• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24 
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41 
42 #include <linux/module.h>
43 
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51 
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66 
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78 
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 	printk(level "%s: " fmt, driver_name, ## args)
81 
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 	printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84 
85 struct fragment_info {
86 	struct list_head list;
87 	int offset;
88 	int len;
89 };
90 
91 struct partial_datagram {
92 	struct list_head list;
93 	u16 dgl;
94 	u16 dg_size;
95 	__be16 ether_type;
96 	struct sk_buff *skb;
97 	char *pbuf;
98 	struct list_head frag_info;
99 };
100 
101 struct pdg_list {
102 	struct list_head list;	/* partial datagram list per node	*/
103 	unsigned int sz;	/* partial datagram list size per node	*/
104 	spinlock_t lock;	/* partial datagram lock		*/
105 };
106 
107 struct eth1394_host_info {
108 	struct hpsb_host *host;
109 	struct net_device *dev;
110 };
111 
112 struct eth1394_node_ref {
113 	struct unit_directory *ud;
114 	struct list_head list;
115 };
116 
117 struct eth1394_node_info {
118 	u16 maxpayload;		/* max payload			*/
119 	u8 sspd;		/* max speed			*/
120 	u64 fifo;		/* FIFO address			*/
121 	struct pdg_list pdg;	/* partial RX datagram lists	*/
122 	int dgl;		/* outgoing datagram label	*/
123 };
124 
125 static const char driver_name[] = "eth1394";
126 
127 static struct kmem_cache *packet_task_cache;
128 
129 static struct hpsb_highlevel eth1394_highlevel;
130 
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 	sizeof(struct eth1394_uf_hdr),
134 	sizeof(struct eth1394_ff_hdr),
135 	sizeof(struct eth1394_sf_hdr),
136 	sizeof(struct eth1394_sf_hdr)
137 };
138 
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141 	512, 1024, 2048, 4096,  4096,  4096
142 };
143 
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147 
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 		 "Maximum number of partially received fragmented datagrams "
158 		 "(default = 25).");
159 
160 
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 			    unsigned short type, const void *daddr,
163 			    const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166 				  unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168 				  struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170 					  const struct net_device *dev,
171 					  const unsigned char *haddr);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174 
175 static struct ethtool_ops ethtool_ops;
176 
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178 			   quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
182 
183 /* Function for incoming 1394 packets */
184 const static struct hpsb_address_ops addr_ops = {
185 	.write =	ether1394_write,
186 };
187 
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
190 	.name =		driver_name,
191 	.add_host =	ether1394_add_host,
192 	.remove_host =	ether1394_remove_host,
193 	.host_reset =	ether1394_host_reset,
194 };
195 
ether1394_recv_init(struct eth1394_priv * priv)196 static int ether1394_recv_init(struct eth1394_priv *priv)
197 {
198 	unsigned int iso_buf_size;
199 
200 	/* FIXME: rawiso limits us to PAGE_SIZE */
201 	iso_buf_size = min((unsigned int)PAGE_SIZE,
202 			   2 * (1U << (priv->host->csr.max_rec + 1)));
203 
204 	priv->iso = hpsb_iso_recv_init(priv->host,
205 				       ETHER1394_GASP_BUFFERS * iso_buf_size,
206 				       ETHER1394_GASP_BUFFERS,
207 				       priv->broadcast_channel,
208 				       HPSB_ISO_DMA_PACKET_PER_BUFFER,
209 				       1, ether1394_iso);
210 	if (priv->iso == NULL) {
211 		ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212 		priv->bc_state = ETHER1394_BC_ERROR;
213 		return -EAGAIN;
214 	}
215 
216 	if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217 		priv->bc_state = ETHER1394_BC_STOPPED;
218 	else
219 		priv->bc_state = ETHER1394_BC_RUNNING;
220 	return 0;
221 }
222 
223 /* This is called after an "ifup" */
ether1394_open(struct net_device * dev)224 static int ether1394_open(struct net_device *dev)
225 {
226 	struct eth1394_priv *priv = netdev_priv(dev);
227 	int ret;
228 
229 	if (priv->bc_state == ETHER1394_BC_ERROR) {
230 		ret = ether1394_recv_init(priv);
231 		if (ret)
232 			return ret;
233 	}
234 	netif_start_queue(dev);
235 	return 0;
236 }
237 
238 /* This is called after an "ifdown" */
ether1394_stop(struct net_device * dev)239 static int ether1394_stop(struct net_device *dev)
240 {
241 	/* flush priv->wake */
242 	flush_scheduled_work();
243 
244 	netif_stop_queue(dev);
245 	return 0;
246 }
247 
248 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
249  * so that's what we do. Should we increment the stat counters too?  */
ether1394_tx_timeout(struct net_device * dev)250 static void ether1394_tx_timeout(struct net_device *dev)
251 {
252 	struct hpsb_host *host =
253 			((struct eth1394_priv *)netdev_priv(dev))->host;
254 
255 	ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
256 	ether1394_host_reset(host);
257 }
258 
ether1394_max_mtu(struct hpsb_host * host)259 static inline int ether1394_max_mtu(struct hpsb_host* host)
260 {
261 	return (1 << (host->csr.max_rec + 1))
262 			- sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
263 }
264 
ether1394_change_mtu(struct net_device * dev,int new_mtu)265 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
266 {
267 	int max_mtu;
268 
269 	if (new_mtu < 68)
270 		return -EINVAL;
271 
272 	max_mtu = ether1394_max_mtu(
273 			((struct eth1394_priv *)netdev_priv(dev))->host);
274 	if (new_mtu > max_mtu) {
275 		ETH1394_PRINT(KERN_INFO, dev->name,
276 			      "Local node constrains MTU to %d\n", max_mtu);
277 		return -ERANGE;
278 	}
279 
280 	dev->mtu = new_mtu;
281 	return 0;
282 }
283 
purge_partial_datagram(struct list_head * old)284 static void purge_partial_datagram(struct list_head *old)
285 {
286 	struct partial_datagram *pd;
287 	struct list_head *lh, *n;
288 	struct fragment_info *fi;
289 
290 	pd = list_entry(old, struct partial_datagram, list);
291 
292 	list_for_each_safe(lh, n, &pd->frag_info) {
293 		fi = list_entry(lh, struct fragment_info, list);
294 		list_del(lh);
295 		kfree(fi);
296 	}
297 	list_del(old);
298 	kfree_skb(pd->skb);
299 	kfree(pd);
300 }
301 
302 /******************************************
303  * 1394 bus activity functions
304  ******************************************/
305 
eth1394_find_node(struct list_head * inl,struct unit_directory * ud)306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307 						  struct unit_directory *ud)
308 {
309 	struct eth1394_node_ref *node;
310 
311 	list_for_each_entry(node, inl, list)
312 		if (node->ud == ud)
313 			return node;
314 
315 	return NULL;
316 }
317 
eth1394_find_node_guid(struct list_head * inl,u64 guid)318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319 						       u64 guid)
320 {
321 	struct eth1394_node_ref *node;
322 
323 	list_for_each_entry(node, inl, list)
324 		if (node->ud->ne->guid == guid)
325 			return node;
326 
327 	return NULL;
328 }
329 
eth1394_find_node_nodeid(struct list_head * inl,nodeid_t nodeid)330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331 							 nodeid_t nodeid)
332 {
333 	struct eth1394_node_ref *node;
334 
335 	list_for_each_entry(node, inl, list)
336 		if (node->ud->ne->nodeid == nodeid)
337 			return node;
338 
339 	return NULL;
340 }
341 
eth1394_new_node(struct eth1394_host_info * hi,struct unit_directory * ud)342 static int eth1394_new_node(struct eth1394_host_info *hi,
343 			    struct unit_directory *ud)
344 {
345 	struct eth1394_priv *priv;
346 	struct eth1394_node_ref *new_node;
347 	struct eth1394_node_info *node_info;
348 
349 	new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
350 	if (!new_node)
351 		return -ENOMEM;
352 
353 	node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
354 	if (!node_info) {
355 		kfree(new_node);
356 		return -ENOMEM;
357 	}
358 
359 	spin_lock_init(&node_info->pdg.lock);
360 	INIT_LIST_HEAD(&node_info->pdg.list);
361 	node_info->pdg.sz = 0;
362 	node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
363 
364 	ud->device.driver_data = node_info;
365 	new_node->ud = ud;
366 
367 	priv = netdev_priv(hi->dev);
368 	list_add_tail(&new_node->list, &priv->ip_node_list);
369 	return 0;
370 }
371 
eth1394_probe(struct device * dev)372 static int eth1394_probe(struct device *dev)
373 {
374 	struct unit_directory *ud;
375 	struct eth1394_host_info *hi;
376 
377 	ud = container_of(dev, struct unit_directory, device);
378 	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
379 	if (!hi)
380 		return -ENOENT;
381 
382 	return eth1394_new_node(hi, ud);
383 }
384 
eth1394_remove(struct device * dev)385 static int eth1394_remove(struct device *dev)
386 {
387 	struct unit_directory *ud;
388 	struct eth1394_host_info *hi;
389 	struct eth1394_priv *priv;
390 	struct eth1394_node_ref *old_node;
391 	struct eth1394_node_info *node_info;
392 	struct list_head *lh, *n;
393 	unsigned long flags;
394 
395 	ud = container_of(dev, struct unit_directory, device);
396 	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
397 	if (!hi)
398 		return -ENOENT;
399 
400 	priv = netdev_priv(hi->dev);
401 
402 	old_node = eth1394_find_node(&priv->ip_node_list, ud);
403 	if (!old_node)
404 		return 0;
405 
406 	list_del(&old_node->list);
407 	kfree(old_node);
408 
409 	node_info = (struct eth1394_node_info*)ud->device.driver_data;
410 
411 	spin_lock_irqsave(&node_info->pdg.lock, flags);
412 	/* The partial datagram list should be empty, but we'll just
413 	 * make sure anyway... */
414 	list_for_each_safe(lh, n, &node_info->pdg.list)
415 		purge_partial_datagram(lh);
416 	spin_unlock_irqrestore(&node_info->pdg.lock, flags);
417 
418 	kfree(node_info);
419 	ud->device.driver_data = NULL;
420 	return 0;
421 }
422 
eth1394_update(struct unit_directory * ud)423 static int eth1394_update(struct unit_directory *ud)
424 {
425 	struct eth1394_host_info *hi;
426 	struct eth1394_priv *priv;
427 	struct eth1394_node_ref *node;
428 
429 	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
430 	if (!hi)
431 		return -ENOENT;
432 
433 	priv = netdev_priv(hi->dev);
434 	node = eth1394_find_node(&priv->ip_node_list, ud);
435 	if (node)
436 		return 0;
437 
438 	return eth1394_new_node(hi, ud);
439 }
440 
441 static struct ieee1394_device_id eth1394_id_table[] = {
442 	{
443 		.match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
444 				IEEE1394_MATCH_VERSION),
445 		.specifier_id =	ETHER1394_GASP_SPECIFIER_ID,
446 		.version = ETHER1394_GASP_VERSION,
447 	},
448 	{}
449 };
450 
451 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
452 
453 static struct hpsb_protocol_driver eth1394_proto_driver = {
454 	.name		= driver_name,
455 	.id_table	= eth1394_id_table,
456 	.update		= eth1394_update,
457 	.driver		= {
458 		.probe		= eth1394_probe,
459 		.remove		= eth1394_remove,
460 	},
461 };
462 
ether1394_reset_priv(struct net_device * dev,int set_mtu)463 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
464 {
465 	unsigned long flags;
466 	int i;
467 	struct eth1394_priv *priv = netdev_priv(dev);
468 	struct hpsb_host *host = priv->host;
469 	u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
470 	int max_speed = IEEE1394_SPEED_MAX;
471 
472 	spin_lock_irqsave(&priv->lock, flags);
473 
474 	memset(priv->ud_list, 0, sizeof(priv->ud_list));
475 	priv->bc_maxpayload = 512;
476 
477 	/* Determine speed limit */
478 	/* FIXME: This is broken for nodes with link speed < PHY speed,
479 	 * and it is suboptimal for S200B...S800B hardware.
480 	 * The result of nodemgr's speed probe should be used somehow. */
481 	for (i = 0; i < host->node_count; i++) {
482 		/* take care of S100B...S400B PHY ports */
483 		if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
484 			max_speed = IEEE1394_SPEED_100;
485 			break;
486 		}
487 		if (max_speed > host->speed[i])
488 			max_speed = host->speed[i];
489 	}
490 	priv->bc_sspd = max_speed;
491 
492 	if (set_mtu) {
493 		/* Use the RFC 2734 default 1500 octets or the maximum payload
494 		 * as initial MTU */
495 		dev->mtu = min(1500, ether1394_max_mtu(host));
496 
497 		/* Set our hardware address while we're at it */
498 		memcpy(dev->dev_addr, &guid, sizeof(u64));
499 		memset(dev->broadcast, 0xff, sizeof(u64));
500 	}
501 
502 	spin_unlock_irqrestore(&priv->lock, flags);
503 }
504 
505 static const struct header_ops ether1394_header_ops = {
506 	.create		= ether1394_header,
507 	.rebuild	= ether1394_rebuild_header,
508 	.cache  	= ether1394_header_cache,
509 	.cache_update	= ether1394_header_cache_update,
510 	.parse		= ether1394_header_parse,
511 };
512 
513 static const struct net_device_ops ether1394_netdev_ops = {
514 	.ndo_open	= ether1394_open,
515 	.ndo_stop	= ether1394_stop,
516 	.ndo_start_xmit	= ether1394_tx,
517 	.ndo_tx_timeout	= ether1394_tx_timeout,
518 	.ndo_change_mtu	= ether1394_change_mtu,
519 };
520 
ether1394_init_dev(struct net_device * dev)521 static void ether1394_init_dev(struct net_device *dev)
522 {
523 
524 	dev->header_ops		= &ether1394_header_ops;
525 	dev->netdev_ops		= &ether1394_netdev_ops;
526 
527 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
528 
529 	dev->watchdog_timeo	= ETHER1394_TIMEOUT;
530 	dev->flags		= IFF_BROADCAST | IFF_MULTICAST;
531 	dev->features		= NETIF_F_HIGHDMA;
532 	dev->addr_len		= ETH1394_ALEN;
533 	dev->hard_header_len 	= ETH1394_HLEN;
534 	dev->type		= ARPHRD_IEEE1394;
535 
536 	/* FIXME: This value was copied from ether_setup(). Is it too much? */
537 	dev->tx_queue_len	= 1000;
538 }
539 
540 /*
541  * Wake the queue up after commonly encountered transmit failure conditions are
542  * hopefully over.  Currently only tlabel exhaustion is accounted for.
543  */
ether1394_wake_queue(struct work_struct * work)544 static void ether1394_wake_queue(struct work_struct *work)
545 {
546 	struct eth1394_priv *priv;
547 	struct hpsb_packet *packet;
548 
549 	priv = container_of(work, struct eth1394_priv, wake);
550 	packet = hpsb_alloc_packet(0);
551 
552 	/* This is really bad, but unjam the queue anyway. */
553 	if (!packet)
554 		goto out;
555 
556 	packet->host = priv->host;
557 	packet->node_id = priv->wake_node;
558 	/*
559 	 * A transaction label is all we really want.  If we get one, it almost
560 	 * always means we can get a lot more because the ieee1394 core recycled
561 	 * a whole batch of tlabels, at last.
562 	 */
563 	if (hpsb_get_tlabel(packet) == 0)
564 		hpsb_free_tlabel(packet);
565 
566 	hpsb_free_packet(packet);
567 out:
568 	netif_wake_queue(priv->wake_dev);
569 }
570 
571 /*
572  * This function is called every time a card is found. It is generally called
573  * when the module is installed. This is where we add all of our ethernet
574  * devices. One for each host.
575  */
ether1394_add_host(struct hpsb_host * host)576 static void ether1394_add_host(struct hpsb_host *host)
577 {
578 	struct eth1394_host_info *hi = NULL;
579 	struct net_device *dev = NULL;
580 	struct eth1394_priv *priv;
581 	u64 fifo_addr;
582 
583 	if (hpsb_config_rom_ip1394_add(host) != 0) {
584 		ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
585 		return;
586 	}
587 
588 	fifo_addr = hpsb_allocate_and_register_addrspace(
589 			&eth1394_highlevel, host, &addr_ops,
590 			ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
591 			CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
592 	if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
593 		ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
594 		hpsb_config_rom_ip1394_remove(host);
595 		return;
596 	}
597 
598 	dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
599 	if (dev == NULL) {
600 		ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
601 		goto out;
602 	}
603 
604 	SET_NETDEV_DEV(dev, &host->device);
605 
606 	priv = netdev_priv(dev);
607 	INIT_LIST_HEAD(&priv->ip_node_list);
608 	spin_lock_init(&priv->lock);
609 	priv->host = host;
610 	priv->local_fifo = fifo_addr;
611 	INIT_WORK(&priv->wake, ether1394_wake_queue);
612 	priv->wake_dev = dev;
613 
614 	hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
615 	if (hi == NULL) {
616 		ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
617 		goto out;
618 	}
619 
620 	ether1394_reset_priv(dev, 1);
621 
622 	if (register_netdev(dev)) {
623 		ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
624 		goto out;
625 	}
626 
627 	ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
628 		      host->id);
629 
630 	hi->host = host;
631 	hi->dev = dev;
632 
633 	/* Ignore validity in hopes that it will be set in the future.  It'll
634 	 * be checked when the eth device is opened. */
635 	priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
636 
637 	ether1394_recv_init(priv);
638 	return;
639 out:
640 	if (dev)
641 		free_netdev(dev);
642 	if (hi)
643 		hpsb_destroy_hostinfo(&eth1394_highlevel, host);
644 	hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
645 	hpsb_config_rom_ip1394_remove(host);
646 }
647 
648 /* Remove a card from our list */
ether1394_remove_host(struct hpsb_host * host)649 static void ether1394_remove_host(struct hpsb_host *host)
650 {
651 	struct eth1394_host_info *hi;
652 	struct eth1394_priv *priv;
653 
654 	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
655 	if (!hi)
656 		return;
657 	priv = netdev_priv(hi->dev);
658 	hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
659 	hpsb_config_rom_ip1394_remove(host);
660 	if (priv->iso)
661 		hpsb_iso_shutdown(priv->iso);
662 	unregister_netdev(hi->dev);
663 	free_netdev(hi->dev);
664 }
665 
666 /* A bus reset happened */
ether1394_host_reset(struct hpsb_host * host)667 static void ether1394_host_reset(struct hpsb_host *host)
668 {
669 	struct eth1394_host_info *hi;
670 	struct eth1394_priv *priv;
671 	struct net_device *dev;
672 	struct list_head *lh, *n;
673 	struct eth1394_node_ref *node;
674 	struct eth1394_node_info *node_info;
675 	unsigned long flags;
676 
677 	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
678 
679 	/* This can happen for hosts that we don't use */
680 	if (!hi)
681 		return;
682 
683 	dev = hi->dev;
684 	priv = netdev_priv(dev);
685 
686 	/* Reset our private host data, but not our MTU */
687 	netif_stop_queue(dev);
688 	ether1394_reset_priv(dev, 0);
689 
690 	list_for_each_entry(node, &priv->ip_node_list, list) {
691 		node_info = node->ud->device.driver_data;
692 
693 		spin_lock_irqsave(&node_info->pdg.lock, flags);
694 
695 		list_for_each_safe(lh, n, &node_info->pdg.list)
696 			purge_partial_datagram(lh);
697 
698 		INIT_LIST_HEAD(&(node_info->pdg.list));
699 		node_info->pdg.sz = 0;
700 
701 		spin_unlock_irqrestore(&node_info->pdg.lock, flags);
702 	}
703 
704 	netif_wake_queue(dev);
705 }
706 
707 /******************************************
708  * HW Header net device functions
709  ******************************************/
710 /* These functions have been adapted from net/ethernet/eth.c */
711 
712 /* Create a fake MAC header for an arbitrary protocol layer.
713  * saddr=NULL means use device source address
714  * daddr=NULL means leave destination address (eg unresolved arp). */
ether1394_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned len)715 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
716 			    unsigned short type, const void *daddr,
717 			    const void *saddr, unsigned len)
718 {
719 	struct eth1394hdr *eth =
720 			(struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
721 
722 	eth->h_proto = htons(type);
723 
724 	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
725 		memset(eth->h_dest, 0, dev->addr_len);
726 		return dev->hard_header_len;
727 	}
728 
729 	if (daddr) {
730 		memcpy(eth->h_dest, daddr, dev->addr_len);
731 		return dev->hard_header_len;
732 	}
733 
734 	return -dev->hard_header_len;
735 }
736 
737 /* Rebuild the faked MAC header. This is called after an ARP
738  * (or in future other address resolution) has completed on this
739  * sk_buff. We now let ARP fill in the other fields.
740  *
741  * This routine CANNOT use cached dst->neigh!
742  * Really, it is used only when dst->neigh is wrong.
743  */
ether1394_rebuild_header(struct sk_buff * skb)744 static int ether1394_rebuild_header(struct sk_buff *skb)
745 {
746 	struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
747 
748 	if (eth->h_proto == htons(ETH_P_IP))
749 		return arp_find((unsigned char *)&eth->h_dest, skb);
750 
751 	ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
752 		      "unable to resolve type %04x addresses\n",
753 		      ntohs(eth->h_proto));
754 	return 0;
755 }
756 
ether1394_header_parse(const struct sk_buff * skb,unsigned char * haddr)757 static int ether1394_header_parse(const struct sk_buff *skb,
758 				  unsigned char *haddr)
759 {
760 	memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
761 	return ETH1394_ALEN;
762 }
763 
ether1394_header_cache(const struct neighbour * neigh,struct hh_cache * hh)764 static int ether1394_header_cache(const struct neighbour *neigh,
765 				  struct hh_cache *hh)
766 {
767 	__be16 type = hh->hh_type;
768 	struct net_device *dev = neigh->dev;
769 	struct eth1394hdr *eth =
770 		(struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
771 
772 	if (type == htons(ETH_P_802_3))
773 		return -1;
774 
775 	eth->h_proto = type;
776 	memcpy(eth->h_dest, neigh->ha, dev->addr_len);
777 
778 	hh->hh_len = ETH1394_HLEN;
779 	return 0;
780 }
781 
782 /* Called by Address Resolution module to notify changes in address. */
ether1394_header_cache_update(struct hh_cache * hh,const struct net_device * dev,const unsigned char * haddr)783 static void ether1394_header_cache_update(struct hh_cache *hh,
784 					  const struct net_device *dev,
785 					  const unsigned char * haddr)
786 {
787 	memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
788 }
789 
790 /******************************************
791  * Datagram reception code
792  ******************************************/
793 
794 /* Copied from net/ethernet/eth.c */
ether1394_type_trans(struct sk_buff * skb,struct net_device * dev)795 static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
796 {
797 	struct eth1394hdr *eth;
798 	unsigned char *rawp;
799 
800 	skb_reset_mac_header(skb);
801 	skb_pull(skb, ETH1394_HLEN);
802 	eth = eth1394_hdr(skb);
803 
804 	if (*eth->h_dest & 1) {
805 		if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
806 			skb->pkt_type = PACKET_BROADCAST;
807 #if 0
808 		else
809 			skb->pkt_type = PACKET_MULTICAST;
810 #endif
811 	} else {
812 		if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
813 			skb->pkt_type = PACKET_OTHERHOST;
814 	}
815 
816 	if (ntohs(eth->h_proto) >= 1536)
817 		return eth->h_proto;
818 
819 	rawp = skb->data;
820 
821 	if (*(unsigned short *)rawp == 0xFFFF)
822 		return htons(ETH_P_802_3);
823 
824 	return htons(ETH_P_802_2);
825 }
826 
827 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
828  * We also perform ARP translation here, if need be.  */
ether1394_parse_encap(struct sk_buff * skb,struct net_device * dev,nodeid_t srcid,nodeid_t destid,__be16 ether_type)829 static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
830 				 nodeid_t srcid, nodeid_t destid,
831 				 __be16 ether_type)
832 {
833 	struct eth1394_priv *priv = netdev_priv(dev);
834 	__be64 dest_hw;
835 	__be16 ret = 0;
836 
837 	/* Setup our hw addresses. We use these to build the ethernet header. */
838 	if (destid == (LOCAL_BUS | ALL_NODES))
839 		dest_hw = ~cpu_to_be64(0);  /* broadcast */
840 	else
841 		dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
842 				      priv->host->csr.guid_lo);
843 
844 	/* If this is an ARP packet, convert it. First, we want to make
845 	 * use of some of the fields, since they tell us a little bit
846 	 * about the sending machine.  */
847 	if (ether_type == htons(ETH_P_ARP)) {
848 		struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
849 		struct arphdr *arp = (struct arphdr *)skb->data;
850 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
851 		u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
852 					   ntohl(arp1394->fifo_lo);
853 		u8 max_rec = min(priv->host->csr.max_rec,
854 				 (u8)(arp1394->max_rec));
855 		int sspd = arp1394->sspd;
856 		u16 maxpayload;
857 		struct eth1394_node_ref *node;
858 		struct eth1394_node_info *node_info;
859 		__be64 guid;
860 
861 		/* Sanity check. MacOSX seems to be sending us 131 in this
862 		 * field (atleast on my Panther G5). Not sure why. */
863 		if (sspd > 5 || sspd < 0)
864 			sspd = 0;
865 
866 		maxpayload = min(eth1394_speedto_maxpayload[sspd],
867 				 (u16)(1 << (max_rec + 1)));
868 
869 		guid = get_unaligned(&arp1394->s_uniq_id);
870 		node = eth1394_find_node_guid(&priv->ip_node_list,
871 					      be64_to_cpu(guid));
872 		if (!node)
873 			return cpu_to_be16(0);
874 
875 		node_info =
876 		    (struct eth1394_node_info *)node->ud->device.driver_data;
877 
878 		/* Update our speed/payload/fifo_offset table */
879 		node_info->maxpayload =	maxpayload;
880 		node_info->sspd =	sspd;
881 		node_info->fifo =	fifo_addr;
882 
883 		/* Now that we're done with the 1394 specific stuff, we'll
884 		 * need to alter some of the data.  Believe it or not, all
885 		 * that needs to be done is sender_IP_address needs to be
886 		 * moved, the destination hardware address get stuffed
887 		 * in and the hardware address length set to 8.
888 		 *
889 		 * IMPORTANT: The code below overwrites 1394 specific data
890 		 * needed above so keep the munging of the data for the
891 		 * higher level IP stack last. */
892 
893 		arp->ar_hln = 8;
894 		arp_ptr += arp->ar_hln;		/* skip over sender unique id */
895 		*(u32 *)arp_ptr = arp1394->sip;	/* move sender IP addr */
896 		arp_ptr += arp->ar_pln;		/* skip over sender IP addr */
897 
898 		if (arp->ar_op == htons(ARPOP_REQUEST))
899 			memset(arp_ptr, 0, sizeof(u64));
900 		else
901 			memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
902 	}
903 
904 	/* Now add the ethernet header. */
905 	if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
906 			    skb->len) >= 0)
907 		ret = ether1394_type_trans(skb, dev);
908 
909 	return ret;
910 }
911 
fragment_overlap(struct list_head * frag_list,int offset,int len)912 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
913 {
914 	struct fragment_info *fi;
915 	int end = offset + len;
916 
917 	list_for_each_entry(fi, frag_list, list)
918 		if (offset < fi->offset + fi->len && end > fi->offset)
919 			return 1;
920 
921 	return 0;
922 }
923 
find_partial_datagram(struct list_head * pdgl,int dgl)924 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
925 {
926 	struct partial_datagram *pd;
927 
928 	list_for_each_entry(pd, pdgl, list)
929 		if (pd->dgl == dgl)
930 			return &pd->list;
931 
932 	return NULL;
933 }
934 
935 /* Assumes that new fragment does not overlap any existing fragments */
new_fragment(struct list_head * frag_info,int offset,int len)936 static int new_fragment(struct list_head *frag_info, int offset, int len)
937 {
938 	struct list_head *lh;
939 	struct fragment_info *fi, *fi2, *new;
940 
941 	list_for_each(lh, frag_info) {
942 		fi = list_entry(lh, struct fragment_info, list);
943 		if (fi->offset + fi->len == offset) {
944 			/* The new fragment can be tacked on to the end */
945 			fi->len += len;
946 			/* Did the new fragment plug a hole? */
947 			fi2 = list_entry(lh->next, struct fragment_info, list);
948 			if (fi->offset + fi->len == fi2->offset) {
949 				/* glue fragments together */
950 				fi->len += fi2->len;
951 				list_del(lh->next);
952 				kfree(fi2);
953 			}
954 			return 0;
955 		} else if (offset + len == fi->offset) {
956 			/* The new fragment can be tacked on to the beginning */
957 			fi->offset = offset;
958 			fi->len += len;
959 			/* Did the new fragment plug a hole? */
960 			fi2 = list_entry(lh->prev, struct fragment_info, list);
961 			if (fi2->offset + fi2->len == fi->offset) {
962 				/* glue fragments together */
963 				fi2->len += fi->len;
964 				list_del(lh);
965 				kfree(fi);
966 			}
967 			return 0;
968 		} else if (offset > fi->offset + fi->len) {
969 			break;
970 		} else if (offset + len < fi->offset) {
971 			lh = lh->prev;
972 			break;
973 		}
974 	}
975 
976 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
977 	if (!new)
978 		return -ENOMEM;
979 
980 	new->offset = offset;
981 	new->len = len;
982 
983 	list_add(&new->list, lh);
984 	return 0;
985 }
986 
new_partial_datagram(struct net_device * dev,struct list_head * pdgl,int dgl,int dg_size,char * frag_buf,int frag_off,int frag_len)987 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
988 				int dgl, int dg_size, char *frag_buf,
989 				int frag_off, int frag_len)
990 {
991 	struct partial_datagram *new;
992 
993 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
994 	if (!new)
995 		return -ENOMEM;
996 
997 	INIT_LIST_HEAD(&new->frag_info);
998 
999 	if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1000 		kfree(new);
1001 		return -ENOMEM;
1002 	}
1003 
1004 	new->dgl = dgl;
1005 	new->dg_size = dg_size;
1006 
1007 	new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1008 	if (!new->skb) {
1009 		struct fragment_info *fi = list_entry(new->frag_info.next,
1010 						      struct fragment_info,
1011 						      list);
1012 		kfree(fi);
1013 		kfree(new);
1014 		return -ENOMEM;
1015 	}
1016 
1017 	skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1018 	new->pbuf = skb_put(new->skb, dg_size);
1019 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1020 
1021 	list_add(&new->list, pdgl);
1022 	return 0;
1023 }
1024 
update_partial_datagram(struct list_head * pdgl,struct list_head * lh,char * frag_buf,int frag_off,int frag_len)1025 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1026 				   char *frag_buf, int frag_off, int frag_len)
1027 {
1028 	struct partial_datagram *pd =
1029 			list_entry(lh, struct partial_datagram, list);
1030 
1031 	if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1032 		return -ENOMEM;
1033 
1034 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1035 
1036 	/* Move list entry to beginnig of list so that oldest partial
1037 	 * datagrams percolate to the end of the list */
1038 	list_move(lh, pdgl);
1039 	return 0;
1040 }
1041 
is_datagram_complete(struct list_head * lh,int dg_size)1042 static int is_datagram_complete(struct list_head *lh, int dg_size)
1043 {
1044 	struct partial_datagram *pd;
1045 	struct fragment_info *fi;
1046 
1047 	pd = list_entry(lh, struct partial_datagram, list);
1048 	fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1049 
1050 	return (fi->len == dg_size);
1051 }
1052 
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054  * ethernet header, and fill it with some of our other fields. This is
1055  * an incoming packet from the 1394 bus.  */
ether1394_data_handler(struct net_device * dev,int srcid,int destid,char * buf,int len)1056 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1057 				  char *buf, int len)
1058 {
1059 	struct sk_buff *skb;
1060 	unsigned long flags;
1061 	struct eth1394_priv *priv = netdev_priv(dev);
1062 	union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1063 	__be16 ether_type = cpu_to_be16(0);  /* initialized to clear warning */
1064 	int hdr_len;
1065 	struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1066 	struct eth1394_node_info *node_info;
1067 
1068 	if (!ud) {
1069 		struct eth1394_node_ref *node;
1070 		node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1071 		if (unlikely(!node)) {
1072 			HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1073 				   "lookup failure: " NODE_BUS_FMT,
1074 				   NODE_BUS_ARGS(priv->host, srcid));
1075 			dev->stats.rx_dropped++;
1076 			return -1;
1077 		}
1078 		ud = node->ud;
1079 
1080 		priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1081 	}
1082 
1083 	node_info = (struct eth1394_node_info *)ud->device.driver_data;
1084 
1085 	/* First, did we receive a fragmented or unfragmented datagram? */
1086 	hdr->words.word1 = ntohs(hdr->words.word1);
1087 
1088 	hdr_len = hdr_type_len[hdr->common.lf];
1089 
1090 	if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1091 		/* An unfragmented datagram has been received by the ieee1394
1092 		 * bus. Build an skbuff around it so we can pass it to the
1093 		 * high level network layer. */
1094 
1095 		skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1096 		if (unlikely(!skb)) {
1097 			ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1098 			dev->stats.rx_dropped++;
1099 			return -1;
1100 		}
1101 		skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1102 		memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1103 		       len - hdr_len);
1104 		ether_type = hdr->uf.ether_type;
1105 	} else {
1106 		/* A datagram fragment has been received, now the fun begins. */
1107 
1108 		struct list_head *pdgl, *lh;
1109 		struct partial_datagram *pd;
1110 		int fg_off;
1111 		int fg_len = len - hdr_len;
1112 		int dg_size;
1113 		int dgl;
1114 		int retval;
1115 		struct pdg_list *pdg = &(node_info->pdg);
1116 
1117 		hdr->words.word3 = ntohs(hdr->words.word3);
1118 		/* The 4th header word is reserved so no need to do ntohs() */
1119 
1120 		if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1121 			ether_type = hdr->ff.ether_type;
1122 			dgl = hdr->ff.dgl;
1123 			dg_size = hdr->ff.dg_size + 1;
1124 			fg_off = 0;
1125 		} else {
1126 			hdr->words.word2 = ntohs(hdr->words.word2);
1127 			dgl = hdr->sf.dgl;
1128 			dg_size = hdr->sf.dg_size + 1;
1129 			fg_off = hdr->sf.fg_off;
1130 		}
1131 		spin_lock_irqsave(&pdg->lock, flags);
1132 
1133 		pdgl = &(pdg->list);
1134 		lh = find_partial_datagram(pdgl, dgl);
1135 
1136 		if (lh == NULL) {
1137 			while (pdg->sz >= max_partial_datagrams) {
1138 				/* remove the oldest */
1139 				purge_partial_datagram(pdgl->prev);
1140 				pdg->sz--;
1141 			}
1142 
1143 			retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1144 						      buf + hdr_len, fg_off,
1145 						      fg_len);
1146 			if (retval < 0) {
1147 				spin_unlock_irqrestore(&pdg->lock, flags);
1148 				goto bad_proto;
1149 			}
1150 			pdg->sz++;
1151 			lh = find_partial_datagram(pdgl, dgl);
1152 		} else {
1153 			pd = list_entry(lh, struct partial_datagram, list);
1154 
1155 			if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1156 				/* Overlapping fragments, obliterate old
1157 				 * datagram and start new one. */
1158 				purge_partial_datagram(lh);
1159 				retval = new_partial_datagram(dev, pdgl, dgl,
1160 							      dg_size,
1161 							      buf + hdr_len,
1162 							      fg_off, fg_len);
1163 				if (retval < 0) {
1164 					pdg->sz--;
1165 					spin_unlock_irqrestore(&pdg->lock, flags);
1166 					goto bad_proto;
1167 				}
1168 			} else {
1169 				retval = update_partial_datagram(pdgl, lh,
1170 								 buf + hdr_len,
1171 								 fg_off, fg_len);
1172 				if (retval < 0) {
1173 					/* Couldn't save off fragment anyway
1174 					 * so might as well obliterate the
1175 					 * datagram now. */
1176 					purge_partial_datagram(lh);
1177 					pdg->sz--;
1178 					spin_unlock_irqrestore(&pdg->lock, flags);
1179 					goto bad_proto;
1180 				}
1181 			} /* fragment overlap */
1182 		} /* new datagram or add to existing one */
1183 
1184 		pd = list_entry(lh, struct partial_datagram, list);
1185 
1186 		if (hdr->common.lf == ETH1394_HDR_LF_FF)
1187 			pd->ether_type = ether_type;
1188 
1189 		if (is_datagram_complete(lh, dg_size)) {
1190 			ether_type = pd->ether_type;
1191 			pdg->sz--;
1192 			skb = skb_get(pd->skb);
1193 			purge_partial_datagram(lh);
1194 			spin_unlock_irqrestore(&pdg->lock, flags);
1195 		} else {
1196 			/* Datagram is not complete, we're done for the
1197 			 * moment. */
1198 			spin_unlock_irqrestore(&pdg->lock, flags);
1199 			return 0;
1200 		}
1201 	} /* unframgented datagram or fragmented one */
1202 
1203 	/* Write metadata, and then pass to the receive level */
1204 	skb->dev = dev;
1205 	skb->ip_summed = CHECKSUM_UNNECESSARY;	/* don't check it */
1206 
1207 	/* Parse the encapsulation header. This actually does the job of
1208 	 * converting to an ethernet frame header, aswell as arp
1209 	 * conversion if needed. ARP conversion is easier in this
1210 	 * direction, since we are using ethernet as our backend.  */
1211 	skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1212 					      ether_type);
1213 
1214 	spin_lock_irqsave(&priv->lock, flags);
1215 
1216 	if (!skb->protocol) {
1217 		dev->stats.rx_errors++;
1218 		dev->stats.rx_dropped++;
1219 		dev_kfree_skb_any(skb);
1220 	} else if (netif_rx(skb) == NET_RX_DROP) {
1221 		dev->stats.rx_errors++;
1222 		dev->stats.rx_dropped++;
1223 	} else {
1224 		dev->stats.rx_packets++;
1225 		dev->stats.rx_bytes += skb->len;
1226 	}
1227 
1228 	spin_unlock_irqrestore(&priv->lock, flags);
1229 
1230 bad_proto:
1231 	if (netif_queue_stopped(dev))
1232 		netif_wake_queue(dev);
1233 
1234 	return 0;
1235 }
1236 
ether1394_write(struct hpsb_host * host,int srcid,int destid,quadlet_t * data,u64 addr,size_t len,u16 flags)1237 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1238 			   quadlet_t *data, u64 addr, size_t len, u16 flags)
1239 {
1240 	struct eth1394_host_info *hi;
1241 
1242 	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1243 	if (unlikely(!hi)) {
1244 		ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1245 				host->id);
1246 		return RCODE_ADDRESS_ERROR;
1247 	}
1248 
1249 	if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1250 		return RCODE_ADDRESS_ERROR;
1251 	else
1252 		return RCODE_COMPLETE;
1253 }
1254 
ether1394_iso(struct hpsb_iso * iso)1255 static void ether1394_iso(struct hpsb_iso *iso)
1256 {
1257 	__be32 *data;
1258 	char *buf;
1259 	struct eth1394_host_info *hi;
1260 	struct net_device *dev;
1261 	struct eth1394_priv *priv;
1262 	unsigned int len;
1263 	u32 specifier_id;
1264 	u16 source_id;
1265 	int i;
1266 	int nready;
1267 
1268 	hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1269 	if (unlikely(!hi)) {
1270 		ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1271 				iso->host->id);
1272 		return;
1273 	}
1274 
1275 	dev = hi->dev;
1276 
1277 	nready = hpsb_iso_n_ready(iso);
1278 	for (i = 0; i < nready; i++) {
1279 		struct hpsb_iso_packet_info *info =
1280 			&iso->infos[(iso->first_packet + i) % iso->buf_packets];
1281 		data = (__be32 *)(iso->data_buf.kvirt + info->offset);
1282 
1283 		/* skip over GASP header */
1284 		buf = (char *)data + 8;
1285 		len = info->len - 8;
1286 
1287 		specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1288 			       (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1289 		source_id = be32_to_cpu(data[0]) >> 16;
1290 
1291 		priv = netdev_priv(dev);
1292 
1293 		if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1294 		    || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1295 			/* This packet is not for us */
1296 			continue;
1297 		}
1298 		ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1299 				       buf, len);
1300 	}
1301 
1302 	hpsb_iso_recv_release_packets(iso, i);
1303 
1304 	dev->last_rx = jiffies;
1305 }
1306 
1307 /******************************************
1308  * Datagram transmission code
1309  ******************************************/
1310 
1311 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1312  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1313  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1314  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1315  * judge.
1316  *
1317  * Now that the EUI is used for the hardware address all we need to do to make
1318  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1319  * speed, and unicast FIFO address information between the sender_unique_id
1320  * and the IP addresses.
1321  */
ether1394_arp_to_1394arp(struct sk_buff * skb,struct net_device * dev)1322 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1323 				     struct net_device *dev)
1324 {
1325 	struct eth1394_priv *priv = netdev_priv(dev);
1326 	struct arphdr *arp = (struct arphdr *)skb->data;
1327 	unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1328 	struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1329 
1330 	arp1394->hw_addr_len	= 16;
1331 	arp1394->sip		= *(u32*)(arp_ptr + ETH1394_ALEN);
1332 	arp1394->max_rec	= priv->host->csr.max_rec;
1333 	arp1394->sspd		= priv->host->csr.lnk_spd;
1334 	arp1394->fifo_hi	= htons(priv->local_fifo >> 32);
1335 	arp1394->fifo_lo	= htonl(priv->local_fifo & ~0x0);
1336 }
1337 
1338 /* We need to encapsulate the standard header with our own. We use the
1339  * ethernet header's proto for our own. */
ether1394_encapsulate_prep(unsigned int max_payload,__be16 proto,union eth1394_hdr * hdr,u16 dg_size,u16 dgl)1340 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1341 					       __be16 proto,
1342 					       union eth1394_hdr *hdr,
1343 					       u16 dg_size, u16 dgl)
1344 {
1345 	unsigned int adj_max_payload =
1346 				max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1347 
1348 	/* Does it all fit in one packet? */
1349 	if (dg_size <= adj_max_payload) {
1350 		hdr->uf.lf = ETH1394_HDR_LF_UF;
1351 		hdr->uf.ether_type = proto;
1352 	} else {
1353 		hdr->ff.lf = ETH1394_HDR_LF_FF;
1354 		hdr->ff.ether_type = proto;
1355 		hdr->ff.dg_size = dg_size - 1;
1356 		hdr->ff.dgl = dgl;
1357 		adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1358 	}
1359 	return DIV_ROUND_UP(dg_size, adj_max_payload);
1360 }
1361 
ether1394_encapsulate(struct sk_buff * skb,unsigned int max_payload,union eth1394_hdr * hdr)1362 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1363 					  unsigned int max_payload,
1364 					  union eth1394_hdr *hdr)
1365 {
1366 	union eth1394_hdr *bufhdr;
1367 	int ftype = hdr->common.lf;
1368 	int hdrsz = hdr_type_len[ftype];
1369 	unsigned int adj_max_payload = max_payload - hdrsz;
1370 
1371 	switch (ftype) {
1372 	case ETH1394_HDR_LF_UF:
1373 		bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1374 		bufhdr->words.word1 = htons(hdr->words.word1);
1375 		bufhdr->words.word2 = hdr->words.word2;
1376 		break;
1377 
1378 	case ETH1394_HDR_LF_FF:
1379 		bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1380 		bufhdr->words.word1 = htons(hdr->words.word1);
1381 		bufhdr->words.word2 = hdr->words.word2;
1382 		bufhdr->words.word3 = htons(hdr->words.word3);
1383 		bufhdr->words.word4 = 0;
1384 
1385 		/* Set frag type here for future interior fragments */
1386 		hdr->common.lf = ETH1394_HDR_LF_IF;
1387 		hdr->sf.fg_off = 0;
1388 		break;
1389 
1390 	default:
1391 		hdr->sf.fg_off += adj_max_payload;
1392 		bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1393 		if (max_payload >= skb->len)
1394 			hdr->common.lf = ETH1394_HDR_LF_LF;
1395 		bufhdr->words.word1 = htons(hdr->words.word1);
1396 		bufhdr->words.word2 = htons(hdr->words.word2);
1397 		bufhdr->words.word3 = htons(hdr->words.word3);
1398 		bufhdr->words.word4 = 0;
1399 	}
1400 	return min(max_payload, skb->len);
1401 }
1402 
ether1394_alloc_common_packet(struct hpsb_host * host)1403 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1404 {
1405 	struct hpsb_packet *p;
1406 
1407 	p = hpsb_alloc_packet(0);
1408 	if (p) {
1409 		p->host = host;
1410 		p->generation = get_hpsb_generation(host);
1411 		p->type = hpsb_async;
1412 	}
1413 	return p;
1414 }
1415 
ether1394_prep_write_packet(struct hpsb_packet * p,struct hpsb_host * host,nodeid_t node,u64 addr,void * data,int tx_len)1416 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1417 				       struct hpsb_host *host, nodeid_t node,
1418 				       u64 addr, void *data, int tx_len)
1419 {
1420 	p->node_id = node;
1421 
1422 	if (hpsb_get_tlabel(p))
1423 		return -EAGAIN;
1424 
1425 	p->tcode = TCODE_WRITEB;
1426 	p->header_size = 16;
1427 	p->expect_response = 1;
1428 	p->header[0] =
1429 		p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1430 	p->header[1] = host->node_id << 16 | addr >> 32;
1431 	p->header[2] = addr & 0xffffffff;
1432 	p->header[3] = tx_len << 16;
1433 	p->data_size = (tx_len + 3) & ~3;
1434 	p->data = data;
1435 
1436 	return 0;
1437 }
1438 
ether1394_prep_gasp_packet(struct hpsb_packet * p,struct eth1394_priv * priv,struct sk_buff * skb,int length)1439 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1440 				       struct eth1394_priv *priv,
1441 				       struct sk_buff *skb, int length)
1442 {
1443 	p->header_size = 4;
1444 	p->tcode = TCODE_STREAM_DATA;
1445 
1446 	p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1447 		       TCODE_STREAM_DATA << 4;
1448 	p->data_size = length;
1449 	p->data = (quadlet_t *)skb->data - 2;
1450 	p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1451 				 ETHER1394_GASP_SPECIFIER_ID_HI);
1452 	p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1453 				 ETHER1394_GASP_VERSION);
1454 
1455 	p->speed_code = priv->bc_sspd;
1456 
1457 	/* prevent hpsb_send_packet() from overriding our speed code */
1458 	p->node_id = LOCAL_BUS | ALL_NODES;
1459 }
1460 
ether1394_free_packet(struct hpsb_packet * packet)1461 static void ether1394_free_packet(struct hpsb_packet *packet)
1462 {
1463 	if (packet->tcode != TCODE_STREAM_DATA)
1464 		hpsb_free_tlabel(packet);
1465 	hpsb_free_packet(packet);
1466 }
1467 
1468 static void ether1394_complete_cb(void *__ptask);
1469 
ether1394_send_packet(struct packet_task * ptask,unsigned int tx_len)1470 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1471 {
1472 	struct eth1394_priv *priv = ptask->priv;
1473 	struct hpsb_packet *packet = NULL;
1474 
1475 	packet = ether1394_alloc_common_packet(priv->host);
1476 	if (!packet)
1477 		return -ENOMEM;
1478 
1479 	if (ptask->tx_type == ETH1394_GASP) {
1480 		int length = tx_len + 2 * sizeof(quadlet_t);
1481 
1482 		ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1483 	} else if (ether1394_prep_write_packet(packet, priv->host,
1484 					       ptask->dest_node,
1485 					       ptask->addr, ptask->skb->data,
1486 					       tx_len)) {
1487 		hpsb_free_packet(packet);
1488 		return -EAGAIN;
1489 	}
1490 
1491 	ptask->packet = packet;
1492 	hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1493 				      ptask);
1494 
1495 	if (hpsb_send_packet(packet) < 0) {
1496 		ether1394_free_packet(packet);
1497 		return -EIO;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /* Task function to be run when a datagram transmission is completed */
ether1394_dg_complete(struct packet_task * ptask,int fail)1504 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1505 {
1506 	struct sk_buff *skb = ptask->skb;
1507 	struct net_device *dev = skb->dev;
1508 	struct eth1394_priv *priv = netdev_priv(dev);
1509 	unsigned long flags;
1510 
1511 	/* Statistics */
1512 	spin_lock_irqsave(&priv->lock, flags);
1513 	if (fail) {
1514 		dev->stats.tx_dropped++;
1515 		dev->stats.tx_errors++;
1516 	} else {
1517 		dev->stats.tx_bytes += skb->len;
1518 		dev->stats.tx_packets++;
1519 	}
1520 	spin_unlock_irqrestore(&priv->lock, flags);
1521 
1522 	dev_kfree_skb_any(skb);
1523 	kmem_cache_free(packet_task_cache, ptask);
1524 }
1525 
1526 /* Callback for when a packet has been sent and the status of that packet is
1527  * known */
ether1394_complete_cb(void * __ptask)1528 static void ether1394_complete_cb(void *__ptask)
1529 {
1530 	struct packet_task *ptask = (struct packet_task *)__ptask;
1531 	struct hpsb_packet *packet = ptask->packet;
1532 	int fail = 0;
1533 
1534 	if (packet->tcode != TCODE_STREAM_DATA)
1535 		fail = hpsb_packet_success(packet);
1536 
1537 	ether1394_free_packet(packet);
1538 
1539 	ptask->outstanding_pkts--;
1540 	if (ptask->outstanding_pkts > 0 && !fail) {
1541 		int tx_len, err;
1542 
1543 		/* Add the encapsulation header to the fragment */
1544 		tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1545 					       &ptask->hdr);
1546 		err = ether1394_send_packet(ptask, tx_len);
1547 		if (err) {
1548 			if (err == -EAGAIN)
1549 				ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1550 
1551 			ether1394_dg_complete(ptask, 1);
1552 		}
1553 	} else {
1554 		ether1394_dg_complete(ptask, fail);
1555 	}
1556 }
1557 
1558 /* Transmit a packet (called by kernel) */
ether1394_tx(struct sk_buff * skb,struct net_device * dev)1559 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1560 {
1561 	struct eth1394hdr hdr_buf;
1562 	struct eth1394_priv *priv = netdev_priv(dev);
1563 	__be16 proto;
1564 	unsigned long flags;
1565 	nodeid_t dest_node;
1566 	eth1394_tx_type tx_type;
1567 	unsigned int tx_len;
1568 	unsigned int max_payload;
1569 	u16 dg_size;
1570 	u16 dgl;
1571 	struct packet_task *ptask;
1572 	struct eth1394_node_ref *node;
1573 	struct eth1394_node_info *node_info = NULL;
1574 
1575 	ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1576 	if (ptask == NULL)
1577 		goto fail;
1578 
1579 	/* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1580 	 * it does not set our validity bit. We need to compensate for
1581 	 * that somewhere else, but not in eth1394. */
1582 #if 0
1583 	if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1584 		goto fail;
1585 #endif
1586 
1587 	skb = skb_share_check(skb, GFP_ATOMIC);
1588 	if (!skb)
1589 		goto fail;
1590 
1591 	/* Get rid of the fake eth1394 header, but first make a copy.
1592 	 * We might need to rebuild the header on tx failure. */
1593 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1594 	skb_pull(skb, ETH1394_HLEN);
1595 
1596 	proto = hdr_buf.h_proto;
1597 	dg_size = skb->len;
1598 
1599 	/* Set the transmission type for the packet.  ARP packets and IP
1600 	 * broadcast packets are sent via GASP. */
1601 	if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1602 	    proto == htons(ETH_P_ARP) ||
1603 	    (proto == htons(ETH_P_IP) &&
1604 	     IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1605 		tx_type = ETH1394_GASP;
1606 		dest_node = LOCAL_BUS | ALL_NODES;
1607 		max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1608 		BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1609 		dgl = priv->bc_dgl;
1610 		if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1611 			priv->bc_dgl++;
1612 	} else {
1613 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1614 
1615 		node = eth1394_find_node_guid(&priv->ip_node_list,
1616 					      be64_to_cpu(guid));
1617 		if (!node)
1618 			goto fail;
1619 
1620 		node_info =
1621 		    (struct eth1394_node_info *)node->ud->device.driver_data;
1622 		if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1623 			goto fail;
1624 
1625 		dest_node = node->ud->ne->nodeid;
1626 		max_payload = node_info->maxpayload;
1627 		BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1628 
1629 		dgl = node_info->dgl;
1630 		if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1631 			node_info->dgl++;
1632 		tx_type = ETH1394_WRREQ;
1633 	}
1634 
1635 	/* If this is an ARP packet, convert it */
1636 	if (proto == htons(ETH_P_ARP))
1637 		ether1394_arp_to_1394arp(skb, dev);
1638 
1639 	ptask->hdr.words.word1 = 0;
1640 	ptask->hdr.words.word2 = 0;
1641 	ptask->hdr.words.word3 = 0;
1642 	ptask->hdr.words.word4 = 0;
1643 	ptask->skb = skb;
1644 	ptask->priv = priv;
1645 	ptask->tx_type = tx_type;
1646 
1647 	if (tx_type != ETH1394_GASP) {
1648 		u64 addr;
1649 
1650 		spin_lock_irqsave(&priv->lock, flags);
1651 		addr = node_info->fifo;
1652 		spin_unlock_irqrestore(&priv->lock, flags);
1653 
1654 		ptask->addr = addr;
1655 		ptask->dest_node = dest_node;
1656 	}
1657 
1658 	ptask->tx_type = tx_type;
1659 	ptask->max_payload = max_payload;
1660 	ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1661 					proto, &ptask->hdr, dg_size, dgl);
1662 
1663 	/* Add the encapsulation header to the fragment */
1664 	tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1665 	dev->trans_start = jiffies;
1666 	if (ether1394_send_packet(ptask, tx_len)) {
1667 		if (dest_node == (LOCAL_BUS | ALL_NODES))
1668 			goto fail;
1669 
1670 		/* At this point we want to restore the packet.  When we return
1671 		 * here with NETDEV_TX_BUSY we will get another entrance in this
1672 		 * routine with the same skb and we need it to look the same.
1673 		 * So we pull 4 more bytes, then build the header again. */
1674 		skb_pull(skb, 4);
1675 		ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1676 				 hdr_buf.h_dest, NULL, 0);
1677 
1678 		/* Most failures of ether1394_send_packet are recoverable. */
1679 		netif_stop_queue(dev);
1680 		priv->wake_node = dest_node;
1681 		schedule_work(&priv->wake);
1682 		kmem_cache_free(packet_task_cache, ptask);
1683 		return NETDEV_TX_BUSY;
1684 	}
1685 
1686 	return NETDEV_TX_OK;
1687 fail:
1688 	if (ptask)
1689 		kmem_cache_free(packet_task_cache, ptask);
1690 
1691 	if (skb != NULL)
1692 		dev_kfree_skb(skb);
1693 
1694 	spin_lock_irqsave(&priv->lock, flags);
1695 	dev->stats.tx_dropped++;
1696 	dev->stats.tx_errors++;
1697 	spin_unlock_irqrestore(&priv->lock, flags);
1698 
1699 	/*
1700 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1701 	 * causes serious problems" here, allegedly.  Before that patch,
1702 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1703 	 * Perhaps more needs to be done?  Stop the queue in serious
1704 	 * conditions and restart it elsewhere?
1705 	 */
1706 	/* return NETDEV_TX_BUSY; */
1707 	return NETDEV_TX_OK;
1708 }
1709 
ether1394_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1710 static void ether1394_get_drvinfo(struct net_device *dev,
1711 				  struct ethtool_drvinfo *info)
1712 {
1713 	strcpy(info->driver, driver_name);
1714 	strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1715 }
1716 
1717 static struct ethtool_ops ethtool_ops = {
1718 	.get_drvinfo = ether1394_get_drvinfo
1719 };
1720 
ether1394_init_module(void)1721 static int __init ether1394_init_module(void)
1722 {
1723 	int err;
1724 
1725 	packet_task_cache = kmem_cache_create("packet_task",
1726 					      sizeof(struct packet_task),
1727 					      0, 0, NULL);
1728 	if (!packet_task_cache)
1729 		return -ENOMEM;
1730 
1731 	hpsb_register_highlevel(&eth1394_highlevel);
1732 	err = hpsb_register_protocol(&eth1394_proto_driver);
1733 	if (err) {
1734 		hpsb_unregister_highlevel(&eth1394_highlevel);
1735 		kmem_cache_destroy(packet_task_cache);
1736 	}
1737 	return err;
1738 }
1739 
ether1394_exit_module(void)1740 static void __exit ether1394_exit_module(void)
1741 {
1742 	hpsb_unregister_protocol(&eth1394_proto_driver);
1743 	hpsb_unregister_highlevel(&eth1394_highlevel);
1744 	kmem_cache_destroy(packet_task_cache);
1745 }
1746 
1747 module_init(ether1394_init_module);
1748 module_exit(ether1394_exit_module);
1749