• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23 
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53 
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76 
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82 
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86 
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92 
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103 
104 /*
105  * Module load parameter definitions
106  */
107 
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Limit data transfer speed (5 <= 3200, "
119 		 "4 <= 1600, 3 <= 800, 2 <= 400, 1 <= 200, 0 = 100 Mb/s)");
120 
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128 		 "(default = Y, faster but buggy = N)");
129 
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145 		 "(default = 0 = use SCSI stack's default)");
146 
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163 		 "(default = Y, use N for concurrent initiators)");
164 
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - power condition
190  *   Set the power condition field in the START STOP UNIT commands sent by
191  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192  *   Some disks need this to spin down or to resume properly.
193  *
194  * - override internal blacklist
195  *   Instead of adding to the built-in blacklist, use only the workarounds
196  *   specified in the module load parameter.
197  *   Useful if a blacklist entry interfered with a non-broken device.
198  */
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
204 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207 	", set power condition in start stop unit = "
208 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210 	", or a combination)");
211 
212 /*
213  * This influences the format of the sysfs attribute
214  * /sys/bus/scsi/devices/.../ieee1394_id.
215  *
216  * The default format is like in older kernels:  %016Lx:%d:%d
217  * It contains the target's EUI-64, a number given to the logical unit by
218  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
219  *
220  * The long format is:  %016Lx:%06x:%04x
221  * It contains the target's EUI-64, the unit directory's directory_ID as per
222  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
223  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
225  * independent of the implementation of the ieee1394 nodemgr, the longer format
226  * is recommended for future use.
227  */
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231 		 "(default = backwards-compatible = N, SAM-conforming = Y)");
232 
233 
234 #define SBP2_INFO(fmt, args...)	HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...)	HPSB_ERR("sbp2: "fmt, ## args)
236 
237 /*
238  * Globals
239  */
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242 				      void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251 				    u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254 				      struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
257 
258 
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xa, 0xa, 0xa };
260 
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
262 
263 static struct hpsb_highlevel sbp2_highlevel = {
264 	.name		= SBP2_DEVICE_NAME,
265 	.host_reset	= sbp2_host_reset,
266 };
267 
268 const static struct hpsb_address_ops sbp2_ops = {
269 	.write		= sbp2_handle_status_write
270 };
271 
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274 				     u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276 				    size_t, u16);
277 
278 const static struct hpsb_address_ops sbp2_physdma_ops = {
279 	.read		= sbp2_handle_physdma_read,
280 	.write		= sbp2_handle_physdma_write,
281 };
282 #endif
283 
284 
285 /*
286  * Interface to driver core and IEEE 1394 core
287  */
288 static struct ieee1394_device_id sbp2_id_table[] = {
289 	{
290 	 .match_flags	= IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291 	 .specifier_id	= SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292 	 .version	= SBP2_SW_VERSION_ENTRY & 0xffffff},
293 	{}
294 };
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
296 
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
300 
301 static struct hpsb_protocol_driver sbp2_driver = {
302 	.name		= SBP2_DEVICE_NAME,
303 	.id_table	= sbp2_id_table,
304 	.update		= sbp2_update,
305 	.driver		= {
306 		.probe		= sbp2_probe,
307 		.remove		= sbp2_remove,
308 	},
309 };
310 
311 
312 /*
313  * Interface to SCSI core
314  */
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316 				 void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323 					   struct device_attribute *, char *);
324 
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
326 
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328 	&dev_attr_ieee1394_id,
329 	NULL
330 };
331 
332 static struct scsi_host_template sbp2_shost_template = {
333 	.module			 = THIS_MODULE,
334 	.name			 = "SBP-2 IEEE-1394",
335 	.proc_name		 = SBP2_DEVICE_NAME,
336 	.queuecommand		 = sbp2scsi_queuecommand,
337 	.eh_abort_handler	 = sbp2scsi_abort,
338 	.eh_device_reset_handler = sbp2scsi_reset,
339 	.slave_alloc		 = sbp2scsi_slave_alloc,
340 	.slave_configure	 = sbp2scsi_slave_configure,
341 	.slave_destroy		 = sbp2scsi_slave_destroy,
342 	.this_id		 = -1,
343 	.sg_tablesize		 = SG_ALL,
344 	.use_clustering		 = ENABLE_CLUSTERING,
345 	.cmd_per_lun		 = SBP2_MAX_CMDS,
346 	.can_queue		 = SBP2_MAX_CMDS,
347 	.sdev_attrs		 = sbp2_sysfs_sdev_attrs,
348 };
349 
350 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
351 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
352 
353 /*
354  * List of devices with known bugs.
355  *
356  * The firmware_revision field, masked with 0xffff00, is the best indicator
357  * for the type of bridge chip of a device.  It yields a few false positives
358  * but this did not break correctly behaving devices so far.
359  */
360 static const struct {
361 	u32 firmware_revision;
362 	u32 model;
363 	unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366 		.firmware_revision	= 0x002800,
367 		.model			= 0x001010,
368 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
369 					  SBP2_WORKAROUND_MODE_SENSE_8 |
370 					  SBP2_WORKAROUND_POWER_CONDITION,
371 	},
372 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373 		.firmware_revision	= 0x002800,
374 		.model			= 0x000000,
375 		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY |
376 					  SBP2_WORKAROUND_POWER_CONDITION,
377 	},
378 	/* Initio bridges, actually only needed for some older ones */ {
379 		.firmware_revision	= 0x000200,
380 		.model			= SBP2_ROM_VALUE_WILDCARD,
381 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
382 	},
383 	/* PL-3507 bridge with Prolific firmware */ {
384 		.firmware_revision	= 0x012800,
385 		.model			= SBP2_ROM_VALUE_WILDCARD,
386 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
387 	},
388 	/* Symbios bridge */ {
389 		.firmware_revision	= 0xa0b800,
390 		.model			= SBP2_ROM_VALUE_WILDCARD,
391 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
392 	},
393 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394 		.firmware_revision	= 0x002600,
395 		.model			= SBP2_ROM_VALUE_WILDCARD,
396 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
397 	},
398 	/*
399 	 * iPod 2nd generation: needs 128k max transfer size workaround
400 	 * iPod 3rd generation: needs fix capacity workaround
401 	 */
402 	{
403 		.firmware_revision	= 0x0a2700,
404 		.model			= 0x000000,
405 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
406 					  SBP2_WORKAROUND_FIX_CAPACITY,
407 	},
408 	/* iPod 4th generation */ {
409 		.firmware_revision	= 0x0a2700,
410 		.model			= 0x000021,
411 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
412 	},
413 	/* iPod mini */ {
414 		.firmware_revision	= 0x0a2700,
415 		.model			= 0x000022,
416 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
417 	},
418 	/* iPod mini */ {
419 		.firmware_revision	= 0x0a2700,
420 		.model			= 0x000023,
421 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
422 	},
423 	/* iPod Photo */ {
424 		.firmware_revision	= 0x0a2700,
425 		.model			= 0x00007e,
426 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
427 	}
428 };
429 
430 /**************************************
431  * General utility functions
432  **************************************/
433 
434 #ifndef __BIG_ENDIAN
435 /*
436  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
437  */
sbp2util_be32_to_cpu_buffer(void * buffer,int length)438 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
439 {
440 	u32 *temp = buffer;
441 
442 	for (length = (length >> 2); length--; )
443 		temp[length] = be32_to_cpu(temp[length]);
444 }
445 
446 /*
447  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
448  */
sbp2util_cpu_to_be32_buffer(void * buffer,int length)449 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
450 {
451 	u32 *temp = buffer;
452 
453 	for (length = (length >> 2); length--; )
454 		temp[length] = cpu_to_be32(temp[length]);
455 }
456 #else /* BIG_ENDIAN */
457 /* Why waste the cpu cycles? */
458 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
459 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
460 #endif
461 
462 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
463 
464 /*
465  * Waits for completion of an SBP-2 access request.
466  * Returns nonzero if timed out or prematurely interrupted.
467  */
sbp2util_access_timeout(struct sbp2_lu * lu,int timeout)468 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
469 {
470 	long leftover;
471 
472 	leftover = wait_event_interruptible_timeout(
473 			sbp2_access_wq, lu->access_complete, timeout);
474 	lu->access_complete = 0;
475 	return leftover <= 0;
476 }
477 
sbp2_free_packet(void * packet)478 static void sbp2_free_packet(void *packet)
479 {
480 	hpsb_free_tlabel(packet);
481 	hpsb_free_packet(packet);
482 }
483 
484 /*
485  * This is much like hpsb_node_write(), except it ignores the response
486  * subaction and returns immediately. Can be used from atomic context.
487  */
sbp2util_node_write_no_wait(struct node_entry * ne,u64 addr,quadlet_t * buf,size_t len)488 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
489 				       quadlet_t *buf, size_t len)
490 {
491 	struct hpsb_packet *packet;
492 
493 	packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
494 	if (!packet)
495 		return -ENOMEM;
496 
497 	hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
498 	hpsb_node_fill_packet(ne, packet);
499 	if (hpsb_send_packet(packet) < 0) {
500 		sbp2_free_packet(packet);
501 		return -EIO;
502 	}
503 	return 0;
504 }
505 
sbp2util_notify_fetch_agent(struct sbp2_lu * lu,u64 offset,quadlet_t * data,size_t len)506 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
507 					quadlet_t *data, size_t len)
508 {
509 	/* There is a small window after a bus reset within which the node
510 	 * entry's generation is current but the reconnect wasn't completed. */
511 	if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
512 		return;
513 
514 	if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
515 			    data, len))
516 		SBP2_ERR("sbp2util_notify_fetch_agent failed.");
517 
518 	/* Now accept new SCSI commands, unless a bus reset happended during
519 	 * hpsb_node_write. */
520 	if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
521 		scsi_unblock_requests(lu->shost);
522 }
523 
sbp2util_write_orb_pointer(struct work_struct * work)524 static void sbp2util_write_orb_pointer(struct work_struct *work)
525 {
526 	struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
527 	quadlet_t data[2];
528 
529 	data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
530 	data[1] = lu->last_orb_dma;
531 	sbp2util_cpu_to_be32_buffer(data, 8);
532 	sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
533 }
534 
sbp2util_write_doorbell(struct work_struct * work)535 static void sbp2util_write_doorbell(struct work_struct *work)
536 {
537 	struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
538 
539 	sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
540 }
541 
sbp2util_create_command_orb_pool(struct sbp2_lu * lu)542 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
543 {
544 	struct sbp2_command_info *cmd;
545 	struct device *dmadev = lu->hi->host->device.parent;
546 	int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
547 
548 	for (i = 0; i < orbs; i++) {
549 		cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
550 		if (!cmd)
551 			goto failed_alloc;
552 
553 		cmd->command_orb_dma =
554 		    dma_map_single(dmadev, &cmd->command_orb,
555 				   sizeof(struct sbp2_command_orb),
556 				   DMA_TO_DEVICE);
557 		if (dma_mapping_error(dmadev, cmd->command_orb_dma))
558 			goto failed_orb;
559 
560 		cmd->sge_dma =
561 		    dma_map_single(dmadev, &cmd->scatter_gather_element,
562 				   sizeof(cmd->scatter_gather_element),
563 				   DMA_TO_DEVICE);
564 		if (dma_mapping_error(dmadev, cmd->sge_dma))
565 			goto failed_sge;
566 
567 		INIT_LIST_HEAD(&cmd->list);
568 		list_add_tail(&cmd->list, &lu->cmd_orb_completed);
569 	}
570 	return 0;
571 
572 failed_sge:
573 	dma_unmap_single(dmadev, cmd->command_orb_dma,
574 			 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
575 failed_orb:
576 	kfree(cmd);
577 failed_alloc:
578 	return -ENOMEM;
579 }
580 
sbp2util_remove_command_orb_pool(struct sbp2_lu * lu,struct hpsb_host * host)581 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
582 					     struct hpsb_host *host)
583 {
584 	struct list_head *lh, *next;
585 	struct sbp2_command_info *cmd;
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
589 	if (!list_empty(&lu->cmd_orb_completed))
590 		list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
591 			cmd = list_entry(lh, struct sbp2_command_info, list);
592 			dma_unmap_single(host->device.parent,
593 					 cmd->command_orb_dma,
594 					 sizeof(struct sbp2_command_orb),
595 					 DMA_TO_DEVICE);
596 			dma_unmap_single(host->device.parent, cmd->sge_dma,
597 					 sizeof(cmd->scatter_gather_element),
598 					 DMA_TO_DEVICE);
599 			kfree(cmd);
600 		}
601 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
602 	return;
603 }
604 
605 /*
606  * Finds the sbp2_command for a given outstanding command ORB.
607  * Only looks at the in-use list.
608  */
sbp2util_find_command_for_orb(struct sbp2_lu * lu,dma_addr_t orb)609 static struct sbp2_command_info *sbp2util_find_command_for_orb(
610 				struct sbp2_lu *lu, dma_addr_t orb)
611 {
612 	struct sbp2_command_info *cmd;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
616 	if (!list_empty(&lu->cmd_orb_inuse))
617 		list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
618 			if (cmd->command_orb_dma == orb) {
619 				spin_unlock_irqrestore(
620 						&lu->cmd_orb_lock, flags);
621 				return cmd;
622 			}
623 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
624 	return NULL;
625 }
626 
627 /*
628  * Finds the sbp2_command for a given outstanding SCpnt.
629  * Only looks at the in-use list.
630  * Must be called with lu->cmd_orb_lock held.
631  */
sbp2util_find_command_for_SCpnt(struct sbp2_lu * lu,void * SCpnt)632 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
633 				struct sbp2_lu *lu, void *SCpnt)
634 {
635 	struct sbp2_command_info *cmd;
636 
637 	if (!list_empty(&lu->cmd_orb_inuse))
638 		list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
639 			if (cmd->Current_SCpnt == SCpnt)
640 				return cmd;
641 	return NULL;
642 }
643 
sbp2util_allocate_command_orb(struct sbp2_lu * lu,struct scsi_cmnd * Current_SCpnt,void (* Current_done)(struct scsi_cmnd *))644 static struct sbp2_command_info *sbp2util_allocate_command_orb(
645 				struct sbp2_lu *lu,
646 				struct scsi_cmnd *Current_SCpnt,
647 				void (*Current_done)(struct scsi_cmnd *))
648 {
649 	struct list_head *lh;
650 	struct sbp2_command_info *cmd = NULL;
651 	unsigned long flags;
652 
653 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
654 	if (!list_empty(&lu->cmd_orb_completed)) {
655 		lh = lu->cmd_orb_completed.next;
656 		list_del(lh);
657 		cmd = list_entry(lh, struct sbp2_command_info, list);
658 		cmd->Current_done = Current_done;
659 		cmd->Current_SCpnt = Current_SCpnt;
660 		list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
661 	} else
662 		SBP2_ERR("%s: no orbs available", __func__);
663 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
664 	return cmd;
665 }
666 
667 /*
668  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
669  * Must be called with lu->cmd_orb_lock held.
670  */
sbp2util_mark_command_completed(struct sbp2_lu * lu,struct sbp2_command_info * cmd)671 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
672 					    struct sbp2_command_info *cmd)
673 {
674 	if (scsi_sg_count(cmd->Current_SCpnt))
675 		dma_unmap_sg(lu->ud->ne->host->device.parent,
676 			     scsi_sglist(cmd->Current_SCpnt),
677 			     scsi_sg_count(cmd->Current_SCpnt),
678 			     cmd->Current_SCpnt->sc_data_direction);
679 	list_move_tail(&cmd->list, &lu->cmd_orb_completed);
680 }
681 
682 /*
683  * Is lu valid? Is the 1394 node still present?
684  */
sbp2util_node_is_available(struct sbp2_lu * lu)685 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
686 {
687 	return lu && lu->ne && !lu->ne->in_limbo;
688 }
689 
690 /*********************************************
691  * IEEE-1394 core driver stack related section
692  *********************************************/
693 
sbp2_probe(struct device * dev)694 static int sbp2_probe(struct device *dev)
695 {
696 	struct unit_directory *ud;
697 	struct sbp2_lu *lu;
698 
699 	ud = container_of(dev, struct unit_directory, device);
700 
701 	/* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
702 	 * instead. */
703 	if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
704 		return -ENODEV;
705 
706 	lu = sbp2_alloc_device(ud);
707 	if (!lu)
708 		return -ENOMEM;
709 
710 	sbp2_parse_unit_directory(lu, ud);
711 	return sbp2_start_device(lu);
712 }
713 
sbp2_remove(struct device * dev)714 static int sbp2_remove(struct device *dev)
715 {
716 	struct unit_directory *ud;
717 	struct sbp2_lu *lu;
718 	struct scsi_device *sdev;
719 
720 	ud = container_of(dev, struct unit_directory, device);
721 	lu = ud->device.driver_data;
722 	if (!lu)
723 		return 0;
724 
725 	if (lu->shost) {
726 		/* Get rid of enqueued commands if there is no chance to
727 		 * send them. */
728 		if (!sbp2util_node_is_available(lu))
729 			sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
730 		/* scsi_remove_device() may trigger shutdown functions of SCSI
731 		 * highlevel drivers which would deadlock if blocked. */
732 		atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
733 		scsi_unblock_requests(lu->shost);
734 	}
735 	sdev = lu->sdev;
736 	if (sdev) {
737 		lu->sdev = NULL;
738 		scsi_remove_device(sdev);
739 	}
740 
741 	sbp2_logout_device(lu);
742 	sbp2_remove_device(lu);
743 
744 	return 0;
745 }
746 
sbp2_update(struct unit_directory * ud)747 static int sbp2_update(struct unit_directory *ud)
748 {
749 	struct sbp2_lu *lu = ud->device.driver_data;
750 
751 	if (sbp2_reconnect_device(lu) != 0) {
752 		/*
753 		 * Reconnect failed.  If another bus reset happened,
754 		 * let nodemgr proceed and call sbp2_update again later
755 		 * (or sbp2_remove if this node went away).
756 		 */
757 		if (!hpsb_node_entry_valid(lu->ne))
758 			return 0;
759 		/*
760 		 * Or the target rejected the reconnect because we weren't
761 		 * fast enough.  Try a regular login, but first log out
762 		 * just in case of any weirdness.
763 		 */
764 		sbp2_logout_device(lu);
765 
766 		if (sbp2_login_device(lu) != 0) {
767 			if (!hpsb_node_entry_valid(lu->ne))
768 				return 0;
769 
770 			/* Maybe another initiator won the login. */
771 			SBP2_ERR("Failed to reconnect to sbp2 device!");
772 			return -EBUSY;
773 		}
774 	}
775 
776 	sbp2_set_busy_timeout(lu);
777 	sbp2_agent_reset(lu, 1);
778 	sbp2_max_speed_and_size(lu);
779 
780 	/* Complete any pending commands with busy (so they get retried)
781 	 * and remove them from our queue. */
782 	sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
783 
784 	/* Accept new commands unless there was another bus reset in the
785 	 * meantime. */
786 	if (hpsb_node_entry_valid(lu->ne)) {
787 		atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
788 		scsi_unblock_requests(lu->shost);
789 	}
790 	return 0;
791 }
792 
sbp2_alloc_device(struct unit_directory * ud)793 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
794 {
795 	struct sbp2_fwhost_info *hi;
796 	struct Scsi_Host *shost = NULL;
797 	struct sbp2_lu *lu = NULL;
798 	unsigned long flags;
799 
800 	lu = kzalloc(sizeof(*lu), GFP_KERNEL);
801 	if (!lu) {
802 		SBP2_ERR("failed to create lu");
803 		goto failed_alloc;
804 	}
805 
806 	lu->ne = ud->ne;
807 	lu->ud = ud;
808 	lu->speed_code = IEEE1394_SPEED_100;
809 	lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
810 	lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
811 	INIT_LIST_HEAD(&lu->cmd_orb_inuse);
812 	INIT_LIST_HEAD(&lu->cmd_orb_completed);
813 	INIT_LIST_HEAD(&lu->lu_list);
814 	spin_lock_init(&lu->cmd_orb_lock);
815 	atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
816 	INIT_WORK(&lu->protocol_work, NULL);
817 
818 	ud->device.driver_data = lu;
819 
820 	hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
821 	if (!hi) {
822 		hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
823 					  sizeof(*hi));
824 		if (!hi) {
825 			SBP2_ERR("failed to allocate hostinfo");
826 			goto failed_alloc;
827 		}
828 		hi->host = ud->ne->host;
829 		INIT_LIST_HEAD(&hi->logical_units);
830 
831 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
832 		/* Handle data movement if physical dma is not
833 		 * enabled or not supported on host controller */
834 		if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
835 					     &sbp2_physdma_ops,
836 					     0x0ULL, 0xfffffffcULL)) {
837 			SBP2_ERR("failed to register lower 4GB address range");
838 			goto failed_alloc;
839 		}
840 #endif
841 	}
842 
843 	if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
844 		BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
845 					    SBP2_MAX_SEG_SIZE));
846 
847 	/* Prevent unloading of the 1394 host */
848 	if (!try_module_get(hi->host->driver->owner)) {
849 		SBP2_ERR("failed to get a reference on 1394 host driver");
850 		goto failed_alloc;
851 	}
852 
853 	lu->hi = hi;
854 
855 	write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
856 	list_add_tail(&lu->lu_list, &hi->logical_units);
857 	write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
858 
859 	/* Register the status FIFO address range. We could use the same FIFO
860 	 * for targets at different nodes. However we need different FIFOs per
861 	 * target in order to support multi-unit devices.
862 	 * The FIFO is located out of the local host controller's physical range
863 	 * but, if possible, within the posted write area. Status writes will
864 	 * then be performed as unified transactions. This slightly reduces
865 	 * bandwidth usage, and some Prolific based devices seem to require it.
866 	 */
867 	lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
868 			&sbp2_highlevel, ud->ne->host, &sbp2_ops,
869 			sizeof(struct sbp2_status_block), sizeof(quadlet_t),
870 			ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
871 	if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
872 		SBP2_ERR("failed to allocate status FIFO address range");
873 		goto failed_alloc;
874 	}
875 
876 	shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
877 	if (!shost) {
878 		SBP2_ERR("failed to register scsi host");
879 		goto failed_alloc;
880 	}
881 
882 	shost->hostdata[0] = (unsigned long)lu;
883 
884 	if (!scsi_add_host(shost, &ud->device)) {
885 		lu->shost = shost;
886 		return lu;
887 	}
888 
889 	SBP2_ERR("failed to add scsi host");
890 	scsi_host_put(shost);
891 
892 failed_alloc:
893 	sbp2_remove_device(lu);
894 	return NULL;
895 }
896 
sbp2_host_reset(struct hpsb_host * host)897 static void sbp2_host_reset(struct hpsb_host *host)
898 {
899 	struct sbp2_fwhost_info *hi;
900 	struct sbp2_lu *lu;
901 	unsigned long flags;
902 
903 	hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
904 	if (!hi)
905 		return;
906 
907 	read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
908 
909 	list_for_each_entry(lu, &hi->logical_units, lu_list)
910 		if (atomic_cmpxchg(&lu->state,
911 				   SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET)
912 		    == SBP2LU_STATE_RUNNING)
913 			scsi_block_requests(lu->shost);
914 
915 	read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
916 }
917 
sbp2_start_device(struct sbp2_lu * lu)918 static int sbp2_start_device(struct sbp2_lu *lu)
919 {
920 	struct sbp2_fwhost_info *hi = lu->hi;
921 	int error;
922 
923 	lu->login_response = dma_alloc_coherent(hi->host->device.parent,
924 				     sizeof(struct sbp2_login_response),
925 				     &lu->login_response_dma, GFP_KERNEL);
926 	if (!lu->login_response)
927 		goto alloc_fail;
928 
929 	lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
930 				     sizeof(struct sbp2_query_logins_orb),
931 				     &lu->query_logins_orb_dma, GFP_KERNEL);
932 	if (!lu->query_logins_orb)
933 		goto alloc_fail;
934 
935 	lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
936 				     sizeof(struct sbp2_query_logins_response),
937 				     &lu->query_logins_response_dma, GFP_KERNEL);
938 	if (!lu->query_logins_response)
939 		goto alloc_fail;
940 
941 	lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
942 				     sizeof(struct sbp2_reconnect_orb),
943 				     &lu->reconnect_orb_dma, GFP_KERNEL);
944 	if (!lu->reconnect_orb)
945 		goto alloc_fail;
946 
947 	lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
948 				     sizeof(struct sbp2_logout_orb),
949 				     &lu->logout_orb_dma, GFP_KERNEL);
950 	if (!lu->logout_orb)
951 		goto alloc_fail;
952 
953 	lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
954 				     sizeof(struct sbp2_login_orb),
955 				     &lu->login_orb_dma, GFP_KERNEL);
956 	if (!lu->login_orb)
957 		goto alloc_fail;
958 
959 	if (sbp2util_create_command_orb_pool(lu))
960 		goto alloc_fail;
961 
962 	/* Wait a second before trying to log in. Previously logged in
963 	 * initiators need a chance to reconnect. */
964 	if (msleep_interruptible(1000)) {
965 		sbp2_remove_device(lu);
966 		return -EINTR;
967 	}
968 
969 	if (sbp2_login_device(lu)) {
970 		sbp2_remove_device(lu);
971 		return -EBUSY;
972 	}
973 
974 	sbp2_set_busy_timeout(lu);
975 	sbp2_agent_reset(lu, 1);
976 	sbp2_max_speed_and_size(lu);
977 
978 	if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
979 		ssleep(SBP2_INQUIRY_DELAY);
980 
981 	error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
982 	if (error) {
983 		SBP2_ERR("scsi_add_device failed");
984 		sbp2_logout_device(lu);
985 		sbp2_remove_device(lu);
986 		return error;
987 	}
988 
989 	return 0;
990 
991 alloc_fail:
992 	SBP2_ERR("Could not allocate memory for lu");
993 	sbp2_remove_device(lu);
994 	return -ENOMEM;
995 }
996 
sbp2_remove_device(struct sbp2_lu * lu)997 static void sbp2_remove_device(struct sbp2_lu *lu)
998 {
999 	struct sbp2_fwhost_info *hi;
1000 	unsigned long flags;
1001 
1002 	if (!lu)
1003 		return;
1004 	hi = lu->hi;
1005 	if (!hi)
1006 		goto no_hi;
1007 
1008 	if (lu->shost) {
1009 		scsi_remove_host(lu->shost);
1010 		scsi_host_put(lu->shost);
1011 	}
1012 	flush_scheduled_work();
1013 	sbp2util_remove_command_orb_pool(lu, hi->host);
1014 
1015 	write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1016 	list_del(&lu->lu_list);
1017 	write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1018 
1019 	if (lu->login_response)
1020 		dma_free_coherent(hi->host->device.parent,
1021 				    sizeof(struct sbp2_login_response),
1022 				    lu->login_response,
1023 				    lu->login_response_dma);
1024 	if (lu->login_orb)
1025 		dma_free_coherent(hi->host->device.parent,
1026 				    sizeof(struct sbp2_login_orb),
1027 				    lu->login_orb,
1028 				    lu->login_orb_dma);
1029 	if (lu->reconnect_orb)
1030 		dma_free_coherent(hi->host->device.parent,
1031 				    sizeof(struct sbp2_reconnect_orb),
1032 				    lu->reconnect_orb,
1033 				    lu->reconnect_orb_dma);
1034 	if (lu->logout_orb)
1035 		dma_free_coherent(hi->host->device.parent,
1036 				    sizeof(struct sbp2_logout_orb),
1037 				    lu->logout_orb,
1038 				    lu->logout_orb_dma);
1039 	if (lu->query_logins_orb)
1040 		dma_free_coherent(hi->host->device.parent,
1041 				    sizeof(struct sbp2_query_logins_orb),
1042 				    lu->query_logins_orb,
1043 				    lu->query_logins_orb_dma);
1044 	if (lu->query_logins_response)
1045 		dma_free_coherent(hi->host->device.parent,
1046 				    sizeof(struct sbp2_query_logins_response),
1047 				    lu->query_logins_response,
1048 				    lu->query_logins_response_dma);
1049 
1050 	if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1051 		hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1052 					  lu->status_fifo_addr);
1053 
1054 	lu->ud->device.driver_data = NULL;
1055 
1056 	module_put(hi->host->driver->owner);
1057 no_hi:
1058 	kfree(lu);
1059 }
1060 
1061 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1062 /*
1063  * Deal with write requests on adapters which do not support physical DMA or
1064  * have it switched off.
1065  */
sbp2_handle_physdma_write(struct hpsb_host * host,int nodeid,int destid,quadlet_t * data,u64 addr,size_t length,u16 flags)1066 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1067 				     int destid, quadlet_t *data, u64 addr,
1068 				     size_t length, u16 flags)
1069 {
1070 	memcpy(bus_to_virt((u32) addr), data, length);
1071 	return RCODE_COMPLETE;
1072 }
1073 
1074 /*
1075  * Deal with read requests on adapters which do not support physical DMA or
1076  * have it switched off.
1077  */
sbp2_handle_physdma_read(struct hpsb_host * host,int nodeid,quadlet_t * data,u64 addr,size_t length,u16 flags)1078 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1079 				    quadlet_t *data, u64 addr, size_t length,
1080 				    u16 flags)
1081 {
1082 	memcpy(data, bus_to_virt((u32) addr), length);
1083 	return RCODE_COMPLETE;
1084 }
1085 #endif
1086 
1087 /**************************************
1088  * SBP-2 protocol related section
1089  **************************************/
1090 
sbp2_query_logins(struct sbp2_lu * lu)1091 static int sbp2_query_logins(struct sbp2_lu *lu)
1092 {
1093 	struct sbp2_fwhost_info *hi = lu->hi;
1094 	quadlet_t data[2];
1095 	int max_logins;
1096 	int active_logins;
1097 
1098 	lu->query_logins_orb->reserved1 = 0x0;
1099 	lu->query_logins_orb->reserved2 = 0x0;
1100 
1101 	lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1102 	lu->query_logins_orb->query_response_hi =
1103 			ORB_SET_NODE_ID(hi->host->node_id);
1104 	lu->query_logins_orb->lun_misc =
1105 			ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1106 	lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1107 	lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1108 
1109 	lu->query_logins_orb->reserved_resp_length =
1110 		ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1111 			sizeof(struct sbp2_query_logins_response));
1112 
1113 	lu->query_logins_orb->status_fifo_hi =
1114 		ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1115 	lu->query_logins_orb->status_fifo_lo =
1116 		ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1117 
1118 	sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1119 				    sizeof(struct sbp2_query_logins_orb));
1120 
1121 	memset(lu->query_logins_response, 0,
1122 	       sizeof(struct sbp2_query_logins_response));
1123 
1124 	data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1125 	data[1] = lu->query_logins_orb_dma;
1126 	sbp2util_cpu_to_be32_buffer(data, 8);
1127 
1128 	hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1129 
1130 	if (sbp2util_access_timeout(lu, 2*HZ)) {
1131 		SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1132 		return -EIO;
1133 	}
1134 
1135 	if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1136 		SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1137 		return -EIO;
1138 	}
1139 
1140 	if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1141 		SBP2_INFO("Error querying logins to SBP-2 device - failed");
1142 		return -EIO;
1143 	}
1144 
1145 	sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1146 				    sizeof(struct sbp2_query_logins_response));
1147 
1148 	max_logins = RESPONSE_GET_MAX_LOGINS(
1149 			lu->query_logins_response->length_max_logins);
1150 	SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1151 
1152 	active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1153 			lu->query_logins_response->length_max_logins);
1154 	SBP2_INFO("Number of active logins: %d", active_logins);
1155 
1156 	if (active_logins >= max_logins) {
1157 		return -EIO;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
sbp2_login_device(struct sbp2_lu * lu)1163 static int sbp2_login_device(struct sbp2_lu *lu)
1164 {
1165 	struct sbp2_fwhost_info *hi = lu->hi;
1166 	quadlet_t data[2];
1167 
1168 	if (!lu->login_orb)
1169 		return -EIO;
1170 
1171 	if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1172 		SBP2_INFO("Device does not support any more concurrent logins");
1173 		return -EIO;
1174 	}
1175 
1176 	/* assume no password */
1177 	lu->login_orb->password_hi = 0;
1178 	lu->login_orb->password_lo = 0;
1179 
1180 	lu->login_orb->login_response_lo = lu->login_response_dma;
1181 	lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1182 	lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1183 
1184 	/* one second reconnect time */
1185 	lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1186 	lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1187 	lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1188 	lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1189 
1190 	lu->login_orb->passwd_resp_lengths =
1191 		ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1192 
1193 	lu->login_orb->status_fifo_hi =
1194 		ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1195 	lu->login_orb->status_fifo_lo =
1196 		ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1197 
1198 	sbp2util_cpu_to_be32_buffer(lu->login_orb,
1199 				    sizeof(struct sbp2_login_orb));
1200 
1201 	memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1202 
1203 	data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1204 	data[1] = lu->login_orb_dma;
1205 	sbp2util_cpu_to_be32_buffer(data, 8);
1206 
1207 	hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1208 
1209 	/* wait up to 20 seconds for login status */
1210 	if (sbp2util_access_timeout(lu, 20*HZ)) {
1211 		SBP2_ERR("Error logging into SBP-2 device - timed out");
1212 		return -EIO;
1213 	}
1214 
1215 	/* make sure that the returned status matches the login ORB */
1216 	if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1217 		SBP2_ERR("Error logging into SBP-2 device - timed out");
1218 		return -EIO;
1219 	}
1220 
1221 	if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1222 		SBP2_ERR("Error logging into SBP-2 device - failed");
1223 		return -EIO;
1224 	}
1225 
1226 	sbp2util_cpu_to_be32_buffer(lu->login_response,
1227 				    sizeof(struct sbp2_login_response));
1228 	lu->command_block_agent_addr =
1229 			((u64)lu->login_response->command_block_agent_hi) << 32;
1230 	lu->command_block_agent_addr |=
1231 			((u64)lu->login_response->command_block_agent_lo);
1232 	lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1233 
1234 	SBP2_INFO("Logged into SBP-2 device");
1235 	return 0;
1236 }
1237 
sbp2_logout_device(struct sbp2_lu * lu)1238 static int sbp2_logout_device(struct sbp2_lu *lu)
1239 {
1240 	struct sbp2_fwhost_info *hi = lu->hi;
1241 	quadlet_t data[2];
1242 	int error;
1243 
1244 	lu->logout_orb->reserved1 = 0x0;
1245 	lu->logout_orb->reserved2 = 0x0;
1246 	lu->logout_orb->reserved3 = 0x0;
1247 	lu->logout_orb->reserved4 = 0x0;
1248 
1249 	lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1250 	lu->logout_orb->login_ID_misc |=
1251 			ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1252 	lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1253 
1254 	lu->logout_orb->reserved5 = 0x0;
1255 	lu->logout_orb->status_fifo_hi =
1256 		ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1257 	lu->logout_orb->status_fifo_lo =
1258 		ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1259 
1260 	sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1261 				    sizeof(struct sbp2_logout_orb));
1262 
1263 	data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1264 	data[1] = lu->logout_orb_dma;
1265 	sbp2util_cpu_to_be32_buffer(data, 8);
1266 
1267 	error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1268 	if (error)
1269 		return error;
1270 
1271 	/* wait up to 1 second for the device to complete logout */
1272 	if (sbp2util_access_timeout(lu, HZ))
1273 		return -EIO;
1274 
1275 	SBP2_INFO("Logged out of SBP-2 device");
1276 	return 0;
1277 }
1278 
sbp2_reconnect_device(struct sbp2_lu * lu)1279 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1280 {
1281 	struct sbp2_fwhost_info *hi = lu->hi;
1282 	quadlet_t data[2];
1283 	int error;
1284 
1285 	lu->reconnect_orb->reserved1 = 0x0;
1286 	lu->reconnect_orb->reserved2 = 0x0;
1287 	lu->reconnect_orb->reserved3 = 0x0;
1288 	lu->reconnect_orb->reserved4 = 0x0;
1289 
1290 	lu->reconnect_orb->login_ID_misc =
1291 			ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1292 	lu->reconnect_orb->login_ID_misc |=
1293 			ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1294 	lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1295 
1296 	lu->reconnect_orb->reserved5 = 0x0;
1297 	lu->reconnect_orb->status_fifo_hi =
1298 		ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1299 	lu->reconnect_orb->status_fifo_lo =
1300 		ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1301 
1302 	sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1303 				    sizeof(struct sbp2_reconnect_orb));
1304 
1305 	data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1306 	data[1] = lu->reconnect_orb_dma;
1307 	sbp2util_cpu_to_be32_buffer(data, 8);
1308 
1309 	error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1310 	if (error)
1311 		return error;
1312 
1313 	/* wait up to 1 second for reconnect status */
1314 	if (sbp2util_access_timeout(lu, HZ)) {
1315 		SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1316 		return -EIO;
1317 	}
1318 
1319 	/* make sure that the returned status matches the reconnect ORB */
1320 	if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1321 		SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1322 		return -EIO;
1323 	}
1324 
1325 	if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1326 		SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1327 		return -EIO;
1328 	}
1329 
1330 	SBP2_INFO("Reconnected to SBP-2 device");
1331 	return 0;
1332 }
1333 
1334 /*
1335  * Set the target node's Single Phase Retry limit. Affects the target's retry
1336  * behaviour if our node is too busy to accept requests.
1337  */
sbp2_set_busy_timeout(struct sbp2_lu * lu)1338 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1339 {
1340 	quadlet_t data;
1341 
1342 	data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1343 	if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1344 		SBP2_ERR("%s error", __func__);
1345 	return 0;
1346 }
1347 
sbp2_parse_unit_directory(struct sbp2_lu * lu,struct unit_directory * ud)1348 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1349 				      struct unit_directory *ud)
1350 {
1351 	struct csr1212_keyval *kv;
1352 	struct csr1212_dentry *dentry;
1353 	u64 management_agent_addr;
1354 	u32 unit_characteristics, firmware_revision, model;
1355 	unsigned workarounds;
1356 	int i;
1357 
1358 	management_agent_addr = 0;
1359 	unit_characteristics = 0;
1360 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1361 	model = ud->flags & UNIT_DIRECTORY_MODEL_ID ?
1362 				ud->model_id : SBP2_ROM_VALUE_MISSING;
1363 
1364 	csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1365 		switch (kv->key.id) {
1366 		case CSR1212_KV_ID_DEPENDENT_INFO:
1367 			if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1368 				management_agent_addr =
1369 				    CSR1212_REGISTER_SPACE_BASE +
1370 				    (kv->value.csr_offset << 2);
1371 
1372 			else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1373 				lu->lun = ORB_SET_LUN(kv->value.immediate);
1374 			break;
1375 
1376 		case SBP2_UNIT_CHARACTERISTICS_KEY:
1377 			/* FIXME: This is ignored so far.
1378 			 * See SBP-2 clause 7.4.8. */
1379 			unit_characteristics = kv->value.immediate;
1380 			break;
1381 
1382 		case SBP2_FIRMWARE_REVISION_KEY:
1383 			firmware_revision = kv->value.immediate;
1384 			break;
1385 
1386 		default:
1387 			/* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1388 			 * Its "ordered" bit has consequences for command ORB
1389 			 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1390 			break;
1391 		}
1392 	}
1393 
1394 	workarounds = sbp2_default_workarounds;
1395 
1396 	if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1397 		for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1398 			if (sbp2_workarounds_table[i].firmware_revision !=
1399 			    SBP2_ROM_VALUE_WILDCARD &&
1400 			    sbp2_workarounds_table[i].firmware_revision !=
1401 			    (firmware_revision & 0xffff00))
1402 				continue;
1403 			if (sbp2_workarounds_table[i].model !=
1404 			    SBP2_ROM_VALUE_WILDCARD &&
1405 			    sbp2_workarounds_table[i].model != model)
1406 				continue;
1407 			workarounds |= sbp2_workarounds_table[i].workarounds;
1408 			break;
1409 		}
1410 
1411 	if (workarounds)
1412 		SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1413 			  "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1414 			  " model_id 0x%06x)",
1415 			  NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1416 			  workarounds, firmware_revision,
1417 			  ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1418 			  model);
1419 
1420 	/* We would need one SCSI host template for each target to adjust
1421 	 * max_sectors on the fly, therefore warn only. */
1422 	if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1423 	    (sbp2_max_sectors * 512) > (128 * 1024))
1424 		SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1425 			  "max transfer size. WARNING: Current max_sectors "
1426 			  "setting is larger than 128KB (%d sectors)",
1427 			  NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1428 			  sbp2_max_sectors);
1429 
1430 	/* If this is a logical unit directory entry, process the parent
1431 	 * to get the values. */
1432 	if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1433 		struct unit_directory *parent_ud = container_of(
1434 			ud->device.parent, struct unit_directory, device);
1435 		sbp2_parse_unit_directory(lu, parent_ud);
1436 	} else {
1437 		lu->management_agent_addr = management_agent_addr;
1438 		lu->workarounds = workarounds;
1439 		if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1440 			lu->lun = ORB_SET_LUN(ud->lun);
1441 	}
1442 }
1443 
1444 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1445 
1446 /*
1447  * This function is called in order to determine the max speed and packet
1448  * size we can use in our ORBs. Note, that we (the driver and host) only
1449  * initiate the transaction. The SBP-2 device actually transfers the data
1450  * (by reading from the DMA area we tell it). This means that the SBP-2
1451  * device decides the actual maximum data it can transfer. We just tell it
1452  * the speed that it needs to use, and the max_rec the host supports, and
1453  * it takes care of the rest.
1454  */
sbp2_max_speed_and_size(struct sbp2_lu * lu)1455 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1456 {
1457 	struct sbp2_fwhost_info *hi = lu->hi;
1458 	u8 payload;
1459 
1460 	lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1461 
1462 	if (lu->speed_code > sbp2_max_speed) {
1463 		lu->speed_code = sbp2_max_speed;
1464 		SBP2_INFO("Reducing speed to %s",
1465 			  hpsb_speedto_str[sbp2_max_speed]);
1466 	}
1467 
1468 	/* Payload size is the lesser of what our speed supports and what
1469 	 * our host supports.  */
1470 	payload = min(sbp2_speedto_max_payload[lu->speed_code],
1471 		      (u8) (hi->host->csr.max_rec - 1));
1472 
1473 	/* If physical DMA is off, work around limitation in ohci1394:
1474 	 * packet size must not exceed PAGE_SIZE */
1475 	if (lu->ne->host->low_addr_space < (1ULL << 32))
1476 		while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1477 		       payload)
1478 			payload--;
1479 
1480 	SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1481 		  NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1482 		  hpsb_speedto_str[lu->speed_code],
1483 		  SBP2_PAYLOAD_TO_BYTES(payload));
1484 
1485 	lu->max_payload_size = payload;
1486 	return 0;
1487 }
1488 
sbp2_agent_reset(struct sbp2_lu * lu,int wait)1489 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1490 {
1491 	quadlet_t data;
1492 	u64 addr;
1493 	int retval;
1494 	unsigned long flags;
1495 
1496 	/* flush lu->protocol_work */
1497 	if (wait)
1498 		flush_scheduled_work();
1499 
1500 	data = ntohl(SBP2_AGENT_RESET_DATA);
1501 	addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1502 
1503 	if (wait)
1504 		retval = hpsb_node_write(lu->ne, addr, &data, 4);
1505 	else
1506 		retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1507 
1508 	if (retval < 0) {
1509 		SBP2_ERR("hpsb_node_write failed.\n");
1510 		return -EIO;
1511 	}
1512 
1513 	/* make sure that the ORB_POINTER is written on next command */
1514 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1515 	lu->last_orb = NULL;
1516 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1517 
1518 	return 0;
1519 }
1520 
sbp2_prep_command_orb_sg(struct sbp2_command_orb * orb,struct sbp2_fwhost_info * hi,struct sbp2_command_info * cmd,unsigned int sg_count,struct scatterlist * sg,u32 orb_direction,enum dma_data_direction dma_dir)1521 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1522 				    struct sbp2_fwhost_info *hi,
1523 				    struct sbp2_command_info *cmd,
1524 				    unsigned int sg_count,
1525 				    struct scatterlist *sg,
1526 				    u32 orb_direction,
1527 				    enum dma_data_direction dma_dir)
1528 {
1529 	struct device *dmadev = hi->host->device.parent;
1530 	struct sbp2_unrestricted_page_table *pt;
1531 	int i, n;
1532 
1533 	n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1534 	if (n == 0)
1535 		return -ENOMEM;
1536 
1537 	orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1538 	orb->misc |= ORB_SET_DIRECTION(orb_direction);
1539 
1540 	/* special case if only one element (and less than 64KB in size) */
1541 	if (n == 1) {
1542 		orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1543 		orb->data_descriptor_lo = sg_dma_address(sg);
1544 	} else {
1545 		pt = &cmd->scatter_gather_element[0];
1546 
1547 		dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1548 					sizeof(cmd->scatter_gather_element),
1549 					DMA_TO_DEVICE);
1550 
1551 		for_each_sg(sg, sg, n, i) {
1552 			pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1553 			pt[i].low = cpu_to_be32(sg_dma_address(sg));
1554 		}
1555 
1556 		orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1557 			     ORB_SET_DATA_SIZE(n);
1558 		orb->data_descriptor_lo = cmd->sge_dma;
1559 
1560 		dma_sync_single_for_device(dmadev, cmd->sge_dma,
1561 					   sizeof(cmd->scatter_gather_element),
1562 					   DMA_TO_DEVICE);
1563 	}
1564 	return 0;
1565 }
1566 
sbp2_create_command_orb(struct sbp2_lu * lu,struct sbp2_command_info * cmd,struct scsi_cmnd * SCpnt)1567 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1568 				   struct sbp2_command_info *cmd,
1569 				   struct scsi_cmnd *SCpnt)
1570 {
1571 	struct device *dmadev = lu->hi->host->device.parent;
1572 	struct sbp2_command_orb *orb = &cmd->command_orb;
1573 	unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1574 	enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1575 	u32 orb_direction;
1576 	int ret;
1577 
1578 	dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1579 				sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1580 	/*
1581 	 * Set-up our command ORB.
1582 	 *
1583 	 * NOTE: We're doing unrestricted page tables (s/g), as this is
1584 	 * best performance (at least with the devices I have). This means
1585 	 * that data_size becomes the number of s/g elements, and
1586 	 * page_size should be zero (for unrestricted).
1587 	 */
1588 	orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1589 	orb->next_ORB_lo = 0x0;
1590 	orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1591 	orb->misc |= ORB_SET_SPEED(lu->speed_code);
1592 	orb->misc |= ORB_SET_NOTIFY(1);
1593 
1594 	if (dma_dir == DMA_NONE)
1595 		orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1596 	else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1597 		orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1598 	else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1599 		orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1600 	else {
1601 		SBP2_INFO("Falling back to DMA_NONE");
1602 		orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1603 	}
1604 
1605 	/* set up our page table stuff */
1606 	if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1607 		orb->data_descriptor_hi = 0x0;
1608 		orb->data_descriptor_lo = 0x0;
1609 		orb->misc |= ORB_SET_DIRECTION(1);
1610 		ret = 0;
1611 	} else {
1612 		ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1613 					       scsi_sg_count(SCpnt),
1614 					       scsi_sglist(SCpnt),
1615 					       orb_direction, dma_dir);
1616 	}
1617 	sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1618 
1619 	memset(orb->cdb, 0, sizeof(orb->cdb));
1620 	memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1621 
1622 	dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1623 			sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1624 	return ret;
1625 }
1626 
sbp2_link_orb_command(struct sbp2_lu * lu,struct sbp2_command_info * cmd)1627 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1628 				  struct sbp2_command_info *cmd)
1629 {
1630 	struct sbp2_fwhost_info *hi = lu->hi;
1631 	struct sbp2_command_orb *last_orb;
1632 	dma_addr_t last_orb_dma;
1633 	u64 addr = lu->command_block_agent_addr;
1634 	quadlet_t data[2];
1635 	size_t length;
1636 	unsigned long flags;
1637 
1638 	/* check to see if there are any previous orbs to use */
1639 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1640 	last_orb = lu->last_orb;
1641 	last_orb_dma = lu->last_orb_dma;
1642 	if (!last_orb) {
1643 		/*
1644 		 * last_orb == NULL means: We know that the target's fetch agent
1645 		 * is not active right now.
1646 		 */
1647 		addr += SBP2_ORB_POINTER_OFFSET;
1648 		data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1649 		data[1] = cmd->command_orb_dma;
1650 		sbp2util_cpu_to_be32_buffer(data, 8);
1651 		length = 8;
1652 	} else {
1653 		/*
1654 		 * last_orb != NULL means: We know that the target's fetch agent
1655 		 * is (very probably) not dead or in reset state right now.
1656 		 * We have an ORB already sent that we can append a new one to.
1657 		 * The target's fetch agent may or may not have read this
1658 		 * previous ORB yet.
1659 		 */
1660 		dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1661 					sizeof(struct sbp2_command_orb),
1662 					DMA_TO_DEVICE);
1663 		last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1664 		wmb();
1665 		/* Tells hardware that this pointer is valid */
1666 		last_orb->next_ORB_hi = 0;
1667 		dma_sync_single_for_device(hi->host->device.parent,
1668 					   last_orb_dma,
1669 					   sizeof(struct sbp2_command_orb),
1670 					   DMA_TO_DEVICE);
1671 		addr += SBP2_DOORBELL_OFFSET;
1672 		data[0] = 0;
1673 		length = 4;
1674 	}
1675 	lu->last_orb = &cmd->command_orb;
1676 	lu->last_orb_dma = cmd->command_orb_dma;
1677 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1678 
1679 	if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1680 		/*
1681 		 * sbp2util_node_write_no_wait failed. We certainly ran out
1682 		 * of transaction labels, perhaps just because there were no
1683 		 * context switches which gave khpsbpkt a chance to collect
1684 		 * free tlabels. Try again in non-atomic context. If necessary,
1685 		 * the workqueue job will sleep to guaranteedly get a tlabel.
1686 		 * We do not accept new commands until the job is over.
1687 		 */
1688 		scsi_block_requests(lu->shost);
1689 		PREPARE_WORK(&lu->protocol_work,
1690 			     last_orb ? sbp2util_write_doorbell:
1691 					sbp2util_write_orb_pointer);
1692 		schedule_work(&lu->protocol_work);
1693 	}
1694 }
1695 
sbp2_send_command(struct sbp2_lu * lu,struct scsi_cmnd * SCpnt,void (* done)(struct scsi_cmnd *))1696 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1697 			     void (*done)(struct scsi_cmnd *))
1698 {
1699 	struct sbp2_command_info *cmd;
1700 
1701 	cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1702 	if (!cmd)
1703 		return -EIO;
1704 
1705 	if (sbp2_create_command_orb(lu, cmd, SCpnt))
1706 		return -ENOMEM;
1707 
1708 	sbp2_link_orb_command(lu, cmd);
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Translates SBP-2 status into SCSI sense data for check conditions
1714  */
sbp2_status_to_sense_data(unchar * sbp2_status,unchar * sense_data)1715 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1716 					      unchar *sense_data)
1717 {
1718 	/* OK, it's pretty ugly... ;-) */
1719 	sense_data[0] = 0x70;
1720 	sense_data[1] = 0x0;
1721 	sense_data[2] = sbp2_status[9];
1722 	sense_data[3] = sbp2_status[12];
1723 	sense_data[4] = sbp2_status[13];
1724 	sense_data[5] = sbp2_status[14];
1725 	sense_data[6] = sbp2_status[15];
1726 	sense_data[7] = 10;
1727 	sense_data[8] = sbp2_status[16];
1728 	sense_data[9] = sbp2_status[17];
1729 	sense_data[10] = sbp2_status[18];
1730 	sense_data[11] = sbp2_status[19];
1731 	sense_data[12] = sbp2_status[10];
1732 	sense_data[13] = sbp2_status[11];
1733 	sense_data[14] = sbp2_status[20];
1734 	sense_data[15] = sbp2_status[21];
1735 
1736 	return sbp2_status[8] & 0x3f;
1737 }
1738 
sbp2_handle_status_write(struct hpsb_host * host,int nodeid,int destid,quadlet_t * data,u64 addr,size_t length,u16 fl)1739 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1740 				    int destid, quadlet_t *data, u64 addr,
1741 				    size_t length, u16 fl)
1742 {
1743 	struct sbp2_fwhost_info *hi;
1744 	struct sbp2_lu *lu = NULL, *lu_tmp;
1745 	struct scsi_cmnd *SCpnt = NULL;
1746 	struct sbp2_status_block *sb;
1747 	u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1748 	struct sbp2_command_info *cmd;
1749 	unsigned long flags;
1750 
1751 	if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1752 		SBP2_ERR("Wrong size of status block");
1753 		return RCODE_ADDRESS_ERROR;
1754 	}
1755 	if (unlikely(!host)) {
1756 		SBP2_ERR("host is NULL - this is bad!");
1757 		return RCODE_ADDRESS_ERROR;
1758 	}
1759 	hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1760 	if (unlikely(!hi)) {
1761 		SBP2_ERR("host info is NULL - this is bad!");
1762 		return RCODE_ADDRESS_ERROR;
1763 	}
1764 
1765 	/* Find the unit which wrote the status. */
1766 	read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1767 	list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1768 		if (lu_tmp->ne->nodeid == nodeid &&
1769 		    lu_tmp->status_fifo_addr == addr) {
1770 			lu = lu_tmp;
1771 			break;
1772 		}
1773 	}
1774 	read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1775 
1776 	if (unlikely(!lu)) {
1777 		SBP2_ERR("lu is NULL - device is gone?");
1778 		return RCODE_ADDRESS_ERROR;
1779 	}
1780 
1781 	/* Put response into lu status fifo buffer. The first two bytes
1782 	 * come in big endian bit order. Often the target writes only a
1783 	 * truncated status block, minimally the first two quadlets. The rest
1784 	 * is implied to be zeros. */
1785 	sb = &lu->status_block;
1786 	memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1787 	memcpy(sb, data, length);
1788 	sbp2util_be32_to_cpu_buffer(sb, 8);
1789 
1790 	/* Ignore unsolicited status. Handle command ORB status. */
1791 	if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1792 		cmd = NULL;
1793 	else
1794 		cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1795 	if (cmd) {
1796 		/* Grab SCSI command pointers and check status. */
1797 		/*
1798 		 * FIXME: If the src field in the status is 1, the ORB DMA must
1799 		 * not be reused until status for a subsequent ORB is received.
1800 		 */
1801 		SCpnt = cmd->Current_SCpnt;
1802 		spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1803 		sbp2util_mark_command_completed(lu, cmd);
1804 		spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1805 
1806 		if (SCpnt) {
1807 			u32 h = sb->ORB_offset_hi_misc;
1808 			u32 r = STATUS_GET_RESP(h);
1809 
1810 			if (r != RESP_STATUS_REQUEST_COMPLETE) {
1811 				SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1812 					  r, STATUS_GET_SBP_STATUS(h));
1813 				scsi_status =
1814 					r == RESP_STATUS_TRANSPORT_FAILURE ?
1815 					SBP2_SCSI_STATUS_BUSY :
1816 					SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1817 			}
1818 
1819 			if (STATUS_GET_LEN(h) > 1)
1820 				scsi_status = sbp2_status_to_sense_data(
1821 					(unchar *)sb, SCpnt->sense_buffer);
1822 
1823 			if (STATUS_TEST_DEAD(h))
1824                                 sbp2_agent_reset(lu, 0);
1825 		}
1826 
1827 		/* Check here to see if there are no commands in-use. If there
1828 		 * are none, we know that the fetch agent left the active state
1829 		 * _and_ that we did not reactivate it yet. Therefore clear
1830 		 * last_orb so that next time we write directly to the
1831 		 * ORB_POINTER register. That way the fetch agent does not need
1832 		 * to refetch the next_ORB. */
1833 		spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1834 		if (list_empty(&lu->cmd_orb_inuse))
1835 			lu->last_orb = NULL;
1836 		spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1837 
1838 	} else {
1839 		/* It's probably status after a management request. */
1840 		if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1841 		    (sb->ORB_offset_lo == lu->login_orb_dma) ||
1842 		    (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1843 		    (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1844 			lu->access_complete = 1;
1845 			wake_up_interruptible(&sbp2_access_wq);
1846 		}
1847 	}
1848 
1849 	if (SCpnt)
1850 		sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1851 					  cmd->Current_done);
1852 	return RCODE_COMPLETE;
1853 }
1854 
1855 /**************************************
1856  * SCSI interface related section
1857  **************************************/
1858 
sbp2scsi_queuecommand(struct scsi_cmnd * SCpnt,void (* done)(struct scsi_cmnd *))1859 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1860 				 void (*done)(struct scsi_cmnd *))
1861 {
1862 	struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1863 	struct sbp2_fwhost_info *hi;
1864 	int result = DID_NO_CONNECT << 16;
1865 
1866 	if (unlikely(!sbp2util_node_is_available(lu)))
1867 		goto done;
1868 
1869 	hi = lu->hi;
1870 
1871 	if (unlikely(!hi)) {
1872 		SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1873 		goto done;
1874 	}
1875 
1876 	/* Multiple units are currently represented to the SCSI core as separate
1877 	 * targets, not as one target with multiple LUs. Therefore return
1878 	 * selection time-out to any IO directed at non-zero LUNs. */
1879 	if (unlikely(SCpnt->device->lun))
1880 		goto done;
1881 
1882 	if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1883 		SBP2_ERR("Bus reset in progress - rejecting command");
1884 		result = DID_BUS_BUSY << 16;
1885 		goto done;
1886 	}
1887 
1888 	/* Bidirectional commands are not yet implemented,
1889 	 * and unknown transfer direction not handled. */
1890 	if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1891 		SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1892 		result = DID_ERROR << 16;
1893 		goto done;
1894 	}
1895 
1896 	if (sbp2_send_command(lu, SCpnt, done)) {
1897 		SBP2_ERR("Error sending SCSI command");
1898 		sbp2scsi_complete_command(lu,
1899 					  SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1900 					  SCpnt, done);
1901 	}
1902 	return 0;
1903 
1904 done:
1905 	SCpnt->result = result;
1906 	done(SCpnt);
1907 	return 0;
1908 }
1909 
sbp2scsi_complete_all_commands(struct sbp2_lu * lu,u32 status)1910 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1911 {
1912 	struct list_head *lh;
1913 	struct sbp2_command_info *cmd;
1914 	unsigned long flags;
1915 
1916 	spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1917 	while (!list_empty(&lu->cmd_orb_inuse)) {
1918 		lh = lu->cmd_orb_inuse.next;
1919 		cmd = list_entry(lh, struct sbp2_command_info, list);
1920 		sbp2util_mark_command_completed(lu, cmd);
1921 		if (cmd->Current_SCpnt) {
1922 			cmd->Current_SCpnt->result = status << 16;
1923 			cmd->Current_done(cmd->Current_SCpnt);
1924 		}
1925 	}
1926 	spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1927 
1928 	return;
1929 }
1930 
1931 /*
1932  * Complete a regular SCSI command. Can be called in atomic context.
1933  */
sbp2scsi_complete_command(struct sbp2_lu * lu,u32 scsi_status,struct scsi_cmnd * SCpnt,void (* done)(struct scsi_cmnd *))1934 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1935 				      struct scsi_cmnd *SCpnt,
1936 				      void (*done)(struct scsi_cmnd *))
1937 {
1938 	if (!SCpnt) {
1939 		SBP2_ERR("SCpnt is NULL");
1940 		return;
1941 	}
1942 
1943 	switch (scsi_status) {
1944 	case SBP2_SCSI_STATUS_GOOD:
1945 		SCpnt->result = DID_OK << 16;
1946 		break;
1947 
1948 	case SBP2_SCSI_STATUS_BUSY:
1949 		SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1950 		SCpnt->result = DID_BUS_BUSY << 16;
1951 		break;
1952 
1953 	case SBP2_SCSI_STATUS_CHECK_CONDITION:
1954 		SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1955 		break;
1956 
1957 	case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1958 		SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1959 		SCpnt->result = DID_NO_CONNECT << 16;
1960 		scsi_print_command(SCpnt);
1961 		break;
1962 
1963 	case SBP2_SCSI_STATUS_CONDITION_MET:
1964 	case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1965 	case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1966 		SBP2_ERR("Bad SCSI status = %x", scsi_status);
1967 		SCpnt->result = DID_ERROR << 16;
1968 		scsi_print_command(SCpnt);
1969 		break;
1970 
1971 	default:
1972 		SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1973 		SCpnt->result = DID_ERROR << 16;
1974 	}
1975 
1976 	/* If a bus reset is in progress and there was an error, complete
1977 	 * the command as busy so that it will get retried. */
1978 	if (!hpsb_node_entry_valid(lu->ne)
1979 	    && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1980 		SBP2_ERR("Completing command with busy (bus reset)");
1981 		SCpnt->result = DID_BUS_BUSY << 16;
1982 	}
1983 
1984 	/* Tell the SCSI stack that we're done with this command. */
1985 	done(SCpnt);
1986 }
1987 
sbp2scsi_slave_alloc(struct scsi_device * sdev)1988 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1989 {
1990 	struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1991 
1992 	if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1993 		return -ENODEV;
1994 
1995 	lu->sdev = sdev;
1996 	sdev->allow_restart = 1;
1997 
1998 	/* SBP-2 requires quadlet alignment of the data buffers. */
1999 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
2000 
2001 	if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2002 		sdev->inquiry_len = 36;
2003 	return 0;
2004 }
2005 
sbp2scsi_slave_configure(struct scsi_device * sdev)2006 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2007 {
2008 	struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2009 
2010 	sdev->use_10_for_rw = 1;
2011 
2012 	if (sbp2_exclusive_login)
2013 		sdev->manage_start_stop = 1;
2014 	if (sdev->type == TYPE_ROM)
2015 		sdev->use_10_for_ms = 1;
2016 	if (sdev->type == TYPE_DISK &&
2017 	    lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2018 		sdev->skip_ms_page_8 = 1;
2019 	if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2020 		sdev->fix_capacity = 1;
2021 	if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2022 		sdev->start_stop_pwr_cond = 1;
2023 	if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2024 		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2025 
2026 	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2027 	return 0;
2028 }
2029 
sbp2scsi_slave_destroy(struct scsi_device * sdev)2030 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2031 {
2032 	((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2033 	return;
2034 }
2035 
2036 /*
2037  * Called by scsi stack when something has really gone wrong.
2038  * Usually called when a command has timed-out for some reason.
2039  */
sbp2scsi_abort(struct scsi_cmnd * SCpnt)2040 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2041 {
2042 	struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2043 	struct sbp2_command_info *cmd;
2044 	unsigned long flags;
2045 
2046 	SBP2_INFO("aborting sbp2 command");
2047 	scsi_print_command(SCpnt);
2048 
2049 	if (sbp2util_node_is_available(lu)) {
2050 		sbp2_agent_reset(lu, 1);
2051 
2052 		/* Return a matching command structure to the free pool. */
2053 		spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2054 		cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2055 		if (cmd) {
2056 			sbp2util_mark_command_completed(lu, cmd);
2057 			if (cmd->Current_SCpnt) {
2058 				cmd->Current_SCpnt->result = DID_ABORT << 16;
2059 				cmd->Current_done(cmd->Current_SCpnt);
2060 			}
2061 		}
2062 		spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2063 
2064 		sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2065 	}
2066 
2067 	return SUCCESS;
2068 }
2069 
2070 /*
2071  * Called by scsi stack when something has really gone wrong.
2072  */
sbp2scsi_reset(struct scsi_cmnd * SCpnt)2073 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2074 {
2075 	struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2076 
2077 	SBP2_INFO("reset requested");
2078 
2079 	if (sbp2util_node_is_available(lu)) {
2080 		SBP2_INFO("generating sbp2 fetch agent reset");
2081 		sbp2_agent_reset(lu, 1);
2082 	}
2083 
2084 	return SUCCESS;
2085 }
2086 
sbp2_sysfs_ieee1394_id_show(struct device * dev,struct device_attribute * attr,char * buf)2087 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2088 					   struct device_attribute *attr,
2089 					   char *buf)
2090 {
2091 	struct scsi_device *sdev;
2092 	struct sbp2_lu *lu;
2093 
2094 	if (!(sdev = to_scsi_device(dev)))
2095 		return 0;
2096 
2097 	if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2098 		return 0;
2099 
2100 	if (sbp2_long_sysfs_ieee1394_id)
2101 		return sprintf(buf, "%016Lx:%06x:%04x\n",
2102 				(unsigned long long)lu->ne->guid,
2103 				lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2104 	else
2105 		return sprintf(buf, "%016Lx:%d:%d\n",
2106 				(unsigned long long)lu->ne->guid,
2107 				lu->ud->id, ORB_SET_LUN(lu->lun));
2108 }
2109 
2110 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2111 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2112 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2113 MODULE_LICENSE("GPL");
2114 
sbp2_module_init(void)2115 static int sbp2_module_init(void)
2116 {
2117 	int ret;
2118 
2119 	if (sbp2_serialize_io) {
2120 		sbp2_shost_template.can_queue = 1;
2121 		sbp2_shost_template.cmd_per_lun = 1;
2122 	}
2123 
2124 	sbp2_shost_template.max_sectors = sbp2_max_sectors;
2125 
2126 	hpsb_register_highlevel(&sbp2_highlevel);
2127 	ret = hpsb_register_protocol(&sbp2_driver);
2128 	if (ret) {
2129 		SBP2_ERR("Failed to register protocol");
2130 		hpsb_unregister_highlevel(&sbp2_highlevel);
2131 		return ret;
2132 	}
2133 	return 0;
2134 }
2135 
sbp2_module_exit(void)2136 static void __exit sbp2_module_exit(void)
2137 {
2138 	hpsb_unregister_protocol(&sbp2_driver);
2139 	hpsb_unregister_highlevel(&sbp2_highlevel);
2140 }
2141 
2142 module_init(sbp2_module_init);
2143 module_exit(sbp2_module_exit);
2144