• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
3  * Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  * NON INFRINGEMENT.  See the GNU General Public License for more
14  * details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 /*P:450 This file contains the x86-specific lguest code.  It used to be all
21  * mixed in with drivers/lguest/core.c but several foolhardy code slashers
22  * wrestled most of the dependencies out to here in preparation for porting
23  * lguest to other architectures (see what I mean by foolhardy?).
24  *
25  * This also contains a couple of non-obvious setup and teardown pieces which
26  * were implemented after days of debugging pain. :*/
27 #include <linux/kernel.h>
28 #include <linux/start_kernel.h>
29 #include <linux/string.h>
30 #include <linux/console.h>
31 #include <linux/screen_info.h>
32 #include <linux/irq.h>
33 #include <linux/interrupt.h>
34 #include <linux/clocksource.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/lguest.h>
38 #include <linux/lguest_launcher.h>
39 #include <asm/paravirt.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/desc.h>
44 #include <asm/setup.h>
45 #include <asm/lguest.h>
46 #include <asm/uaccess.h>
47 #include <asm/i387.h>
48 #include "../lg.h"
49 
50 static int cpu_had_pge;
51 
52 static struct {
53 	unsigned long offset;
54 	unsigned short segment;
55 } lguest_entry;
56 
57 /* Offset from where switcher.S was compiled to where we've copied it */
switcher_offset(void)58 static unsigned long switcher_offset(void)
59 {
60 	return SWITCHER_ADDR - (unsigned long)start_switcher_text;
61 }
62 
63 /* This cpu's struct lguest_pages. */
lguest_pages(unsigned int cpu)64 static struct lguest_pages *lguest_pages(unsigned int cpu)
65 {
66 	return &(((struct lguest_pages *)
67 		  (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
68 }
69 
70 static DEFINE_PER_CPU(struct lg_cpu *, last_cpu);
71 
72 /*S:010
73  * We approach the Switcher.
74  *
75  * Remember that each CPU has two pages which are visible to the Guest when it
76  * runs on that CPU.  This has to contain the state for that Guest: we copy the
77  * state in just before we run the Guest.
78  *
79  * Each Guest has "changed" flags which indicate what has changed in the Guest
80  * since it last ran.  We saw this set in interrupts_and_traps.c and
81  * segments.c.
82  */
copy_in_guest_info(struct lg_cpu * cpu,struct lguest_pages * pages)83 static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
84 {
85 	/* Copying all this data can be quite expensive.  We usually run the
86 	 * same Guest we ran last time (and that Guest hasn't run anywhere else
87 	 * meanwhile).  If that's not the case, we pretend everything in the
88 	 * Guest has changed. */
89 	if (__get_cpu_var(last_cpu) != cpu || cpu->last_pages != pages) {
90 		__get_cpu_var(last_cpu) = cpu;
91 		cpu->last_pages = pages;
92 		cpu->changed = CHANGED_ALL;
93 	}
94 
95 	/* These copies are pretty cheap, so we do them unconditionally: */
96 	/* Save the current Host top-level page directory. */
97 	pages->state.host_cr3 = __pa(current->mm->pgd);
98 	/* Set up the Guest's page tables to see this CPU's pages (and no
99 	 * other CPU's pages). */
100 	map_switcher_in_guest(cpu, pages);
101 	/* Set up the two "TSS" members which tell the CPU what stack to use
102 	 * for traps which do directly into the Guest (ie. traps at privilege
103 	 * level 1). */
104 	pages->state.guest_tss.sp1 = cpu->esp1;
105 	pages->state.guest_tss.ss1 = cpu->ss1;
106 
107 	/* Copy direct-to-Guest trap entries. */
108 	if (cpu->changed & CHANGED_IDT)
109 		copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
110 
111 	/* Copy all GDT entries which the Guest can change. */
112 	if (cpu->changed & CHANGED_GDT)
113 		copy_gdt(cpu, pages->state.guest_gdt);
114 	/* If only the TLS entries have changed, copy them. */
115 	else if (cpu->changed & CHANGED_GDT_TLS)
116 		copy_gdt_tls(cpu, pages->state.guest_gdt);
117 
118 	/* Mark the Guest as unchanged for next time. */
119 	cpu->changed = 0;
120 }
121 
122 /* Finally: the code to actually call into the Switcher to run the Guest. */
run_guest_once(struct lg_cpu * cpu,struct lguest_pages * pages)123 static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
124 {
125 	/* This is a dummy value we need for GCC's sake. */
126 	unsigned int clobber;
127 
128 	/* Copy the guest-specific information into this CPU's "struct
129 	 * lguest_pages". */
130 	copy_in_guest_info(cpu, pages);
131 
132 	/* Set the trap number to 256 (impossible value).  If we fault while
133 	 * switching to the Guest (bad segment registers or bug), this will
134 	 * cause us to abort the Guest. */
135 	cpu->regs->trapnum = 256;
136 
137 	/* Now: we push the "eflags" register on the stack, then do an "lcall".
138 	 * This is how we change from using the kernel code segment to using
139 	 * the dedicated lguest code segment, as well as jumping into the
140 	 * Switcher.
141 	 *
142 	 * The lcall also pushes the old code segment (KERNEL_CS) onto the
143 	 * stack, then the address of this call.  This stack layout happens to
144 	 * exactly match the stack layout created by an interrupt... */
145 	asm volatile("pushf; lcall *lguest_entry"
146 		     /* This is how we tell GCC that %eax ("a") and %ebx ("b")
147 		      * are changed by this routine.  The "=" means output. */
148 		     : "=a"(clobber), "=b"(clobber)
149 		     /* %eax contains the pages pointer.  ("0" refers to the
150 		      * 0-th argument above, ie "a").  %ebx contains the
151 		      * physical address of the Guest's top-level page
152 		      * directory. */
153 		     : "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
154 		     /* We tell gcc that all these registers could change,
155 		      * which means we don't have to save and restore them in
156 		      * the Switcher. */
157 		     : "memory", "%edx", "%ecx", "%edi", "%esi");
158 }
159 /*:*/
160 
161 /*M:002 There are hooks in the scheduler which we can register to tell when we
162  * get kicked off the CPU (preempt_notifier_register()).  This would allow us
163  * to lazily disable SYSENTER which would regain some performance, and should
164  * also simplify copy_in_guest_info().  Note that we'd still need to restore
165  * things when we exit to Launcher userspace, but that's fairly easy.
166  *
167  * We could also try using this hooks for PGE, but that might be too expensive.
168  *
169  * The hooks were designed for KVM, but we can also put them to good use. :*/
170 
171 /*H:040 This is the i386-specific code to setup and run the Guest.  Interrupts
172  * are disabled: we own the CPU. */
lguest_arch_run_guest(struct lg_cpu * cpu)173 void lguest_arch_run_guest(struct lg_cpu *cpu)
174 {
175 	/* Remember the awfully-named TS bit?  If the Guest has asked to set it
176 	 * we set it now, so we can trap and pass that trap to the Guest if it
177 	 * uses the FPU. */
178 	if (cpu->ts)
179 		unlazy_fpu(current);
180 
181 	/* SYSENTER is an optimized way of doing system calls.  We can't allow
182 	 * it because it always jumps to privilege level 0.  A normal Guest
183 	 * won't try it because we don't advertise it in CPUID, but a malicious
184 	 * Guest (or malicious Guest userspace program) could, so we tell the
185 	 * CPU to disable it before running the Guest. */
186 	if (boot_cpu_has(X86_FEATURE_SEP))
187 		wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
188 
189 	/* Now we actually run the Guest.  It will return when something
190 	 * interesting happens, and we can examine its registers to see what it
191 	 * was doing. */
192 	run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
193 
194 	/* Note that the "regs" structure contains two extra entries which are
195 	 * not really registers: a trap number which says what interrupt or
196 	 * trap made the switcher code come back, and an error code which some
197 	 * traps set.  */
198 
199 	 /* Restore SYSENTER if it's supposed to be on. */
200 	 if (boot_cpu_has(X86_FEATURE_SEP))
201 		wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
202 
203 	/* If the Guest page faulted, then the cr2 register will tell us the
204 	 * bad virtual address.  We have to grab this now, because once we
205 	 * re-enable interrupts an interrupt could fault and thus overwrite
206 	 * cr2, or we could even move off to a different CPU. */
207 	if (cpu->regs->trapnum == 14)
208 		cpu->arch.last_pagefault = read_cr2();
209 	/* Similarly, if we took a trap because the Guest used the FPU,
210 	 * we have to restore the FPU it expects to see.
211 	 * math_state_restore() may sleep and we may even move off to
212 	 * a different CPU. So all the critical stuff should be done
213 	 * before this.  */
214 	else if (cpu->regs->trapnum == 7)
215 		math_state_restore();
216 }
217 
218 /*H:130 Now we've examined the hypercall code; our Guest can make requests.
219  * Our Guest is usually so well behaved; it never tries to do things it isn't
220  * allowed to, and uses hypercalls instead.  Unfortunately, Linux's paravirtual
221  * infrastructure isn't quite complete, because it doesn't contain replacements
222  * for the Intel I/O instructions.  As a result, the Guest sometimes fumbles
223  * across one during the boot process as it probes for various things which are
224  * usually attached to a PC.
225  *
226  * When the Guest uses one of these instructions, we get a trap (General
227  * Protection Fault) and come here.  We see if it's one of those troublesome
228  * instructions and skip over it.  We return true if we did. */
emulate_insn(struct lg_cpu * cpu)229 static int emulate_insn(struct lg_cpu *cpu)
230 {
231 	u8 insn;
232 	unsigned int insnlen = 0, in = 0, shift = 0;
233 	/* The eip contains the *virtual* address of the Guest's instruction:
234 	 * guest_pa just subtracts the Guest's page_offset. */
235 	unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
236 
237 	/* This must be the Guest kernel trying to do something, not userspace!
238 	 * The bottom two bits of the CS segment register are the privilege
239 	 * level. */
240 	if ((cpu->regs->cs & 3) != GUEST_PL)
241 		return 0;
242 
243 	/* Decoding x86 instructions is icky. */
244 	insn = lgread(cpu, physaddr, u8);
245 
246 	/* 0x66 is an "operand prefix".  It means it's using the upper 16 bits
247 	   of the eax register. */
248 	if (insn == 0x66) {
249 		shift = 16;
250 		/* The instruction is 1 byte so far, read the next byte. */
251 		insnlen = 1;
252 		insn = lgread(cpu, physaddr + insnlen, u8);
253 	}
254 
255 	/* We can ignore the lower bit for the moment and decode the 4 opcodes
256 	 * we need to emulate. */
257 	switch (insn & 0xFE) {
258 	case 0xE4: /* in     <next byte>,%al */
259 		insnlen += 2;
260 		in = 1;
261 		break;
262 	case 0xEC: /* in     (%dx),%al */
263 		insnlen += 1;
264 		in = 1;
265 		break;
266 	case 0xE6: /* out    %al,<next byte> */
267 		insnlen += 2;
268 		break;
269 	case 0xEE: /* out    %al,(%dx) */
270 		insnlen += 1;
271 		break;
272 	default:
273 		/* OK, we don't know what this is, can't emulate. */
274 		return 0;
275 	}
276 
277 	/* If it was an "IN" instruction, they expect the result to be read
278 	 * into %eax, so we change %eax.  We always return all-ones, which
279 	 * traditionally means "there's nothing there". */
280 	if (in) {
281 		/* Lower bit tells is whether it's a 16 or 32 bit access */
282 		if (insn & 0x1)
283 			cpu->regs->eax = 0xFFFFFFFF;
284 		else
285 			cpu->regs->eax |= (0xFFFF << shift);
286 	}
287 	/* Finally, we've "done" the instruction, so move past it. */
288 	cpu->regs->eip += insnlen;
289 	/* Success! */
290 	return 1;
291 }
292 
293 /*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
lguest_arch_handle_trap(struct lg_cpu * cpu)294 void lguest_arch_handle_trap(struct lg_cpu *cpu)
295 {
296 	switch (cpu->regs->trapnum) {
297 	case 13: /* We've intercepted a General Protection Fault. */
298 		/* Check if this was one of those annoying IN or OUT
299 		 * instructions which we need to emulate.  If so, we just go
300 		 * back into the Guest after we've done it. */
301 		if (cpu->regs->errcode == 0) {
302 			if (emulate_insn(cpu))
303 				return;
304 		}
305 		break;
306 	case 14: /* We've intercepted a Page Fault. */
307 		/* The Guest accessed a virtual address that wasn't mapped.
308 		 * This happens a lot: we don't actually set up most of the page
309 		 * tables for the Guest at all when we start: as it runs it asks
310 		 * for more and more, and we set them up as required. In this
311 		 * case, we don't even tell the Guest that the fault happened.
312 		 *
313 		 * The errcode tells whether this was a read or a write, and
314 		 * whether kernel or userspace code. */
315 		if (demand_page(cpu, cpu->arch.last_pagefault,
316 				cpu->regs->errcode))
317 			return;
318 
319 		/* OK, it's really not there (or not OK): the Guest needs to
320 		 * know.  We write out the cr2 value so it knows where the
321 		 * fault occurred.
322 		 *
323 		 * Note that if the Guest were really messed up, this could
324 		 * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
325 		 * lg->lguest_data could be NULL */
326 		if (cpu->lg->lguest_data &&
327 		    put_user(cpu->arch.last_pagefault,
328 			     &cpu->lg->lguest_data->cr2))
329 			kill_guest(cpu, "Writing cr2");
330 		break;
331 	case 7: /* We've intercepted a Device Not Available fault. */
332 		/* If the Guest doesn't want to know, we already restored the
333 		 * Floating Point Unit, so we just continue without telling
334 		 * it. */
335 		if (!cpu->ts)
336 			return;
337 		break;
338 	case 32 ... 255:
339 		/* These values mean a real interrupt occurred, in which case
340 		 * the Host handler has already been run.  We just do a
341 		 * friendly check if another process should now be run, then
342 		 * return to run the Guest again */
343 		cond_resched();
344 		return;
345 	case LGUEST_TRAP_ENTRY:
346 		/* Our 'struct hcall_args' maps directly over our regs: we set
347 		 * up the pointer now to indicate a hypercall is pending. */
348 		cpu->hcall = (struct hcall_args *)cpu->regs;
349 		return;
350 	}
351 
352 	/* We didn't handle the trap, so it needs to go to the Guest. */
353 	if (!deliver_trap(cpu, cpu->regs->trapnum))
354 		/* If the Guest doesn't have a handler (either it hasn't
355 		 * registered any yet, or it's one of the faults we don't let
356 		 * it handle), it dies with this cryptic error message. */
357 		kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
358 			   cpu->regs->trapnum, cpu->regs->eip,
359 			   cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
360 			   : cpu->regs->errcode);
361 }
362 
363 /* Now we can look at each of the routines this calls, in increasing order of
364  * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
365  * deliver_trap() and demand_page().  After all those, we'll be ready to
366  * examine the Switcher, and our philosophical understanding of the Host/Guest
367  * duality will be complete. :*/
adjust_pge(void * on)368 static void adjust_pge(void *on)
369 {
370 	if (on)
371 		write_cr4(read_cr4() | X86_CR4_PGE);
372 	else
373 		write_cr4(read_cr4() & ~X86_CR4_PGE);
374 }
375 
376 /*H:020 Now the Switcher is mapped and every thing else is ready, we need to do
377  * some more i386-specific initialization. */
lguest_arch_host_init(void)378 void __init lguest_arch_host_init(void)
379 {
380 	int i;
381 
382 	/* Most of the i386/switcher.S doesn't care that it's been moved; on
383 	 * Intel, jumps are relative, and it doesn't access any references to
384 	 * external code or data.
385 	 *
386 	 * The only exception is the interrupt handlers in switcher.S: their
387 	 * addresses are placed in a table (default_idt_entries), so we need to
388 	 * update the table with the new addresses.  switcher_offset() is a
389 	 * convenience function which returns the distance between the
390 	 * compiled-in switcher code and the high-mapped copy we just made. */
391 	for (i = 0; i < IDT_ENTRIES; i++)
392 		default_idt_entries[i] += switcher_offset();
393 
394 	/*
395 	 * Set up the Switcher's per-cpu areas.
396 	 *
397 	 * Each CPU gets two pages of its own within the high-mapped region
398 	 * (aka. "struct lguest_pages").  Much of this can be initialized now,
399 	 * but some depends on what Guest we are running (which is set up in
400 	 * copy_in_guest_info()).
401 	 */
402 	for_each_possible_cpu(i) {
403 		/* lguest_pages() returns this CPU's two pages. */
404 		struct lguest_pages *pages = lguest_pages(i);
405 		/* This is a convenience pointer to make the code fit one
406 		 * statement to a line. */
407 		struct lguest_ro_state *state = &pages->state;
408 
409 		/* The Global Descriptor Table: the Host has a different one
410 		 * for each CPU.  We keep a descriptor for the GDT which says
411 		 * where it is and how big it is (the size is actually the last
412 		 * byte, not the size, hence the "-1"). */
413 		state->host_gdt_desc.size = GDT_SIZE-1;
414 		state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
415 
416 		/* All CPUs on the Host use the same Interrupt Descriptor
417 		 * Table, so we just use store_idt(), which gets this CPU's IDT
418 		 * descriptor. */
419 		store_idt(&state->host_idt_desc);
420 
421 		/* The descriptors for the Guest's GDT and IDT can be filled
422 		 * out now, too.  We copy the GDT & IDT into ->guest_gdt and
423 		 * ->guest_idt before actually running the Guest. */
424 		state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
425 		state->guest_idt_desc.address = (long)&state->guest_idt;
426 		state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
427 		state->guest_gdt_desc.address = (long)&state->guest_gdt;
428 
429 		/* We know where we want the stack to be when the Guest enters
430 		 * the Switcher: in pages->regs.  The stack grows upwards, so
431 		 * we start it at the end of that structure. */
432 		state->guest_tss.sp0 = (long)(&pages->regs + 1);
433 		/* And this is the GDT entry to use for the stack: we keep a
434 		 * couple of special LGUEST entries. */
435 		state->guest_tss.ss0 = LGUEST_DS;
436 
437 		/* x86 can have a finegrained bitmap which indicates what I/O
438 		 * ports the process can use.  We set it to the end of our
439 		 * structure, meaning "none". */
440 		state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
441 
442 		/* Some GDT entries are the same across all Guests, so we can
443 		 * set them up now. */
444 		setup_default_gdt_entries(state);
445 		/* Most IDT entries are the same for all Guests, too.*/
446 		setup_default_idt_entries(state, default_idt_entries);
447 
448 		/* The Host needs to be able to use the LGUEST segments on this
449 		 * CPU, too, so put them in the Host GDT. */
450 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
451 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
452 	}
453 
454 	/* In the Switcher, we want the %cs segment register to use the
455 	 * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
456 	 * it will be undisturbed when we switch.  To change %cs and jump we
457 	 * need this structure to feed to Intel's "lcall" instruction. */
458 	lguest_entry.offset = (long)switch_to_guest + switcher_offset();
459 	lguest_entry.segment = LGUEST_CS;
460 
461 	/* Finally, we need to turn off "Page Global Enable".  PGE is an
462 	 * optimization where page table entries are specially marked to show
463 	 * they never change.  The Host kernel marks all the kernel pages this
464 	 * way because it's always present, even when userspace is running.
465 	 *
466 	 * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
467 	 * switch to the Guest kernel.  If you don't disable this on all CPUs,
468 	 * you'll get really weird bugs that you'll chase for two days.
469 	 *
470 	 * I used to turn PGE off every time we switched to the Guest and back
471 	 * on when we return, but that slowed the Switcher down noticibly. */
472 
473 	/* We don't need the complexity of CPUs coming and going while we're
474 	 * doing this. */
475 	get_online_cpus();
476 	if (cpu_has_pge) { /* We have a broader idea of "global". */
477 		/* Remember that this was originally set (for cleanup). */
478 		cpu_had_pge = 1;
479 		/* adjust_pge is a helper function which sets or unsets the PGE
480 		 * bit on its CPU, depending on the argument (0 == unset). */
481 		on_each_cpu(adjust_pge, (void *)0, 1);
482 		/* Turn off the feature in the global feature set. */
483 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
484 	}
485 	put_online_cpus();
486 };
487 /*:*/
488 
lguest_arch_host_fini(void)489 void __exit lguest_arch_host_fini(void)
490 {
491 	/* If we had PGE before we started, turn it back on now. */
492 	get_online_cpus();
493 	if (cpu_had_pge) {
494 		set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
495 		/* adjust_pge's argument "1" means set PGE. */
496 		on_each_cpu(adjust_pge, (void *)1, 1);
497 	}
498 	put_online_cpus();
499 }
500 
501 
502 /*H:122 The i386-specific hypercalls simply farm out to the right functions. */
lguest_arch_do_hcall(struct lg_cpu * cpu,struct hcall_args * args)503 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
504 {
505 	switch (args->arg0) {
506 	case LHCALL_LOAD_GDT:
507 		load_guest_gdt(cpu, args->arg1, args->arg2);
508 		break;
509 	case LHCALL_LOAD_IDT_ENTRY:
510 		load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
511 		break;
512 	case LHCALL_LOAD_TLS:
513 		guest_load_tls(cpu, args->arg1);
514 		break;
515 	default:
516 		/* Bad Guest.  Bad! */
517 		return -EIO;
518 	}
519 	return 0;
520 }
521 
522 /*H:126 i386-specific hypercall initialization: */
lguest_arch_init_hypercalls(struct lg_cpu * cpu)523 int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
524 {
525 	u32 tsc_speed;
526 
527 	/* The pointer to the Guest's "struct lguest_data" is the only argument.
528 	 * We check that address now. */
529 	if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
530 			       sizeof(*cpu->lg->lguest_data)))
531 		return -EFAULT;
532 
533 	/* Having checked it, we simply set lg->lguest_data to point straight
534 	 * into the Launcher's memory at the right place and then use
535 	 * copy_to_user/from_user from now on, instead of lgread/write.  I put
536 	 * this in to show that I'm not immune to writing stupid
537 	 * optimizations. */
538 	cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
539 
540 	/* We insist that the Time Stamp Counter exist and doesn't change with
541 	 * cpu frequency.  Some devious chip manufacturers decided that TSC
542 	 * changes could be handled in software.  I decided that time going
543 	 * backwards might be good for benchmarks, but it's bad for users.
544 	 *
545 	 * We also insist that the TSC be stable: the kernel detects unreliable
546 	 * TSCs for its own purposes, and we use that here. */
547 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
548 		tsc_speed = tsc_khz;
549 	else
550 		tsc_speed = 0;
551 	if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
552 		return -EFAULT;
553 
554 	/* The interrupt code might not like the system call vector. */
555 	if (!check_syscall_vector(cpu->lg))
556 		kill_guest(cpu, "bad syscall vector");
557 
558 	return 0;
559 }
560 /*:*/
561 
562 /*L:030 lguest_arch_setup_regs()
563  *
564  * Most of the Guest's registers are left alone: we used get_zeroed_page() to
565  * allocate the structure, so they will be 0. */
lguest_arch_setup_regs(struct lg_cpu * cpu,unsigned long start)566 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
567 {
568 	struct lguest_regs *regs = cpu->regs;
569 
570 	/* There are four "segment" registers which the Guest needs to boot:
571 	 * The "code segment" register (cs) refers to the kernel code segment
572 	 * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
573 	 * refer to the kernel data segment __KERNEL_DS.
574 	 *
575 	 * The privilege level is packed into the lower bits.  The Guest runs
576 	 * at privilege level 1 (GUEST_PL).*/
577 	regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
578 	regs->cs = __KERNEL_CS|GUEST_PL;
579 
580 	/* The "eflags" register contains miscellaneous flags.  Bit 1 (0x002)
581 	 * is supposed to always be "1".  Bit 9 (0x200) controls whether
582 	 * interrupts are enabled.  We always leave interrupts enabled while
583 	 * running the Guest. */
584 	regs->eflags = X86_EFLAGS_IF | 0x2;
585 
586 	/* The "Extended Instruction Pointer" register says where the Guest is
587 	 * running. */
588 	regs->eip = start;
589 
590 	/* %esi points to our boot information, at physical address 0, so don't
591 	 * touch it. */
592 
593 	/* There are a couple of GDT entries the Guest expects when first
594 	 * booting. */
595 	setup_guest_gdt(cpu);
596 }
597