1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
20
21 #define DM_MSG_PREFIX "table"
22
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27
28 /*
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
33 *
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
36 *
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
39 */
40
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
44
45 /* btree table */
46 unsigned int depth;
47 unsigned int counts[MAX_DEPTH]; /* in nodes */
48 sector_t *index[MAX_DEPTH];
49
50 unsigned int num_targets;
51 unsigned int num_allocated;
52 sector_t *highs;
53 struct dm_target *targets;
54
55 unsigned barriers_supported:1;
56
57 /*
58 * Indicates the rw permissions for the new logical
59 * device. This should be a combination of FMODE_READ
60 * and FMODE_WRITE.
61 */
62 fmode_t mode;
63
64 /* a list of devices used by this table */
65 struct list_head devices;
66
67 /*
68 * These are optimistic limits taken from all the
69 * targets, some targets will need smaller limits.
70 */
71 struct io_restrictions limits;
72
73 /* events get handed up using this callback */
74 void (*event_fn)(void *);
75 void *event_context;
76 };
77
78 /*
79 * Similar to ceiling(log_size(n))
80 */
int_log(unsigned int n,unsigned int base)81 static unsigned int int_log(unsigned int n, unsigned int base)
82 {
83 int result = 0;
84
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
88 }
89
90 return result;
91 }
92
93 /*
94 * Returns the minimum that is _not_ zero, unless both are zero.
95 */
96 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
97
98 /*
99 * Combine two io_restrictions, always taking the lower value.
100 */
combine_restrictions_low(struct io_restrictions * lhs,struct io_restrictions * rhs)101 static void combine_restrictions_low(struct io_restrictions *lhs,
102 struct io_restrictions *rhs)
103 {
104 lhs->max_sectors =
105 min_not_zero(lhs->max_sectors, rhs->max_sectors);
106
107 lhs->max_phys_segments =
108 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
109
110 lhs->max_hw_segments =
111 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
112
113 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
114
115 lhs->max_segment_size =
116 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
117
118 lhs->max_hw_sectors =
119 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
120
121 lhs->seg_boundary_mask =
122 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
123
124 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
125
126 lhs->no_cluster |= rhs->no_cluster;
127 }
128
129 /*
130 * Calculate the index of the child node of the n'th node k'th key.
131 */
get_child(unsigned int n,unsigned int k)132 static inline unsigned int get_child(unsigned int n, unsigned int k)
133 {
134 return (n * CHILDREN_PER_NODE) + k;
135 }
136
137 /*
138 * Return the n'th node of level l from table t.
139 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)140 static inline sector_t *get_node(struct dm_table *t,
141 unsigned int l, unsigned int n)
142 {
143 return t->index[l] + (n * KEYS_PER_NODE);
144 }
145
146 /*
147 * Return the highest key that you could lookup from the n'th
148 * node on level l of the btree.
149 */
high(struct dm_table * t,unsigned int l,unsigned int n)150 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
151 {
152 for (; l < t->depth - 1; l++)
153 n = get_child(n, CHILDREN_PER_NODE - 1);
154
155 if (n >= t->counts[l])
156 return (sector_t) - 1;
157
158 return get_node(t, l, n)[KEYS_PER_NODE - 1];
159 }
160
161 /*
162 * Fills in a level of the btree based on the highs of the level
163 * below it.
164 */
setup_btree_index(unsigned int l,struct dm_table * t)165 static int setup_btree_index(unsigned int l, struct dm_table *t)
166 {
167 unsigned int n, k;
168 sector_t *node;
169
170 for (n = 0U; n < t->counts[l]; n++) {
171 node = get_node(t, l, n);
172
173 for (k = 0U; k < KEYS_PER_NODE; k++)
174 node[k] = high(t, l + 1, get_child(n, k));
175 }
176
177 return 0;
178 }
179
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)180 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
181 {
182 unsigned long size;
183 void *addr;
184
185 /*
186 * Check that we're not going to overflow.
187 */
188 if (nmemb > (ULONG_MAX / elem_size))
189 return NULL;
190
191 size = nmemb * elem_size;
192 addr = vmalloc(size);
193 if (addr)
194 memset(addr, 0, size);
195
196 return addr;
197 }
198
199 /*
200 * highs, and targets are managed as dynamic arrays during a
201 * table load.
202 */
alloc_targets(struct dm_table * t,unsigned int num)203 static int alloc_targets(struct dm_table *t, unsigned int num)
204 {
205 sector_t *n_highs;
206 struct dm_target *n_targets;
207 int n = t->num_targets;
208
209 /*
210 * Allocate both the target array and offset array at once.
211 * Append an empty entry to catch sectors beyond the end of
212 * the device.
213 */
214 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
215 sizeof(sector_t));
216 if (!n_highs)
217 return -ENOMEM;
218
219 n_targets = (struct dm_target *) (n_highs + num);
220
221 if (n) {
222 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
223 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
224 }
225
226 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
227 vfree(t->highs);
228
229 t->num_allocated = num;
230 t->highs = n_highs;
231 t->targets = n_targets;
232
233 return 0;
234 }
235
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)236 int dm_table_create(struct dm_table **result, fmode_t mode,
237 unsigned num_targets, struct mapped_device *md)
238 {
239 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
240
241 if (!t)
242 return -ENOMEM;
243
244 INIT_LIST_HEAD(&t->devices);
245 atomic_set(&t->holders, 0);
246 t->barriers_supported = 1;
247
248 if (!num_targets)
249 num_targets = KEYS_PER_NODE;
250
251 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
252
253 if (alloc_targets(t, num_targets)) {
254 kfree(t);
255 t = NULL;
256 return -ENOMEM;
257 }
258
259 t->mode = mode;
260 t->md = md;
261 *result = t;
262 return 0;
263 }
264
free_devices(struct list_head * devices)265 static void free_devices(struct list_head *devices)
266 {
267 struct list_head *tmp, *next;
268
269 list_for_each_safe(tmp, next, devices) {
270 struct dm_dev_internal *dd =
271 list_entry(tmp, struct dm_dev_internal, list);
272 kfree(dd);
273 }
274 }
275
dm_table_destroy(struct dm_table * t)276 void dm_table_destroy(struct dm_table *t)
277 {
278 unsigned int i;
279
280 while (atomic_read(&t->holders))
281 msleep(1);
282 smp_mb();
283
284 /* free the indexes (see dm_table_complete) */
285 if (t->depth >= 2)
286 vfree(t->index[t->depth - 2]);
287
288 /* free the targets */
289 for (i = 0; i < t->num_targets; i++) {
290 struct dm_target *tgt = t->targets + i;
291
292 if (tgt->type->dtr)
293 tgt->type->dtr(tgt);
294
295 dm_put_target_type(tgt->type);
296 }
297
298 vfree(t->highs);
299
300 /* free the device list */
301 if (t->devices.next != &t->devices) {
302 DMWARN("devices still present during destroy: "
303 "dm_table_remove_device calls missing");
304
305 free_devices(&t->devices);
306 }
307
308 kfree(t);
309 }
310
dm_table_get(struct dm_table * t)311 void dm_table_get(struct dm_table *t)
312 {
313 atomic_inc(&t->holders);
314 }
315
dm_table_put(struct dm_table * t)316 void dm_table_put(struct dm_table *t)
317 {
318 if (!t)
319 return;
320
321 smp_mb__before_atomic_dec();
322 atomic_dec(&t->holders);
323 }
324
325 /*
326 * Checks to see if we need to extend highs or targets.
327 */
check_space(struct dm_table * t)328 static inline int check_space(struct dm_table *t)
329 {
330 if (t->num_targets >= t->num_allocated)
331 return alloc_targets(t, t->num_allocated * 2);
332
333 return 0;
334 }
335
336 /*
337 * See if we've already got a device in the list.
338 */
find_device(struct list_head * l,dev_t dev)339 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
340 {
341 struct dm_dev_internal *dd;
342
343 list_for_each_entry (dd, l, list)
344 if (dd->dm_dev.bdev->bd_dev == dev)
345 return dd;
346
347 return NULL;
348 }
349
350 /*
351 * Open a device so we can use it as a map destination.
352 */
open_dev(struct dm_dev_internal * d,dev_t dev,struct mapped_device * md)353 static int open_dev(struct dm_dev_internal *d, dev_t dev,
354 struct mapped_device *md)
355 {
356 static char *_claim_ptr = "I belong to device-mapper";
357 struct block_device *bdev;
358
359 int r;
360
361 BUG_ON(d->dm_dev.bdev);
362
363 bdev = open_by_devnum(dev, d->dm_dev.mode);
364 if (IS_ERR(bdev))
365 return PTR_ERR(bdev);
366 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
367 if (r)
368 blkdev_put(bdev, d->dm_dev.mode);
369 else
370 d->dm_dev.bdev = bdev;
371 return r;
372 }
373
374 /*
375 * Close a device that we've been using.
376 */
close_dev(struct dm_dev_internal * d,struct mapped_device * md)377 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
378 {
379 if (!d->dm_dev.bdev)
380 return;
381
382 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
383 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
384 d->dm_dev.bdev = NULL;
385 }
386
387 /*
388 * If possible, this checks an area of a destination device is valid.
389 */
check_device_area(struct dm_dev_internal * dd,sector_t start,sector_t len)390 static int check_device_area(struct dm_dev_internal *dd, sector_t start,
391 sector_t len)
392 {
393 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT;
394
395 if (!dev_size)
396 return 1;
397
398 return ((start < dev_size) && (len <= (dev_size - start)));
399 }
400
401 /*
402 * This upgrades the mode on an already open dm_dev. Being
403 * careful to leave things as they were if we fail to reopen the
404 * device.
405 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
407 struct mapped_device *md)
408 {
409 int r;
410 struct dm_dev_internal dd_copy;
411 dev_t dev = dd->dm_dev.bdev->bd_dev;
412
413 dd_copy = *dd;
414
415 dd->dm_dev.mode |= new_mode;
416 dd->dm_dev.bdev = NULL;
417 r = open_dev(dd, dev, md);
418 if (!r)
419 close_dev(&dd_copy, md);
420 else
421 *dd = dd_copy;
422
423 return r;
424 }
425
426 /*
427 * Add a device to the list, or just increment the usage count if
428 * it's already present.
429 */
__table_get_device(struct dm_table * t,struct dm_target * ti,const char * path,sector_t start,sector_t len,fmode_t mode,struct dm_dev ** result)430 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
431 const char *path, sector_t start, sector_t len,
432 fmode_t mode, struct dm_dev **result)
433 {
434 int r;
435 dev_t uninitialized_var(dev);
436 struct dm_dev_internal *dd;
437 unsigned int major, minor;
438
439 BUG_ON(!t);
440
441 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
442 /* Extract the major/minor numbers */
443 dev = MKDEV(major, minor);
444 if (MAJOR(dev) != major || MINOR(dev) != minor)
445 return -EOVERFLOW;
446 } else {
447 /* convert the path to a device */
448 struct block_device *bdev = lookup_bdev(path);
449
450 if (IS_ERR(bdev))
451 return PTR_ERR(bdev);
452 dev = bdev->bd_dev;
453 bdput(bdev);
454 }
455
456 dd = find_device(&t->devices, dev);
457 if (!dd) {
458 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
459 if (!dd)
460 return -ENOMEM;
461
462 dd->dm_dev.mode = mode;
463 dd->dm_dev.bdev = NULL;
464
465 if ((r = open_dev(dd, dev, t->md))) {
466 kfree(dd);
467 return r;
468 }
469
470 format_dev_t(dd->dm_dev.name, dev);
471
472 atomic_set(&dd->count, 0);
473 list_add(&dd->list, &t->devices);
474
475 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
476 r = upgrade_mode(dd, mode, t->md);
477 if (r)
478 return r;
479 }
480 atomic_inc(&dd->count);
481
482 if (!check_device_area(dd, start, len)) {
483 DMWARN("device %s too small for target", path);
484 dm_put_device(ti, &dd->dm_dev);
485 return -EINVAL;
486 }
487
488 *result = &dd->dm_dev;
489
490 return 0;
491 }
492
dm_set_device_limits(struct dm_target * ti,struct block_device * bdev)493 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
494 {
495 struct request_queue *q = bdev_get_queue(bdev);
496 struct io_restrictions *rs = &ti->limits;
497 char b[BDEVNAME_SIZE];
498
499 if (unlikely(!q)) {
500 DMWARN("%s: Cannot set limits for nonexistent device %s",
501 dm_device_name(ti->table->md), bdevname(bdev, b));
502 return;
503 }
504
505 /*
506 * Combine the device limits low.
507 *
508 * FIXME: if we move an io_restriction struct
509 * into q this would just be a call to
510 * combine_restrictions_low()
511 */
512 rs->max_sectors =
513 min_not_zero(rs->max_sectors, q->max_sectors);
514
515 /*
516 * Check if merge fn is supported.
517 * If not we'll force DM to use PAGE_SIZE or
518 * smaller I/O, just to be safe.
519 */
520
521 if (q->merge_bvec_fn && !ti->type->merge)
522 rs->max_sectors =
523 min_not_zero(rs->max_sectors,
524 (unsigned int) (PAGE_SIZE >> 9));
525
526 rs->max_phys_segments =
527 min_not_zero(rs->max_phys_segments,
528 q->max_phys_segments);
529
530 rs->max_hw_segments =
531 min_not_zero(rs->max_hw_segments, q->max_hw_segments);
532
533 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
534
535 rs->max_segment_size =
536 min_not_zero(rs->max_segment_size, q->max_segment_size);
537
538 rs->max_hw_sectors =
539 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
540
541 rs->seg_boundary_mask =
542 min_not_zero(rs->seg_boundary_mask,
543 q->seg_boundary_mask);
544
545 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
546
547 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
548 }
549 EXPORT_SYMBOL_GPL(dm_set_device_limits);
550
dm_get_device(struct dm_target * ti,const char * path,sector_t start,sector_t len,fmode_t mode,struct dm_dev ** result)551 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
552 sector_t len, fmode_t mode, struct dm_dev **result)
553 {
554 int r = __table_get_device(ti->table, ti, path,
555 start, len, mode, result);
556
557 if (!r)
558 dm_set_device_limits(ti, (*result)->bdev);
559
560 return r;
561 }
562
563 /*
564 * Decrement a devices use count and remove it if necessary.
565 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)566 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
567 {
568 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
569 dm_dev);
570
571 if (atomic_dec_and_test(&dd->count)) {
572 close_dev(dd, ti->table->md);
573 list_del(&dd->list);
574 kfree(dd);
575 }
576 }
577
578 /*
579 * Checks to see if the target joins onto the end of the table.
580 */
adjoin(struct dm_table * table,struct dm_target * ti)581 static int adjoin(struct dm_table *table, struct dm_target *ti)
582 {
583 struct dm_target *prev;
584
585 if (!table->num_targets)
586 return !ti->begin;
587
588 prev = &table->targets[table->num_targets - 1];
589 return (ti->begin == (prev->begin + prev->len));
590 }
591
592 /*
593 * Used to dynamically allocate the arg array.
594 */
realloc_argv(unsigned * array_size,char ** old_argv)595 static char **realloc_argv(unsigned *array_size, char **old_argv)
596 {
597 char **argv;
598 unsigned new_size;
599
600 new_size = *array_size ? *array_size * 2 : 64;
601 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
602 if (argv) {
603 memcpy(argv, old_argv, *array_size * sizeof(*argv));
604 *array_size = new_size;
605 }
606
607 kfree(old_argv);
608 return argv;
609 }
610
611 /*
612 * Destructively splits up the argument list to pass to ctr.
613 */
dm_split_args(int * argc,char *** argvp,char * input)614 int dm_split_args(int *argc, char ***argvp, char *input)
615 {
616 char *start, *end = input, *out, **argv = NULL;
617 unsigned array_size = 0;
618
619 *argc = 0;
620
621 if (!input) {
622 *argvp = NULL;
623 return 0;
624 }
625
626 argv = realloc_argv(&array_size, argv);
627 if (!argv)
628 return -ENOMEM;
629
630 while (1) {
631 start = end;
632
633 /* Skip whitespace */
634 while (*start && isspace(*start))
635 start++;
636
637 if (!*start)
638 break; /* success, we hit the end */
639
640 /* 'out' is used to remove any back-quotes */
641 end = out = start;
642 while (*end) {
643 /* Everything apart from '\0' can be quoted */
644 if (*end == '\\' && *(end + 1)) {
645 *out++ = *(end + 1);
646 end += 2;
647 continue;
648 }
649
650 if (isspace(*end))
651 break; /* end of token */
652
653 *out++ = *end++;
654 }
655
656 /* have we already filled the array ? */
657 if ((*argc + 1) > array_size) {
658 argv = realloc_argv(&array_size, argv);
659 if (!argv)
660 return -ENOMEM;
661 }
662
663 /* we know this is whitespace */
664 if (*end)
665 end++;
666
667 /* terminate the string and put it in the array */
668 *out = '\0';
669 argv[*argc] = start;
670 (*argc)++;
671 }
672
673 *argvp = argv;
674 return 0;
675 }
676
check_for_valid_limits(struct io_restrictions * rs)677 static void check_for_valid_limits(struct io_restrictions *rs)
678 {
679 if (!rs->max_sectors)
680 rs->max_sectors = SAFE_MAX_SECTORS;
681 if (!rs->max_hw_sectors)
682 rs->max_hw_sectors = SAFE_MAX_SECTORS;
683 if (!rs->max_phys_segments)
684 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
685 if (!rs->max_hw_segments)
686 rs->max_hw_segments = MAX_HW_SEGMENTS;
687 if (!rs->hardsect_size)
688 rs->hardsect_size = 1 << SECTOR_SHIFT;
689 if (!rs->max_segment_size)
690 rs->max_segment_size = MAX_SEGMENT_SIZE;
691 if (!rs->seg_boundary_mask)
692 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
693 if (!rs->bounce_pfn)
694 rs->bounce_pfn = -1;
695 }
696
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)697 int dm_table_add_target(struct dm_table *t, const char *type,
698 sector_t start, sector_t len, char *params)
699 {
700 int r = -EINVAL, argc;
701 char **argv;
702 struct dm_target *tgt;
703
704 if ((r = check_space(t)))
705 return r;
706
707 tgt = t->targets + t->num_targets;
708 memset(tgt, 0, sizeof(*tgt));
709
710 if (!len) {
711 DMERR("%s: zero-length target", dm_device_name(t->md));
712 return -EINVAL;
713 }
714
715 tgt->type = dm_get_target_type(type);
716 if (!tgt->type) {
717 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
718 type);
719 return -EINVAL;
720 }
721
722 tgt->table = t;
723 tgt->begin = start;
724 tgt->len = len;
725 tgt->error = "Unknown error";
726
727 /*
728 * Does this target adjoin the previous one ?
729 */
730 if (!adjoin(t, tgt)) {
731 tgt->error = "Gap in table";
732 r = -EINVAL;
733 goto bad;
734 }
735
736 r = dm_split_args(&argc, &argv, params);
737 if (r) {
738 tgt->error = "couldn't split parameters (insufficient memory)";
739 goto bad;
740 }
741
742 r = tgt->type->ctr(tgt, argc, argv);
743 kfree(argv);
744 if (r)
745 goto bad;
746
747 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
748
749 /* FIXME: the plan is to combine high here and then have
750 * the merge fn apply the target level restrictions. */
751 combine_restrictions_low(&t->limits, &tgt->limits);
752
753 if (!(tgt->type->features & DM_TARGET_SUPPORTS_BARRIERS))
754 t->barriers_supported = 0;
755
756 return 0;
757
758 bad:
759 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
760 dm_put_target_type(tgt->type);
761 return r;
762 }
763
setup_indexes(struct dm_table * t)764 static int setup_indexes(struct dm_table *t)
765 {
766 int i;
767 unsigned int total = 0;
768 sector_t *indexes;
769
770 /* allocate the space for *all* the indexes */
771 for (i = t->depth - 2; i >= 0; i--) {
772 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
773 total += t->counts[i];
774 }
775
776 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
777 if (!indexes)
778 return -ENOMEM;
779
780 /* set up internal nodes, bottom-up */
781 for (i = t->depth - 2; i >= 0; i--) {
782 t->index[i] = indexes;
783 indexes += (KEYS_PER_NODE * t->counts[i]);
784 setup_btree_index(i, t);
785 }
786
787 return 0;
788 }
789
790 /*
791 * Builds the btree to index the map.
792 */
dm_table_complete(struct dm_table * t)793 int dm_table_complete(struct dm_table *t)
794 {
795 int r = 0;
796 unsigned int leaf_nodes;
797
798 check_for_valid_limits(&t->limits);
799
800 /*
801 * We only support barriers if there is exactly one underlying device.
802 */
803 if (!list_is_singular(&t->devices))
804 t->barriers_supported = 0;
805
806 /* how many indexes will the btree have ? */
807 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
808 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
809
810 /* leaf layer has already been set up */
811 t->counts[t->depth - 1] = leaf_nodes;
812 t->index[t->depth - 1] = t->highs;
813
814 if (t->depth >= 2)
815 r = setup_indexes(t);
816
817 return r;
818 }
819
820 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)821 void dm_table_event_callback(struct dm_table *t,
822 void (*fn)(void *), void *context)
823 {
824 mutex_lock(&_event_lock);
825 t->event_fn = fn;
826 t->event_context = context;
827 mutex_unlock(&_event_lock);
828 }
829
dm_table_event(struct dm_table * t)830 void dm_table_event(struct dm_table *t)
831 {
832 /*
833 * You can no longer call dm_table_event() from interrupt
834 * context, use a bottom half instead.
835 */
836 BUG_ON(in_interrupt());
837
838 mutex_lock(&_event_lock);
839 if (t->event_fn)
840 t->event_fn(t->event_context);
841 mutex_unlock(&_event_lock);
842 }
843
dm_table_get_size(struct dm_table * t)844 sector_t dm_table_get_size(struct dm_table *t)
845 {
846 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
847 }
848
dm_table_get_target(struct dm_table * t,unsigned int index)849 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
850 {
851 if (index >= t->num_targets)
852 return NULL;
853
854 return t->targets + index;
855 }
856
857 /*
858 * Search the btree for the correct target.
859 *
860 * Caller should check returned pointer with dm_target_is_valid()
861 * to trap I/O beyond end of device.
862 */
dm_table_find_target(struct dm_table * t,sector_t sector)863 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
864 {
865 unsigned int l, n = 0, k = 0;
866 sector_t *node;
867
868 for (l = 0; l < t->depth; l++) {
869 n = get_child(n, k);
870 node = get_node(t, l, n);
871
872 for (k = 0; k < KEYS_PER_NODE; k++)
873 if (node[k] >= sector)
874 break;
875 }
876
877 return &t->targets[(KEYS_PER_NODE * n) + k];
878 }
879
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q)880 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
881 {
882 /*
883 * Make sure we obey the optimistic sub devices
884 * restrictions.
885 */
886 blk_queue_max_sectors(q, t->limits.max_sectors);
887 q->max_phys_segments = t->limits.max_phys_segments;
888 q->max_hw_segments = t->limits.max_hw_segments;
889 q->hardsect_size = t->limits.hardsect_size;
890 q->max_segment_size = t->limits.max_segment_size;
891 q->max_hw_sectors = t->limits.max_hw_sectors;
892 q->seg_boundary_mask = t->limits.seg_boundary_mask;
893 q->bounce_pfn = t->limits.bounce_pfn;
894
895 if (t->limits.no_cluster)
896 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
897 else
898 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
899
900 }
901
dm_table_get_num_targets(struct dm_table * t)902 unsigned int dm_table_get_num_targets(struct dm_table *t)
903 {
904 return t->num_targets;
905 }
906
dm_table_get_devices(struct dm_table * t)907 struct list_head *dm_table_get_devices(struct dm_table *t)
908 {
909 return &t->devices;
910 }
911
dm_table_get_mode(struct dm_table * t)912 fmode_t dm_table_get_mode(struct dm_table *t)
913 {
914 return t->mode;
915 }
916
suspend_targets(struct dm_table * t,unsigned postsuspend)917 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
918 {
919 int i = t->num_targets;
920 struct dm_target *ti = t->targets;
921
922 while (i--) {
923 if (postsuspend) {
924 if (ti->type->postsuspend)
925 ti->type->postsuspend(ti);
926 } else if (ti->type->presuspend)
927 ti->type->presuspend(ti);
928
929 ti++;
930 }
931 }
932
dm_table_presuspend_targets(struct dm_table * t)933 void dm_table_presuspend_targets(struct dm_table *t)
934 {
935 if (!t)
936 return;
937
938 suspend_targets(t, 0);
939 }
940
dm_table_postsuspend_targets(struct dm_table * t)941 void dm_table_postsuspend_targets(struct dm_table *t)
942 {
943 if (!t)
944 return;
945
946 suspend_targets(t, 1);
947 }
948
dm_table_resume_targets(struct dm_table * t)949 int dm_table_resume_targets(struct dm_table *t)
950 {
951 int i, r = 0;
952
953 for (i = 0; i < t->num_targets; i++) {
954 struct dm_target *ti = t->targets + i;
955
956 if (!ti->type->preresume)
957 continue;
958
959 r = ti->type->preresume(ti);
960 if (r)
961 return r;
962 }
963
964 for (i = 0; i < t->num_targets; i++) {
965 struct dm_target *ti = t->targets + i;
966
967 if (ti->type->resume)
968 ti->type->resume(ti);
969 }
970
971 return 0;
972 }
973
dm_table_any_congested(struct dm_table * t,int bdi_bits)974 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
975 {
976 struct dm_dev_internal *dd;
977 struct list_head *devices = dm_table_get_devices(t);
978 int r = 0;
979
980 list_for_each_entry(dd, devices, list) {
981 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
982 char b[BDEVNAME_SIZE];
983
984 if (likely(q))
985 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
986 else
987 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
988 dm_device_name(t->md),
989 bdevname(dd->dm_dev.bdev, b));
990 }
991
992 return r;
993 }
994
dm_table_unplug_all(struct dm_table * t)995 void dm_table_unplug_all(struct dm_table *t)
996 {
997 struct dm_dev_internal *dd;
998 struct list_head *devices = dm_table_get_devices(t);
999
1000 list_for_each_entry(dd, devices, list) {
1001 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1002 char b[BDEVNAME_SIZE];
1003
1004 if (likely(q))
1005 blk_unplug(q);
1006 else
1007 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1008 dm_device_name(t->md),
1009 bdevname(dd->dm_dev.bdev, b));
1010 }
1011 }
1012
dm_table_get_md(struct dm_table * t)1013 struct mapped_device *dm_table_get_md(struct dm_table *t)
1014 {
1015 dm_get(t->md);
1016
1017 return t->md;
1018 }
1019
dm_table_barrier_ok(struct dm_table * t)1020 int dm_table_barrier_ok(struct dm_table *t)
1021 {
1022 return t->barriers_supported;
1023 }
1024 EXPORT_SYMBOL(dm_table_barrier_ok);
1025
1026 EXPORT_SYMBOL(dm_vcalloc);
1027 EXPORT_SYMBOL(dm_get_device);
1028 EXPORT_SYMBOL(dm_put_device);
1029 EXPORT_SYMBOL(dm_table_event);
1030 EXPORT_SYMBOL(dm_table_get_size);
1031 EXPORT_SYMBOL(dm_table_get_mode);
1032 EXPORT_SYMBOL(dm_table_get_md);
1033 EXPORT_SYMBOL(dm_table_put);
1034 EXPORT_SYMBOL(dm_table_get);
1035 EXPORT_SYMBOL(dm_table_unplug_all);
1036