133 MHz PLL output clock.
108 *
109 * If the PLL outputs 100 MHz clock, the ASIC hardware will set
110 * the timing registers automatically when "set features" command is
111 * issued to the device. However, if the PLL output clock is 133 MHz,
112 * the following tables must be used.
113 */
114 static struct pio_timing {
115 u8 reg0c, reg0d, reg13;
116 } pio_timings [] = {
117 { 0xfb, 0x2b, 0xac }, /* PIO mode 0, IORDY off, Prefetch off */
118 { 0x46, 0x29, 0xa4 }, /* PIO mode 1, IORDY off, Prefetch off */
119 { 0x23, 0x26, 0x64 }, /* PIO mode 2, IORDY off, Prefetch off */
120 { 0x27, 0x0d, 0x35 }, /* PIO mode 3, IORDY on, Prefetch off */
121 { 0x23, 0x09, 0x25 }, /* PIO mode 4, IORDY on, Prefetch off */
122 };
123
124 static struct mwdma_timing {
125 u8 reg0e, reg0f;
126 } mwdma_timings [] = {
127 { 0xdf, 0x5f }, /* MWDMA mode 0 */
128 { 0x6b, 0x27 }, /* MWDMA mode 1 */
129 { 0x69, 0x25 }, /* MWDMA mode 2 */
130 };
131
132 static struct udma_timing {
133 u8 reg10, reg11, reg12;
134 } udma_timings [] = {
135 { 0x4a, 0x0f, 0xd5 }, /* UDMA mode 0 */
136 { 0x3a, 0x0a, 0xd0 }, /* UDMA mode 1 */
137 { 0x2a, 0x07, 0xcd }, /* UDMA mode 2 */
138 { 0x1a, 0x05, 0xcd }, /* UDMA mode 3 */
139 { 0x1a, 0x03, 0xcd }, /* UDMA mode 4 */
140 { 0x1a, 0x02, 0xcb }, /* UDMA mode 5 */
141 { 0x1a, 0x01, 0xcb }, /* UDMA mode 6 */
142 };
143
pdcnew_set_dma_mode(ide_drive_t * drive,const u8 speed)144 static void pdcnew_set_dma_mode(ide_drive_t *drive, const u8 speed)
145 {
146 ide_hwif_t *hwif = drive->hwif;
147 struct pci_dev *dev = to_pci_dev(hwif->dev);
148 u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
149
150 /*
151 * IDE core issues SETFEATURES_XFER to the drive first (thanks to
152 * IDE_HFLAG_POST_SET_MODE in ->host_flags). PDC202xx hardware will
153 * automatically set the timing registers based on 100 MHz PLL output.
154 *
155 * As we set up the PLL to output 133 MHz for UltraDMA/133 capable
156 * chips, we must override the default register settings...
157 */
158 if (max_dma_rate(dev) == 4) {
159 u8 mode = speed & 0x07;
160
161 if (speed >= XFER_UDMA_0) {
162 set_indexed_reg(hwif, 0x10 + adj,
163 udma_timings[mode].reg10);
164 set_indexed_reg(hwif, 0x11 + adj,
165 udma_timings[mode].reg11);
166 set_indexed_reg(hwif, 0x12 + adj,
167 udma_timings[mode].reg12);
168 } else {
169 set_indexed_reg(hwif, 0x0e + adj,
170 mwdma_timings[mode].reg0e);
171 set_indexed_reg(hwif, 0x0f + adj,
172 mwdma_timings[mode].reg0f);
173 }
174 } else if (speed == XFER_UDMA_2) {
175 /* Set tHOLD bit to 0 if using UDMA mode 2 */
176 u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
177
178 set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
179 }
180 }
181
pdcnew_set_pio_mode(ide_drive_t * drive,const u8 pio)182 static void pdcnew_set_pio_mode(ide_drive_t *drive, const u8 pio)
183 {
184 ide_hwif_t *hwif = drive->hwif;
185 struct pci_dev *dev = to_pci_dev(hwif->dev);
186 u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
187
188 if (max_dma_rate(dev) == 4) {
189 set_indexed_reg(hwif, 0x0c + adj, pio_timings[pio].reg0c);
190 set_indexed_reg(hwif, 0x0d + adj, pio_timings[pio].reg0d);
191 set_indexed_reg(hwif, 0x13 + adj, pio_timings[pio].reg13);
192 }
193 }
194
pdcnew_cable_detect(ide_hwif_t * hwif)195 static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
196 {
197 if (get_indexed_reg(hwif, 0x0b) & 0x04)
198 return ATA_CBL_PATA40;
199 else
200 return ATA_CBL_PATA80;
201 }
202
pdcnew_quirkproc(ide_drive_t * drive)203 static void pdcnew_quirkproc(ide_drive_t *drive)
204 {
205 const char **list, *m = (char *)&drive->id[ATA_ID_PROD];
206
207 for (list = pdc_quirk_drives; *list != NULL; list++)
208 if (strstr(m, *list) != NULL) {
209 drive->quirk_list = 2;
210 return;
211 }
212
213 drive->quirk_list = 0;
214 }
215
pdcnew_reset(ide_drive_t * drive)216 static void pdcnew_reset(ide_drive_t *drive)
217 {
218 /*
219 * Deleted this because it is redundant from the caller.
220 */
221 printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
222 drive->hwif->channel ? "Secondary" : "Primary");
223 }
224
225 /**
226 * read_counter - Read the byte count registers
227 * @dma_base: for the port address
228 */
read_counter(u32 dma_base)229 static long read_counter(u32 dma_base)
230 {
231 u32 pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
232 u8 cnt0, cnt1, cnt2, cnt3;
233 long count = 0, last;
234 int retry = 3;
235
236 do {
237 last = count;
238
239 /* Read the current count */
240 outb(0x20, pri_dma_base + 0x01);
241 cnt0 = inb(pri_dma_base + 0x03);
242 outb(0x21, pri_dma_base + 0x01);
243 cnt1 = inb(pri_dma_base + 0x03);
244 outb(0x20, sec_dma_base + 0x01);
245 cnt2 = inb(sec_dma_base + 0x03);
246 outb(0x21, sec_dma_base + 0x01);
247 cnt3 = inb(sec_dma_base + 0x03);
248
249 count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
250
251 /*
252 * The 30-bit decrementing counter is read in 4 pieces.
253 * Incorrect value may be read when the most significant bytes
254 * are changing...
255 */
256 } while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
257
258 DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
259 cnt0, cnt1, cnt2, cnt3);
260
261 return count;
262 }
263
264 /**
265 * detect_pll_input_clock - Detect the PLL input clock in Hz.
266 * @dma_base: for the port address
267 * E.g. 16949000 on 33 MHz PCI bus, i.e. half of the PCI clock.
268 */
detect_pll_input_clock(unsigned long dma_base)269 static long detect_pll_input_clock(unsigned long dma_base)
270 {
271 struct timeval start_time, end_time;
272 long start_count, end_count;
273 long pll_input, usec_elapsed;
274 u8 scr1;
275
276 start_count = read_counter(dma_base);
277 do_gettimeofday(&start_time);
278
279 /* Start the test mode */
280 outb(0x01, dma_base + 0x01);
281 scr1 = inb(dma_base + 0x03);
282 DBG("scr1[%02X]\n", scr1);
283 outb(scr1 | 0x40, dma_base + 0x03);
284
285 /* Let the counter run for 10 ms. */
286 mdelay(10);
287
288 end_count = read_counter(dma_base);
289 do_gettimeofday(&end_time);
290
291 /* Stop the test mode */
292 outb(0x01, dma_base + 0x01);
293 scr1 = inb(dma_base + 0x03);
294 DBG("scr1[%02X]\n", scr1);
295 outb(scr1 & ~0x40, dma_base + 0x03);
296
297 /*
298 * Calculate the input clock in Hz
299 * (the clock counter is 30 bit wide and counts down)
300 */
301 usec_elapsed = (end_time.tv_sec - start_time.tv_sec) * 1000000 +
302 (end_time.tv_usec - start_time.tv_usec);
303 pll_input = ((start_count - end_count) & 0x3fffffff) / 10 *
304 (10000000 / usec_elapsed);
305
306 DBG("start[%ld] end[%ld]\n", start_count, end_count);
307
308 return pll_input;
309 }
310
311 #ifdef CONFIG_PPC_PMAC
apple_kiwi_init(struct pci_dev * pdev)312 static void apple_kiwi_init(struct pci_dev *pdev)
313 {
314 struct device_node *np = pci_device_to_OF_node(pdev);
315 u8 conf;
316
317 if (np == NULL || !of_device_is_compatible(np, "kiwi-root"))
318 return;
319
320 if (pdev->revision >= 0x03) {
321 /* Setup chip magic config stuff (from darwin) */
322 pci_read_config_byte (pdev, 0x40, &conf);
323 pci_write_config_byte(pdev, 0x40, (conf | 0x01));
324 }
325 }
326 #endif /* CONFIG_PPC_PMAC */
327
init_chipset_pdcnew(struct pci_dev * dev)328 static unsigned int init_chipset_pdcnew(struct pci_dev *dev)
329 {
330 const char *name = DRV_NAME;
331 unsigned long dma_base = pci_resource_start(dev, 4);
332 unsigned long sec_dma_base = dma_base + 0x08;
333 long pll_input, pll_output, ratio;
334 int f, r;
335 u8 pll_ctl0, pll_ctl1;
336
337 if (dma_base == 0)
338 return -EFAULT;
339
340 #ifdef CONFIG_PPC_PMAC
341 apple_kiwi_init(dev);
342 #endif
343
344 /* Calculate the required PLL output frequency */
345 switch(max_dma_rate(dev)) {
346 case 4: /* it's 133 MHz for Ultra133 chips */
347 pll_output = 133333333;
348 break;
349 case 3: /* and 100 MHz for Ultra100 chips */
350 default:
351 pll_output = 100000000;
352 break;
353 }
354
355 /*
356 * Detect PLL input clock.
357 * On some systems, where PCI bus is running at non-standard clock rate
358 * (e.g. 25 or 40 MHz), we have to adjust the cycle time.
359 * PDC20268 and newer chips employ PLL circuit to help correct timing
360 * registers setting.
361 */
362 pll_input = detect_pll_input_clock(dma_base);
363 printk(KERN_INFO "%s %s: PLL input clock is %ld kHz\n",
364 name, pci_name(dev), pll_input / 1000);
365
366 /* Sanity check */
367 if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
368 printk(KERN_ERR "%s %s: Bad PLL input clock %ld Hz, giving up!"
369 "\n", name, pci_name(dev), pll_input);
370 goto out;
371 }
372
373 #ifdef DEBUG
374 DBG("pll_output is %ld Hz\n", pll_output);
375
376 /* Show the current clock value of PLL control register
377 * (maybe already configured by the BIOS)
378 */
379 outb(0x02, sec_dma_base + 0x01);
380 pll_ctl0 = inb(sec_dma_base + 0x03);
381 outb(0x03, sec_dma_base + 0x01);
382 pll_ctl1 = inb(sec_dma_base + 0x03);
383
384 DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
385 #endif
386
387 /*
388 * Calculate the ratio of F, R and NO
389 * POUT = (F + 2) / (( R + 2) * NO)
390 */
391 ratio = pll_output / (pll_input / 1000);
392 if (ratio < 8600L) { /* 8.6x */
393 /* Using NO = 0x01, R = 0x0d */
394 r = 0x0d;
395 } else if (ratio < 12900L) { /* 12.9x */
396 /* Using NO = 0x01, R = 0x08 */
397 r = 0x08;
398 } else if (ratio < 16100L) { /* 16.1x */
399 /* Using NO = 0x01, R = 0x06 */
400 r = 0x06;
401 } else if (ratio < 64000L) { /* 64x */
402 r = 0x00;
403 } else {
404 /* Invalid ratio */
405 printk(KERN_ERR "%s %s: Bad ratio %ld, giving up!\n",
406 name, pci_name(dev), ratio);
407 goto out;
408 }
409
410 f = (ratio * (r + 2)) / 1000 - 2;
411
412 DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
413
414 if (unlikely(f < 0 || f > 127)) {
415 /* Invalid F */
416 printk(KERN_ERR "%s %s: F[%d] invalid!\n",
417 name, pci_name(dev), f);
418 goto out;
419 }
420
421 pll_ctl0 = (u8) f;
422 pll_ctl1 = (u8) r;
423
424 DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
425
426 outb(0x02, sec_dma_base + 0x01);
427 outb(pll_ctl0, sec_dma_base + 0x03);
428 outb(0x03, sec_dma_base + 0x01);
429 outb(pll_ctl1, sec_dma_base + 0x03);
430
431 /* Wait the PLL circuit to be stable */
432 mdelay(30);
433
434 #ifdef DEBUG
435 /*
436 * Show the current clock value of PLL control register
437 */
438 outb(0x02, sec_dma_base + 0x01);
439 pll_ctl0 = inb(sec_dma_base + 0x03);
440 outb(0x03, sec_dma_base + 0x01);
441 pll_ctl1 = inb(sec_dma_base + 0x03);
442
443 DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
444 #endif
445
446 out:
447 return dev->irq;
448 }
449
pdc20270_get_dev2(struct pci_dev * dev)450 static struct pci_dev * __devinit pdc20270_get_dev2(struct pci_dev *dev)
451 {
452 struct pci_dev *dev2;
453
454 dev2 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn) + 1,
455 PCI_FUNC(dev->devfn)));
456
457 if (dev2 &&
458 dev2->vendor == dev->vendor &&
459 dev2->device == dev->device) {
460
461 if (dev2->irq != dev->irq) {
462 dev2->irq = dev->irq;
463 printk(KERN_INFO DRV_NAME " %s: PCI config space "
464 "interrupt fixed\n", pci_name(dev));
465 }
466
467 return dev2;
468 }
469
470 return NULL;
471 }
472
473 static const struct ide_port_ops pdcnew_port_ops = {
474 .set_pio_mode = pdcnew_set_pio_mode,
475 .set_dma_mode = pdcnew_set_dma_mode,
476 .quirkproc = pdcnew_quirkproc,
477 .resetproc = pdcnew_reset,
478 .cable_detect = pdcnew_cable_detect,
479 };
480
481 #define DECLARE_PDCNEW_DEV(udma) \
482 { \
483 .name = DRV_NAME, \
484 .init_chipset = init_chipset_pdcnew, \
485 .port_ops = &pdcnew_port_ops, \
486 .host_flags = IDE_HFLAG_POST_SET_MODE | \
487 IDE_HFLAG_ERROR_STOPS_FIFO | \
488 IDE_HFLAG_OFF_BOARD, \
489 .pio_mask = ATA_PIO4, \
490 .mwdma_mask = ATA_MWDMA2, \
491 .udma_mask = udma, \
492 }
493
494 static const struct ide_port_info pdcnew_chipsets[] __devinitdata = {
495 /* 0: PDC202{68,70} */ DECLARE_PDCNEW_DEV(ATA_UDMA5),
496 /* 1: PDC202{69,71,75,76,77} */ DECLARE_PDCNEW_DEV(ATA_UDMA6),
497 };
498
499 /**
500 * pdc202new_init_one - called when a pdc202xx is found
501 * @dev: the pdc202new device
502 * @id: the matching pci id
503 *
504 * Called when the PCI registration layer (or the IDE initialization)
505 * finds a device matching our IDE device tables.
506 */
507
pdc202new_init_one(struct pci_dev * dev,const struct pci_device_id * id)508 static int __devinit pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
509 {
510 const struct ide_port_info *d = &pdcnew_chipsets[id->driver_data];
511 struct pci_dev *bridge = dev->bus->self;
512
513 if (dev->device == PCI_DEVICE_ID_PROMISE_20270 && bridge &&
514 bridge->vendor == PCI_VENDOR_ID_DEC &&
515 bridge->device == PCI_DEVICE_ID_DEC_21150) {
516 struct pci_dev *dev2;
517
518 if (PCI_SLOT(dev->devfn) & 2)
519 return -ENODEV;
520
521 dev2 = pdc20270_get_dev2(dev);
522
523 if (dev2) {
524 int ret = ide_pci_init_two(dev, dev2, d, NULL);
525 if (ret < 0)
526 pci_dev_put(dev2);
527 return ret;
528 }
529 }
530
531 if (dev->device == PCI_DEVICE_ID_PROMISE_20276 && bridge &&
532 bridge->vendor == PCI_VENDOR_ID_INTEL &&
533 (bridge->device == PCI_DEVICE_ID_INTEL_I960 ||
534 bridge->device == PCI_DEVICE_ID_INTEL_I960RM)) {
535 printk(KERN_INFO DRV_NAME " %s: attached to I2O RAID controller,"
536 " skipping\n", pci_name(dev));
537 return -ENODEV;
538 }
539
540 return ide_pci_init_one(dev, d, NULL);
541 }
542
pdc202new_remove(struct pci_dev * dev)543 static void __devexit pdc202new_remove(struct pci_dev *dev)
544 {
545 struct ide_host *host = pci_get_drvdata(dev);
546 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
547
548 ide_pci_remove(dev);
549 pci_dev_put(dev2);
550 }
551
552 static const struct pci_device_id pdc202new_pci_tbl[] = {
553 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20268), 0 },
554 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20269), 1 },
555 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20270), 0 },
556 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20271), 1 },
557 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20275), 1 },
558 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20276), 1 },
559 { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20277), 1 },
560 { 0, },
561 };
562 MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
563
564 static struct pci_driver pdc202new_pci_driver = {
565 .name = "Promise_IDE",
566 .id_table = pdc202new_pci_tbl,
567 .probe = pdc202new_init_one,
568 .remove = __devexit_p(pdc202new_remove),
569 .suspend = ide_pci_suspend,
570 .resume = ide_pci_resume,
571 };
572
pdc202new_ide_init(void)573 static int __init pdc202new_ide_init(void)
574 {
575 return ide_pci_register_driver(&pdc202new_pci_driver);
576 }
577
pdc202new_ide_exit(void)578 static void __exit pdc202new_ide_exit(void)
579 {
580 pci_unregister_driver(&pdc202new_pci_driver);
581 }
582
583 module_init(pdc202new_ide_init);
584 module_exit(pdc202new_ide_exit);
585
586 MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
587 MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
588 MODULE_LICENSE("GPL");
589