• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/delay.h>
36 #include <linux/raid/raid1.h>
37 #include <linux/raid/bitmap.h>
38 
39 #define DEBUG 0
40 #if DEBUG
41 #define PRINTK(x...) printk(x)
42 #else
43 #define PRINTK(x...)
44 #endif
45 
46 /*
47  * Number of guaranteed r1bios in case of extreme VM load:
48  */
49 #define	NR_RAID1_BIOS 256
50 
51 
52 static void unplug_slaves(mddev_t *mddev);
53 
54 static void allow_barrier(conf_t *conf);
55 static void lower_barrier(conf_t *conf);
56 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 {
59 	struct pool_info *pi = data;
60 	r1bio_t *r1_bio;
61 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	r1_bio = kzalloc(size, gfp_flags);
65 	if (!r1_bio)
66 		unplug_slaves(pi->mddev);
67 
68 	return r1_bio;
69 }
70 
r1bio_pool_free(void * r1_bio,void * data)71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73 	kfree(r1_bio);
74 }
75 
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 {
84 	struct pool_info *pi = data;
85 	struct page *page;
86 	r1bio_t *r1_bio;
87 	struct bio *bio;
88 	int i, j;
89 
90 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 	if (!r1_bio) {
92 		unplug_slaves(pi->mddev);
93 		return NULL;
94 	}
95 
96 	/*
97 	 * Allocate bios : 1 for reading, n-1 for writing
98 	 */
99 	for (j = pi->raid_disks ; j-- ; ) {
100 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 		if (!bio)
102 			goto out_free_bio;
103 		r1_bio->bios[j] = bio;
104 	}
105 	/*
106 	 * Allocate RESYNC_PAGES data pages and attach them to
107 	 * the first bio.
108 	 * If this is a user-requested check/repair, allocate
109 	 * RESYNC_PAGES for each bio.
110 	 */
111 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
112 		j = pi->raid_disks;
113 	else
114 		j = 1;
115 	while(j--) {
116 		bio = r1_bio->bios[j];
117 		for (i = 0; i < RESYNC_PAGES; i++) {
118 			page = alloc_page(gfp_flags);
119 			if (unlikely(!page))
120 				goto out_free_pages;
121 
122 			bio->bi_io_vec[i].bv_page = page;
123 		}
124 	}
125 	/* If not user-requests, copy the page pointers to all bios */
126 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
127 		for (i=0; i<RESYNC_PAGES ; i++)
128 			for (j=1; j<pi->raid_disks; j++)
129 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
130 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
131 	}
132 
133 	r1_bio->master_bio = NULL;
134 
135 	return r1_bio;
136 
137 out_free_pages:
138 	for (i=0; i < RESYNC_PAGES ; i++)
139 		for (j=0 ; j < pi->raid_disks; j++)
140 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
141 	j = -1;
142 out_free_bio:
143 	while ( ++j < pi->raid_disks )
144 		bio_put(r1_bio->bios[j]);
145 	r1bio_pool_free(r1_bio, data);
146 	return NULL;
147 }
148 
r1buf_pool_free(void * __r1_bio,void * data)149 static void r1buf_pool_free(void *__r1_bio, void *data)
150 {
151 	struct pool_info *pi = data;
152 	int i,j;
153 	r1bio_t *r1bio = __r1_bio;
154 
155 	for (i = 0; i < RESYNC_PAGES; i++)
156 		for (j = pi->raid_disks; j-- ;) {
157 			if (j == 0 ||
158 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
159 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
160 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 		}
162 	for (i=0 ; i < pi->raid_disks; i++)
163 		bio_put(r1bio->bios[i]);
164 
165 	r1bio_pool_free(r1bio, data);
166 }
167 
put_all_bios(conf_t * conf,r1bio_t * r1_bio)168 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 {
170 	int i;
171 
172 	for (i = 0; i < conf->raid_disks; i++) {
173 		struct bio **bio = r1_bio->bios + i;
174 		if (*bio && *bio != IO_BLOCKED)
175 			bio_put(*bio);
176 		*bio = NULL;
177 	}
178 }
179 
free_r1bio(r1bio_t * r1_bio)180 static void free_r1bio(r1bio_t *r1_bio)
181 {
182 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
183 
184 	/*
185 	 * Wake up any possible resync thread that waits for the device
186 	 * to go idle.
187 	 */
188 	allow_barrier(conf);
189 
190 	put_all_bios(conf, r1_bio);
191 	mempool_free(r1_bio, conf->r1bio_pool);
192 }
193 
put_buf(r1bio_t * r1_bio)194 static void put_buf(r1bio_t *r1_bio)
195 {
196 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
197 	int i;
198 
199 	for (i=0; i<conf->raid_disks; i++) {
200 		struct bio *bio = r1_bio->bios[i];
201 		if (bio->bi_end_io)
202 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
203 	}
204 
205 	mempool_free(r1_bio, conf->r1buf_pool);
206 
207 	lower_barrier(conf);
208 }
209 
reschedule_retry(r1bio_t * r1_bio)210 static void reschedule_retry(r1bio_t *r1_bio)
211 {
212 	unsigned long flags;
213 	mddev_t *mddev = r1_bio->mddev;
214 	conf_t *conf = mddev_to_conf(mddev);
215 
216 	spin_lock_irqsave(&conf->device_lock, flags);
217 	list_add(&r1_bio->retry_list, &conf->retry_list);
218 	conf->nr_queued ++;
219 	spin_unlock_irqrestore(&conf->device_lock, flags);
220 
221 	wake_up(&conf->wait_barrier);
222 	md_wakeup_thread(mddev->thread);
223 }
224 
225 /*
226  * raid_end_bio_io() is called when we have finished servicing a mirrored
227  * operation and are ready to return a success/failure code to the buffer
228  * cache layer.
229  */
raid_end_bio_io(r1bio_t * r1_bio)230 static void raid_end_bio_io(r1bio_t *r1_bio)
231 {
232 	struct bio *bio = r1_bio->master_bio;
233 
234 	/* if nobody has done the final endio yet, do it now */
235 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
236 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
237 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
238 			(unsigned long long) bio->bi_sector,
239 			(unsigned long long) bio->bi_sector +
240 				(bio->bi_size >> 9) - 1);
241 
242 		bio_endio(bio,
243 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 	}
245 	free_r1bio(r1_bio);
246 }
247 
248 /*
249  * Update disk head position estimator based on IRQ completion info.
250  */
update_head_pos(int disk,r1bio_t * r1_bio)251 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 {
253 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 
255 	conf->mirrors[disk].head_position =
256 		r1_bio->sector + (r1_bio->sectors);
257 }
258 
raid1_end_read_request(struct bio * bio,int error)259 static void raid1_end_read_request(struct bio *bio, int error)
260 {
261 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
262 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
263 	int mirror;
264 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 
266 	mirror = r1_bio->read_disk;
267 	/*
268 	 * this branch is our 'one mirror IO has finished' event handler:
269 	 */
270 	update_head_pos(mirror, r1_bio);
271 
272 	if (uptodate)
273 		set_bit(R1BIO_Uptodate, &r1_bio->state);
274 	else {
275 		/* If all other devices have failed, we want to return
276 		 * the error upwards rather than fail the last device.
277 		 * Here we redefine "uptodate" to mean "Don't want to retry"
278 		 */
279 		unsigned long flags;
280 		spin_lock_irqsave(&conf->device_lock, flags);
281 		if (r1_bio->mddev->degraded == conf->raid_disks ||
282 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
283 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
284 			uptodate = 1;
285 		spin_unlock_irqrestore(&conf->device_lock, flags);
286 	}
287 
288 	if (uptodate)
289 		raid_end_bio_io(r1_bio);
290 	else {
291 		/*
292 		 * oops, read error:
293 		 */
294 		char b[BDEVNAME_SIZE];
295 		if (printk_ratelimit())
296 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
297 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
298 		reschedule_retry(r1_bio);
299 	}
300 
301 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
302 }
303 
raid1_end_write_request(struct bio * bio,int error)304 static void raid1_end_write_request(struct bio *bio, int error)
305 {
306 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
307 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
308 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
309 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
310 	struct bio *to_put = NULL;
311 
312 
313 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
314 		if (r1_bio->bios[mirror] == bio)
315 			break;
316 
317 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
318 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
319 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
320 		r1_bio->mddev->barriers_work = 0;
321 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
322 	} else {
323 		/*
324 		 * this branch is our 'one mirror IO has finished' event handler:
325 		 */
326 		r1_bio->bios[mirror] = NULL;
327 		to_put = bio;
328 		if (!uptodate) {
329 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330 			/* an I/O failed, we can't clear the bitmap */
331 			set_bit(R1BIO_Degraded, &r1_bio->state);
332 		} else
333 			/*
334 			 * Set R1BIO_Uptodate in our master bio, so that
335 			 * we will return a good error code for to the higher
336 			 * levels even if IO on some other mirrored buffer fails.
337 			 *
338 			 * The 'master' represents the composite IO operation to
339 			 * user-side. So if something waits for IO, then it will
340 			 * wait for the 'master' bio.
341 			 */
342 			set_bit(R1BIO_Uptodate, &r1_bio->state);
343 
344 		update_head_pos(mirror, r1_bio);
345 
346 		if (behind) {
347 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 				atomic_dec(&r1_bio->behind_remaining);
349 
350 			/* In behind mode, we ACK the master bio once the I/O has safely
351 			 * reached all non-writemostly disks. Setting the Returned bit
352 			 * ensures that this gets done only once -- we don't ever want to
353 			 * return -EIO here, instead we'll wait */
354 
355 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357 				/* Maybe we can return now */
358 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359 					struct bio *mbio = r1_bio->master_bio;
360 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361 					       (unsigned long long) mbio->bi_sector,
362 					       (unsigned long long) mbio->bi_sector +
363 					       (mbio->bi_size >> 9) - 1);
364 					bio_endio(mbio, 0);
365 				}
366 			}
367 		}
368 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
369 	}
370 	/*
371 	 *
372 	 * Let's see if all mirrored write operations have finished
373 	 * already.
374 	 */
375 	if (atomic_dec_and_test(&r1_bio->remaining)) {
376 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
377 			reschedule_retry(r1_bio);
378 		else {
379 			/* it really is the end of this request */
380 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
381 				/* free extra copy of the data pages */
382 				int i = bio->bi_vcnt;
383 				while (i--)
384 					safe_put_page(bio->bi_io_vec[i].bv_page);
385 			}
386 			/* clear the bitmap if all writes complete successfully */
387 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
388 					r1_bio->sectors,
389 					!test_bit(R1BIO_Degraded, &r1_bio->state),
390 					behind);
391 			md_write_end(r1_bio->mddev);
392 			raid_end_bio_io(r1_bio);
393 		}
394 	}
395 
396 	if (to_put)
397 		bio_put(to_put);
398 }
399 
400 
401 /*
402  * This routine returns the disk from which the requested read should
403  * be done. There is a per-array 'next expected sequential IO' sector
404  * number - if this matches on the next IO then we use the last disk.
405  * There is also a per-disk 'last know head position' sector that is
406  * maintained from IRQ contexts, both the normal and the resync IO
407  * completion handlers update this position correctly. If there is no
408  * perfect sequential match then we pick the disk whose head is closest.
409  *
410  * If there are 2 mirrors in the same 2 devices, performance degrades
411  * because position is mirror, not device based.
412  *
413  * The rdev for the device selected will have nr_pending incremented.
414  */
read_balance(conf_t * conf,r1bio_t * r1_bio)415 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
416 {
417 	const unsigned long this_sector = r1_bio->sector;
418 	int new_disk = conf->last_used, disk = new_disk;
419 	int wonly_disk = -1;
420 	const int sectors = r1_bio->sectors;
421 	sector_t new_distance, current_distance;
422 	mdk_rdev_t *rdev;
423 
424 	rcu_read_lock();
425 	/*
426 	 * Check if we can balance. We can balance on the whole
427 	 * device if no resync is going on, or below the resync window.
428 	 * We take the first readable disk when above the resync window.
429 	 */
430  retry:
431 	if (conf->mddev->recovery_cp < MaxSector &&
432 	    (this_sector + sectors >= conf->next_resync)) {
433 		/* Choose the first operation device, for consistancy */
434 		new_disk = 0;
435 
436 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
437 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
438 		     !rdev || !test_bit(In_sync, &rdev->flags)
439 			     || test_bit(WriteMostly, &rdev->flags);
440 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
441 
442 			if (rdev && test_bit(In_sync, &rdev->flags) &&
443 				r1_bio->bios[new_disk] != IO_BLOCKED)
444 				wonly_disk = new_disk;
445 
446 			if (new_disk == conf->raid_disks - 1) {
447 				new_disk = wonly_disk;
448 				break;
449 			}
450 		}
451 		goto rb_out;
452 	}
453 
454 
455 	/* make sure the disk is operational */
456 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
457 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
458 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
459 		     test_bit(WriteMostly, &rdev->flags);
460 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
461 
462 		if (rdev && test_bit(In_sync, &rdev->flags) &&
463 		    r1_bio->bios[new_disk] != IO_BLOCKED)
464 			wonly_disk = new_disk;
465 
466 		if (new_disk <= 0)
467 			new_disk = conf->raid_disks;
468 		new_disk--;
469 		if (new_disk == disk) {
470 			new_disk = wonly_disk;
471 			break;
472 		}
473 	}
474 
475 	if (new_disk < 0)
476 		goto rb_out;
477 
478 	disk = new_disk;
479 	/* now disk == new_disk == starting point for search */
480 
481 	/*
482 	 * Don't change to another disk for sequential reads:
483 	 */
484 	if (conf->next_seq_sect == this_sector)
485 		goto rb_out;
486 	if (this_sector == conf->mirrors[new_disk].head_position)
487 		goto rb_out;
488 
489 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
490 
491 	/* Find the disk whose head is closest */
492 
493 	do {
494 		if (disk <= 0)
495 			disk = conf->raid_disks;
496 		disk--;
497 
498 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
499 
500 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
501 		    !test_bit(In_sync, &rdev->flags) ||
502 		    test_bit(WriteMostly, &rdev->flags))
503 			continue;
504 
505 		if (!atomic_read(&rdev->nr_pending)) {
506 			new_disk = disk;
507 			break;
508 		}
509 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
510 		if (new_distance < current_distance) {
511 			current_distance = new_distance;
512 			new_disk = disk;
513 		}
514 	} while (disk != conf->last_used);
515 
516  rb_out:
517 
518 
519 	if (new_disk >= 0) {
520 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
521 		if (!rdev)
522 			goto retry;
523 		atomic_inc(&rdev->nr_pending);
524 		if (!test_bit(In_sync, &rdev->flags)) {
525 			/* cannot risk returning a device that failed
526 			 * before we inc'ed nr_pending
527 			 */
528 			rdev_dec_pending(rdev, conf->mddev);
529 			goto retry;
530 		}
531 		conf->next_seq_sect = this_sector + sectors;
532 		conf->last_used = new_disk;
533 	}
534 	rcu_read_unlock();
535 
536 	return new_disk;
537 }
538 
unplug_slaves(mddev_t * mddev)539 static void unplug_slaves(mddev_t *mddev)
540 {
541 	conf_t *conf = mddev_to_conf(mddev);
542 	int i;
543 
544 	rcu_read_lock();
545 	for (i=0; i<mddev->raid_disks; i++) {
546 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
547 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
548 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
549 
550 			atomic_inc(&rdev->nr_pending);
551 			rcu_read_unlock();
552 
553 			blk_unplug(r_queue);
554 
555 			rdev_dec_pending(rdev, mddev);
556 			rcu_read_lock();
557 		}
558 	}
559 	rcu_read_unlock();
560 }
561 
raid1_unplug(struct request_queue * q)562 static void raid1_unplug(struct request_queue *q)
563 {
564 	mddev_t *mddev = q->queuedata;
565 
566 	unplug_slaves(mddev);
567 	md_wakeup_thread(mddev->thread);
568 }
569 
raid1_congested(void * data,int bits)570 static int raid1_congested(void *data, int bits)
571 {
572 	mddev_t *mddev = data;
573 	conf_t *conf = mddev_to_conf(mddev);
574 	int i, ret = 0;
575 
576 	rcu_read_lock();
577 	for (i = 0; i < mddev->raid_disks; i++) {
578 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 			struct request_queue *q = bdev_get_queue(rdev->bdev);
581 
582 			/* Note the '|| 1' - when read_balance prefers
583 			 * non-congested targets, it can be removed
584 			 */
585 			if ((bits & (1<<BDI_write_congested)) || 1)
586 				ret |= bdi_congested(&q->backing_dev_info, bits);
587 			else
588 				ret &= bdi_congested(&q->backing_dev_info, bits);
589 		}
590 	}
591 	rcu_read_unlock();
592 	return ret;
593 }
594 
595 
flush_pending_writes(conf_t * conf)596 static int flush_pending_writes(conf_t *conf)
597 {
598 	/* Any writes that have been queued but are awaiting
599 	 * bitmap updates get flushed here.
600 	 * We return 1 if any requests were actually submitted.
601 	 */
602 	int rv = 0;
603 
604 	spin_lock_irq(&conf->device_lock);
605 
606 	if (conf->pending_bio_list.head) {
607 		struct bio *bio;
608 		bio = bio_list_get(&conf->pending_bio_list);
609 		blk_remove_plug(conf->mddev->queue);
610 		spin_unlock_irq(&conf->device_lock);
611 		/* flush any pending bitmap writes to
612 		 * disk before proceeding w/ I/O */
613 		bitmap_unplug(conf->mddev->bitmap);
614 
615 		while (bio) { /* submit pending writes */
616 			struct bio *next = bio->bi_next;
617 			bio->bi_next = NULL;
618 			generic_make_request(bio);
619 			bio = next;
620 		}
621 		rv = 1;
622 	} else
623 		spin_unlock_irq(&conf->device_lock);
624 	return rv;
625 }
626 
627 /* Barriers....
628  * Sometimes we need to suspend IO while we do something else,
629  * either some resync/recovery, or reconfigure the array.
630  * To do this we raise a 'barrier'.
631  * The 'barrier' is a counter that can be raised multiple times
632  * to count how many activities are happening which preclude
633  * normal IO.
634  * We can only raise the barrier if there is no pending IO.
635  * i.e. if nr_pending == 0.
636  * We choose only to raise the barrier if no-one is waiting for the
637  * barrier to go down.  This means that as soon as an IO request
638  * is ready, no other operations which require a barrier will start
639  * until the IO request has had a chance.
640  *
641  * So: regular IO calls 'wait_barrier'.  When that returns there
642  *    is no backgroup IO happening,  It must arrange to call
643  *    allow_barrier when it has finished its IO.
644  * backgroup IO calls must call raise_barrier.  Once that returns
645  *    there is no normal IO happeing.  It must arrange to call
646  *    lower_barrier when the particular background IO completes.
647  */
648 #define RESYNC_DEPTH 32
649 
raise_barrier(conf_t * conf)650 static void raise_barrier(conf_t *conf)
651 {
652 	spin_lock_irq(&conf->resync_lock);
653 
654 	/* Wait until no block IO is waiting */
655 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
656 			    conf->resync_lock,
657 			    raid1_unplug(conf->mddev->queue));
658 
659 	/* block any new IO from starting */
660 	conf->barrier++;
661 
662 	/* No wait for all pending IO to complete */
663 	wait_event_lock_irq(conf->wait_barrier,
664 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
665 			    conf->resync_lock,
666 			    raid1_unplug(conf->mddev->queue));
667 
668 	spin_unlock_irq(&conf->resync_lock);
669 }
670 
lower_barrier(conf_t * conf)671 static void lower_barrier(conf_t *conf)
672 {
673 	unsigned long flags;
674 	spin_lock_irqsave(&conf->resync_lock, flags);
675 	conf->barrier--;
676 	spin_unlock_irqrestore(&conf->resync_lock, flags);
677 	wake_up(&conf->wait_barrier);
678 }
679 
wait_barrier(conf_t * conf)680 static void wait_barrier(conf_t *conf)
681 {
682 	spin_lock_irq(&conf->resync_lock);
683 	if (conf->barrier) {
684 		conf->nr_waiting++;
685 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
686 				    conf->resync_lock,
687 				    raid1_unplug(conf->mddev->queue));
688 		conf->nr_waiting--;
689 	}
690 	conf->nr_pending++;
691 	spin_unlock_irq(&conf->resync_lock);
692 }
693 
allow_barrier(conf_t * conf)694 static void allow_barrier(conf_t *conf)
695 {
696 	unsigned long flags;
697 	spin_lock_irqsave(&conf->resync_lock, flags);
698 	conf->nr_pending--;
699 	spin_unlock_irqrestore(&conf->resync_lock, flags);
700 	wake_up(&conf->wait_barrier);
701 }
702 
freeze_array(conf_t * conf)703 static void freeze_array(conf_t *conf)
704 {
705 	/* stop syncio and normal IO and wait for everything to
706 	 * go quite.
707 	 * We increment barrier and nr_waiting, and then
708 	 * wait until nr_pending match nr_queued+1
709 	 * This is called in the context of one normal IO request
710 	 * that has failed. Thus any sync request that might be pending
711 	 * will be blocked by nr_pending, and we need to wait for
712 	 * pending IO requests to complete or be queued for re-try.
713 	 * Thus the number queued (nr_queued) plus this request (1)
714 	 * must match the number of pending IOs (nr_pending) before
715 	 * we continue.
716 	 */
717 	spin_lock_irq(&conf->resync_lock);
718 	conf->barrier++;
719 	conf->nr_waiting++;
720 	wait_event_lock_irq(conf->wait_barrier,
721 			    conf->nr_pending == conf->nr_queued+1,
722 			    conf->resync_lock,
723 			    ({ flush_pending_writes(conf);
724 			       raid1_unplug(conf->mddev->queue); }));
725 	spin_unlock_irq(&conf->resync_lock);
726 }
unfreeze_array(conf_t * conf)727 static void unfreeze_array(conf_t *conf)
728 {
729 	/* reverse the effect of the freeze */
730 	spin_lock_irq(&conf->resync_lock);
731 	conf->barrier--;
732 	conf->nr_waiting--;
733 	wake_up(&conf->wait_barrier);
734 	spin_unlock_irq(&conf->resync_lock);
735 }
736 
737 
738 /* duplicate the data pages for behind I/O */
alloc_behind_pages(struct bio * bio)739 static struct page **alloc_behind_pages(struct bio *bio)
740 {
741 	int i;
742 	struct bio_vec *bvec;
743 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
744 					GFP_NOIO);
745 	if (unlikely(!pages))
746 		goto do_sync_io;
747 
748 	bio_for_each_segment(bvec, bio, i) {
749 		pages[i] = alloc_page(GFP_NOIO);
750 		if (unlikely(!pages[i]))
751 			goto do_sync_io;
752 		memcpy(kmap(pages[i]) + bvec->bv_offset,
753 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
754 		kunmap(pages[i]);
755 		kunmap(bvec->bv_page);
756 	}
757 
758 	return pages;
759 
760 do_sync_io:
761 	if (pages)
762 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
763 			put_page(pages[i]);
764 	kfree(pages);
765 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
766 	return NULL;
767 }
768 
make_request(struct request_queue * q,struct bio * bio)769 static int make_request(struct request_queue *q, struct bio * bio)
770 {
771 	mddev_t *mddev = q->queuedata;
772 	conf_t *conf = mddev_to_conf(mddev);
773 	mirror_info_t *mirror;
774 	r1bio_t *r1_bio;
775 	struct bio *read_bio;
776 	int i, targets = 0, disks;
777 	struct bitmap *bitmap;
778 	unsigned long flags;
779 	struct bio_list bl;
780 	struct page **behind_pages = NULL;
781 	const int rw = bio_data_dir(bio);
782 	const int do_sync = bio_sync(bio);
783 	int cpu, do_barriers;
784 	mdk_rdev_t *blocked_rdev;
785 
786 	/*
787 	 * Register the new request and wait if the reconstruction
788 	 * thread has put up a bar for new requests.
789 	 * Continue immediately if no resync is active currently.
790 	 * We test barriers_work *after* md_write_start as md_write_start
791 	 * may cause the first superblock write, and that will check out
792 	 * if barriers work.
793 	 */
794 
795 	md_write_start(mddev, bio); /* wait on superblock update early */
796 
797 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
798 		if (rw == WRITE)
799 			md_write_end(mddev);
800 		bio_endio(bio, -EOPNOTSUPP);
801 		return 0;
802 	}
803 
804 	wait_barrier(conf);
805 
806 	bitmap = mddev->bitmap;
807 
808 	cpu = part_stat_lock();
809 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
810 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
811 		      bio_sectors(bio));
812 	part_stat_unlock();
813 
814 	/*
815 	 * make_request() can abort the operation when READA is being
816 	 * used and no empty request is available.
817 	 *
818 	 */
819 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
820 
821 	r1_bio->master_bio = bio;
822 	r1_bio->sectors = bio->bi_size >> 9;
823 	r1_bio->state = 0;
824 	r1_bio->mddev = mddev;
825 	r1_bio->sector = bio->bi_sector;
826 
827 	if (rw == READ) {
828 		/*
829 		 * read balancing logic:
830 		 */
831 		int rdisk = read_balance(conf, r1_bio);
832 
833 		if (rdisk < 0) {
834 			/* couldn't find anywhere to read from */
835 			raid_end_bio_io(r1_bio);
836 			return 0;
837 		}
838 		mirror = conf->mirrors + rdisk;
839 
840 		r1_bio->read_disk = rdisk;
841 
842 		read_bio = bio_clone(bio, GFP_NOIO);
843 
844 		r1_bio->bios[rdisk] = read_bio;
845 
846 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
847 		read_bio->bi_bdev = mirror->rdev->bdev;
848 		read_bio->bi_end_io = raid1_end_read_request;
849 		read_bio->bi_rw = READ | do_sync;
850 		read_bio->bi_private = r1_bio;
851 
852 		generic_make_request(read_bio);
853 		return 0;
854 	}
855 
856 	/*
857 	 * WRITE:
858 	 */
859 	/* first select target devices under spinlock and
860 	 * inc refcount on their rdev.  Record them by setting
861 	 * bios[x] to bio
862 	 */
863 	disks = conf->raid_disks;
864 #if 0
865 	{ static int first=1;
866 	if (first) printk("First Write sector %llu disks %d\n",
867 			  (unsigned long long)r1_bio->sector, disks);
868 	first = 0;
869 	}
870 #endif
871  retry_write:
872 	blocked_rdev = NULL;
873 	rcu_read_lock();
874 	for (i = 0;  i < disks; i++) {
875 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
876 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
877 			atomic_inc(&rdev->nr_pending);
878 			blocked_rdev = rdev;
879 			break;
880 		}
881 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 			atomic_inc(&rdev->nr_pending);
883 			if (test_bit(Faulty, &rdev->flags)) {
884 				rdev_dec_pending(rdev, mddev);
885 				r1_bio->bios[i] = NULL;
886 			} else
887 				r1_bio->bios[i] = bio;
888 			targets++;
889 		} else
890 			r1_bio->bios[i] = NULL;
891 	}
892 	rcu_read_unlock();
893 
894 	if (unlikely(blocked_rdev)) {
895 		/* Wait for this device to become unblocked */
896 		int j;
897 
898 		for (j = 0; j < i; j++)
899 			if (r1_bio->bios[j])
900 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
901 
902 		allow_barrier(conf);
903 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
904 		wait_barrier(conf);
905 		goto retry_write;
906 	}
907 
908 	BUG_ON(targets == 0); /* we never fail the last device */
909 
910 	if (targets < conf->raid_disks) {
911 		/* array is degraded, we will not clear the bitmap
912 		 * on I/O completion (see raid1_end_write_request) */
913 		set_bit(R1BIO_Degraded, &r1_bio->state);
914 	}
915 
916 	/* do behind I/O ? */
917 	if (bitmap &&
918 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
919 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
920 		set_bit(R1BIO_BehindIO, &r1_bio->state);
921 
922 	atomic_set(&r1_bio->remaining, 0);
923 	atomic_set(&r1_bio->behind_remaining, 0);
924 
925 	do_barriers = bio_barrier(bio);
926 	if (do_barriers)
927 		set_bit(R1BIO_Barrier, &r1_bio->state);
928 
929 	bio_list_init(&bl);
930 	for (i = 0; i < disks; i++) {
931 		struct bio *mbio;
932 		if (!r1_bio->bios[i])
933 			continue;
934 
935 		mbio = bio_clone(bio, GFP_NOIO);
936 		r1_bio->bios[i] = mbio;
937 
938 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
939 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
940 		mbio->bi_end_io	= raid1_end_write_request;
941 		mbio->bi_rw = WRITE | do_barriers | do_sync;
942 		mbio->bi_private = r1_bio;
943 
944 		if (behind_pages) {
945 			struct bio_vec *bvec;
946 			int j;
947 
948 			/* Yes, I really want the '__' version so that
949 			 * we clear any unused pointer in the io_vec, rather
950 			 * than leave them unchanged.  This is important
951 			 * because when we come to free the pages, we won't
952 			 * know the originial bi_idx, so we just free
953 			 * them all
954 			 */
955 			__bio_for_each_segment(bvec, mbio, j, 0)
956 				bvec->bv_page = behind_pages[j];
957 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
958 				atomic_inc(&r1_bio->behind_remaining);
959 		}
960 
961 		atomic_inc(&r1_bio->remaining);
962 
963 		bio_list_add(&bl, mbio);
964 	}
965 	kfree(behind_pages); /* the behind pages are attached to the bios now */
966 
967 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
968 				test_bit(R1BIO_BehindIO, &r1_bio->state));
969 	spin_lock_irqsave(&conf->device_lock, flags);
970 	bio_list_merge(&conf->pending_bio_list, &bl);
971 	bio_list_init(&bl);
972 
973 	blk_plug_device(mddev->queue);
974 	spin_unlock_irqrestore(&conf->device_lock, flags);
975 
976 	/* In case raid1d snuck into freeze_array */
977 	wake_up(&conf->wait_barrier);
978 
979 	if (do_sync)
980 		md_wakeup_thread(mddev->thread);
981 #if 0
982 	while ((bio = bio_list_pop(&bl)) != NULL)
983 		generic_make_request(bio);
984 #endif
985 
986 	return 0;
987 }
988 
status(struct seq_file * seq,mddev_t * mddev)989 static void status(struct seq_file *seq, mddev_t *mddev)
990 {
991 	conf_t *conf = mddev_to_conf(mddev);
992 	int i;
993 
994 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
995 		   conf->raid_disks - mddev->degraded);
996 	rcu_read_lock();
997 	for (i = 0; i < conf->raid_disks; i++) {
998 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
999 		seq_printf(seq, "%s",
1000 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1001 	}
1002 	rcu_read_unlock();
1003 	seq_printf(seq, "]");
1004 }
1005 
1006 
error(mddev_t * mddev,mdk_rdev_t * rdev)1007 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1008 {
1009 	char b[BDEVNAME_SIZE];
1010 	conf_t *conf = mddev_to_conf(mddev);
1011 
1012 	/*
1013 	 * If it is not operational, then we have already marked it as dead
1014 	 * else if it is the last working disks, ignore the error, let the
1015 	 * next level up know.
1016 	 * else mark the drive as failed
1017 	 */
1018 	if (test_bit(In_sync, &rdev->flags)
1019 	    && (conf->raid_disks - mddev->degraded) == 1) {
1020 		/*
1021 		 * Don't fail the drive, act as though we were just a
1022 		 * normal single drive.
1023 		 * However don't try a recovery from this drive as
1024 		 * it is very likely to fail.
1025 		 */
1026 		mddev->recovery_disabled = 1;
1027 		return;
1028 	}
1029 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1030 		unsigned long flags;
1031 		spin_lock_irqsave(&conf->device_lock, flags);
1032 		mddev->degraded++;
1033 		set_bit(Faulty, &rdev->flags);
1034 		spin_unlock_irqrestore(&conf->device_lock, flags);
1035 		/*
1036 		 * if recovery is running, make sure it aborts.
1037 		 */
1038 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1039 	} else
1040 		set_bit(Faulty, &rdev->flags);
1041 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1042 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1043 		"raid1: Operation continuing on %d devices.\n",
1044 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1045 }
1046 
print_conf(conf_t * conf)1047 static void print_conf(conf_t *conf)
1048 {
1049 	int i;
1050 
1051 	printk("RAID1 conf printout:\n");
1052 	if (!conf) {
1053 		printk("(!conf)\n");
1054 		return;
1055 	}
1056 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1057 		conf->raid_disks);
1058 
1059 	rcu_read_lock();
1060 	for (i = 0; i < conf->raid_disks; i++) {
1061 		char b[BDEVNAME_SIZE];
1062 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1063 		if (rdev)
1064 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1065 			       i, !test_bit(In_sync, &rdev->flags),
1066 			       !test_bit(Faulty, &rdev->flags),
1067 			       bdevname(rdev->bdev,b));
1068 	}
1069 	rcu_read_unlock();
1070 }
1071 
close_sync(conf_t * conf)1072 static void close_sync(conf_t *conf)
1073 {
1074 	wait_barrier(conf);
1075 	allow_barrier(conf);
1076 
1077 	mempool_destroy(conf->r1buf_pool);
1078 	conf->r1buf_pool = NULL;
1079 }
1080 
raid1_spare_active(mddev_t * mddev)1081 static int raid1_spare_active(mddev_t *mddev)
1082 {
1083 	int i;
1084 	conf_t *conf = mddev->private;
1085 
1086 	/*
1087 	 * Find all failed disks within the RAID1 configuration
1088 	 * and mark them readable.
1089 	 * Called under mddev lock, so rcu protection not needed.
1090 	 */
1091 	for (i = 0; i < conf->raid_disks; i++) {
1092 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1093 		if (rdev
1094 		    && !test_bit(Faulty, &rdev->flags)
1095 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1096 			unsigned long flags;
1097 			spin_lock_irqsave(&conf->device_lock, flags);
1098 			mddev->degraded--;
1099 			spin_unlock_irqrestore(&conf->device_lock, flags);
1100 		}
1101 	}
1102 
1103 	print_conf(conf);
1104 	return 0;
1105 }
1106 
1107 
raid1_add_disk(mddev_t * mddev,mdk_rdev_t * rdev)1108 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1109 {
1110 	conf_t *conf = mddev->private;
1111 	int err = -EEXIST;
1112 	int mirror = 0;
1113 	mirror_info_t *p;
1114 	int first = 0;
1115 	int last = mddev->raid_disks - 1;
1116 
1117 	if (rdev->raid_disk >= 0)
1118 		first = last = rdev->raid_disk;
1119 
1120 	for (mirror = first; mirror <= last; mirror++)
1121 		if ( !(p=conf->mirrors+mirror)->rdev) {
1122 
1123 			blk_queue_stack_limits(mddev->queue,
1124 					       rdev->bdev->bd_disk->queue);
1125 			/* as we don't honour merge_bvec_fn, we must never risk
1126 			 * violating it, so limit ->max_sector to one PAGE, as
1127 			 * a one page request is never in violation.
1128 			 */
1129 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1130 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1131 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1132 
1133 			p->head_position = 0;
1134 			rdev->raid_disk = mirror;
1135 			err = 0;
1136 			/* As all devices are equivalent, we don't need a full recovery
1137 			 * if this was recently any drive of the array
1138 			 */
1139 			if (rdev->saved_raid_disk < 0)
1140 				conf->fullsync = 1;
1141 			rcu_assign_pointer(p->rdev, rdev);
1142 			break;
1143 		}
1144 
1145 	print_conf(conf);
1146 	return err;
1147 }
1148 
raid1_remove_disk(mddev_t * mddev,int number)1149 static int raid1_remove_disk(mddev_t *mddev, int number)
1150 {
1151 	conf_t *conf = mddev->private;
1152 	int err = 0;
1153 	mdk_rdev_t *rdev;
1154 	mirror_info_t *p = conf->mirrors+ number;
1155 
1156 	print_conf(conf);
1157 	rdev = p->rdev;
1158 	if (rdev) {
1159 		if (test_bit(In_sync, &rdev->flags) ||
1160 		    atomic_read(&rdev->nr_pending)) {
1161 			err = -EBUSY;
1162 			goto abort;
1163 		}
1164 		/* Only remove non-faulty devices is recovery
1165 		 * is not possible.
1166 		 */
1167 		if (!test_bit(Faulty, &rdev->flags) &&
1168 		    mddev->degraded < conf->raid_disks) {
1169 			err = -EBUSY;
1170 			goto abort;
1171 		}
1172 		p->rdev = NULL;
1173 		synchronize_rcu();
1174 		if (atomic_read(&rdev->nr_pending)) {
1175 			/* lost the race, try later */
1176 			err = -EBUSY;
1177 			p->rdev = rdev;
1178 		}
1179 	}
1180 abort:
1181 
1182 	print_conf(conf);
1183 	return err;
1184 }
1185 
1186 
end_sync_read(struct bio * bio,int error)1187 static void end_sync_read(struct bio *bio, int error)
1188 {
1189 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1190 	int i;
1191 
1192 	for (i=r1_bio->mddev->raid_disks; i--; )
1193 		if (r1_bio->bios[i] == bio)
1194 			break;
1195 	BUG_ON(i < 0);
1196 	update_head_pos(i, r1_bio);
1197 	/*
1198 	 * we have read a block, now it needs to be re-written,
1199 	 * or re-read if the read failed.
1200 	 * We don't do much here, just schedule handling by raid1d
1201 	 */
1202 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1203 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1204 
1205 	if (atomic_dec_and_test(&r1_bio->remaining))
1206 		reschedule_retry(r1_bio);
1207 }
1208 
end_sync_write(struct bio * bio,int error)1209 static void end_sync_write(struct bio *bio, int error)
1210 {
1211 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1212 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1213 	mddev_t *mddev = r1_bio->mddev;
1214 	conf_t *conf = mddev_to_conf(mddev);
1215 	int i;
1216 	int mirror=0;
1217 
1218 	for (i = 0; i < conf->raid_disks; i++)
1219 		if (r1_bio->bios[i] == bio) {
1220 			mirror = i;
1221 			break;
1222 		}
1223 	if (!uptodate) {
1224 		int sync_blocks = 0;
1225 		sector_t s = r1_bio->sector;
1226 		long sectors_to_go = r1_bio->sectors;
1227 		/* make sure these bits doesn't get cleared. */
1228 		do {
1229 			bitmap_end_sync(mddev->bitmap, s,
1230 					&sync_blocks, 1);
1231 			s += sync_blocks;
1232 			sectors_to_go -= sync_blocks;
1233 		} while (sectors_to_go > 0);
1234 		md_error(mddev, conf->mirrors[mirror].rdev);
1235 	}
1236 
1237 	update_head_pos(mirror, r1_bio);
1238 
1239 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1240 		sector_t s = r1_bio->sectors;
1241 		put_buf(r1_bio);
1242 		md_done_sync(mddev, s, uptodate);
1243 	}
1244 }
1245 
sync_request_write(mddev_t * mddev,r1bio_t * r1_bio)1246 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1247 {
1248 	conf_t *conf = mddev_to_conf(mddev);
1249 	int i;
1250 	int disks = conf->raid_disks;
1251 	struct bio *bio, *wbio;
1252 
1253 	bio = r1_bio->bios[r1_bio->read_disk];
1254 
1255 
1256 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1257 		/* We have read all readable devices.  If we haven't
1258 		 * got the block, then there is no hope left.
1259 		 * If we have, then we want to do a comparison
1260 		 * and skip the write if everything is the same.
1261 		 * If any blocks failed to read, then we need to
1262 		 * attempt an over-write
1263 		 */
1264 		int primary;
1265 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1266 			for (i=0; i<mddev->raid_disks; i++)
1267 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1268 					md_error(mddev, conf->mirrors[i].rdev);
1269 
1270 			md_done_sync(mddev, r1_bio->sectors, 1);
1271 			put_buf(r1_bio);
1272 			return;
1273 		}
1274 		for (primary=0; primary<mddev->raid_disks; primary++)
1275 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1276 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1277 				r1_bio->bios[primary]->bi_end_io = NULL;
1278 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1279 				break;
1280 			}
1281 		r1_bio->read_disk = primary;
1282 		for (i=0; i<mddev->raid_disks; i++)
1283 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1284 				int j;
1285 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1286 				struct bio *pbio = r1_bio->bios[primary];
1287 				struct bio *sbio = r1_bio->bios[i];
1288 
1289 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1290 					for (j = vcnt; j-- ; ) {
1291 						struct page *p, *s;
1292 						p = pbio->bi_io_vec[j].bv_page;
1293 						s = sbio->bi_io_vec[j].bv_page;
1294 						if (memcmp(page_address(p),
1295 							   page_address(s),
1296 							   PAGE_SIZE))
1297 							break;
1298 					}
1299 				} else
1300 					j = 0;
1301 				if (j >= 0)
1302 					mddev->resync_mismatches += r1_bio->sectors;
1303 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1304 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1305 					sbio->bi_end_io = NULL;
1306 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1307 				} else {
1308 					/* fixup the bio for reuse */
1309 					int size;
1310 					sbio->bi_vcnt = vcnt;
1311 					sbio->bi_size = r1_bio->sectors << 9;
1312 					sbio->bi_idx = 0;
1313 					sbio->bi_phys_segments = 0;
1314 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1316 					sbio->bi_next = NULL;
1317 					sbio->bi_sector = r1_bio->sector +
1318 						conf->mirrors[i].rdev->data_offset;
1319 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1320 					size = sbio->bi_size;
1321 					for (j = 0; j < vcnt ; j++) {
1322 						struct bio_vec *bi;
1323 						bi = &sbio->bi_io_vec[j];
1324 						bi->bv_offset = 0;
1325 						if (size > PAGE_SIZE)
1326 							bi->bv_len = PAGE_SIZE;
1327 						else
1328 							bi->bv_len = size;
1329 						size -= PAGE_SIZE;
1330 						memcpy(page_address(bi->bv_page),
1331 						       page_address(pbio->bi_io_vec[j].bv_page),
1332 						       PAGE_SIZE);
1333 					}
1334 
1335 				}
1336 			}
1337 	}
1338 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1339 		/* ouch - failed to read all of that.
1340 		 * Try some synchronous reads of other devices to get
1341 		 * good data, much like with normal read errors.  Only
1342 		 * read into the pages we already have so we don't
1343 		 * need to re-issue the read request.
1344 		 * We don't need to freeze the array, because being in an
1345 		 * active sync request, there is no normal IO, and
1346 		 * no overlapping syncs.
1347 		 */
1348 		sector_t sect = r1_bio->sector;
1349 		int sectors = r1_bio->sectors;
1350 		int idx = 0;
1351 
1352 		while(sectors) {
1353 			int s = sectors;
1354 			int d = r1_bio->read_disk;
1355 			int success = 0;
1356 			mdk_rdev_t *rdev;
1357 
1358 			if (s > (PAGE_SIZE>>9))
1359 				s = PAGE_SIZE >> 9;
1360 			do {
1361 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1362 					/* No rcu protection needed here devices
1363 					 * can only be removed when no resync is
1364 					 * active, and resync is currently active
1365 					 */
1366 					rdev = conf->mirrors[d].rdev;
1367 					if (sync_page_io(rdev->bdev,
1368 							 sect + rdev->data_offset,
1369 							 s<<9,
1370 							 bio->bi_io_vec[idx].bv_page,
1371 							 READ)) {
1372 						success = 1;
1373 						break;
1374 					}
1375 				}
1376 				d++;
1377 				if (d == conf->raid_disks)
1378 					d = 0;
1379 			} while (!success && d != r1_bio->read_disk);
1380 
1381 			if (success) {
1382 				int start = d;
1383 				/* write it back and re-read */
1384 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1385 				while (d != r1_bio->read_disk) {
1386 					if (d == 0)
1387 						d = conf->raid_disks;
1388 					d--;
1389 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1390 						continue;
1391 					rdev = conf->mirrors[d].rdev;
1392 					atomic_add(s, &rdev->corrected_errors);
1393 					if (sync_page_io(rdev->bdev,
1394 							 sect + rdev->data_offset,
1395 							 s<<9,
1396 							 bio->bi_io_vec[idx].bv_page,
1397 							 WRITE) == 0)
1398 						md_error(mddev, rdev);
1399 				}
1400 				d = start;
1401 				while (d != r1_bio->read_disk) {
1402 					if (d == 0)
1403 						d = conf->raid_disks;
1404 					d--;
1405 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1406 						continue;
1407 					rdev = conf->mirrors[d].rdev;
1408 					if (sync_page_io(rdev->bdev,
1409 							 sect + rdev->data_offset,
1410 							 s<<9,
1411 							 bio->bi_io_vec[idx].bv_page,
1412 							 READ) == 0)
1413 						md_error(mddev, rdev);
1414 				}
1415 			} else {
1416 				char b[BDEVNAME_SIZE];
1417 				/* Cannot read from anywhere, array is toast */
1418 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1419 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1420 				       " for block %llu\n",
1421 				       bdevname(bio->bi_bdev,b),
1422 				       (unsigned long long)r1_bio->sector);
1423 				md_done_sync(mddev, r1_bio->sectors, 0);
1424 				put_buf(r1_bio);
1425 				return;
1426 			}
1427 			sectors -= s;
1428 			sect += s;
1429 			idx ++;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * schedule writes
1435 	 */
1436 	atomic_set(&r1_bio->remaining, 1);
1437 	for (i = 0; i < disks ; i++) {
1438 		wbio = r1_bio->bios[i];
1439 		if (wbio->bi_end_io == NULL ||
1440 		    (wbio->bi_end_io == end_sync_read &&
1441 		     (i == r1_bio->read_disk ||
1442 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1443 			continue;
1444 
1445 		wbio->bi_rw = WRITE;
1446 		wbio->bi_end_io = end_sync_write;
1447 		atomic_inc(&r1_bio->remaining);
1448 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1449 
1450 		generic_make_request(wbio);
1451 	}
1452 
1453 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1454 		/* if we're here, all write(s) have completed, so clean up */
1455 		md_done_sync(mddev, r1_bio->sectors, 1);
1456 		put_buf(r1_bio);
1457 	}
1458 }
1459 
1460 /*
1461  * This is a kernel thread which:
1462  *
1463  *	1.	Retries failed read operations on working mirrors.
1464  *	2.	Updates the raid superblock when problems encounter.
1465  *	3.	Performs writes following reads for array syncronising.
1466  */
1467 
fix_read_error(conf_t * conf,int read_disk,sector_t sect,int sectors)1468 static void fix_read_error(conf_t *conf, int read_disk,
1469 			   sector_t sect, int sectors)
1470 {
1471 	mddev_t *mddev = conf->mddev;
1472 	while(sectors) {
1473 		int s = sectors;
1474 		int d = read_disk;
1475 		int success = 0;
1476 		int start;
1477 		mdk_rdev_t *rdev;
1478 
1479 		if (s > (PAGE_SIZE>>9))
1480 			s = PAGE_SIZE >> 9;
1481 
1482 		do {
1483 			/* Note: no rcu protection needed here
1484 			 * as this is synchronous in the raid1d thread
1485 			 * which is the thread that might remove
1486 			 * a device.  If raid1d ever becomes multi-threaded....
1487 			 */
1488 			rdev = conf->mirrors[d].rdev;
1489 			if (rdev &&
1490 			    test_bit(In_sync, &rdev->flags) &&
1491 			    sync_page_io(rdev->bdev,
1492 					 sect + rdev->data_offset,
1493 					 s<<9,
1494 					 conf->tmppage, READ))
1495 				success = 1;
1496 			else {
1497 				d++;
1498 				if (d == conf->raid_disks)
1499 					d = 0;
1500 			}
1501 		} while (!success && d != read_disk);
1502 
1503 		if (!success) {
1504 			/* Cannot read from anywhere -- bye bye array */
1505 			md_error(mddev, conf->mirrors[read_disk].rdev);
1506 			break;
1507 		}
1508 		/* write it back and re-read */
1509 		start = d;
1510 		while (d != read_disk) {
1511 			if (d==0)
1512 				d = conf->raid_disks;
1513 			d--;
1514 			rdev = conf->mirrors[d].rdev;
1515 			if (rdev &&
1516 			    test_bit(In_sync, &rdev->flags)) {
1517 				if (sync_page_io(rdev->bdev,
1518 						 sect + rdev->data_offset,
1519 						 s<<9, conf->tmppage, WRITE)
1520 				    == 0)
1521 					/* Well, this device is dead */
1522 					md_error(mddev, rdev);
1523 			}
1524 		}
1525 		d = start;
1526 		while (d != read_disk) {
1527 			char b[BDEVNAME_SIZE];
1528 			if (d==0)
1529 				d = conf->raid_disks;
1530 			d--;
1531 			rdev = conf->mirrors[d].rdev;
1532 			if (rdev &&
1533 			    test_bit(In_sync, &rdev->flags)) {
1534 				if (sync_page_io(rdev->bdev,
1535 						 sect + rdev->data_offset,
1536 						 s<<9, conf->tmppage, READ)
1537 				    == 0)
1538 					/* Well, this device is dead */
1539 					md_error(mddev, rdev);
1540 				else {
1541 					atomic_add(s, &rdev->corrected_errors);
1542 					printk(KERN_INFO
1543 					       "raid1:%s: read error corrected "
1544 					       "(%d sectors at %llu on %s)\n",
1545 					       mdname(mddev), s,
1546 					       (unsigned long long)(sect +
1547 					           rdev->data_offset),
1548 					       bdevname(rdev->bdev, b));
1549 				}
1550 			}
1551 		}
1552 		sectors -= s;
1553 		sect += s;
1554 	}
1555 }
1556 
raid1d(mddev_t * mddev)1557 static void raid1d(mddev_t *mddev)
1558 {
1559 	r1bio_t *r1_bio;
1560 	struct bio *bio;
1561 	unsigned long flags;
1562 	conf_t *conf = mddev_to_conf(mddev);
1563 	struct list_head *head = &conf->retry_list;
1564 	int unplug=0;
1565 	mdk_rdev_t *rdev;
1566 
1567 	md_check_recovery(mddev);
1568 
1569 	for (;;) {
1570 		char b[BDEVNAME_SIZE];
1571 
1572 		unplug += flush_pending_writes(conf);
1573 
1574 		spin_lock_irqsave(&conf->device_lock, flags);
1575 		if (list_empty(head)) {
1576 			spin_unlock_irqrestore(&conf->device_lock, flags);
1577 			break;
1578 		}
1579 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1580 		list_del(head->prev);
1581 		conf->nr_queued--;
1582 		spin_unlock_irqrestore(&conf->device_lock, flags);
1583 
1584 		mddev = r1_bio->mddev;
1585 		conf = mddev_to_conf(mddev);
1586 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1587 			sync_request_write(mddev, r1_bio);
1588 			unplug = 1;
1589 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1590 			/* some requests in the r1bio were BIO_RW_BARRIER
1591 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1592 			 * Better resubmit without the barrier.
1593 			 * We know which devices to resubmit for, because
1594 			 * all others have had their bios[] entry cleared.
1595 			 * We already have a nr_pending reference on these rdevs.
1596 			 */
1597 			int i;
1598 			const int do_sync = bio_sync(r1_bio->master_bio);
1599 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1600 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1601 			for (i=0; i < conf->raid_disks; i++)
1602 				if (r1_bio->bios[i])
1603 					atomic_inc(&r1_bio->remaining);
1604 			for (i=0; i < conf->raid_disks; i++)
1605 				if (r1_bio->bios[i]) {
1606 					struct bio_vec *bvec;
1607 					int j;
1608 
1609 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1610 					/* copy pages from the failed bio, as
1611 					 * this might be a write-behind device */
1612 					__bio_for_each_segment(bvec, bio, j, 0)
1613 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1614 					bio_put(r1_bio->bios[i]);
1615 					bio->bi_sector = r1_bio->sector +
1616 						conf->mirrors[i].rdev->data_offset;
1617 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1618 					bio->bi_end_io = raid1_end_write_request;
1619 					bio->bi_rw = WRITE | do_sync;
1620 					bio->bi_private = r1_bio;
1621 					r1_bio->bios[i] = bio;
1622 					generic_make_request(bio);
1623 				}
1624 		} else {
1625 			int disk;
1626 
1627 			/* we got a read error. Maybe the drive is bad.  Maybe just
1628 			 * the block and we can fix it.
1629 			 * We freeze all other IO, and try reading the block from
1630 			 * other devices.  When we find one, we re-write
1631 			 * and check it that fixes the read error.
1632 			 * This is all done synchronously while the array is
1633 			 * frozen
1634 			 */
1635 			if (mddev->ro == 0) {
1636 				freeze_array(conf);
1637 				fix_read_error(conf, r1_bio->read_disk,
1638 					       r1_bio->sector,
1639 					       r1_bio->sectors);
1640 				unfreeze_array(conf);
1641 			}
1642 
1643 			bio = r1_bio->bios[r1_bio->read_disk];
1644 			if ((disk=read_balance(conf, r1_bio)) == -1 ||
1645 			    disk == r1_bio->read_disk) {
1646 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1647 				       " read error for block %llu\n",
1648 				       bdevname(bio->bi_bdev,b),
1649 				       (unsigned long long)r1_bio->sector);
1650 				raid_end_bio_io(r1_bio);
1651 			} else {
1652 				const int do_sync = bio_sync(r1_bio->master_bio);
1653 				r1_bio->bios[r1_bio->read_disk] =
1654 					mddev->ro ? IO_BLOCKED : NULL;
1655 				r1_bio->read_disk = disk;
1656 				bio_put(bio);
1657 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1658 				r1_bio->bios[r1_bio->read_disk] = bio;
1659 				rdev = conf->mirrors[disk].rdev;
1660 				if (printk_ratelimit())
1661 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1662 					       " another mirror\n",
1663 					       bdevname(rdev->bdev,b),
1664 					       (unsigned long long)r1_bio->sector);
1665 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1666 				bio->bi_bdev = rdev->bdev;
1667 				bio->bi_end_io = raid1_end_read_request;
1668 				bio->bi_rw = READ | do_sync;
1669 				bio->bi_private = r1_bio;
1670 				unplug = 1;
1671 				generic_make_request(bio);
1672 			}
1673 		}
1674 	}
1675 	if (unplug)
1676 		unplug_slaves(mddev);
1677 }
1678 
1679 
init_resync(conf_t * conf)1680 static int init_resync(conf_t *conf)
1681 {
1682 	int buffs;
1683 
1684 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1685 	BUG_ON(conf->r1buf_pool);
1686 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1687 					  conf->poolinfo);
1688 	if (!conf->r1buf_pool)
1689 		return -ENOMEM;
1690 	conf->next_resync = 0;
1691 	return 0;
1692 }
1693 
1694 /*
1695  * perform a "sync" on one "block"
1696  *
1697  * We need to make sure that no normal I/O request - particularly write
1698  * requests - conflict with active sync requests.
1699  *
1700  * This is achieved by tracking pending requests and a 'barrier' concept
1701  * that can be installed to exclude normal IO requests.
1702  */
1703 
sync_request(mddev_t * mddev,sector_t sector_nr,int * skipped,int go_faster)1704 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1705 {
1706 	conf_t *conf = mddev_to_conf(mddev);
1707 	r1bio_t *r1_bio;
1708 	struct bio *bio;
1709 	sector_t max_sector, nr_sectors;
1710 	int disk = -1;
1711 	int i;
1712 	int wonly = -1;
1713 	int write_targets = 0, read_targets = 0;
1714 	int sync_blocks;
1715 	int still_degraded = 0;
1716 
1717 	if (!conf->r1buf_pool)
1718 	{
1719 /*
1720 		printk("sync start - bitmap %p\n", mddev->bitmap);
1721 */
1722 		if (init_resync(conf))
1723 			return 0;
1724 	}
1725 
1726 	max_sector = mddev->size << 1;
1727 	if (sector_nr >= max_sector) {
1728 		/* If we aborted, we need to abort the
1729 		 * sync on the 'current' bitmap chunk (there will
1730 		 * only be one in raid1 resync.
1731 		 * We can find the current addess in mddev->curr_resync
1732 		 */
1733 		if (mddev->curr_resync < max_sector) /* aborted */
1734 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1735 						&sync_blocks, 1);
1736 		else /* completed sync */
1737 			conf->fullsync = 0;
1738 
1739 		bitmap_close_sync(mddev->bitmap);
1740 		close_sync(conf);
1741 		return 0;
1742 	}
1743 
1744 	if (mddev->bitmap == NULL &&
1745 	    mddev->recovery_cp == MaxSector &&
1746 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1747 	    conf->fullsync == 0) {
1748 		*skipped = 1;
1749 		return max_sector - sector_nr;
1750 	}
1751 	/* before building a request, check if we can skip these blocks..
1752 	 * This call the bitmap_start_sync doesn't actually record anything
1753 	 */
1754 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1755 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1756 		/* We can skip this block, and probably several more */
1757 		*skipped = 1;
1758 		return sync_blocks;
1759 	}
1760 	/*
1761 	 * If there is non-resync activity waiting for a turn,
1762 	 * and resync is going fast enough,
1763 	 * then let it though before starting on this new sync request.
1764 	 */
1765 	if (!go_faster && conf->nr_waiting)
1766 		msleep_interruptible(1000);
1767 
1768 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1769 	raise_barrier(conf);
1770 
1771 	conf->next_resync = sector_nr;
1772 
1773 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1774 	rcu_read_lock();
1775 	/*
1776 	 * If we get a correctably read error during resync or recovery,
1777 	 * we might want to read from a different device.  So we
1778 	 * flag all drives that could conceivably be read from for READ,
1779 	 * and any others (which will be non-In_sync devices) for WRITE.
1780 	 * If a read fails, we try reading from something else for which READ
1781 	 * is OK.
1782 	 */
1783 
1784 	r1_bio->mddev = mddev;
1785 	r1_bio->sector = sector_nr;
1786 	r1_bio->state = 0;
1787 	set_bit(R1BIO_IsSync, &r1_bio->state);
1788 
1789 	for (i=0; i < conf->raid_disks; i++) {
1790 		mdk_rdev_t *rdev;
1791 		bio = r1_bio->bios[i];
1792 
1793 		/* take from bio_init */
1794 		bio->bi_next = NULL;
1795 		bio->bi_flags |= 1 << BIO_UPTODATE;
1796 		bio->bi_rw = READ;
1797 		bio->bi_vcnt = 0;
1798 		bio->bi_idx = 0;
1799 		bio->bi_phys_segments = 0;
1800 		bio->bi_size = 0;
1801 		bio->bi_end_io = NULL;
1802 		bio->bi_private = NULL;
1803 
1804 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1805 		if (rdev == NULL ||
1806 			   test_bit(Faulty, &rdev->flags)) {
1807 			still_degraded = 1;
1808 			continue;
1809 		} else if (!test_bit(In_sync, &rdev->flags)) {
1810 			bio->bi_rw = WRITE;
1811 			bio->bi_end_io = end_sync_write;
1812 			write_targets ++;
1813 		} else {
1814 			/* may need to read from here */
1815 			bio->bi_rw = READ;
1816 			bio->bi_end_io = end_sync_read;
1817 			if (test_bit(WriteMostly, &rdev->flags)) {
1818 				if (wonly < 0)
1819 					wonly = i;
1820 			} else {
1821 				if (disk < 0)
1822 					disk = i;
1823 			}
1824 			read_targets++;
1825 		}
1826 		atomic_inc(&rdev->nr_pending);
1827 		bio->bi_sector = sector_nr + rdev->data_offset;
1828 		bio->bi_bdev = rdev->bdev;
1829 		bio->bi_private = r1_bio;
1830 	}
1831 	rcu_read_unlock();
1832 	if (disk < 0)
1833 		disk = wonly;
1834 	r1_bio->read_disk = disk;
1835 
1836 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1837 		/* extra read targets are also write targets */
1838 		write_targets += read_targets-1;
1839 
1840 	if (write_targets == 0 || read_targets == 0) {
1841 		/* There is nowhere to write, so all non-sync
1842 		 * drives must be failed - so we are finished
1843 		 */
1844 		sector_t rv = max_sector - sector_nr;
1845 		*skipped = 1;
1846 		put_buf(r1_bio);
1847 		return rv;
1848 	}
1849 
1850 	if (max_sector > mddev->resync_max)
1851 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1852 	nr_sectors = 0;
1853 	sync_blocks = 0;
1854 	do {
1855 		struct page *page;
1856 		int len = PAGE_SIZE;
1857 		if (sector_nr + (len>>9) > max_sector)
1858 			len = (max_sector - sector_nr) << 9;
1859 		if (len == 0)
1860 			break;
1861 		if (sync_blocks == 0) {
1862 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1863 					       &sync_blocks, still_degraded) &&
1864 			    !conf->fullsync &&
1865 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1866 				break;
1867 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1868 			if (len > (sync_blocks<<9))
1869 				len = sync_blocks<<9;
1870 		}
1871 
1872 		for (i=0 ; i < conf->raid_disks; i++) {
1873 			bio = r1_bio->bios[i];
1874 			if (bio->bi_end_io) {
1875 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1876 				if (bio_add_page(bio, page, len, 0) == 0) {
1877 					/* stop here */
1878 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1879 					while (i > 0) {
1880 						i--;
1881 						bio = r1_bio->bios[i];
1882 						if (bio->bi_end_io==NULL)
1883 							continue;
1884 						/* remove last page from this bio */
1885 						bio->bi_vcnt--;
1886 						bio->bi_size -= len;
1887 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1888 					}
1889 					goto bio_full;
1890 				}
1891 			}
1892 		}
1893 		nr_sectors += len>>9;
1894 		sector_nr += len>>9;
1895 		sync_blocks -= (len>>9);
1896 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1897  bio_full:
1898 	r1_bio->sectors = nr_sectors;
1899 
1900 	/* For a user-requested sync, we read all readable devices and do a
1901 	 * compare
1902 	 */
1903 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1904 		atomic_set(&r1_bio->remaining, read_targets);
1905 		for (i=0; i<conf->raid_disks; i++) {
1906 			bio = r1_bio->bios[i];
1907 			if (bio->bi_end_io == end_sync_read) {
1908 				md_sync_acct(bio->bi_bdev, nr_sectors);
1909 				generic_make_request(bio);
1910 			}
1911 		}
1912 	} else {
1913 		atomic_set(&r1_bio->remaining, 1);
1914 		bio = r1_bio->bios[r1_bio->read_disk];
1915 		md_sync_acct(bio->bi_bdev, nr_sectors);
1916 		generic_make_request(bio);
1917 
1918 	}
1919 	return nr_sectors;
1920 }
1921 
run(mddev_t * mddev)1922 static int run(mddev_t *mddev)
1923 {
1924 	conf_t *conf;
1925 	int i, j, disk_idx;
1926 	mirror_info_t *disk;
1927 	mdk_rdev_t *rdev;
1928 
1929 	if (mddev->level != 1) {
1930 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1931 		       mdname(mddev), mddev->level);
1932 		goto out;
1933 	}
1934 	if (mddev->reshape_position != MaxSector) {
1935 		printk("raid1: %s: reshape_position set but not supported\n",
1936 		       mdname(mddev));
1937 		goto out;
1938 	}
1939 	/*
1940 	 * copy the already verified devices into our private RAID1
1941 	 * bookkeeping area. [whatever we allocate in run(),
1942 	 * should be freed in stop()]
1943 	 */
1944 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1945 	mddev->private = conf;
1946 	if (!conf)
1947 		goto out_no_mem;
1948 
1949 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1950 				 GFP_KERNEL);
1951 	if (!conf->mirrors)
1952 		goto out_no_mem;
1953 
1954 	conf->tmppage = alloc_page(GFP_KERNEL);
1955 	if (!conf->tmppage)
1956 		goto out_no_mem;
1957 
1958 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1959 	if (!conf->poolinfo)
1960 		goto out_no_mem;
1961 	conf->poolinfo->mddev = mddev;
1962 	conf->poolinfo->raid_disks = mddev->raid_disks;
1963 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1964 					  r1bio_pool_free,
1965 					  conf->poolinfo);
1966 	if (!conf->r1bio_pool)
1967 		goto out_no_mem;
1968 
1969 	spin_lock_init(&conf->device_lock);
1970 	mddev->queue->queue_lock = &conf->device_lock;
1971 
1972 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1973 		disk_idx = rdev->raid_disk;
1974 		if (disk_idx >= mddev->raid_disks
1975 		    || disk_idx < 0)
1976 			continue;
1977 		disk = conf->mirrors + disk_idx;
1978 
1979 		disk->rdev = rdev;
1980 
1981 		blk_queue_stack_limits(mddev->queue,
1982 				       rdev->bdev->bd_disk->queue);
1983 		/* as we don't honour merge_bvec_fn, we must never risk
1984 		 * violating it, so limit ->max_sector to one PAGE, as
1985 		 * a one page request is never in violation.
1986 		 */
1987 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1988 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1989 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1990 
1991 		disk->head_position = 0;
1992 	}
1993 	conf->raid_disks = mddev->raid_disks;
1994 	conf->mddev = mddev;
1995 	INIT_LIST_HEAD(&conf->retry_list);
1996 
1997 	spin_lock_init(&conf->resync_lock);
1998 	init_waitqueue_head(&conf->wait_barrier);
1999 
2000 	bio_list_init(&conf->pending_bio_list);
2001 	bio_list_init(&conf->flushing_bio_list);
2002 
2003 
2004 	mddev->degraded = 0;
2005 	for (i = 0; i < conf->raid_disks; i++) {
2006 
2007 		disk = conf->mirrors + i;
2008 
2009 		if (!disk->rdev ||
2010 		    !test_bit(In_sync, &disk->rdev->flags)) {
2011 			disk->head_position = 0;
2012 			mddev->degraded++;
2013 			if (disk->rdev)
2014 				conf->fullsync = 1;
2015 		}
2016 	}
2017 	if (mddev->degraded == conf->raid_disks) {
2018 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2019 			mdname(mddev));
2020 		goto out_free_conf;
2021 	}
2022 	if (conf->raid_disks - mddev->degraded == 1)
2023 		mddev->recovery_cp = MaxSector;
2024 
2025 	/*
2026 	 * find the first working one and use it as a starting point
2027 	 * to read balancing.
2028 	 */
2029 	for (j = 0; j < conf->raid_disks &&
2030 		     (!conf->mirrors[j].rdev ||
2031 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2032 		/* nothing */;
2033 	conf->last_used = j;
2034 
2035 
2036 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2037 	if (!mddev->thread) {
2038 		printk(KERN_ERR
2039 		       "raid1: couldn't allocate thread for %s\n",
2040 		       mdname(mddev));
2041 		goto out_free_conf;
2042 	}
2043 
2044 	printk(KERN_INFO
2045 		"raid1: raid set %s active with %d out of %d mirrors\n",
2046 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2047 		mddev->raid_disks);
2048 	/*
2049 	 * Ok, everything is just fine now
2050 	 */
2051 	mddev->array_sectors = mddev->size * 2;
2052 
2053 	mddev->queue->unplug_fn = raid1_unplug;
2054 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2055 	mddev->queue->backing_dev_info.congested_data = mddev;
2056 
2057 	return 0;
2058 
2059 out_no_mem:
2060 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2061 	       mdname(mddev));
2062 
2063 out_free_conf:
2064 	if (conf) {
2065 		if (conf->r1bio_pool)
2066 			mempool_destroy(conf->r1bio_pool);
2067 		kfree(conf->mirrors);
2068 		safe_put_page(conf->tmppage);
2069 		kfree(conf->poolinfo);
2070 		kfree(conf);
2071 		mddev->private = NULL;
2072 	}
2073 out:
2074 	return -EIO;
2075 }
2076 
stop(mddev_t * mddev)2077 static int stop(mddev_t *mddev)
2078 {
2079 	conf_t *conf = mddev_to_conf(mddev);
2080 	struct bitmap *bitmap = mddev->bitmap;
2081 	int behind_wait = 0;
2082 
2083 	/* wait for behind writes to complete */
2084 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2085 		behind_wait++;
2086 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2087 		set_current_state(TASK_UNINTERRUPTIBLE);
2088 		schedule_timeout(HZ); /* wait a second */
2089 		/* need to kick something here to make sure I/O goes? */
2090 	}
2091 
2092 	md_unregister_thread(mddev->thread);
2093 	mddev->thread = NULL;
2094 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2095 	if (conf->r1bio_pool)
2096 		mempool_destroy(conf->r1bio_pool);
2097 	kfree(conf->mirrors);
2098 	kfree(conf->poolinfo);
2099 	kfree(conf);
2100 	mddev->private = NULL;
2101 	return 0;
2102 }
2103 
raid1_resize(mddev_t * mddev,sector_t sectors)2104 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2105 {
2106 	/* no resync is happening, and there is enough space
2107 	 * on all devices, so we can resize.
2108 	 * We need to make sure resync covers any new space.
2109 	 * If the array is shrinking we should possibly wait until
2110 	 * any io in the removed space completes, but it hardly seems
2111 	 * worth it.
2112 	 */
2113 	mddev->array_sectors = sectors;
2114 	set_capacity(mddev->gendisk, mddev->array_sectors);
2115 	mddev->changed = 1;
2116 	if (mddev->array_sectors / 2 > mddev->size &&
2117 	    mddev->recovery_cp == MaxSector) {
2118 		mddev->recovery_cp = mddev->size << 1;
2119 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2120 	}
2121 	mddev->size = mddev->array_sectors / 2;
2122 	mddev->resync_max_sectors = sectors;
2123 	return 0;
2124 }
2125 
raid1_reshape(mddev_t * mddev)2126 static int raid1_reshape(mddev_t *mddev)
2127 {
2128 	/* We need to:
2129 	 * 1/ resize the r1bio_pool
2130 	 * 2/ resize conf->mirrors
2131 	 *
2132 	 * We allocate a new r1bio_pool if we can.
2133 	 * Then raise a device barrier and wait until all IO stops.
2134 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2135 	 *
2136 	 * At the same time, we "pack" the devices so that all the missing
2137 	 * devices have the higher raid_disk numbers.
2138 	 */
2139 	mempool_t *newpool, *oldpool;
2140 	struct pool_info *newpoolinfo;
2141 	mirror_info_t *newmirrors;
2142 	conf_t *conf = mddev_to_conf(mddev);
2143 	int cnt, raid_disks;
2144 	unsigned long flags;
2145 	int d, d2, err;
2146 
2147 	/* Cannot change chunk_size, layout, or level */
2148 	if (mddev->chunk_size != mddev->new_chunk ||
2149 	    mddev->layout != mddev->new_layout ||
2150 	    mddev->level != mddev->new_level) {
2151 		mddev->new_chunk = mddev->chunk_size;
2152 		mddev->new_layout = mddev->layout;
2153 		mddev->new_level = mddev->level;
2154 		return -EINVAL;
2155 	}
2156 
2157 	err = md_allow_write(mddev);
2158 	if (err)
2159 		return err;
2160 
2161 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2162 
2163 	if (raid_disks < conf->raid_disks) {
2164 		cnt=0;
2165 		for (d= 0; d < conf->raid_disks; d++)
2166 			if (conf->mirrors[d].rdev)
2167 				cnt++;
2168 		if (cnt > raid_disks)
2169 			return -EBUSY;
2170 	}
2171 
2172 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2173 	if (!newpoolinfo)
2174 		return -ENOMEM;
2175 	newpoolinfo->mddev = mddev;
2176 	newpoolinfo->raid_disks = raid_disks;
2177 
2178 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2179 				 r1bio_pool_free, newpoolinfo);
2180 	if (!newpool) {
2181 		kfree(newpoolinfo);
2182 		return -ENOMEM;
2183 	}
2184 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2185 	if (!newmirrors) {
2186 		kfree(newpoolinfo);
2187 		mempool_destroy(newpool);
2188 		return -ENOMEM;
2189 	}
2190 
2191 	raise_barrier(conf);
2192 
2193 	/* ok, everything is stopped */
2194 	oldpool = conf->r1bio_pool;
2195 	conf->r1bio_pool = newpool;
2196 
2197 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2198 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2199 		if (rdev && rdev->raid_disk != d2) {
2200 			char nm[20];
2201 			sprintf(nm, "rd%d", rdev->raid_disk);
2202 			sysfs_remove_link(&mddev->kobj, nm);
2203 			rdev->raid_disk = d2;
2204 			sprintf(nm, "rd%d", rdev->raid_disk);
2205 			sysfs_remove_link(&mddev->kobj, nm);
2206 			if (sysfs_create_link(&mddev->kobj,
2207 					      &rdev->kobj, nm))
2208 				printk(KERN_WARNING
2209 				       "md/raid1: cannot register "
2210 				       "%s for %s\n",
2211 				       nm, mdname(mddev));
2212 		}
2213 		if (rdev)
2214 			newmirrors[d2++].rdev = rdev;
2215 	}
2216 	kfree(conf->mirrors);
2217 	conf->mirrors = newmirrors;
2218 	kfree(conf->poolinfo);
2219 	conf->poolinfo = newpoolinfo;
2220 
2221 	spin_lock_irqsave(&conf->device_lock, flags);
2222 	mddev->degraded += (raid_disks - conf->raid_disks);
2223 	spin_unlock_irqrestore(&conf->device_lock, flags);
2224 	conf->raid_disks = mddev->raid_disks = raid_disks;
2225 	mddev->delta_disks = 0;
2226 
2227 	conf->last_used = 0; /* just make sure it is in-range */
2228 	lower_barrier(conf);
2229 
2230 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2231 	md_wakeup_thread(mddev->thread);
2232 
2233 	mempool_destroy(oldpool);
2234 	return 0;
2235 }
2236 
raid1_quiesce(mddev_t * mddev,int state)2237 static void raid1_quiesce(mddev_t *mddev, int state)
2238 {
2239 	conf_t *conf = mddev_to_conf(mddev);
2240 
2241 	switch(state) {
2242 	case 1:
2243 		raise_barrier(conf);
2244 		break;
2245 	case 0:
2246 		lower_barrier(conf);
2247 		break;
2248 	}
2249 }
2250 
2251 
2252 static struct mdk_personality raid1_personality =
2253 {
2254 	.name		= "raid1",
2255 	.level		= 1,
2256 	.owner		= THIS_MODULE,
2257 	.make_request	= make_request,
2258 	.run		= run,
2259 	.stop		= stop,
2260 	.status		= status,
2261 	.error_handler	= error,
2262 	.hot_add_disk	= raid1_add_disk,
2263 	.hot_remove_disk= raid1_remove_disk,
2264 	.spare_active	= raid1_spare_active,
2265 	.sync_request	= sync_request,
2266 	.resize		= raid1_resize,
2267 	.check_reshape	= raid1_reshape,
2268 	.quiesce	= raid1_quiesce,
2269 };
2270 
raid_init(void)2271 static int __init raid_init(void)
2272 {
2273 	return register_md_personality(&raid1_personality);
2274 }
2275 
raid_exit(void)2276 static void raid_exit(void)
2277 {
2278 	unregister_md_personality(&raid1_personality);
2279 }
2280 
2281 module_init(raid_init);
2282 module_exit(raid_exit);
2283 MODULE_LICENSE("GPL");
2284 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2285 MODULE_ALIAS("md-raid1");
2286 MODULE_ALIAS("md-level-1");
2287