• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3  * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 /*
34  * This file contains all of the code that is specific to the SerDes
35  * on the InfiniPath 7220 chip.
36  */
37 
38 #include <linux/pci.h>
39 #include <linux/delay.h>
40 
41 #include "ipath_kernel.h"
42 #include "ipath_registers.h"
43 #include "ipath_7220.h"
44 
45 /*
46  * The IBSerDesMappTable is a memory that holds values to be stored in
47  * various SerDes registers by IBC. It is not part of the normal kregs
48  * map and is used in exactly one place, hence the #define below.
49  */
50 #define KR_IBSerDesMappTable (0x94000 / (sizeof(uint64_t)))
51 
52 /*
53  * Below used for sdnum parameter, selecting one of the two sections
54  * used for PCIe, or the single SerDes used for IB.
55  */
56 #define PCIE_SERDES0 0
57 #define PCIE_SERDES1 1
58 
59 /*
60  * The EPB requires addressing in a particular form. EPB_LOC() is intended
61  * to make #definitions a little more readable.
62  */
63 #define EPB_ADDR_SHF 8
64 #define EPB_LOC(chn, elt, reg) \
65 	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
66 	 EPB_ADDR_SHF)
67 #define EPB_IB_QUAD0_CS_SHF (25)
68 #define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
69 #define EPB_IB_UC_CS_SHF (26)
70 #define EPB_PCIE_UC_CS_SHF (27)
71 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
72 
73 /* Forward declarations. */
74 static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc,
75 				u32 data, u32 mask);
76 static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val,
77 			     int mask);
78 static int ipath_sd_trimdone_poll(struct ipath_devdata *dd);
79 static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd,
80 				      const char *where);
81 static int ipath_sd_setvals(struct ipath_devdata *dd);
82 static int ipath_sd_early(struct ipath_devdata *dd);
83 static int ipath_sd_dactrim(struct ipath_devdata *dd);
84 /* Set the registers that IBC may muck with to their default "preset" values */
85 int ipath_sd7220_presets(struct ipath_devdata *dd);
86 static int ipath_internal_presets(struct ipath_devdata *dd);
87 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
88 static int ipath_sd_trimself(struct ipath_devdata *dd, int val);
89 static int epb_access(struct ipath_devdata *dd, int sdnum, int claim);
90 
91 void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup);
92 
93 /*
94  * Below keeps track of whether the "once per power-on" initialization has
95  * been done, because uC code Version 1.32.17 or higher allows the uC to
96  * be reset at will, and Automatic Equalization may require it. So the
97  * state of the reset "pin", as reflected in was_reset parameter to
98  * ipath_sd7220_init() is no longer valid. Instead, we check for the
99  * actual uC code having been loaded.
100  */
ipath_ibsd_ucode_loaded(struct ipath_devdata * dd)101 static int ipath_ibsd_ucode_loaded(struct ipath_devdata *dd)
102 {
103 	if (!dd->serdes_first_init_done && (ipath_sd7220_ib_vfy(dd) > 0))
104 		dd->serdes_first_init_done = 1;
105 	return dd->serdes_first_init_done;
106 }
107 
108 /* repeat #define for local use. "Real" #define is in ipath_iba7220.c */
109 #define INFINIPATH_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
110 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
111 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
112 #define UC_PAR_CLR_D 8
113 #define UC_PAR_CLR_M 0xC
114 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
115 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
116 
ipath_sd7220_clr_ibpar(struct ipath_devdata * dd)117 void ipath_sd7220_clr_ibpar(struct ipath_devdata *dd)
118 {
119 	int ret;
120 
121 	/* clear, then re-enable parity errs */
122 	ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
123 		UC_PAR_CLR_D, UC_PAR_CLR_M);
124 	if (ret < 0) {
125 		ipath_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
126 		goto bail;
127 	}
128 	ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
129 		UC_PAR_CLR_M);
130 
131 	ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
132 	udelay(4);
133 	ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
134 		INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
135 	ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
136 bail:
137 	return;
138 }
139 
140 /*
141  * After a reset or other unusual event, the epb interface may need
142  * to be re-synchronized, between the host and the uC.
143  * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
144  */
145 #define IBSD_RESYNC_TRIES 3
146 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
147 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
148 
ipath_resync_ibepb(struct ipath_devdata * dd)149 static int ipath_resync_ibepb(struct ipath_devdata *dd)
150 {
151 	int ret, pat, tries, chn;
152 	u32 loc;
153 
154 	ret = -1;
155 	chn = 0;
156 	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
157 		loc = IB_PGUDP(chn);
158 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
159 		if (ret < 0) {
160 			ipath_dev_err(dd, "Failed read in resync\n");
161 			continue;
162 		}
163 		if (ret != 0xF0 && ret != 0x55 && tries == 0)
164 			ipath_dev_err(dd, "unexpected pattern in resync\n");
165 		pat = ret ^ 0xA5; /* alternate F0 and 55 */
166 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
167 		if (ret < 0) {
168 			ipath_dev_err(dd, "Failed write in resync\n");
169 			continue;
170 		}
171 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
172 		if (ret < 0) {
173 			ipath_dev_err(dd, "Failed re-read in resync\n");
174 			continue;
175 		}
176 		if (ret != pat) {
177 			ipath_dev_err(dd, "Failed compare1 in resync\n");
178 			continue;
179 		}
180 		loc = IB_CMUDONE(chn);
181 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
182 		if (ret < 0) {
183 			ipath_dev_err(dd, "Failed CMUDONE rd in resync\n");
184 			continue;
185 		}
186 		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
187 			ipath_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
188 				ret, chn);
189 			continue;
190 		}
191 		if (++chn == 4)
192 			break;  /* Success */
193 	}
194 	ipath_cdbg(VERBOSE, "Resync in %d tries\n", tries);
195 	return (ret > 0) ? 0 : ret;
196 }
197 
198 /*
199  * Localize the stuff that should be done to change IB uC reset
200  * returns <0 for errors.
201  */
ipath_ibsd_reset(struct ipath_devdata * dd,int assert_rst)202 static int ipath_ibsd_reset(struct ipath_devdata *dd, int assert_rst)
203 {
204 	u64 rst_val;
205 	int ret = 0;
206 	unsigned long flags;
207 
208 	rst_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl);
209 	if (assert_rst) {
210 		/*
211 		 * Vendor recommends "interrupting" uC before reset, to
212 		 * minimize possible glitches.
213 		 */
214 		spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
215 		epb_access(dd, IB_7220_SERDES, 1);
216 		rst_val |= 1ULL;
217 		/* Squelch possible parity error from _asserting_ reset */
218 		ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
219 			dd->ipath_hwerrmask &
220 			~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
221 		ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val);
222 		/* flush write, delay to ensure it took effect */
223 		ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
224 		udelay(2);
225 		/* once it's reset, can remove interrupt */
226 		epb_access(dd, IB_7220_SERDES, -1);
227 		spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
228 	} else {
229 		/*
230 		 * Before we de-assert reset, we need to deal with
231 		 * possible glitch on the Parity-error line.
232 		 * Suppress it around the reset, both in chip-level
233 		 * hwerrmask and in IB uC control reg. uC will allow
234 		 * it again during startup.
235 		 */
236 		u64 val;
237 		rst_val &= ~(1ULL);
238 		ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
239 			dd->ipath_hwerrmask &
240 			~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
241 
242 		ret = ipath_resync_ibepb(dd);
243 		if (ret < 0)
244 			ipath_dev_err(dd, "unable to re-sync IB EPB\n");
245 
246 		/* set uC control regs to suppress parity errs */
247 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
248 		if (ret < 0)
249 			goto bail;
250 		/* IB uC code past Version 1.32.17 allow suppression of wdog */
251 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
252 			0x80);
253 		if (ret < 0) {
254 			ipath_dev_err(dd, "Failed to set WDOG disable\n");
255 			goto bail;
256 		}
257 		ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val);
258 		/* flush write, delay for startup */
259 		ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
260 		udelay(1);
261 		/* clear, then re-enable parity errs */
262 		ipath_sd7220_clr_ibpar(dd);
263 		val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus);
264 		if (val & INFINIPATH_HWE_IB_UC_MEMORYPARITYERR) {
265 			ipath_dev_err(dd, "IBUC Parity still set after RST\n");
266 			dd->ipath_hwerrmask &=
267 				~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR;
268 		}
269 		ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
270 			dd->ipath_hwerrmask);
271 	}
272 
273 bail:
274 	return ret;
275 }
276 
ipath_sd_trimdone_monitor(struct ipath_devdata * dd,const char * where)277 static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd,
278        const char *where)
279 {
280 	int ret, chn, baduns;
281 	u64 val;
282 
283 	if (!where)
284 		where = "?";
285 
286 	/* give time for reset to settle out in EPB */
287 	udelay(2);
288 
289 	ret = ipath_resync_ibepb(dd);
290 	if (ret < 0)
291 		ipath_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
292 
293 	/* Do "sacrificial read" to get EPB in sane state after reset */
294 	ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
295 	if (ret < 0)
296 		ipath_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
297 
298 	/* Check/show "summary" Trim-done bit in IBCStatus */
299 	val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
300 	if (val & (1ULL << 11))
301 		ipath_cdbg(VERBOSE, "IBCS TRIMDONE set (%s)\n", where);
302 	else
303 		ipath_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
304 
305 	udelay(2);
306 
307 	ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
308 	if (ret < 0)
309 		ipath_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
310 	udelay(10);
311 
312 	baduns = 0;
313 
314 	for (chn = 3; chn >= 0; --chn) {
315 		/* Read CTRL reg for each channel to check TRIMDONE */
316 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
317 			IB_CTRL2(chn), 0, 0);
318 		if (ret < 0)
319 			ipath_dev_err(dd, "Failed checking TRIMDONE, chn %d"
320 				" (%s)\n", chn, where);
321 
322 		if (!(ret & 0x10)) {
323 			int probe;
324 			baduns |= (1 << chn);
325 			ipath_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
326 				" (%s)\n", chn, ret, where);
327 			probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
328 				IB_PGUDP(0), 0, 0);
329 			ipath_dev_err(dd, "probe is %d (%02X)\n",
330 				probe, probe);
331 			probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
332 				IB_CTRL2(chn), 0, 0);
333 			ipath_dev_err(dd, "re-read: %d (%02X)\n",
334 				probe, probe);
335 			ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
336 				IB_CTRL2(chn), 0x10, 0x10);
337 			if (ret < 0)
338 				ipath_dev_err(dd,
339 					"Err on TRIMDONE rewrite1\n");
340 		}
341 	}
342 	for (chn = 3; chn >= 0; --chn) {
343 		/* Read CTRL reg for each channel to check TRIMDONE */
344 		if (baduns & (1 << chn)) {
345 			ipath_dev_err(dd,
346 				"Reseting TRIMDONE on chn %d (%s)\n",
347 				chn, where);
348 			ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
349 				IB_CTRL2(chn), 0x10, 0x10);
350 			if (ret < 0)
351 				ipath_dev_err(dd, "Failed re-setting "
352 					"TRIMDONE, chn %d (%s)\n",
353 					chn, where);
354 		}
355 	}
356 }
357 
358 /*
359  * Below is portion of IBA7220-specific bringup_serdes() that actually
360  * deals with registers and memory within the SerDes itself.
361  * Post IB uC code version 1.32.17, was_reset being 1 is not really
362  * informative, so we double-check.
363  */
ipath_sd7220_init(struct ipath_devdata * dd,int was_reset)364 int ipath_sd7220_init(struct ipath_devdata *dd, int was_reset)
365 {
366 	int ret = 1; /* default to failure */
367 	int first_reset;
368 	int val_stat;
369 
370 	if (!was_reset) {
371 		/* entered with reset not asserted, we need to do it */
372 		ipath_ibsd_reset(dd, 1);
373 		ipath_sd_trimdone_monitor(dd, "Driver-reload");
374 	}
375 
376 	/* Substitute our deduced value for was_reset */
377 	ret = ipath_ibsd_ucode_loaded(dd);
378 	if (ret < 0) {
379 		ret = 1;
380 		goto done;
381 	}
382 	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
383 
384 	/*
385 	 * Alter some regs per vendor latest doc, reset-defaults
386 	 * are not right for IB.
387 	 */
388 	ret = ipath_sd_early(dd);
389 	if (ret < 0) {
390 		ipath_dev_err(dd, "Failed to set IB SERDES early defaults\n");
391 		ret = 1;
392 		goto done;
393 	}
394 
395 	/*
396 	 * Set DAC manual trim IB.
397 	 * We only do this once after chip has been reset (usually
398 	 * same as once per system boot).
399 	 */
400 	if (first_reset) {
401 		ret = ipath_sd_dactrim(dd);
402 		if (ret < 0) {
403 			ipath_dev_err(dd, "Failed IB SERDES DAC trim\n");
404 			ret = 1;
405 			goto done;
406 		}
407 	}
408 
409 	/*
410 	 * Set various registers (DDS and RXEQ) that will be
411 	 * controlled by IBC (in 1.2 mode) to reasonable preset values
412 	 * Calling the "internal" version avoids the "check for needed"
413 	 * and "trimdone monitor" that might be counter-productive.
414 	 */
415 	ret = ipath_internal_presets(dd);
416 	if (ret < 0) {
417 		ipath_dev_err(dd, "Failed to set IB SERDES presets\n");
418 		ret = 1;
419 		goto done;
420 	}
421 	ret = ipath_sd_trimself(dd, 0x80);
422 	if (ret < 0) {
423 		ipath_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
424 		ret = 1;
425 		goto done;
426 	}
427 
428 	/* Load image, then try to verify */
429 	ret = 0;	/* Assume success */
430 	if (first_reset) {
431 		int vfy;
432 		int trim_done;
433 		ipath_dbg("SerDes uC was reset, reloading PRAM\n");
434 		ret = ipath_sd7220_ib_load(dd);
435 		if (ret < 0) {
436 			ipath_dev_err(dd, "Failed to load IB SERDES image\n");
437 			ret = 1;
438 			goto done;
439 		}
440 
441 		/* Loaded image, try to verify */
442 		vfy = ipath_sd7220_ib_vfy(dd);
443 		if (vfy != ret) {
444 			ipath_dev_err(dd, "SERDES PRAM VFY failed\n");
445 			ret = 1;
446 			goto done;
447 		}
448 		/*
449 		 * Loaded and verified. Almost good...
450 		 * hold "success" in ret
451 		 */
452 		ret = 0;
453 
454 		/*
455 		 * Prev steps all worked, continue bringup
456 		 * De-assert RESET to uC, only in first reset, to allow
457 		 * trimming.
458 		 *
459 		 * Since our default setup sets START_EQ1 to
460 		 * PRESET, we need to clear that for this very first run.
461 		 */
462 		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
463 		if (ret < 0) {
464 			ipath_dev_err(dd, "Failed clearing START_EQ1\n");
465 			ret = 1;
466 			goto done;
467 		}
468 
469 		ipath_ibsd_reset(dd, 0);
470 		/*
471 		 * If this is not the first reset, trimdone should be set
472 		 * already.
473 		 */
474 		trim_done = ipath_sd_trimdone_poll(dd);
475 		/*
476 		 * Whether or not trimdone succeeded, we need to put the
477 		 * uC back into reset to avoid a possible fight with the
478 		 * IBC state-machine.
479 		 */
480 		ipath_ibsd_reset(dd, 1);
481 
482 		if (!trim_done) {
483 			ipath_dev_err(dd, "No TRIMDONE seen\n");
484 			ret = 1;
485 			goto done;
486 		}
487 
488 		ipath_sd_trimdone_monitor(dd, "First-reset");
489 		/* Remember so we do not re-do the load, dactrim, etc. */
490 		dd->serdes_first_init_done = 1;
491 	}
492 	/*
493 	 * Setup for channel training and load values for
494 	 * RxEq and DDS in tables used by IBC in IB1.2 mode
495 	 */
496 
497 	val_stat = ipath_sd_setvals(dd);
498 	if (val_stat < 0)
499 		ret = 1;
500 done:
501 	/* start relock timer regardless, but start at 1 second */
502 	ipath_set_relock_poll(dd, -1);
503 	return ret;
504 }
505 
506 #define EPB_ACC_REQ 1
507 #define EPB_ACC_GNT 0x100
508 #define EPB_DATA_MASK 0xFF
509 #define EPB_RD (1ULL << 24)
510 #define EPB_TRANS_RDY (1ULL << 31)
511 #define EPB_TRANS_ERR (1ULL << 30)
512 #define EPB_TRANS_TRIES 5
513 
514 /*
515  * query, claim, release ownership of the EPB (External Parallel Bus)
516  * for a specified SERDES.
517  * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
518  * Returns <0 for errors, >0 if we had ownership, else 0.
519  */
epb_access(struct ipath_devdata * dd,int sdnum,int claim)520 static int epb_access(struct ipath_devdata *dd, int sdnum, int claim)
521 {
522 	u16 acc;
523 	u64 accval;
524 	int owned = 0;
525 	u64 oct_sel = 0;
526 
527 	switch (sdnum) {
528 	case IB_7220_SERDES :
529 		/*
530 		 * The IB SERDES "ownership" is fairly simple. A single each
531 		 * request/grant.
532 		 */
533 		acc = dd->ipath_kregs->kr_ib_epbacc;
534 		break;
535 	case PCIE_SERDES0 :
536 	case PCIE_SERDES1 :
537 		/* PCIe SERDES has two "octants", need to select which */
538 		acc = dd->ipath_kregs->kr_pcie_epbacc;
539 		oct_sel = (2 << (sdnum - PCIE_SERDES0));
540 		break;
541 	default :
542 		return 0;
543 	}
544 
545 	/* Make sure any outstanding transaction was seen */
546 	ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
547 	udelay(15);
548 
549 	accval = ipath_read_kreg32(dd, acc);
550 
551 	owned = !!(accval & EPB_ACC_GNT);
552 	if (claim < 0) {
553 		/* Need to release */
554 		u64 pollval;
555 		/*
556 		 * The only writeable bits are the request and CS.
557 		 * Both should be clear
558 		 */
559 		u64 newval = 0;
560 		ipath_write_kreg(dd, acc, newval);
561 		/* First read after write is not trustworthy */
562 		pollval = ipath_read_kreg32(dd, acc);
563 		udelay(5);
564 		pollval = ipath_read_kreg32(dd, acc);
565 		if (pollval & EPB_ACC_GNT)
566 			owned = -1;
567 	} else if (claim > 0) {
568 		/* Need to claim */
569 		u64 pollval;
570 		u64 newval = EPB_ACC_REQ | oct_sel;
571 		ipath_write_kreg(dd, acc, newval);
572 		/* First read after write is not trustworthy */
573 		pollval = ipath_read_kreg32(dd, acc);
574 		udelay(5);
575 		pollval = ipath_read_kreg32(dd, acc);
576 		if (!(pollval & EPB_ACC_GNT))
577 			owned = -1;
578 	}
579 	return owned;
580 }
581 
582 /*
583  * Lemma to deal with race condition of write..read to epb regs
584  */
epb_trans(struct ipath_devdata * dd,u16 reg,u64 i_val,u64 * o_vp)585 static int epb_trans(struct ipath_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
586 {
587 	int tries;
588 	u64 transval;
589 
590 
591 	ipath_write_kreg(dd, reg, i_val);
592 	/* Throw away first read, as RDY bit may be stale */
593 	transval = ipath_read_kreg64(dd, reg);
594 
595 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
596 		transval = ipath_read_kreg32(dd, reg);
597 		if (transval & EPB_TRANS_RDY)
598 			break;
599 		udelay(5);
600 	}
601 	if (transval & EPB_TRANS_ERR)
602 		return -1;
603 	if (tries > 0 && o_vp)
604 		*o_vp = transval;
605 	return tries;
606 }
607 
608 /**
609  *
610  * ipath_sd7220_reg_mod - modify SERDES register
611  * @dd: the infinipath device
612  * @sdnum: which SERDES to access
613  * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
614  * @wd: Write Data - value to set in register
615  * @mask: ones where data should be spliced into reg.
616  *
617  * Basic register read/modify/write, with un-needed acesses elided. That is,
618  * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
619  * returns current (presumed, if a write was done) contents of selected
620  * register, or <0 if errors.
621  */
ipath_sd7220_reg_mod(struct ipath_devdata * dd,int sdnum,u32 loc,u32 wd,u32 mask)622 static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc,
623 				u32 wd, u32 mask)
624 {
625 	u16 trans;
626 	u64 transval;
627 	int owned;
628 	int tries, ret;
629 	unsigned long flags;
630 
631 	switch (sdnum) {
632 	case IB_7220_SERDES :
633 		trans = dd->ipath_kregs->kr_ib_epbtrans;
634 		break;
635 	case PCIE_SERDES0 :
636 	case PCIE_SERDES1 :
637 		trans = dd->ipath_kregs->kr_pcie_epbtrans;
638 		break;
639 	default :
640 		return -1;
641 	}
642 
643 	/*
644 	 * All access is locked in software (vs other host threads) and
645 	 * hardware (vs uC access).
646 	 */
647 	spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
648 
649 	owned = epb_access(dd, sdnum, 1);
650 	if (owned < 0) {
651 		spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
652 		return -1;
653 	}
654 	ret = 0;
655 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
656 		transval = ipath_read_kreg32(dd, trans);
657 		if (transval & EPB_TRANS_RDY)
658 			break;
659 		udelay(5);
660 	}
661 
662 	if (tries > 0) {
663 		tries = 1;	/* to make read-skip work */
664 		if (mask != 0xFF) {
665 			/*
666 			 * Not a pure write, so need to read.
667 			 * loc encodes chip-select as well as address
668 			 */
669 			transval = loc | EPB_RD;
670 			tries = epb_trans(dd, trans, transval, &transval);
671 		}
672 		if (tries > 0 && mask != 0) {
673 			/*
674 			 * Not a pure read, so need to write.
675 			 */
676 			wd = (wd & mask) | (transval & ~mask);
677 			transval = loc | (wd & EPB_DATA_MASK);
678 			tries = epb_trans(dd, trans, transval, &transval);
679 		}
680 	}
681 	/* else, failed to see ready, what error-handling? */
682 
683 	/*
684 	 * Release bus. Failure is an error.
685 	 */
686 	if (epb_access(dd, sdnum, -1) < 0)
687 		ret = -1;
688 	else
689 		ret = transval & EPB_DATA_MASK;
690 
691 	spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
692 	if (tries <= 0)
693 		ret = -1;
694 	return ret;
695 }
696 
697 #define EPB_ROM_R (2)
698 #define EPB_ROM_W (1)
699 /*
700  * Below, all uC-related, use appropriate UC_CS, depending
701  * on which SerDes is used.
702  */
703 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
704 #define EPB_MADDRL EPB_LOC(6, 0, 2)
705 #define EPB_MADDRH EPB_LOC(6, 0, 3)
706 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
707 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
708 
709 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
ipath_sd7220_ram_xfer(struct ipath_devdata * dd,int sdnum,u32 loc,u8 * buf,int cnt,int rd_notwr)710 static int ipath_sd7220_ram_xfer(struct ipath_devdata *dd, int sdnum, u32 loc,
711 			       u8 *buf, int cnt, int rd_notwr)
712 {
713 	u16 trans;
714 	u64 transval;
715 	u64 csbit;
716 	int owned;
717 	int tries;
718 	int sofar;
719 	int addr;
720 	int ret;
721 	unsigned long flags;
722 	const char *op;
723 
724 	/* Pick appropriate transaction reg and "Chip select" for this serdes */
725 	switch (sdnum) {
726 	case IB_7220_SERDES :
727 		csbit = 1ULL << EPB_IB_UC_CS_SHF;
728 		trans = dd->ipath_kregs->kr_ib_epbtrans;
729 		break;
730 	case PCIE_SERDES0 :
731 	case PCIE_SERDES1 :
732 		/* PCIe SERDES has uC "chip select" in different bit, too */
733 		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
734 		trans = dd->ipath_kregs->kr_pcie_epbtrans;
735 		break;
736 	default :
737 		return -1;
738 	}
739 
740 	op = rd_notwr ? "Rd" : "Wr";
741 	spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
742 
743 	owned = epb_access(dd, sdnum, 1);
744 	if (owned < 0) {
745 		spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
746 		ipath_dbg("Could not get %s access to %s EPB: %X, loc %X\n",
747 			op, (sdnum == IB_7220_SERDES) ? "IB" : "PCIe",
748 			owned, loc);
749 		return -1;
750 	}
751 
752 	/*
753 	 * In future code, we may need to distinguish several address ranges,
754 	 * and select various memories based on this. For now, just trim
755 	 * "loc" (location including address and memory select) to
756 	 * "addr" (address within memory). we will only support PRAM
757 	 * The memory is 8KB.
758 	 */
759 	addr = loc & 0x1FFF;
760 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
761 		transval = ipath_read_kreg32(dd, trans);
762 		if (transval & EPB_TRANS_RDY)
763 			break;
764 		udelay(5);
765 	}
766 
767 	sofar = 0;
768 	if (tries <= 0)
769 		ipath_dbg("No initial RDY on EPB access request\n");
770 	else {
771 		/*
772 		 * Every "memory" access is doubly-indirect.
773 		 * We set two bytes of address, then read/write
774 		 * one or mores bytes of data.
775 		 */
776 
777 		/* First, we set control to "Read" or "Write" */
778 		transval = csbit | EPB_UC_CTL |
779 			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
780 		tries = epb_trans(dd, trans, transval, &transval);
781 		if (tries <= 0)
782 			ipath_dbg("No EPB response to uC %s cmd\n", op);
783 		while (tries > 0 && sofar < cnt) {
784 			if (!sofar) {
785 				/* Only set address at start of chunk */
786 				int addrbyte = (addr + sofar) >> 8;
787 				transval = csbit | EPB_MADDRH | addrbyte;
788 				tries = epb_trans(dd, trans, transval,
789 						  &transval);
790 				if (tries <= 0) {
791 					ipath_dbg("No EPB response ADDRH\n");
792 					break;
793 				}
794 				addrbyte = (addr + sofar) & 0xFF;
795 				transval = csbit | EPB_MADDRL | addrbyte;
796 				tries = epb_trans(dd, trans, transval,
797 						 &transval);
798 				if (tries <= 0) {
799 					ipath_dbg("No EPB response ADDRL\n");
800 					break;
801 				}
802 			}
803 
804 			if (rd_notwr)
805 				transval = csbit | EPB_ROMDATA | EPB_RD;
806 			else
807 				transval = csbit | EPB_ROMDATA | buf[sofar];
808 			tries = epb_trans(dd, trans, transval, &transval);
809 			if (tries <= 0) {
810 				ipath_dbg("No EPB response DATA\n");
811 				break;
812 			}
813 			if (rd_notwr)
814 				buf[sofar] = transval & EPB_DATA_MASK;
815 			++sofar;
816 		}
817 		/* Finally, clear control-bit for Read or Write */
818 		transval = csbit | EPB_UC_CTL;
819 		tries = epb_trans(dd, trans, transval, &transval);
820 		if (tries <= 0)
821 			ipath_dbg("No EPB response to drop of uC %s cmd\n", op);
822 	}
823 
824 	ret = sofar;
825 	/* Release bus. Failure is an error */
826 	if (epb_access(dd, sdnum, -1) < 0)
827 		ret = -1;
828 
829 	spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
830 	if (tries <= 0) {
831 		ipath_dbg("SERDES PRAM %s failed after %d bytes\n", op, sofar);
832 		ret = -1;
833 	}
834 	return ret;
835 }
836 
837 #define PROG_CHUNK 64
838 
ipath_sd7220_prog_ld(struct ipath_devdata * dd,int sdnum,u8 * img,int len,int offset)839 int ipath_sd7220_prog_ld(struct ipath_devdata *dd, int sdnum,
840 	u8 *img, int len, int offset)
841 {
842 	int cnt, sofar, req;
843 
844 	sofar = 0;
845 	while (sofar < len) {
846 		req = len - sofar;
847 		if (req > PROG_CHUNK)
848 			req = PROG_CHUNK;
849 		cnt = ipath_sd7220_ram_xfer(dd, sdnum, offset + sofar,
850 					  img + sofar, req, 0);
851 		if (cnt < req) {
852 			sofar = -1;
853 			break;
854 		}
855 		sofar += req;
856 	}
857 	return sofar;
858 }
859 
860 #define VFY_CHUNK 64
861 #define SD_PRAM_ERROR_LIMIT 42
862 
ipath_sd7220_prog_vfy(struct ipath_devdata * dd,int sdnum,const u8 * img,int len,int offset)863 int ipath_sd7220_prog_vfy(struct ipath_devdata *dd, int sdnum,
864 	const u8 *img, int len, int offset)
865 {
866 	int cnt, sofar, req, idx, errors;
867 	unsigned char readback[VFY_CHUNK];
868 
869 	errors = 0;
870 	sofar = 0;
871 	while (sofar < len) {
872 		req = len - sofar;
873 		if (req > VFY_CHUNK)
874 			req = VFY_CHUNK;
875 		cnt = ipath_sd7220_ram_xfer(dd, sdnum, sofar + offset,
876 					  readback, req, 1);
877 		if (cnt < req) {
878 			/* failed in read itself */
879 			sofar = -1;
880 			break;
881 		}
882 		for (idx = 0; idx < cnt; ++idx) {
883 			if (readback[idx] != img[idx+sofar])
884 				++errors;
885 		}
886 		sofar += cnt;
887 	}
888 	return errors ? -errors : sofar;
889 }
890 
891 /* IRQ not set up at this point in init, so we poll. */
892 #define IB_SERDES_TRIM_DONE (1ULL << 11)
893 #define TRIM_TMO (30)
894 
ipath_sd_trimdone_poll(struct ipath_devdata * dd)895 static int ipath_sd_trimdone_poll(struct ipath_devdata *dd)
896 {
897 	int trim_tmo, ret;
898 	uint64_t val;
899 
900 	/*
901 	 * Default to failure, so IBC will not start
902 	 * without IB_SERDES_TRIM_DONE.
903 	 */
904 	ret = 0;
905 	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
906 		val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
907 		if (val & IB_SERDES_TRIM_DONE) {
908 			ipath_cdbg(VERBOSE, "TRIMDONE after %d\n", trim_tmo);
909 			ret = 1;
910 			break;
911 		}
912 		msleep(10);
913 	}
914 	if (trim_tmo >= TRIM_TMO) {
915 		ipath_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
916 		ret = 0;
917 	}
918 	return ret;
919 }
920 
921 #define TX_FAST_ELT (9)
922 
923 /*
924  * Set the "negotiation" values for SERDES. These are used by the IB1.2
925  * link negotiation. Macros below are attempt to keep the values a
926  * little more human-editable.
927  * First, values related to Drive De-emphasis Settings.
928  */
929 
930 #define NUM_DDS_REGS 6
931 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
932 
933 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
934 	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
935 	  (main_d << 3) | 4 | (ipre_d >> 2), \
936 	  (main_s << 3) | 4 | (ipre_s >> 2), \
937 	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
938 	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
939 
940 static struct dds_init {
941 	uint8_t reg_vals[NUM_DDS_REGS];
942 } dds_init_vals[] = {
943 	/*       DDR(FDR)       SDR(HDR)   */
944 	/* Vendor recommends below for 3m cable */
945 #define DDS_3M 0
946 	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
947 	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
948 	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
949 	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
950 	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
951 	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
952 	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
953 	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
954 	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
955 	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
956 	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
957 	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
958 	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
959 	/* Vendor recommends below for 1m cable */
960 #define DDS_1M 13
961 	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
962 	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
963 	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
964 };
965 
966 /*
967  * Next, values related to Receive Equalization.
968  * In comments, FDR (Full) is IB DDR, HDR (Half) is IB SDR
969  */
970 /* Hardware packs an element number and register address thus: */
971 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
972 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
973 	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
974 
975 #define RXEQ_VAL_ALL(elt, adr, val)  \
976 	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
977 
978 #define RXEQ_SDR_DFELTH 0
979 #define RXEQ_SDR_TLTH 0
980 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
981 #define RXEQ_SDR_ZCNT 23
982 
983 static struct rxeq_init {
984 	u16 rdesc;	/* in form used in SerDesDDSRXEQ */
985 	u8  rdata[4];
986 } rxeq_init_vals[] = {
987 	/* Set Rcv Eq. to Preset node */
988 	RXEQ_VAL_ALL(7, 0x27, 0x10),
989 	/* Set DFELTHFDR/HDR thresholds */
990 	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR */
991 	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
992 	/* Set TLTHFDR/HDR theshold */
993 	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR */
994 	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR */
995 	/* Set Preamp setting 2 (ZFR/ZCNT) */
996 	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR */
997 	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR */
998 	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
999 	RXEQ_VAL(7, 0x1E, 0x10, 0x10, 0x10, 0x10), /* FDR */
1000 	RXEQ_VAL(7, 0x1F, 0x10, 0x10, 0x10, 0x10), /* HDR */
1001 	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1002 	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1003 	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1004 };
1005 
1006 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1007 #define DDS_ROWS (16)
1008 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1009 
ipath_sd_setvals(struct ipath_devdata * dd)1010 static int ipath_sd_setvals(struct ipath_devdata *dd)
1011 {
1012 	int idx, midx;
1013 	int min_idx;	 /* Minimum index for this portion of table */
1014 	uint32_t dds_reg_map;
1015 	u64 __iomem *taddr, *iaddr;
1016 	uint64_t data;
1017 	uint64_t sdctl;
1018 
1019 	taddr = dd->ipath_kregbase + KR_IBSerDesMappTable;
1020 	iaddr = dd->ipath_kregbase + dd->ipath_kregs->kr_ib_ddsrxeq;
1021 
1022 	/*
1023 	 * Init the DDS section of the table.
1024 	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1025 	 * registers indicated in DDS_REG_MAP.
1026 	 */
1027 	sdctl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl);
1028 	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1029 	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1030 	ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, sdctl);
1031 
1032 	/*
1033 	 * Iterate down table within loop for each register to store.
1034 	 */
1035 	dds_reg_map = DDS_REG_MAP;
1036 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1037 		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1038 		writeq(data, iaddr + idx);
1039 		mmiowb();
1040 		ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1041 		dds_reg_map >>= 4;
1042 		for (midx = 0; midx < DDS_ROWS; ++midx) {
1043 			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1044 			data = dds_init_vals[midx].reg_vals[idx];
1045 			writeq(data, daddr);
1046 			mmiowb();
1047 			ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1048 		} /* End inner for (vals for this reg, each row) */
1049 	} /* end outer for (regs to be stored) */
1050 
1051 	/*
1052 	 * Init the RXEQ section of the table. As explained above the table
1053 	 * rxeq_init_vals[], this runs in a different order, as the pattern
1054 	 * of register references is more complex, but there are only
1055 	 * four "data" values per register.
1056 	 */
1057 	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1058 	taddr += 0x100; /* RXEQ data is in second half of table */
1059 	/* Iterate through RXEQ register addresses */
1060 	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1061 		int didx; /* "destination" */
1062 		int vidx;
1063 
1064 		/* didx is offset by min_idx to address RXEQ range of regs */
1065 		didx = idx + min_idx;
1066 		/* Store the next RXEQ register address */
1067 		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1068 		mmiowb();
1069 		ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1070 		/* Iterate through RXEQ values */
1071 		for (vidx = 0; vidx < 4; vidx++) {
1072 			data = rxeq_init_vals[idx].rdata[vidx];
1073 			writeq(data, taddr + (vidx << 6) + idx);
1074 			mmiowb();
1075 			ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1076 		}
1077 	} /* end outer for (Reg-writes for RXEQ) */
1078 	return 0;
1079 }
1080 
1081 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1082 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1083 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1084 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1085 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1086 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1087 
ibsd_sto_noisy(struct ipath_devdata * dd,int loc,int val,int mask)1088 static int ibsd_sto_noisy(struct ipath_devdata *dd, int loc, int val, int mask)
1089 {
1090 	int ret = -1;
1091 	int sloc; /* shifted loc, for messages */
1092 
1093 	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1094 	sloc = loc >> EPB_ADDR_SHF;
1095 
1096 	ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, mask);
1097 	if (ret < 0)
1098 		ipath_dev_err(dd, "Write failed: elt %d,"
1099 			" addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1100 			(sloc & 0xF), (sloc >> 9) & 0x3f, (sloc >> 4) & 7,
1101 			val & 0xFF, mask & 0xFF);
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Repeat a "store" across all channels of the IB SerDes.
1107  * Although nominally it inherits the "read value" of the last
1108  * channel it modified, the only really useful return is <0 for
1109  * failure, >= 0 for success. The parameter 'loc' is assumed to
1110  * be the location for the channel-0 copy of the register to
1111  * be modified.
1112  */
ibsd_mod_allchnls(struct ipath_devdata * dd,int loc,int val,int mask)1113 static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val,
1114 	int mask)
1115 {
1116 	int ret = -1;
1117 	int chnl;
1118 
1119 	if (loc & EPB_GLOBAL_WR) {
1120 		/*
1121 		 * Our caller has assured us that we can set all four
1122 		 * channels at once. Trust that. If mask is not 0xFF,
1123 		 * we will read the _specified_ channel for our starting
1124 		 * value.
1125 		 */
1126 		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1127 		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1128 		if (mask != 0xFF) {
1129 			ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
1130 				loc & ~EPB_GLOBAL_WR, 0, 0);
1131 			if (ret < 0) {
1132 				int sloc = loc >> EPB_ADDR_SHF;
1133 				ipath_dev_err(dd, "pre-read failed: elt %d,"
1134 					" addr 0x%X, chnl %d\n", (sloc & 0xF),
1135 					(sloc >> 9) & 0x3f, chnl);
1136 				return ret;
1137 			}
1138 			val = (ret & ~mask) | (val & mask);
1139 		}
1140 		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1141 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1142 		if (ret < 0) {
1143 			int sloc = loc >> EPB_ADDR_SHF;
1144 			ipath_dev_err(dd, "Global WR failed: elt %d,"
1145 				" addr 0x%X, val %02X\n",
1146 				(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1147 		}
1148 		return ret;
1149 	}
1150 	/* Clear "channel" and set CS so we can simply iterate */
1151 	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1152 	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1153 	for (chnl = 0; chnl < 4; ++chnl) {
1154 		int cloc;
1155 		cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1156 		ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1157 		if (ret < 0) {
1158 			int sloc = loc >> EPB_ADDR_SHF;
1159 			ipath_dev_err(dd, "Write failed: elt %d,"
1160 				" addr 0x%X, chnl %d, val 0x%02X,"
1161 				" mask 0x%02X\n",
1162 				(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1163 				val & 0xFF, mask & 0xFF);
1164 			break;
1165 		}
1166 	}
1167 	return ret;
1168 }
1169 
1170 /*
1171  * Set the Tx values normally modified by IBC in IB1.2 mode to default
1172  * values, as gotten from first row of init table.
1173  */
set_dds_vals(struct ipath_devdata * dd,struct dds_init * ddi)1174 static int set_dds_vals(struct ipath_devdata *dd, struct dds_init *ddi)
1175 {
1176 	int ret;
1177 	int idx, reg, data;
1178 	uint32_t regmap;
1179 
1180 	regmap = DDS_REG_MAP;
1181 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1182 		reg = (regmap & 0xF);
1183 		regmap >>= 4;
1184 		data = ddi->reg_vals[idx];
1185 		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1186 		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1187 		if (ret < 0)
1188 			break;
1189 	}
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Set the Rx values normally modified by IBC in IB1.2 mode to default
1195  * values, as gotten from selected column of init table.
1196  */
set_rxeq_vals(struct ipath_devdata * dd,int vsel)1197 static int set_rxeq_vals(struct ipath_devdata *dd, int vsel)
1198 {
1199 	int ret;
1200 	int ridx;
1201 	int cnt = ARRAY_SIZE(rxeq_init_vals);
1202 
1203 	for (ridx = 0; ridx < cnt; ++ridx) {
1204 		int elt, reg, val, loc;
1205 		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1206 		reg = rxeq_init_vals[ridx].rdesc >> 4;
1207 		loc = EPB_LOC(0, elt, reg);
1208 		val = rxeq_init_vals[ridx].rdata[vsel];
1209 		/* mask of 0xFF, because hardware does full-byte store. */
1210 		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1211 		if (ret < 0)
1212 			break;
1213 	}
1214 	return ret;
1215 }
1216 
1217 /*
1218  * Set the default values (row 0) for DDR Driver Demphasis.
1219  * we do this initially and whenever we turn off IB-1.2
1220  * The "default" values for Rx equalization are also stored to
1221  * SerDes registers. Formerly (and still default), we used set 2.
1222  * For experimenting with cables and link-partners, we allow changing
1223  * that via a module parameter.
1224  */
1225 static unsigned ipath_rxeq_set = 2;
1226 module_param_named(rxeq_default_set, ipath_rxeq_set, uint,
1227 	S_IWUSR | S_IRUGO);
1228 MODULE_PARM_DESC(rxeq_default_set,
1229 	"Which set [0..3] of Rx Equalization values is default");
1230 
ipath_internal_presets(struct ipath_devdata * dd)1231 static int ipath_internal_presets(struct ipath_devdata *dd)
1232 {
1233 	int ret = 0;
1234 
1235 	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1236 
1237 	if (ret < 0)
1238 		ipath_dev_err(dd, "Failed to set default DDS values\n");
1239 	ret = set_rxeq_vals(dd, ipath_rxeq_set & 3);
1240 	if (ret < 0)
1241 		ipath_dev_err(dd, "Failed to set default RXEQ values\n");
1242 	return ret;
1243 }
1244 
ipath_sd7220_presets(struct ipath_devdata * dd)1245 int ipath_sd7220_presets(struct ipath_devdata *dd)
1246 {
1247 	int ret = 0;
1248 
1249 	if (!dd->ipath_presets_needed)
1250 		return ret;
1251 	dd->ipath_presets_needed = 0;
1252 	/* Assert uC reset, so we don't clash with it. */
1253 	ipath_ibsd_reset(dd, 1);
1254 	udelay(2);
1255 	ipath_sd_trimdone_monitor(dd, "link-down");
1256 
1257 	ret = ipath_internal_presets(dd);
1258 return ret;
1259 }
1260 
ipath_sd_trimself(struct ipath_devdata * dd,int val)1261 static int ipath_sd_trimself(struct ipath_devdata *dd, int val)
1262 {
1263 	return ibsd_sto_noisy(dd, CMUCTRL5, val, 0xFF);
1264 }
1265 
ipath_sd_early(struct ipath_devdata * dd)1266 static int ipath_sd_early(struct ipath_devdata *dd)
1267 {
1268 	int ret = -1; /* Default failed */
1269 	int chnl;
1270 
1271 	for (chnl = 0; chnl < 4; ++chnl) {
1272 		ret = ibsd_sto_noisy(dd, RXHSCTRL0(chnl), 0xD4, 0xFF);
1273 		if (ret < 0)
1274 			goto bail;
1275 	}
1276 	for (chnl = 0; chnl < 4; ++chnl) {
1277 		ret = ibsd_sto_noisy(dd, VCDL_DAC2(chnl), 0x2D, 0xFF);
1278 		if (ret < 0)
1279 			goto bail;
1280 	}
1281 	/* more fine-tuning of what will be default */
1282 	for (chnl = 0; chnl < 4; ++chnl) {
1283 		ret = ibsd_sto_noisy(dd, VCDL_CTRL2(chnl), 3, 0xF);
1284 		if (ret < 0)
1285 			goto bail;
1286 	}
1287 	for (chnl = 0; chnl < 4; ++chnl) {
1288 		ret = ibsd_sto_noisy(dd, START_EQ1(chnl), 0x10, 0xFF);
1289 		if (ret < 0)
1290 			goto bail;
1291 	}
1292 	for (chnl = 0; chnl < 4; ++chnl) {
1293 		ret = ibsd_sto_noisy(dd, START_EQ2(chnl), 0x30, 0xFF);
1294 		if (ret < 0)
1295 			goto bail;
1296 	}
1297 bail:
1298 	return ret;
1299 }
1300 
1301 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304 
ipath_sd_dactrim(struct ipath_devdata * dd)1305 static int ipath_sd_dactrim(struct ipath_devdata *dd)
1306 {
1307 	int ret = -1; /* Default failed */
1308 	int chnl;
1309 
1310 	for (chnl = 0; chnl < 4; ++chnl) {
1311 		ret = ibsd_sto_noisy(dd, BACTRL(chnl), 0x40, 0xFF);
1312 		if (ret < 0)
1313 			goto bail;
1314 	}
1315 	for (chnl = 0; chnl < 4; ++chnl) {
1316 		ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x04, 0xFF);
1317 		if (ret < 0)
1318 			goto bail;
1319 	}
1320 	for (chnl = 0; chnl < 4; ++chnl) {
1321 		ret = ibsd_sto_noisy(dd, RXHSSTATUS(chnl), 0x04, 0xFF);
1322 		if (ret < 0)
1323 			goto bail;
1324 	}
1325 	/*
1326 	 * delay for max possible number of steps, with slop.
1327 	 * Each step is about 4usec.
1328 	 */
1329 	udelay(415);
1330 	for (chnl = 0; chnl < 4; ++chnl) {
1331 		ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x00, 0xFF);
1332 		if (ret < 0)
1333 			goto bail;
1334 	}
1335 bail:
1336 	return ret;
1337 }
1338 
1339 #define RELOCK_FIRST_MS 3
1340 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
ipath_toggle_rclkrls(struct ipath_devdata * dd)1341 void ipath_toggle_rclkrls(struct ipath_devdata *dd)
1342 {
1343 	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1344 	int ret;
1345 
1346 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1347 	if (ret < 0)
1348 		ipath_dev_err(dd, "RCLKRLS failed to clear D7\n");
1349 	else {
1350 		udelay(1);
1351 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1352 	}
1353 	/* And again for good measure */
1354 	udelay(1);
1355 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1356 	if (ret < 0)
1357 		ipath_dev_err(dd, "RCLKRLS failed to clear D7\n");
1358 	else {
1359 		udelay(1);
1360 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1361 	}
1362 	/* Now reset xgxs and IBC to complete the recovery */
1363 	dd->ipath_f_xgxs_reset(dd);
1364 }
1365 
1366 /*
1367  * Shut down the timer that polls for relock occasions, if needed
1368  * this is "hooked" from ipath_7220_quiet_serdes(), which is called
1369  * just before ipath_shutdown_device() in ipath_driver.c shuts down all
1370  * the other timers
1371  */
ipath_shutdown_relock_poll(struct ipath_devdata * dd)1372 void ipath_shutdown_relock_poll(struct ipath_devdata *dd)
1373 {
1374 	struct ipath_relock *irp = &dd->ipath_relock_singleton;
1375 	if (atomic_read(&irp->ipath_relock_timer_active)) {
1376 		del_timer_sync(&irp->ipath_relock_timer);
1377 		atomic_set(&irp->ipath_relock_timer_active, 0);
1378 	}
1379 }
1380 
1381 static unsigned ipath_relock_by_timer = 1;
1382 module_param_named(relock_by_timer, ipath_relock_by_timer, uint,
1383 	S_IWUSR | S_IRUGO);
1384 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385 
ipath_run_relock(unsigned long opaque)1386 static void ipath_run_relock(unsigned long opaque)
1387 {
1388 	struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
1389 	struct ipath_relock *irp = &dd->ipath_relock_singleton;
1390 	u64 val, ltstate;
1391 
1392 	if (!(dd->ipath_flags & IPATH_INITTED)) {
1393 		/* Not yet up, just reenable the timer for later */
1394 		irp->ipath_relock_interval = HZ;
1395 		mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * Check link-training state for "stuck" state.
1401 	 * if found, try relock and schedule another try at
1402 	 * exponentially growing delay, maxed at one second.
1403 	 * if not stuck, our work is done.
1404 	 */
1405 	val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
1406 	ltstate = ipath_ib_linktrstate(dd, val);
1407 
1408 	if (ltstate <= INFINIPATH_IBCS_LT_STATE_CFGWAITRMT
1409 		&& ltstate != INFINIPATH_IBCS_LT_STATE_LINKUP) {
1410 		int timeoff;
1411 		/* Not up yet. Try again, if allowed by module-param */
1412 		if (ipath_relock_by_timer) {
1413 			if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG)
1414 				ipath_cdbg(VERBOSE, "Skip RELOCK in AUTONEG\n");
1415 			else if (!(dd->ipath_flags & IPATH_IB_LINK_DISABLED)) {
1416 				ipath_cdbg(VERBOSE, "RELOCK\n");
1417 				ipath_toggle_rclkrls(dd);
1418 			}
1419 		}
1420 		/* re-set timer for next check */
1421 		timeoff = irp->ipath_relock_interval << 1;
1422 		if (timeoff > HZ)
1423 			timeoff = HZ;
1424 		irp->ipath_relock_interval = timeoff;
1425 
1426 		mod_timer(&irp->ipath_relock_timer, jiffies + timeoff);
1427 	} else {
1428 		/* Up, so no more need to check so often */
1429 		mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1430 	}
1431 }
1432 
ipath_set_relock_poll(struct ipath_devdata * dd,int ibup)1433 void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup)
1434 {
1435 	struct ipath_relock *irp = &dd->ipath_relock_singleton;
1436 
1437 	if (ibup > 0) {
1438 		/* we are now up, so relax timer to 1 second interval */
1439 		if (atomic_read(&irp->ipath_relock_timer_active))
1440 			mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1441 	} else {
1442 		/* Transition to down, (re-)set timer to short interval. */
1443 		int timeout;
1444 		timeout = (HZ * ((ibup == -1) ? 1000 : RELOCK_FIRST_MS))/1000;
1445 		if (timeout == 0)
1446 			timeout = 1;
1447 		/* If timer has not yet been started, do so. */
1448 		if (atomic_inc_return(&irp->ipath_relock_timer_active) == 1) {
1449 			init_timer(&irp->ipath_relock_timer);
1450 			irp->ipath_relock_timer.function = ipath_run_relock;
1451 			irp->ipath_relock_timer.data = (unsigned long) dd;
1452 			irp->ipath_relock_interval = timeout;
1453 			irp->ipath_relock_timer.expires = jiffies + timeout;
1454 			add_timer(&irp->ipath_relock_timer);
1455 		} else {
1456 			irp->ipath_relock_interval = timeout;
1457 			mod_timer(&irp->ipath_relock_timer, jiffies + timeout);
1458 			atomic_dec(&irp->ipath_relock_timer_active);
1459 		}
1460 	}
1461 }
1462 
1463