• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    raid0.c : Multiple Devices driver for Linux
3              Copyright (C) 1994-96 Marc ZYNGIER
4 	     <zyngier@ufr-info-p7.ibp.fr> or
5 	     <maz@gloups.fdn.fr>
6              Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
7 
8 
9    RAID-0 management functions.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2, or (at your option)
14    any later version.
15 
16    You should have received a copy of the GNU General Public License
17    (for example /usr/src/linux/COPYING); if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/raid/raid0.h>
22 
raid0_unplug(struct request_queue * q)23 static void raid0_unplug(struct request_queue *q)
24 {
25 	mddev_t *mddev = q->queuedata;
26 	raid0_conf_t *conf = mddev_to_conf(mddev);
27 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
28 	int i;
29 
30 	for (i=0; i<mddev->raid_disks; i++) {
31 		struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
32 
33 		blk_unplug(r_queue);
34 	}
35 }
36 
raid0_congested(void * data,int bits)37 static int raid0_congested(void *data, int bits)
38 {
39 	mddev_t *mddev = data;
40 	raid0_conf_t *conf = mddev_to_conf(mddev);
41 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
42 	int i, ret = 0;
43 
44 	for (i = 0; i < mddev->raid_disks && !ret ; i++) {
45 		struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
46 
47 		ret |= bdi_congested(&q->backing_dev_info, bits);
48 	}
49 	return ret;
50 }
51 
52 
create_strip_zones(mddev_t * mddev)53 static int create_strip_zones (mddev_t *mddev)
54 {
55 	int i, c, j;
56 	sector_t current_start, curr_zone_start;
57 	sector_t min_spacing;
58 	raid0_conf_t *conf = mddev_to_conf(mddev);
59 	mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
60 	struct strip_zone *zone;
61 	int cnt;
62 	char b[BDEVNAME_SIZE];
63 
64 	/*
65 	 * The number of 'same size groups'
66 	 */
67 	conf->nr_strip_zones = 0;
68 
69 	list_for_each_entry(rdev1, &mddev->disks, same_set) {
70 		printk(KERN_INFO "raid0: looking at %s\n",
71 			bdevname(rdev1->bdev,b));
72 		c = 0;
73 		list_for_each_entry(rdev2, &mddev->disks, same_set) {
74 			printk(KERN_INFO "raid0:   comparing %s(%llu)",
75 			       bdevname(rdev1->bdev,b),
76 			       (unsigned long long)rdev1->size);
77 			printk(KERN_INFO " with %s(%llu)\n",
78 			       bdevname(rdev2->bdev,b),
79 			       (unsigned long long)rdev2->size);
80 			if (rdev2 == rdev1) {
81 				printk(KERN_INFO "raid0:   END\n");
82 				break;
83 			}
84 			if (rdev2->size == rdev1->size)
85 			{
86 				/*
87 				 * Not unique, don't count it as a new
88 				 * group
89 				 */
90 				printk(KERN_INFO "raid0:   EQUAL\n");
91 				c = 1;
92 				break;
93 			}
94 			printk(KERN_INFO "raid0:   NOT EQUAL\n");
95 		}
96 		if (!c) {
97 			printk(KERN_INFO "raid0:   ==> UNIQUE\n");
98 			conf->nr_strip_zones++;
99 			printk(KERN_INFO "raid0: %d zones\n",
100 				conf->nr_strip_zones);
101 		}
102 	}
103 	printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
104 
105 	conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
106 				conf->nr_strip_zones, GFP_KERNEL);
107 	if (!conf->strip_zone)
108 		return 1;
109 	conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
110 				conf->nr_strip_zones*mddev->raid_disks,
111 				GFP_KERNEL);
112 	if (!conf->devlist)
113 		return 1;
114 
115 	/* The first zone must contain all devices, so here we check that
116 	 * there is a proper alignment of slots to devices and find them all
117 	 */
118 	zone = &conf->strip_zone[0];
119 	cnt = 0;
120 	smallest = NULL;
121 	zone->dev = conf->devlist;
122 	list_for_each_entry(rdev1, &mddev->disks, same_set) {
123 		int j = rdev1->raid_disk;
124 
125 		if (j < 0 || j >= mddev->raid_disks) {
126 			printk(KERN_ERR "raid0: bad disk number %d - "
127 				"aborting!\n", j);
128 			goto abort;
129 		}
130 		if (zone->dev[j]) {
131 			printk(KERN_ERR "raid0: multiple devices for %d - "
132 				"aborting!\n", j);
133 			goto abort;
134 		}
135 		zone->dev[j] = rdev1;
136 
137 		blk_queue_stack_limits(mddev->queue,
138 				       rdev1->bdev->bd_disk->queue);
139 		/* as we don't honour merge_bvec_fn, we must never risk
140 		 * violating it, so limit ->max_sector to one PAGE, as
141 		 * a one page request is never in violation.
142 		 */
143 
144 		if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
145 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
146 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
147 
148 		if (!smallest || (rdev1->size <smallest->size))
149 			smallest = rdev1;
150 		cnt++;
151 	}
152 	if (cnt != mddev->raid_disks) {
153 		printk(KERN_ERR "raid0: too few disks (%d of %d) - "
154 			"aborting!\n", cnt, mddev->raid_disks);
155 		goto abort;
156 	}
157 	zone->nb_dev = cnt;
158 	zone->sectors = smallest->size * cnt * 2;
159 	zone->zone_start = 0;
160 
161 	current_start = smallest->size * 2;
162 	curr_zone_start = zone->sectors;
163 
164 	/* now do the other zones */
165 	for (i = 1; i < conf->nr_strip_zones; i++)
166 	{
167 		zone = conf->strip_zone + i;
168 		zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
169 
170 		printk(KERN_INFO "raid0: zone %d\n", i);
171 		zone->dev_start = current_start;
172 		smallest = NULL;
173 		c = 0;
174 
175 		for (j=0; j<cnt; j++) {
176 			char b[BDEVNAME_SIZE];
177 			rdev = conf->strip_zone[0].dev[j];
178 			printk(KERN_INFO "raid0: checking %s ...",
179 				bdevname(rdev->bdev, b));
180 			if (rdev->size > current_start / 2) {
181 				printk(KERN_INFO " contained as device %d\n",
182 					c);
183 				zone->dev[c] = rdev;
184 				c++;
185 				if (!smallest || (rdev->size <smallest->size)) {
186 					smallest = rdev;
187 					printk(KERN_INFO "  (%llu) is smallest!.\n",
188 						(unsigned long long)rdev->size);
189 				}
190 			} else
191 				printk(KERN_INFO " nope.\n");
192 		}
193 
194 		zone->nb_dev = c;
195 		zone->sectors = (smallest->size * 2 - current_start) * c;
196 		printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
197 			zone->nb_dev, (unsigned long long)zone->sectors);
198 
199 		zone->zone_start = curr_zone_start;
200 		curr_zone_start += zone->sectors;
201 
202 		current_start = smallest->size * 2;
203 		printk(KERN_INFO "raid0: current zone start: %llu\n",
204 			(unsigned long long)current_start);
205 	}
206 
207 	/* Now find appropriate hash spacing.
208 	 * We want a number which causes most hash entries to cover
209 	 * at most two strips, but the hash table must be at most
210 	 * 1 PAGE.  We choose the smallest strip, or contiguous collection
211 	 * of strips, that has big enough size.  We never consider the last
212 	 * strip though as it's size has no bearing on the efficacy of the hash
213 	 * table.
214 	 */
215 	conf->spacing = curr_zone_start;
216 	min_spacing = curr_zone_start;
217 	sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
218 	for (i=0; i < conf->nr_strip_zones-1; i++) {
219 		sector_t s = 0;
220 		for (j = i; j < conf->nr_strip_zones - 1 &&
221 				s < min_spacing; j++)
222 			s += conf->strip_zone[j].sectors;
223 		if (s >= min_spacing && s < conf->spacing)
224 			conf->spacing = s;
225 	}
226 
227 	mddev->queue->unplug_fn = raid0_unplug;
228 
229 	mddev->queue->backing_dev_info.congested_fn = raid0_congested;
230 	mddev->queue->backing_dev_info.congested_data = mddev;
231 
232 	printk(KERN_INFO "raid0: done.\n");
233 	return 0;
234  abort:
235 	return 1;
236 }
237 
238 /**
239  *	raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
240  *	@q: request queue
241  *	@bvm: properties of new bio
242  *	@biovec: the request that could be merged to it.
243  *
244  *	Return amount of bytes we can accept at this offset
245  */
raid0_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)246 static int raid0_mergeable_bvec(struct request_queue *q,
247 				struct bvec_merge_data *bvm,
248 				struct bio_vec *biovec)
249 {
250 	mddev_t *mddev = q->queuedata;
251 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
252 	int max;
253 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
254 	unsigned int bio_sectors = bvm->bi_size >> 9;
255 
256 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
257 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
258 	if (max <= biovec->bv_len && bio_sectors == 0)
259 		return biovec->bv_len;
260 	else
261 		return max;
262 }
263 
raid0_run(mddev_t * mddev)264 static int raid0_run (mddev_t *mddev)
265 {
266 	unsigned  cur=0, i=0, nb_zone;
267 	s64 sectors;
268 	raid0_conf_t *conf;
269 	mdk_rdev_t *rdev;
270 
271 	if (mddev->chunk_size == 0) {
272 		printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
273 		return -EINVAL;
274 	}
275 	printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
276 	       mdname(mddev),
277 	       mddev->chunk_size >> 9,
278 	       (mddev->chunk_size>>1)-1);
279 	blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
280 	blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
281 	mddev->queue->queue_lock = &mddev->queue->__queue_lock;
282 
283 	conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
284 	if (!conf)
285 		goto out;
286 	mddev->private = (void *)conf;
287 
288 	conf->strip_zone = NULL;
289 	conf->devlist = NULL;
290 	if (create_strip_zones (mddev))
291 		goto out_free_conf;
292 
293 	/* calculate array device size */
294 	mddev->array_sectors = 0;
295 	list_for_each_entry(rdev, &mddev->disks, same_set)
296 		mddev->array_sectors += rdev->size * 2;
297 
298 	printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
299 		(unsigned long long)mddev->array_sectors);
300 	printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
301 		(unsigned long long)conf->spacing);
302 	{
303 		sector_t s = mddev->array_sectors;
304 		sector_t space = conf->spacing;
305 		int round;
306 		conf->sector_shift = 0;
307 		if (sizeof(sector_t) > sizeof(u32)) {
308 			/*shift down space and s so that sector_div will work */
309 			while (space > (sector_t) (~(u32)0)) {
310 				s >>= 1;
311 				space >>= 1;
312 				s += 1; /* force round-up */
313 				conf->sector_shift++;
314 			}
315 		}
316 		round = sector_div(s, (u32)space) ? 1 : 0;
317 		nb_zone = s + round;
318 	}
319 	printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
320 
321 	printk(KERN_INFO "raid0 : Allocating %zu bytes for hash.\n",
322 				nb_zone*sizeof(struct strip_zone*));
323 	conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
324 	if (!conf->hash_table)
325 		goto out_free_conf;
326 	sectors = conf->strip_zone[cur].sectors;
327 
328 	conf->hash_table[0] = conf->strip_zone + cur;
329 	for (i=1; i< nb_zone; i++) {
330 		while (sectors <= conf->spacing) {
331 			cur++;
332 			sectors += conf->strip_zone[cur].sectors;
333 		}
334 		sectors -= conf->spacing;
335 		conf->hash_table[i] = conf->strip_zone + cur;
336 	}
337 	if (conf->sector_shift) {
338 		conf->spacing >>= conf->sector_shift;
339 		/* round spacing up so when we divide by it, we
340 		 * err on the side of too-low, which is safest
341 		 */
342 		conf->spacing++;
343 	}
344 
345 	/* calculate the max read-ahead size.
346 	 * For read-ahead of large files to be effective, we need to
347 	 * readahead at least twice a whole stripe. i.e. number of devices
348 	 * multiplied by chunk size times 2.
349 	 * If an individual device has an ra_pages greater than the
350 	 * chunk size, then we will not drive that device as hard as it
351 	 * wants.  We consider this a configuration error: a larger
352 	 * chunksize should be used in that case.
353 	 */
354 	{
355 		int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
356 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
357 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
358 	}
359 
360 
361 	blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
362 	return 0;
363 
364 out_free_conf:
365 	kfree(conf->strip_zone);
366 	kfree(conf->devlist);
367 	kfree(conf);
368 	mddev->private = NULL;
369 out:
370 	return -ENOMEM;
371 }
372 
raid0_stop(mddev_t * mddev)373 static int raid0_stop (mddev_t *mddev)
374 {
375 	raid0_conf_t *conf = mddev_to_conf(mddev);
376 
377 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
378 	kfree(conf->hash_table);
379 	conf->hash_table = NULL;
380 	kfree(conf->strip_zone);
381 	conf->strip_zone = NULL;
382 	kfree(conf);
383 	mddev->private = NULL;
384 
385 	return 0;
386 }
387 
raid0_make_request(struct request_queue * q,struct bio * bio)388 static int raid0_make_request (struct request_queue *q, struct bio *bio)
389 {
390 	mddev_t *mddev = q->queuedata;
391 	unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
392 	raid0_conf_t *conf = mddev_to_conf(mddev);
393 	struct strip_zone *zone;
394 	mdk_rdev_t *tmp_dev;
395 	sector_t chunk;
396 	sector_t sector, rsect;
397 	const int rw = bio_data_dir(bio);
398 	int cpu;
399 
400 	if (unlikely(bio_barrier(bio))) {
401 		bio_endio(bio, -EOPNOTSUPP);
402 		return 0;
403 	}
404 
405 	cpu = part_stat_lock();
406 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
407 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
408 		      bio_sectors(bio));
409 	part_stat_unlock();
410 
411 	chunk_sects = mddev->chunk_size >> 9;
412 	chunksect_bits = ffz(~chunk_sects);
413 	sector = bio->bi_sector;
414 
415 	if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
416 		struct bio_pair *bp;
417 		/* Sanity check -- queue functions should prevent this happening */
418 		if (bio->bi_vcnt != 1 ||
419 		    bio->bi_idx != 0)
420 			goto bad_map;
421 		/* This is a one page bio that upper layers
422 		 * refuse to split for us, so we need to split it.
423 		 */
424 		bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
425 		if (raid0_make_request(q, &bp->bio1))
426 			generic_make_request(&bp->bio1);
427 		if (raid0_make_request(q, &bp->bio2))
428 			generic_make_request(&bp->bio2);
429 
430 		bio_pair_release(bp);
431 		return 0;
432 	}
433 
434 
435 	{
436 		sector_t x = sector >> conf->sector_shift;
437 		sector_div(x, (u32)conf->spacing);
438 		zone = conf->hash_table[x];
439 	}
440 
441 	while (sector >= zone->zone_start + zone->sectors)
442 		zone++;
443 
444 	sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
445 
446 
447 	{
448 		sector_t x = (sector - zone->zone_start) >> chunksect_bits;
449 
450 		sector_div(x, zone->nb_dev);
451 		chunk = x;
452 
453 		x = sector >> chunksect_bits;
454 		tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
455 	}
456 	rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
457 
458 	bio->bi_bdev = tmp_dev->bdev;
459 	bio->bi_sector = rsect + tmp_dev->data_offset;
460 
461 	/*
462 	 * Let the main block layer submit the IO and resolve recursion:
463 	 */
464 	return 1;
465 
466 bad_map:
467 	printk("raid0_make_request bug: can't convert block across chunks"
468 		" or bigger than %dk %llu %d\n", chunk_sects / 2,
469 		(unsigned long long)bio->bi_sector, bio->bi_size >> 10);
470 
471 	bio_io_error(bio);
472 	return 0;
473 }
474 
raid0_status(struct seq_file * seq,mddev_t * mddev)475 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
476 {
477 #undef MD_DEBUG
478 #ifdef MD_DEBUG
479 	int j, k, h;
480 	char b[BDEVNAME_SIZE];
481 	raid0_conf_t *conf = mddev_to_conf(mddev);
482 
483 	h = 0;
484 	for (j = 0; j < conf->nr_strip_zones; j++) {
485 		seq_printf(seq, "      z%d", j);
486 		if (conf->hash_table[h] == conf->strip_zone+j)
487 			seq_printf(seq, "(h%d)", h++);
488 		seq_printf(seq, "=[");
489 		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
490 			seq_printf(seq, "%s/", bdevname(
491 				conf->strip_zone[j].dev[k]->bdev,b));
492 
493 		seq_printf(seq, "] zs=%d ds=%d s=%d\n",
494 				conf->strip_zone[j].zone_start,
495 				conf->strip_zone[j].dev_start,
496 				conf->strip_zone[j].sectors);
497 	}
498 #endif
499 	seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
500 	return;
501 }
502 
503 static struct mdk_personality raid0_personality=
504 {
505 	.name		= "raid0",
506 	.level		= 0,
507 	.owner		= THIS_MODULE,
508 	.make_request	= raid0_make_request,
509 	.run		= raid0_run,
510 	.stop		= raid0_stop,
511 	.status		= raid0_status,
512 };
513 
raid0_init(void)514 static int __init raid0_init (void)
515 {
516 	return register_md_personality (&raid0_personality);
517 }
518 
raid0_exit(void)519 static void raid0_exit (void)
520 {
521 	unregister_md_personality (&raid0_personality);
522 }
523 
524 module_init(raid0_init);
525 module_exit(raid0_exit);
526 MODULE_LICENSE("GPL");
527 MODULE_ALIAS("md-personality-2"); /* RAID0 */
528 MODULE_ALIAS("md-raid0");
529 MODULE_ALIAS("md-level-0");
530