• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3  * multifunction chip.  Currently works with the Omnivision OV7670
4  * sensor.
5  *
6  * The data sheet for this device can be found at:
7  *    http://www.marvell.com/products/pcconn/88ALP01.jsp
8  *
9  * Copyright 2006 One Laptop Per Child Association, Inc.
10  * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
11  *
12  * Written by Jonathan Corbet, corbet@lwn.net.
13  *
14  * This file may be distributed under the terms of the GNU General
15  * Public License, version 2.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pci.h>
24 #include <linux/i2c.h>
25 #include <linux/interrupt.h>
26 #include <linux/spinlock.h>
27 #include <linux/videodev2.h>
28 #include <media/v4l2-common.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/v4l2-chip-ident.h>
31 #include <linux/device.h>
32 #include <linux/wait.h>
33 #include <linux/list.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/delay.h>
36 #include <linux/debugfs.h>
37 #include <linux/jiffies.h>
38 #include <linux/vmalloc.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/io.h>
42 
43 #include "cafe_ccic-regs.h"
44 
45 #define CAFE_VERSION 0x000002
46 
47 
48 /*
49  * Parameters.
50  */
51 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
52 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
53 MODULE_LICENSE("GPL");
54 MODULE_SUPPORTED_DEVICE("Video");
55 
56 /*
57  * Internal DMA buffer management.  Since the controller cannot do S/G I/O,
58  * we must have physically contiguous buffers to bring frames into.
59  * These parameters control how many buffers we use, whether we
60  * allocate them at load time (better chance of success, but nails down
61  * memory) or when somebody tries to use the camera (riskier), and,
62  * for load-time allocation, how big they should be.
63  *
64  * The controller can cycle through three buffers.  We could use
65  * more by flipping pointers around, but it probably makes little
66  * sense.
67  */
68 
69 #define MAX_DMA_BUFS 3
70 static int alloc_bufs_at_read;
71 module_param(alloc_bufs_at_read, bool, 0444);
72 MODULE_PARM_DESC(alloc_bufs_at_read,
73 		"Non-zero value causes DMA buffers to be allocated when the "
74 		"video capture device is read, rather than at module load "
75 		"time.  This saves memory, but decreases the chances of "
76 		"successfully getting those buffers.");
77 
78 static int n_dma_bufs = 3;
79 module_param(n_dma_bufs, uint, 0644);
80 MODULE_PARM_DESC(n_dma_bufs,
81 		"The number of DMA buffers to allocate.  Can be either two "
82 		"(saves memory, makes timing tighter) or three.");
83 
84 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2;  /* Worst case */
85 module_param(dma_buf_size, uint, 0444);
86 MODULE_PARM_DESC(dma_buf_size,
87 		"The size of the allocated DMA buffers.  If actual operating "
88 		"parameters require larger buffers, an attempt to reallocate "
89 		"will be made.");
90 
91 static int min_buffers = 1;
92 module_param(min_buffers, uint, 0644);
93 MODULE_PARM_DESC(min_buffers,
94 		"The minimum number of streaming I/O buffers we are willing "
95 		"to work with.");
96 
97 static int max_buffers = 10;
98 module_param(max_buffers, uint, 0644);
99 MODULE_PARM_DESC(max_buffers,
100 		"The maximum number of streaming I/O buffers an application "
101 		"will be allowed to allocate.  These buffers are big and live "
102 		"in vmalloc space.");
103 
104 static int flip;
105 module_param(flip, bool, 0444);
106 MODULE_PARM_DESC(flip,
107 		"If set, the sensor will be instructed to flip the image "
108 		"vertically.");
109 
110 
111 enum cafe_state {
112 	S_NOTREADY,	/* Not yet initialized */
113 	S_IDLE,		/* Just hanging around */
114 	S_FLAKED,	/* Some sort of problem */
115 	S_SINGLEREAD,	/* In read() */
116 	S_SPECREAD,   	/* Speculative read (for future read()) */
117 	S_STREAMING	/* Streaming data */
118 };
119 
120 /*
121  * Tracking of streaming I/O buffers.
122  */
123 struct cafe_sio_buffer {
124 	struct list_head list;
125 	struct v4l2_buffer v4lbuf;
126 	char *buffer;   /* Where it lives in kernel space */
127 	int mapcount;
128 	struct cafe_camera *cam;
129 };
130 
131 /*
132  * A description of one of our devices.
133  * Locking: controlled by s_mutex.  Certain fields, however, require
134  * 	    the dev_lock spinlock; they are marked as such by comments.
135  *	    dev_lock is also required for access to device registers.
136  */
137 struct cafe_camera
138 {
139 	enum cafe_state state;
140 	unsigned long flags;   		/* Buffer status, mainly (dev_lock) */
141 	int users;			/* How many open FDs */
142 	struct file *owner;		/* Who has data access (v4l2) */
143 
144 	/*
145 	 * Subsystem structures.
146 	 */
147 	struct pci_dev *pdev;
148 	struct video_device v4ldev;
149 	struct i2c_adapter i2c_adapter;
150 	struct i2c_client *sensor;
151 
152 	unsigned char __iomem *regs;
153 	struct list_head dev_list;	/* link to other devices */
154 
155 	/* DMA buffers */
156 	unsigned int nbufs;		/* How many are alloc'd */
157 	int next_buf;			/* Next to consume (dev_lock) */
158 	unsigned int dma_buf_size;  	/* allocated size */
159 	void *dma_bufs[MAX_DMA_BUFS];	/* Internal buffer addresses */
160 	dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
161 	unsigned int specframes;	/* Unconsumed spec frames (dev_lock) */
162 	unsigned int sequence;		/* Frame sequence number */
163 	unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
164 
165 	/* Streaming buffers */
166 	unsigned int n_sbufs;		/* How many we have */
167 	struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
168 	struct list_head sb_avail;	/* Available for data (we own) (dev_lock) */
169 	struct list_head sb_full;	/* With data (user space owns) (dev_lock) */
170 	struct tasklet_struct s_tasklet;
171 
172 	/* Current operating parameters */
173 	u32 sensor_type;		/* Currently ov7670 only */
174 	struct v4l2_pix_format pix_format;
175 
176 	/* Locks */
177 	struct mutex s_mutex; /* Access to this structure */
178 	spinlock_t dev_lock;  /* Access to device */
179 
180 	/* Misc */
181 	wait_queue_head_t smbus_wait;	/* Waiting on i2c events */
182 	wait_queue_head_t iowait;	/* Waiting on frame data */
183 #ifdef CONFIG_VIDEO_ADV_DEBUG
184 	struct dentry *dfs_regs;
185 	struct dentry *dfs_cam_regs;
186 #endif
187 };
188 
189 /*
190  * Status flags.  Always manipulated with bit operations.
191  */
192 #define CF_BUF0_VALID	 0	/* Buffers valid - first three */
193 #define CF_BUF1_VALID	 1
194 #define CF_BUF2_VALID	 2
195 #define CF_DMA_ACTIVE	 3	/* A frame is incoming */
196 #define CF_CONFIG_NEEDED 4	/* Must configure hardware */
197 
198 
199 
200 /*
201  * Start over with DMA buffers - dev_lock needed.
202  */
cafe_reset_buffers(struct cafe_camera * cam)203 static void cafe_reset_buffers(struct cafe_camera *cam)
204 {
205 	int i;
206 
207 	cam->next_buf = -1;
208 	for (i = 0; i < cam->nbufs; i++)
209 		clear_bit(i, &cam->flags);
210 	cam->specframes = 0;
211 }
212 
cafe_needs_config(struct cafe_camera * cam)213 static inline int cafe_needs_config(struct cafe_camera *cam)
214 {
215 	return test_bit(CF_CONFIG_NEEDED, &cam->flags);
216 }
217 
cafe_set_config_needed(struct cafe_camera * cam,int needed)218 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
219 {
220 	if (needed)
221 		set_bit(CF_CONFIG_NEEDED, &cam->flags);
222 	else
223 		clear_bit(CF_CONFIG_NEEDED, &cam->flags);
224 }
225 
226 
227 
228 
229 /*
230  * Debugging and related.
231  */
232 #define cam_err(cam, fmt, arg...) \
233 	dev_err(&(cam)->pdev->dev, fmt, ##arg);
234 #define cam_warn(cam, fmt, arg...) \
235 	dev_warn(&(cam)->pdev->dev, fmt, ##arg);
236 #define cam_dbg(cam, fmt, arg...) \
237 	dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
238 
239 
240 /* ---------------------------------------------------------------------*/
241 /*
242  * We keep a simple list of known devices to search at open time.
243  */
244 static LIST_HEAD(cafe_dev_list);
245 static DEFINE_MUTEX(cafe_dev_list_lock);
246 
cafe_add_dev(struct cafe_camera * cam)247 static void cafe_add_dev(struct cafe_camera *cam)
248 {
249 	mutex_lock(&cafe_dev_list_lock);
250 	list_add_tail(&cam->dev_list, &cafe_dev_list);
251 	mutex_unlock(&cafe_dev_list_lock);
252 }
253 
cafe_remove_dev(struct cafe_camera * cam)254 static void cafe_remove_dev(struct cafe_camera *cam)
255 {
256 	mutex_lock(&cafe_dev_list_lock);
257 	list_del(&cam->dev_list);
258 	mutex_unlock(&cafe_dev_list_lock);
259 }
260 
cafe_find_dev(int minor)261 static struct cafe_camera *cafe_find_dev(int minor)
262 {
263 	struct cafe_camera *cam;
264 
265 	mutex_lock(&cafe_dev_list_lock);
266 	list_for_each_entry(cam, &cafe_dev_list, dev_list) {
267 		if (cam->v4ldev.minor == minor)
268 			goto done;
269 	}
270 	cam = NULL;
271   done:
272 	mutex_unlock(&cafe_dev_list_lock);
273 	return cam;
274 }
275 
276 
cafe_find_by_pdev(struct pci_dev * pdev)277 static struct cafe_camera *cafe_find_by_pdev(struct pci_dev *pdev)
278 {
279 	struct cafe_camera *cam;
280 
281 	mutex_lock(&cafe_dev_list_lock);
282 	list_for_each_entry(cam, &cafe_dev_list, dev_list) {
283 		if (cam->pdev == pdev)
284 			goto done;
285 	}
286 	cam = NULL;
287   done:
288 	mutex_unlock(&cafe_dev_list_lock);
289 	return cam;
290 }
291 
292 
293 /* ------------------------------------------------------------------------ */
294 /*
295  * Device register I/O
296  */
cafe_reg_write(struct cafe_camera * cam,unsigned int reg,unsigned int val)297 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
298 		unsigned int val)
299 {
300 	iowrite32(val, cam->regs + reg);
301 }
302 
cafe_reg_read(struct cafe_camera * cam,unsigned int reg)303 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
304 		unsigned int reg)
305 {
306 	return ioread32(cam->regs + reg);
307 }
308 
309 
cafe_reg_write_mask(struct cafe_camera * cam,unsigned int reg,unsigned int val,unsigned int mask)310 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
311 		unsigned int val, unsigned int mask)
312 {
313 	unsigned int v = cafe_reg_read(cam, reg);
314 
315 	v = (v & ~mask) | (val & mask);
316 	cafe_reg_write(cam, reg, v);
317 }
318 
cafe_reg_clear_bit(struct cafe_camera * cam,unsigned int reg,unsigned int val)319 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
320 		unsigned int reg, unsigned int val)
321 {
322 	cafe_reg_write_mask(cam, reg, 0, val);
323 }
324 
cafe_reg_set_bit(struct cafe_camera * cam,unsigned int reg,unsigned int val)325 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
326 		unsigned int reg, unsigned int val)
327 {
328 	cafe_reg_write_mask(cam, reg, val, val);
329 }
330 
331 
332 
333 /* -------------------------------------------------------------------- */
334 /*
335  * The I2C/SMBUS interface to the camera itself starts here.  The
336  * controller handles SMBUS itself, presenting a relatively simple register
337  * interface; all we have to do is to tell it where to route the data.
338  */
339 #define CAFE_SMBUS_TIMEOUT (HZ)  /* generous */
340 
cafe_smbus_write_done(struct cafe_camera * cam)341 static int cafe_smbus_write_done(struct cafe_camera *cam)
342 {
343 	unsigned long flags;
344 	int c1;
345 
346 	/*
347 	 * We must delay after the interrupt, or the controller gets confused
348 	 * and never does give us good status.  Fortunately, we don't do this
349 	 * often.
350 	 */
351 	udelay(20);
352 	spin_lock_irqsave(&cam->dev_lock, flags);
353 	c1 = cafe_reg_read(cam, REG_TWSIC1);
354 	spin_unlock_irqrestore(&cam->dev_lock, flags);
355 	return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
356 }
357 
cafe_smbus_write_data(struct cafe_camera * cam,u16 addr,u8 command,u8 value)358 static int cafe_smbus_write_data(struct cafe_camera *cam,
359 		u16 addr, u8 command, u8 value)
360 {
361 	unsigned int rval;
362 	unsigned long flags;
363 	DEFINE_WAIT(the_wait);
364 
365 	spin_lock_irqsave(&cam->dev_lock, flags);
366 	rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
367 	rval |= TWSIC0_OVMAGIC;  /* Make OV sensors work */
368 	/*
369 	 * Marvell sez set clkdiv to all 1's for now.
370 	 */
371 	rval |= TWSIC0_CLKDIV;
372 	cafe_reg_write(cam, REG_TWSIC0, rval);
373 	(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
374 	rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
375 	cafe_reg_write(cam, REG_TWSIC1, rval);
376 	spin_unlock_irqrestore(&cam->dev_lock, flags);
377 
378 	/*
379 	 * Time to wait for the write to complete.  THIS IS A RACY
380 	 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
381 	 * register too quickly after starting the operation sends
382 	 * the device into a place that may be kinder and better, but
383 	 * which is absolutely useless for controlling the sensor.  In
384 	 * practice we have plenty of time to get into our sleep state
385 	 * before the interrupt hits, and the worst case is that we
386 	 * time out and then see that things completed, so this seems
387 	 * the best way for now.
388 	 */
389 	do {
390 		prepare_to_wait(&cam->smbus_wait, &the_wait,
391 				TASK_UNINTERRUPTIBLE);
392 		schedule_timeout(1); /* even 1 jiffy is too long */
393 		finish_wait(&cam->smbus_wait, &the_wait);
394 	} while (!cafe_smbus_write_done(cam));
395 
396 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
397 	wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
398 			CAFE_SMBUS_TIMEOUT);
399 #endif
400 	spin_lock_irqsave(&cam->dev_lock, flags);
401 	rval = cafe_reg_read(cam, REG_TWSIC1);
402 	spin_unlock_irqrestore(&cam->dev_lock, flags);
403 
404 	if (rval & TWSIC1_WSTAT) {
405 		cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
406 				command, value);
407 		return -EIO;
408 	}
409 	if (rval & TWSIC1_ERROR) {
410 		cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
411 				command, value);
412 		return -EIO;
413 	}
414 	return 0;
415 }
416 
417 
418 
cafe_smbus_read_done(struct cafe_camera * cam)419 static int cafe_smbus_read_done(struct cafe_camera *cam)
420 {
421 	unsigned long flags;
422 	int c1;
423 
424 	/*
425 	 * We must delay after the interrupt, or the controller gets confused
426 	 * and never does give us good status.  Fortunately, we don't do this
427 	 * often.
428 	 */
429 	udelay(20);
430 	spin_lock_irqsave(&cam->dev_lock, flags);
431 	c1 = cafe_reg_read(cam, REG_TWSIC1);
432 	spin_unlock_irqrestore(&cam->dev_lock, flags);
433 	return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
434 }
435 
436 
437 
cafe_smbus_read_data(struct cafe_camera * cam,u16 addr,u8 command,u8 * value)438 static int cafe_smbus_read_data(struct cafe_camera *cam,
439 		u16 addr, u8 command, u8 *value)
440 {
441 	unsigned int rval;
442 	unsigned long flags;
443 
444 	spin_lock_irqsave(&cam->dev_lock, flags);
445 	rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
446 	rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
447 	/*
448 	 * Marvel sez set clkdiv to all 1's for now.
449 	 */
450 	rval |= TWSIC0_CLKDIV;
451 	cafe_reg_write(cam, REG_TWSIC0, rval);
452 	(void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
453 	rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
454 	cafe_reg_write(cam, REG_TWSIC1, rval);
455 	spin_unlock_irqrestore(&cam->dev_lock, flags);
456 
457 	wait_event_timeout(cam->smbus_wait,
458 			cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
459 	spin_lock_irqsave(&cam->dev_lock, flags);
460 	rval = cafe_reg_read(cam, REG_TWSIC1);
461 	spin_unlock_irqrestore(&cam->dev_lock, flags);
462 
463 	if (rval & TWSIC1_ERROR) {
464 		cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
465 		return -EIO;
466 	}
467 	if (! (rval & TWSIC1_RVALID)) {
468 		cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
469 				command);
470 		return -EIO;
471 	}
472 	*value = rval & 0xff;
473 	return 0;
474 }
475 
476 /*
477  * Perform a transfer over SMBUS.  This thing is called under
478  * the i2c bus lock, so we shouldn't race with ourselves...
479  */
cafe_smbus_xfer(struct i2c_adapter * adapter,u16 addr,unsigned short flags,char rw,u8 command,int size,union i2c_smbus_data * data)480 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
481 		unsigned short flags, char rw, u8 command,
482 		int size, union i2c_smbus_data *data)
483 {
484 	struct cafe_camera *cam = i2c_get_adapdata(adapter);
485 	int ret = -EINVAL;
486 
487 	/*
488 	 * Refuse to talk to anything but OV cam chips.  We should
489 	 * never even see an attempt to do so, but one never knows.
490 	 */
491 	if (cam->sensor && addr != cam->sensor->addr) {
492 		cam_err(cam, "funky smbus addr %d\n", addr);
493 		return -EINVAL;
494 	}
495 	/*
496 	 * This interface would appear to only do byte data ops.  OK
497 	 * it can do word too, but the cam chip has no use for that.
498 	 */
499 	if (size != I2C_SMBUS_BYTE_DATA) {
500 		cam_err(cam, "funky xfer size %d\n", size);
501 		return -EINVAL;
502 	}
503 
504 	if (rw == I2C_SMBUS_WRITE)
505 		ret = cafe_smbus_write_data(cam, addr, command, data->byte);
506 	else if (rw == I2C_SMBUS_READ)
507 		ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
508 	return ret;
509 }
510 
511 
cafe_smbus_enable_irq(struct cafe_camera * cam)512 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
513 {
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&cam->dev_lock, flags);
517 	cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
518 	spin_unlock_irqrestore(&cam->dev_lock, flags);
519 }
520 
cafe_smbus_func(struct i2c_adapter * adapter)521 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
522 {
523 	return I2C_FUNC_SMBUS_READ_BYTE_DATA  |
524 	       I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
525 }
526 
527 static struct i2c_algorithm cafe_smbus_algo = {
528 	.smbus_xfer = cafe_smbus_xfer,
529 	.functionality = cafe_smbus_func
530 };
531 
532 /* Somebody is on the bus */
533 static int cafe_cam_init(struct cafe_camera *cam);
534 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
535 static void cafe_ctlr_power_down(struct cafe_camera *cam);
536 
cafe_smbus_attach(struct i2c_client * client)537 static int cafe_smbus_attach(struct i2c_client *client)
538 {
539 	struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
540 
541 	/*
542 	 * Don't talk to chips we don't recognize.
543 	 */
544 	if (client->driver->id == I2C_DRIVERID_OV7670) {
545 		cam->sensor = client;
546 		return cafe_cam_init(cam);
547 	}
548 	return -EINVAL;
549 }
550 
cafe_smbus_detach(struct i2c_client * client)551 static int cafe_smbus_detach(struct i2c_client *client)
552 {
553 	struct cafe_camera *cam = i2c_get_adapdata(client->adapter);
554 
555 	if (cam->sensor == client) {
556 		cafe_ctlr_stop_dma(cam);
557 		cafe_ctlr_power_down(cam);
558 		cam_err(cam, "lost the sensor!\n");
559 		cam->sensor = NULL;  /* Bummer, no camera */
560 		cam->state = S_NOTREADY;
561 	}
562 	return 0;
563 }
564 
cafe_smbus_setup(struct cafe_camera * cam)565 static int cafe_smbus_setup(struct cafe_camera *cam)
566 {
567 	struct i2c_adapter *adap = &cam->i2c_adapter;
568 	int ret;
569 
570 	cafe_smbus_enable_irq(cam);
571 	adap->id = I2C_HW_SMBUS_CAFE;
572 	adap->owner = THIS_MODULE;
573 	adap->client_register = cafe_smbus_attach;
574 	adap->client_unregister = cafe_smbus_detach;
575 	adap->algo = &cafe_smbus_algo;
576 	strcpy(adap->name, "cafe_ccic");
577 	adap->dev.parent = &cam->pdev->dev;
578 	i2c_set_adapdata(adap, cam);
579 	ret = i2c_add_adapter(adap);
580 	if (ret)
581 		printk(KERN_ERR "Unable to register cafe i2c adapter\n");
582 	return ret;
583 }
584 
cafe_smbus_shutdown(struct cafe_camera * cam)585 static void cafe_smbus_shutdown(struct cafe_camera *cam)
586 {
587 	i2c_del_adapter(&cam->i2c_adapter);
588 }
589 
590 
591 /* ------------------------------------------------------------------- */
592 /*
593  * Deal with the controller.
594  */
595 
596 /*
597  * Do everything we think we need to have the interface operating
598  * according to the desired format.
599  */
cafe_ctlr_dma(struct cafe_camera * cam)600 static void cafe_ctlr_dma(struct cafe_camera *cam)
601 {
602 	/*
603 	 * Store the first two Y buffers (we aren't supporting
604 	 * planar formats for now, so no UV bufs).  Then either
605 	 * set the third if it exists, or tell the controller
606 	 * to just use two.
607 	 */
608 	cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
609 	cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
610 	if (cam->nbufs > 2) {
611 		cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
612 		cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
613 	}
614 	else
615 		cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
616 	cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
617 }
618 
cafe_ctlr_image(struct cafe_camera * cam)619 static void cafe_ctlr_image(struct cafe_camera *cam)
620 {
621 	int imgsz;
622 	struct v4l2_pix_format *fmt = &cam->pix_format;
623 
624 	imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
625 		(fmt->bytesperline & IMGSZ_H_MASK);
626 	cafe_reg_write(cam, REG_IMGSIZE, imgsz);
627 	cafe_reg_write(cam, REG_IMGOFFSET, 0);
628 	/* YPITCH just drops the last two bits */
629 	cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
630 			IMGP_YP_MASK);
631 	/*
632 	 * Tell the controller about the image format we are using.
633 	 */
634 	switch (cam->pix_format.pixelformat) {
635 	case V4L2_PIX_FMT_YUYV:
636 	    cafe_reg_write_mask(cam, REG_CTRL0,
637 			    C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
638 			    C0_DF_MASK);
639 	    break;
640 
641 	case V4L2_PIX_FMT_RGB444:
642 	    cafe_reg_write_mask(cam, REG_CTRL0,
643 			    C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
644 			    C0_DF_MASK);
645 		/* Alpha value? */
646 	    break;
647 
648 	case V4L2_PIX_FMT_RGB565:
649 	    cafe_reg_write_mask(cam, REG_CTRL0,
650 			    C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
651 			    C0_DF_MASK);
652 	    break;
653 
654 	default:
655 	    cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
656 	    break;
657 	}
658 	/*
659 	 * Make sure it knows we want to use hsync/vsync.
660 	 */
661 	cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
662 			C0_SIFM_MASK);
663 }
664 
665 
666 /*
667  * Configure the controller for operation; caller holds the
668  * device mutex.
669  */
cafe_ctlr_configure(struct cafe_camera * cam)670 static int cafe_ctlr_configure(struct cafe_camera *cam)
671 {
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&cam->dev_lock, flags);
675 	cafe_ctlr_dma(cam);
676 	cafe_ctlr_image(cam);
677 	cafe_set_config_needed(cam, 0);
678 	spin_unlock_irqrestore(&cam->dev_lock, flags);
679 	return 0;
680 }
681 
cafe_ctlr_irq_enable(struct cafe_camera * cam)682 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
683 {
684 	/*
685 	 * Clear any pending interrupts, since we do not
686 	 * expect to have I/O active prior to enabling.
687 	 */
688 	cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
689 	cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
690 }
691 
cafe_ctlr_irq_disable(struct cafe_camera * cam)692 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
693 {
694 	cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
695 }
696 
697 /*
698  * Make the controller start grabbing images.  Everything must
699  * be set up before doing this.
700  */
cafe_ctlr_start(struct cafe_camera * cam)701 static void cafe_ctlr_start(struct cafe_camera *cam)
702 {
703 	/* set_bit performs a read, so no other barrier should be
704 	   needed here */
705 	cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
706 }
707 
cafe_ctlr_stop(struct cafe_camera * cam)708 static void cafe_ctlr_stop(struct cafe_camera *cam)
709 {
710 	cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
711 }
712 
cafe_ctlr_init(struct cafe_camera * cam)713 static void cafe_ctlr_init(struct cafe_camera *cam)
714 {
715 	unsigned long flags;
716 
717 	spin_lock_irqsave(&cam->dev_lock, flags);
718 	/*
719 	 * Added magic to bring up the hardware on the B-Test board
720 	 */
721 	cafe_reg_write(cam, 0x3038, 0x8);
722 	cafe_reg_write(cam, 0x315c, 0x80008);
723 	/*
724 	 * Go through the dance needed to wake the device up.
725 	 * Note that these registers are global and shared
726 	 * with the NAND and SD devices.  Interaction between the
727 	 * three still needs to be examined.
728 	 */
729 	cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
730 	cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
731 	cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
732 	/*
733 	 * Here we must wait a bit for the controller to come around.
734 	 */
735 	spin_unlock_irqrestore(&cam->dev_lock, flags);
736 	msleep(5);
737 	spin_lock_irqsave(&cam->dev_lock, flags);
738 
739 	cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
740 	cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
741 	/*
742 	 * Make sure it's not powered down.
743 	 */
744 	cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
745 	/*
746 	 * Turn off the enable bit.  It sure should be off anyway,
747 	 * but it's good to be sure.
748 	 */
749 	cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
750 	/*
751 	 * Mask all interrupts.
752 	 */
753 	cafe_reg_write(cam, REG_IRQMASK, 0);
754 	/*
755 	 * Clock the sensor appropriately.  Controller clock should
756 	 * be 48MHz, sensor "typical" value is half that.
757 	 */
758 	cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
759 	spin_unlock_irqrestore(&cam->dev_lock, flags);
760 }
761 
762 
763 /*
764  * Stop the controller, and don't return until we're really sure that no
765  * further DMA is going on.
766  */
cafe_ctlr_stop_dma(struct cafe_camera * cam)767 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
768 {
769 	unsigned long flags;
770 
771 	/*
772 	 * Theory: stop the camera controller (whether it is operating
773 	 * or not).  Delay briefly just in case we race with the SOF
774 	 * interrupt, then wait until no DMA is active.
775 	 */
776 	spin_lock_irqsave(&cam->dev_lock, flags);
777 	cafe_ctlr_stop(cam);
778 	spin_unlock_irqrestore(&cam->dev_lock, flags);
779 	mdelay(1);
780 	wait_event_timeout(cam->iowait,
781 			!test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
782 	if (test_bit(CF_DMA_ACTIVE, &cam->flags))
783 		cam_err(cam, "Timeout waiting for DMA to end\n");
784 		/* This would be bad news - what now? */
785 	spin_lock_irqsave(&cam->dev_lock, flags);
786 	cam->state = S_IDLE;
787 	cafe_ctlr_irq_disable(cam);
788 	spin_unlock_irqrestore(&cam->dev_lock, flags);
789 }
790 
791 /*
792  * Power up and down.
793  */
cafe_ctlr_power_up(struct cafe_camera * cam)794 static void cafe_ctlr_power_up(struct cafe_camera *cam)
795 {
796 	unsigned long flags;
797 
798 	spin_lock_irqsave(&cam->dev_lock, flags);
799 	cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
800 	/*
801 	 * Part one of the sensor dance: turn the global
802 	 * GPIO signal on.
803 	 */
804 	cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
805 	cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
806 	/*
807 	 * Put the sensor into operational mode (assumes OLPC-style
808 	 * wiring).  Control 0 is reset - set to 1 to operate.
809 	 * Control 1 is power down, set to 0 to operate.
810 	 */
811 	cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
812 //	mdelay(1); /* Marvell says 1ms will do it */
813 	cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
814 //	mdelay(1); /* Enough? */
815 	spin_unlock_irqrestore(&cam->dev_lock, flags);
816 	msleep(5); /* Just to be sure */
817 }
818 
cafe_ctlr_power_down(struct cafe_camera * cam)819 static void cafe_ctlr_power_down(struct cafe_camera *cam)
820 {
821 	unsigned long flags;
822 
823 	spin_lock_irqsave(&cam->dev_lock, flags);
824 	cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
825 	cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
826 	cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
827 	cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
828 	spin_unlock_irqrestore(&cam->dev_lock, flags);
829 }
830 
831 /* -------------------------------------------------------------------- */
832 /*
833  * Communications with the sensor.
834  */
835 
__cafe_cam_cmd(struct cafe_camera * cam,int cmd,void * arg)836 static int __cafe_cam_cmd(struct cafe_camera *cam, int cmd, void *arg)
837 {
838 	struct i2c_client *sc = cam->sensor;
839 	int ret;
840 
841 	if (sc == NULL || sc->driver == NULL || sc->driver->command == NULL)
842 		return -EINVAL;
843 	ret = sc->driver->command(sc, cmd, arg);
844 	if (ret == -EPERM) /* Unsupported command */
845 		return 0;
846 	return ret;
847 }
848 
__cafe_cam_reset(struct cafe_camera * cam)849 static int __cafe_cam_reset(struct cafe_camera *cam)
850 {
851 	int zero = 0;
852 	return __cafe_cam_cmd(cam, VIDIOC_INT_RESET, &zero);
853 }
854 
855 /*
856  * We have found the sensor on the i2c.  Let's try to have a
857  * conversation.
858  */
cafe_cam_init(struct cafe_camera * cam)859 static int cafe_cam_init(struct cafe_camera *cam)
860 {
861 	struct v4l2_dbg_chip_ident chip;
862 	int ret;
863 
864 	mutex_lock(&cam->s_mutex);
865 	if (cam->state != S_NOTREADY)
866 		cam_warn(cam, "Cam init with device in funky state %d",
867 				cam->state);
868 	ret = __cafe_cam_reset(cam);
869 	if (ret)
870 		goto out;
871 	chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
872 	chip.match.addr = cam->sensor->addr;
873 	ret = __cafe_cam_cmd(cam, VIDIOC_DBG_G_CHIP_IDENT, &chip);
874 	if (ret)
875 		goto out;
876 	cam->sensor_type = chip.ident;
877 //	if (cam->sensor->addr != OV7xx0_SID) {
878 	if (cam->sensor_type != V4L2_IDENT_OV7670) {
879 		cam_err(cam, "Unsupported sensor type %d", cam->sensor->addr);
880 		ret = -EINVAL;
881 		goto out;
882 	}
883 /* Get/set parameters? */
884 	ret = 0;
885 	cam->state = S_IDLE;
886   out:
887 	cafe_ctlr_power_down(cam);
888 	mutex_unlock(&cam->s_mutex);
889 	return ret;
890 }
891 
892 /*
893  * Configure the sensor to match the parameters we have.  Caller should
894  * hold s_mutex
895  */
cafe_cam_set_flip(struct cafe_camera * cam)896 static int cafe_cam_set_flip(struct cafe_camera *cam)
897 {
898 	struct v4l2_control ctrl;
899 
900 	memset(&ctrl, 0, sizeof(ctrl));
901 	ctrl.id = V4L2_CID_VFLIP;
902 	ctrl.value = flip;
903 	return __cafe_cam_cmd(cam, VIDIOC_S_CTRL, &ctrl);
904 }
905 
906 
cafe_cam_configure(struct cafe_camera * cam)907 static int cafe_cam_configure(struct cafe_camera *cam)
908 {
909 	struct v4l2_format fmt;
910 	int ret, zero = 0;
911 
912 	if (cam->state != S_IDLE)
913 		return -EINVAL;
914 	fmt.fmt.pix = cam->pix_format;
915 	ret = __cafe_cam_cmd(cam, VIDIOC_INT_INIT, &zero);
916 	if (ret == 0)
917 		ret = __cafe_cam_cmd(cam, VIDIOC_S_FMT, &fmt);
918 	/*
919 	 * OV7670 does weird things if flip is set *before* format...
920 	 */
921 	ret += cafe_cam_set_flip(cam);
922 	return ret;
923 }
924 
925 /* -------------------------------------------------------------------- */
926 /*
927  * DMA buffer management.  These functions need s_mutex held.
928  */
929 
930 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
931  * does a get_free_pages() call, and we waste a good chunk of an orderN
932  * allocation.  Should try to allocate the whole set in one chunk.
933  */
cafe_alloc_dma_bufs(struct cafe_camera * cam,int loadtime)934 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
935 {
936 	int i;
937 
938 	cafe_set_config_needed(cam, 1);
939 	if (loadtime)
940 		cam->dma_buf_size = dma_buf_size;
941 	else
942 		cam->dma_buf_size = cam->pix_format.sizeimage;
943 	if (n_dma_bufs > 3)
944 		n_dma_bufs = 3;
945 
946 	cam->nbufs = 0;
947 	for (i = 0; i < n_dma_bufs; i++) {
948 		cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
949 				cam->dma_buf_size, cam->dma_handles + i,
950 				GFP_KERNEL);
951 		if (cam->dma_bufs[i] == NULL) {
952 			cam_warn(cam, "Failed to allocate DMA buffer\n");
953 			break;
954 		}
955 		/* For debug, remove eventually */
956 		memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
957 		(cam->nbufs)++;
958 	}
959 
960 	switch (cam->nbufs) {
961 	case 1:
962 	    dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
963 			    cam->dma_bufs[0], cam->dma_handles[0]);
964 	    cam->nbufs = 0;
965 	case 0:
966 	    cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
967 	    return -ENOMEM;
968 
969 	case 2:
970 	    if (n_dma_bufs > 2)
971 		    cam_warn(cam, "Will limp along with only 2 buffers\n");
972 	    break;
973 	}
974 	return 0;
975 }
976 
cafe_free_dma_bufs(struct cafe_camera * cam)977 static void cafe_free_dma_bufs(struct cafe_camera *cam)
978 {
979 	int i;
980 
981 	for (i = 0; i < cam->nbufs; i++) {
982 		dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
983 				cam->dma_bufs[i], cam->dma_handles[i]);
984 		cam->dma_bufs[i] = NULL;
985 	}
986 	cam->nbufs = 0;
987 }
988 
989 
990 
991 
992 
993 /* ----------------------------------------------------------------------- */
994 /*
995  * Here starts the V4L2 interface code.
996  */
997 
998 /*
999  * Read an image from the device.
1000  */
cafe_deliver_buffer(struct cafe_camera * cam,char __user * buffer,size_t len,loff_t * pos)1001 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
1002 		char __user *buffer, size_t len, loff_t *pos)
1003 {
1004 	int bufno;
1005 	unsigned long flags;
1006 
1007 	spin_lock_irqsave(&cam->dev_lock, flags);
1008 	if (cam->next_buf < 0) {
1009 		cam_err(cam, "deliver_buffer: No next buffer\n");
1010 		spin_unlock_irqrestore(&cam->dev_lock, flags);
1011 		return -EIO;
1012 	}
1013 	bufno = cam->next_buf;
1014 	clear_bit(bufno, &cam->flags);
1015 	if (++(cam->next_buf) >= cam->nbufs)
1016 		cam->next_buf = 0;
1017 	if (! test_bit(cam->next_buf, &cam->flags))
1018 		cam->next_buf = -1;
1019 	cam->specframes = 0;
1020 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1021 
1022 	if (len > cam->pix_format.sizeimage)
1023 		len = cam->pix_format.sizeimage;
1024 	if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
1025 		return -EFAULT;
1026 	(*pos) += len;
1027 	return len;
1028 }
1029 
1030 /*
1031  * Get everything ready, and start grabbing frames.
1032  */
cafe_read_setup(struct cafe_camera * cam,enum cafe_state state)1033 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
1034 {
1035 	int ret;
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * Configuration.  If we still don't have DMA buffers,
1040 	 * make one last, desperate attempt.
1041 	 */
1042 	if (cam->nbufs == 0)
1043 		if (cafe_alloc_dma_bufs(cam, 0))
1044 			return -ENOMEM;
1045 
1046 	if (cafe_needs_config(cam)) {
1047 		cafe_cam_configure(cam);
1048 		ret = cafe_ctlr_configure(cam);
1049 		if (ret)
1050 			return ret;
1051 	}
1052 
1053 	/*
1054 	 * Turn it loose.
1055 	 */
1056 	spin_lock_irqsave(&cam->dev_lock, flags);
1057 	cafe_reset_buffers(cam);
1058 	cafe_ctlr_irq_enable(cam);
1059 	cam->state = state;
1060 	cafe_ctlr_start(cam);
1061 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1062 	return 0;
1063 }
1064 
1065 
cafe_v4l_read(struct file * filp,char __user * buffer,size_t len,loff_t * pos)1066 static ssize_t cafe_v4l_read(struct file *filp,
1067 		char __user *buffer, size_t len, loff_t *pos)
1068 {
1069 	struct cafe_camera *cam = filp->private_data;
1070 	int ret = 0;
1071 
1072 	/*
1073 	 * Perhaps we're in speculative read mode and already
1074 	 * have data?
1075 	 */
1076 	mutex_lock(&cam->s_mutex);
1077 	if (cam->state == S_SPECREAD) {
1078 		if (cam->next_buf >= 0) {
1079 			ret = cafe_deliver_buffer(cam, buffer, len, pos);
1080 			if (ret != 0)
1081 				goto out_unlock;
1082 		}
1083 	} else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
1084 		ret = -EIO;
1085 		goto out_unlock;
1086 	} else if (cam->state != S_IDLE) {
1087 		ret = -EBUSY;
1088 		goto out_unlock;
1089 	}
1090 
1091 	/*
1092 	 * v4l2: multiple processes can open the device, but only
1093 	 * one gets to grab data from it.
1094 	 */
1095 	if (cam->owner && cam->owner != filp) {
1096 		ret = -EBUSY;
1097 		goto out_unlock;
1098 	}
1099 	cam->owner = filp;
1100 
1101 	/*
1102 	 * Do setup if need be.
1103 	 */
1104 	if (cam->state != S_SPECREAD) {
1105 		ret = cafe_read_setup(cam, S_SINGLEREAD);
1106 		if (ret)
1107 			goto out_unlock;
1108 	}
1109 	/*
1110 	 * Wait for something to happen.  This should probably
1111 	 * be interruptible (FIXME).
1112 	 */
1113 	wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1114 	if (cam->next_buf < 0) {
1115 		cam_err(cam, "read() operation timed out\n");
1116 		cafe_ctlr_stop_dma(cam);
1117 		ret = -EIO;
1118 		goto out_unlock;
1119 	}
1120 	/*
1121 	 * Give them their data and we should be done.
1122 	 */
1123 	ret = cafe_deliver_buffer(cam, buffer, len, pos);
1124 
1125   out_unlock:
1126 	mutex_unlock(&cam->s_mutex);
1127 	return ret;
1128 }
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 /*
1138  * Streaming I/O support.
1139  */
1140 
1141 
1142 
cafe_vidioc_streamon(struct file * filp,void * priv,enum v4l2_buf_type type)1143 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1144 		enum v4l2_buf_type type)
1145 {
1146 	struct cafe_camera *cam = filp->private_data;
1147 	int ret = -EINVAL;
1148 
1149 	if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1150 		goto out;
1151 	mutex_lock(&cam->s_mutex);
1152 	if (cam->state != S_IDLE || cam->n_sbufs == 0)
1153 		goto out_unlock;
1154 
1155 	cam->sequence = 0;
1156 	ret = cafe_read_setup(cam, S_STREAMING);
1157 
1158   out_unlock:
1159 	mutex_unlock(&cam->s_mutex);
1160   out:
1161 	return ret;
1162 }
1163 
1164 
cafe_vidioc_streamoff(struct file * filp,void * priv,enum v4l2_buf_type type)1165 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1166 		enum v4l2_buf_type type)
1167 {
1168 	struct cafe_camera *cam = filp->private_data;
1169 	int ret = -EINVAL;
1170 
1171 	if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1172 		goto out;
1173 	mutex_lock(&cam->s_mutex);
1174 	if (cam->state != S_STREAMING)
1175 		goto out_unlock;
1176 
1177 	cafe_ctlr_stop_dma(cam);
1178 	ret = 0;
1179 
1180   out_unlock:
1181 	mutex_unlock(&cam->s_mutex);
1182   out:
1183 	return ret;
1184 }
1185 
1186 
1187 
cafe_setup_siobuf(struct cafe_camera * cam,int index)1188 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1189 {
1190 	struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1191 
1192 	INIT_LIST_HEAD(&buf->list);
1193 	buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1194 	buf->buffer = vmalloc_user(buf->v4lbuf.length);
1195 	if (buf->buffer == NULL)
1196 		return -ENOMEM;
1197 	buf->mapcount = 0;
1198 	buf->cam = cam;
1199 
1200 	buf->v4lbuf.index = index;
1201 	buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1202 	buf->v4lbuf.field = V4L2_FIELD_NONE;
1203 	buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1204 	/*
1205 	 * Offset: must be 32-bit even on a 64-bit system.  videobuf-dma-sg
1206 	 * just uses the length times the index, but the spec warns
1207 	 * against doing just that - vma merging problems.  So we
1208 	 * leave a gap between each pair of buffers.
1209 	 */
1210 	buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1211 	return 0;
1212 }
1213 
cafe_free_sio_buffers(struct cafe_camera * cam)1214 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1215 {
1216 	int i;
1217 
1218 	/*
1219 	 * If any buffers are mapped, we cannot free them at all.
1220 	 */
1221 	for (i = 0; i < cam->n_sbufs; i++)
1222 		if (cam->sb_bufs[i].mapcount > 0)
1223 			return -EBUSY;
1224 	/*
1225 	 * OK, let's do it.
1226 	 */
1227 	for (i = 0; i < cam->n_sbufs; i++)
1228 		vfree(cam->sb_bufs[i].buffer);
1229 	cam->n_sbufs = 0;
1230 	kfree(cam->sb_bufs);
1231 	cam->sb_bufs = NULL;
1232 	INIT_LIST_HEAD(&cam->sb_avail);
1233 	INIT_LIST_HEAD(&cam->sb_full);
1234 	return 0;
1235 }
1236 
1237 
1238 
cafe_vidioc_reqbufs(struct file * filp,void * priv,struct v4l2_requestbuffers * req)1239 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1240 		struct v4l2_requestbuffers *req)
1241 {
1242 	struct cafe_camera *cam = filp->private_data;
1243 	int ret = 0;  /* Silence warning */
1244 
1245 	/*
1246 	 * Make sure it's something we can do.  User pointers could be
1247 	 * implemented without great pain, but that's not been done yet.
1248 	 */
1249 	if (req->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1250 		return -EINVAL;
1251 	if (req->memory != V4L2_MEMORY_MMAP)
1252 		return -EINVAL;
1253 	/*
1254 	 * If they ask for zero buffers, they really want us to stop streaming
1255 	 * (if it's happening) and free everything.  Should we check owner?
1256 	 */
1257 	mutex_lock(&cam->s_mutex);
1258 	if (req->count == 0) {
1259 		if (cam->state == S_STREAMING)
1260 			cafe_ctlr_stop_dma(cam);
1261 		ret = cafe_free_sio_buffers (cam);
1262 		goto out;
1263 	}
1264 	/*
1265 	 * Device needs to be idle and working.  We *could* try to do the
1266 	 * right thing in S_SPECREAD by shutting things down, but it
1267 	 * probably doesn't matter.
1268 	 */
1269 	if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1270 		ret = -EBUSY;
1271 		goto out;
1272 	}
1273 	cam->owner = filp;
1274 
1275 	if (req->count < min_buffers)
1276 		req->count = min_buffers;
1277 	else if (req->count > max_buffers)
1278 		req->count = max_buffers;
1279 	if (cam->n_sbufs > 0) {
1280 		ret = cafe_free_sio_buffers(cam);
1281 		if (ret)
1282 			goto out;
1283 	}
1284 
1285 	cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1286 			GFP_KERNEL);
1287 	if (cam->sb_bufs == NULL) {
1288 		ret = -ENOMEM;
1289 		goto out;
1290 	}
1291 	for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1292 		ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1293 		if (ret)
1294 			break;
1295 	}
1296 
1297 	if (cam->n_sbufs == 0)  /* no luck at all - ret already set */
1298 		kfree(cam->sb_bufs);
1299 	req->count = cam->n_sbufs;  /* In case of partial success */
1300 
1301   out:
1302 	mutex_unlock(&cam->s_mutex);
1303 	return ret;
1304 }
1305 
1306 
cafe_vidioc_querybuf(struct file * filp,void * priv,struct v4l2_buffer * buf)1307 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1308 		struct v4l2_buffer *buf)
1309 {
1310 	struct cafe_camera *cam = filp->private_data;
1311 	int ret = -EINVAL;
1312 
1313 	mutex_lock(&cam->s_mutex);
1314 	if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1315 		goto out;
1316 	if (buf->index < 0 || buf->index >= cam->n_sbufs)
1317 		goto out;
1318 	*buf = cam->sb_bufs[buf->index].v4lbuf;
1319 	ret = 0;
1320   out:
1321 	mutex_unlock(&cam->s_mutex);
1322 	return ret;
1323 }
1324 
cafe_vidioc_qbuf(struct file * filp,void * priv,struct v4l2_buffer * buf)1325 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1326 		struct v4l2_buffer *buf)
1327 {
1328 	struct cafe_camera *cam = filp->private_data;
1329 	struct cafe_sio_buffer *sbuf;
1330 	int ret = -EINVAL;
1331 	unsigned long flags;
1332 
1333 	mutex_lock(&cam->s_mutex);
1334 	if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1335 		goto out;
1336 	if (buf->index < 0 || buf->index >= cam->n_sbufs)
1337 		goto out;
1338 	sbuf = cam->sb_bufs + buf->index;
1339 	if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1340 		ret = 0; /* Already queued?? */
1341 		goto out;
1342 	}
1343 	if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1344 		/* Spec doesn't say anything, seems appropriate tho */
1345 		ret = -EBUSY;
1346 		goto out;
1347 	}
1348 	sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1349 	spin_lock_irqsave(&cam->dev_lock, flags);
1350 	list_add(&sbuf->list, &cam->sb_avail);
1351 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1352 	ret = 0;
1353   out:
1354 	mutex_unlock(&cam->s_mutex);
1355 	return ret;
1356 }
1357 
cafe_vidioc_dqbuf(struct file * filp,void * priv,struct v4l2_buffer * buf)1358 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1359 		struct v4l2_buffer *buf)
1360 {
1361 	struct cafe_camera *cam = filp->private_data;
1362 	struct cafe_sio_buffer *sbuf;
1363 	int ret = -EINVAL;
1364 	unsigned long flags;
1365 
1366 	mutex_lock(&cam->s_mutex);
1367 	if (buf->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1368 		goto out_unlock;
1369 	if (cam->state != S_STREAMING)
1370 		goto out_unlock;
1371 	if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1372 		ret = -EAGAIN;
1373 		goto out_unlock;
1374 	}
1375 
1376 	while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1377 		mutex_unlock(&cam->s_mutex);
1378 		if (wait_event_interruptible(cam->iowait,
1379 						!list_empty(&cam->sb_full))) {
1380 			ret = -ERESTARTSYS;
1381 			goto out;
1382 		}
1383 		mutex_lock(&cam->s_mutex);
1384 	}
1385 
1386 	if (cam->state != S_STREAMING)
1387 		ret = -EINTR;
1388 	else {
1389 		spin_lock_irqsave(&cam->dev_lock, flags);
1390 		/* Should probably recheck !list_empty() here */
1391 		sbuf = list_entry(cam->sb_full.next,
1392 				struct cafe_sio_buffer, list);
1393 		list_del_init(&sbuf->list);
1394 		spin_unlock_irqrestore(&cam->dev_lock, flags);
1395 		sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1396 		*buf = sbuf->v4lbuf;
1397 		ret = 0;
1398 	}
1399 
1400   out_unlock:
1401 	mutex_unlock(&cam->s_mutex);
1402   out:
1403 	return ret;
1404 }
1405 
1406 
1407 
cafe_v4l_vm_open(struct vm_area_struct * vma)1408 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1409 {
1410 	struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1411 	/*
1412 	 * Locking: done under mmap_sem, so we don't need to
1413 	 * go back to the camera lock here.
1414 	 */
1415 	sbuf->mapcount++;
1416 }
1417 
1418 
cafe_v4l_vm_close(struct vm_area_struct * vma)1419 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1420 {
1421 	struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1422 
1423 	mutex_lock(&sbuf->cam->s_mutex);
1424 	sbuf->mapcount--;
1425 	/* Docs say we should stop I/O too... */
1426 	if (sbuf->mapcount == 0)
1427 		sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1428 	mutex_unlock(&sbuf->cam->s_mutex);
1429 }
1430 
1431 static struct vm_operations_struct cafe_v4l_vm_ops = {
1432 	.open = cafe_v4l_vm_open,
1433 	.close = cafe_v4l_vm_close
1434 };
1435 
1436 
cafe_v4l_mmap(struct file * filp,struct vm_area_struct * vma)1437 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1438 {
1439 	struct cafe_camera *cam = filp->private_data;
1440 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1441 	int ret = -EINVAL;
1442 	int i;
1443 	struct cafe_sio_buffer *sbuf = NULL;
1444 
1445 	if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1446 		return -EINVAL;
1447 	/*
1448 	 * Find the buffer they are looking for.
1449 	 */
1450 	mutex_lock(&cam->s_mutex);
1451 	for (i = 0; i < cam->n_sbufs; i++)
1452 		if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1453 			sbuf = cam->sb_bufs + i;
1454 			break;
1455 		}
1456 	if (sbuf == NULL)
1457 		goto out;
1458 
1459 	ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1460 	if (ret)
1461 		goto out;
1462 	vma->vm_flags |= VM_DONTEXPAND;
1463 	vma->vm_private_data = sbuf;
1464 	vma->vm_ops = &cafe_v4l_vm_ops;
1465 	sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1466 	cafe_v4l_vm_open(vma);
1467 	ret = 0;
1468   out:
1469 	mutex_unlock(&cam->s_mutex);
1470 	return ret;
1471 }
1472 
1473 
1474 
cafe_v4l_open(struct file * filp)1475 static int cafe_v4l_open(struct file *filp)
1476 {
1477 	struct cafe_camera *cam;
1478 
1479 	cam = cafe_find_dev(video_devdata(filp)->minor);
1480 	if (cam == NULL)
1481 		return -ENODEV;
1482 	filp->private_data = cam;
1483 
1484 	mutex_lock(&cam->s_mutex);
1485 	if (cam->users == 0) {
1486 		cafe_ctlr_power_up(cam);
1487 		__cafe_cam_reset(cam);
1488 		cafe_set_config_needed(cam, 1);
1489 	/* FIXME make sure this is complete */
1490 	}
1491 	(cam->users)++;
1492 	mutex_unlock(&cam->s_mutex);
1493 	return 0;
1494 }
1495 
1496 
cafe_v4l_release(struct file * filp)1497 static int cafe_v4l_release(struct file *filp)
1498 {
1499 	struct cafe_camera *cam = filp->private_data;
1500 
1501 	mutex_lock(&cam->s_mutex);
1502 	(cam->users)--;
1503 	if (filp == cam->owner) {
1504 		cafe_ctlr_stop_dma(cam);
1505 		cafe_free_sio_buffers(cam);
1506 		cam->owner = NULL;
1507 	}
1508 	if (cam->users == 0) {
1509 		cafe_ctlr_power_down(cam);
1510 		if (alloc_bufs_at_read)
1511 			cafe_free_dma_bufs(cam);
1512 	}
1513 	mutex_unlock(&cam->s_mutex);
1514 	return 0;
1515 }
1516 
1517 
1518 
cafe_v4l_poll(struct file * filp,struct poll_table_struct * pt)1519 static unsigned int cafe_v4l_poll(struct file *filp,
1520 		struct poll_table_struct *pt)
1521 {
1522 	struct cafe_camera *cam = filp->private_data;
1523 
1524 	poll_wait(filp, &cam->iowait, pt);
1525 	if (cam->next_buf >= 0)
1526 		return POLLIN | POLLRDNORM;
1527 	return 0;
1528 }
1529 
1530 
1531 
cafe_vidioc_queryctrl(struct file * filp,void * priv,struct v4l2_queryctrl * qc)1532 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1533 		struct v4l2_queryctrl *qc)
1534 {
1535 	struct cafe_camera *cam = filp->private_data;
1536 	int ret;
1537 
1538 	mutex_lock(&cam->s_mutex);
1539 	ret = __cafe_cam_cmd(cam, VIDIOC_QUERYCTRL, qc);
1540 	mutex_unlock(&cam->s_mutex);
1541 	return ret;
1542 }
1543 
1544 
cafe_vidioc_g_ctrl(struct file * filp,void * priv,struct v4l2_control * ctrl)1545 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1546 		struct v4l2_control *ctrl)
1547 {
1548 	struct cafe_camera *cam = filp->private_data;
1549 	int ret;
1550 
1551 	mutex_lock(&cam->s_mutex);
1552 	ret = __cafe_cam_cmd(cam, VIDIOC_G_CTRL, ctrl);
1553 	mutex_unlock(&cam->s_mutex);
1554 	return ret;
1555 }
1556 
1557 
cafe_vidioc_s_ctrl(struct file * filp,void * priv,struct v4l2_control * ctrl)1558 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1559 		struct v4l2_control *ctrl)
1560 {
1561 	struct cafe_camera *cam = filp->private_data;
1562 	int ret;
1563 
1564 	mutex_lock(&cam->s_mutex);
1565 	ret = __cafe_cam_cmd(cam, VIDIOC_S_CTRL, ctrl);
1566 	mutex_unlock(&cam->s_mutex);
1567 	return ret;
1568 }
1569 
1570 
1571 
1572 
1573 
cafe_vidioc_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1574 static int cafe_vidioc_querycap(struct file *file, void *priv,
1575 		struct v4l2_capability *cap)
1576 {
1577 	strcpy(cap->driver, "cafe_ccic");
1578 	strcpy(cap->card, "cafe_ccic");
1579 	cap->version = CAFE_VERSION;
1580 	cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1581 		V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1582 	return 0;
1583 }
1584 
1585 
1586 /*
1587  * The default format we use until somebody says otherwise.
1588  */
1589 static struct v4l2_pix_format cafe_def_pix_format = {
1590 	.width		= VGA_WIDTH,
1591 	.height		= VGA_HEIGHT,
1592 	.pixelformat	= V4L2_PIX_FMT_YUYV,
1593 	.field		= V4L2_FIELD_NONE,
1594 	.bytesperline	= VGA_WIDTH*2,
1595 	.sizeimage	= VGA_WIDTH*VGA_HEIGHT*2,
1596 };
1597 
cafe_vidioc_enum_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_fmtdesc * fmt)1598 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1599 		void *priv, struct v4l2_fmtdesc *fmt)
1600 {
1601 	struct cafe_camera *cam = priv;
1602 	int ret;
1603 
1604 	if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1605 		return -EINVAL;
1606 	mutex_lock(&cam->s_mutex);
1607 	ret = __cafe_cam_cmd(cam, VIDIOC_ENUM_FMT, fmt);
1608 	mutex_unlock(&cam->s_mutex);
1609 	return ret;
1610 }
1611 
1612 
cafe_vidioc_try_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1613 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1614 		struct v4l2_format *fmt)
1615 {
1616 	struct cafe_camera *cam = priv;
1617 	int ret;
1618 
1619 	mutex_lock(&cam->s_mutex);
1620 	ret = __cafe_cam_cmd(cam, VIDIOC_TRY_FMT, fmt);
1621 	mutex_unlock(&cam->s_mutex);
1622 	return ret;
1623 }
1624 
cafe_vidioc_s_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * fmt)1625 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1626 		struct v4l2_format *fmt)
1627 {
1628 	struct cafe_camera *cam = priv;
1629 	int ret;
1630 
1631 	/*
1632 	 * Can't do anything if the device is not idle
1633 	 * Also can't if there are streaming buffers in place.
1634 	 */
1635 	if (cam->state != S_IDLE || cam->n_sbufs > 0)
1636 		return -EBUSY;
1637 	/*
1638 	 * See if the formatting works in principle.
1639 	 */
1640 	ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1641 	if (ret)
1642 		return ret;
1643 	/*
1644 	 * Now we start to change things for real, so let's do it
1645 	 * under lock.
1646 	 */
1647 	mutex_lock(&cam->s_mutex);
1648 	cam->pix_format = fmt->fmt.pix;
1649 	/*
1650 	 * Make sure we have appropriate DMA buffers.
1651 	 */
1652 	ret = -ENOMEM;
1653 	if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1654 		cafe_free_dma_bufs(cam);
1655 	if (cam->nbufs == 0) {
1656 		if (cafe_alloc_dma_bufs(cam, 0))
1657 			goto out;
1658 	}
1659 	/*
1660 	 * It looks like this might work, so let's program the sensor.
1661 	 */
1662 	ret = cafe_cam_configure(cam);
1663 	if (! ret)
1664 		ret = cafe_ctlr_configure(cam);
1665   out:
1666 	mutex_unlock(&cam->s_mutex);
1667 	return ret;
1668 }
1669 
1670 /*
1671  * Return our stored notion of how the camera is/should be configured.
1672  * The V4l2 spec wants us to be smarter, and actually get this from
1673  * the camera (and not mess with it at open time).  Someday.
1674  */
cafe_vidioc_g_fmt_vid_cap(struct file * filp,void * priv,struct v4l2_format * f)1675 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1676 		struct v4l2_format *f)
1677 {
1678 	struct cafe_camera *cam = priv;
1679 
1680 	f->fmt.pix = cam->pix_format;
1681 	return 0;
1682 }
1683 
1684 /*
1685  * We only have one input - the sensor - so minimize the nonsense here.
1686  */
cafe_vidioc_enum_input(struct file * filp,void * priv,struct v4l2_input * input)1687 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1688 		struct v4l2_input *input)
1689 {
1690 	if (input->index != 0)
1691 		return -EINVAL;
1692 
1693 	input->type = V4L2_INPUT_TYPE_CAMERA;
1694 	input->std = V4L2_STD_ALL; /* Not sure what should go here */
1695 	strcpy(input->name, "Camera");
1696 	return 0;
1697 }
1698 
cafe_vidioc_g_input(struct file * filp,void * priv,unsigned int * i)1699 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1700 {
1701 	*i = 0;
1702 	return 0;
1703 }
1704 
cafe_vidioc_s_input(struct file * filp,void * priv,unsigned int i)1705 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1706 {
1707 	if (i != 0)
1708 		return -EINVAL;
1709 	return 0;
1710 }
1711 
1712 /* from vivi.c */
cafe_vidioc_s_std(struct file * filp,void * priv,v4l2_std_id * a)1713 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1714 {
1715 	return 0;
1716 }
1717 
1718 /*
1719  * G/S_PARM.  Most of this is done by the sensor, but we are
1720  * the level which controls the number of read buffers.
1721  */
cafe_vidioc_g_parm(struct file * filp,void * priv,struct v4l2_streamparm * parms)1722 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1723 		struct v4l2_streamparm *parms)
1724 {
1725 	struct cafe_camera *cam = priv;
1726 	int ret;
1727 
1728 	mutex_lock(&cam->s_mutex);
1729 	ret = __cafe_cam_cmd(cam, VIDIOC_G_PARM, parms);
1730 	mutex_unlock(&cam->s_mutex);
1731 	parms->parm.capture.readbuffers = n_dma_bufs;
1732 	return ret;
1733 }
1734 
cafe_vidioc_s_parm(struct file * filp,void * priv,struct v4l2_streamparm * parms)1735 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1736 		struct v4l2_streamparm *parms)
1737 {
1738 	struct cafe_camera *cam = priv;
1739 	int ret;
1740 
1741 	mutex_lock(&cam->s_mutex);
1742 	ret = __cafe_cam_cmd(cam, VIDIOC_S_PARM, parms);
1743 	mutex_unlock(&cam->s_mutex);
1744 	parms->parm.capture.readbuffers = n_dma_bufs;
1745 	return ret;
1746 }
1747 
1748 
cafe_v4l_dev_release(struct video_device * vd)1749 static void cafe_v4l_dev_release(struct video_device *vd)
1750 {
1751 	struct cafe_camera *cam = container_of(vd, struct cafe_camera, v4ldev);
1752 
1753 	kfree(cam);
1754 }
1755 
1756 
1757 /*
1758  * This template device holds all of those v4l2 methods; we
1759  * clone it for specific real devices.
1760  */
1761 
1762 static const struct v4l2_file_operations cafe_v4l_fops = {
1763 	.owner = THIS_MODULE,
1764 	.open = cafe_v4l_open,
1765 	.release = cafe_v4l_release,
1766 	.read = cafe_v4l_read,
1767 	.poll = cafe_v4l_poll,
1768 	.mmap = cafe_v4l_mmap,
1769 	.ioctl = video_ioctl2,
1770 };
1771 
1772 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1773 	.vidioc_querycap 	= cafe_vidioc_querycap,
1774 	.vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1775 	.vidioc_try_fmt_vid_cap	= cafe_vidioc_try_fmt_vid_cap,
1776 	.vidioc_s_fmt_vid_cap	= cafe_vidioc_s_fmt_vid_cap,
1777 	.vidioc_g_fmt_vid_cap	= cafe_vidioc_g_fmt_vid_cap,
1778 	.vidioc_enum_input	= cafe_vidioc_enum_input,
1779 	.vidioc_g_input		= cafe_vidioc_g_input,
1780 	.vidioc_s_input		= cafe_vidioc_s_input,
1781 	.vidioc_s_std		= cafe_vidioc_s_std,
1782 	.vidioc_reqbufs		= cafe_vidioc_reqbufs,
1783 	.vidioc_querybuf	= cafe_vidioc_querybuf,
1784 	.vidioc_qbuf		= cafe_vidioc_qbuf,
1785 	.vidioc_dqbuf		= cafe_vidioc_dqbuf,
1786 	.vidioc_streamon	= cafe_vidioc_streamon,
1787 	.vidioc_streamoff	= cafe_vidioc_streamoff,
1788 	.vidioc_queryctrl	= cafe_vidioc_queryctrl,
1789 	.vidioc_g_ctrl		= cafe_vidioc_g_ctrl,
1790 	.vidioc_s_ctrl		= cafe_vidioc_s_ctrl,
1791 	.vidioc_g_parm		= cafe_vidioc_g_parm,
1792 	.vidioc_s_parm		= cafe_vidioc_s_parm,
1793 };
1794 
1795 static struct video_device cafe_v4l_template = {
1796 	.name = "cafe",
1797 	.minor = -1, /* Get one dynamically */
1798 	.tvnorms = V4L2_STD_NTSC_M,
1799 	.current_norm = V4L2_STD_NTSC_M,  /* make mplayer happy */
1800 
1801 	.fops = &cafe_v4l_fops,
1802 	.ioctl_ops = &cafe_v4l_ioctl_ops,
1803 	.release = cafe_v4l_dev_release,
1804 };
1805 
1806 
1807 
1808 
1809 
1810 
1811 
1812 /* ---------------------------------------------------------------------- */
1813 /*
1814  * Interrupt handler stuff
1815  */
1816 
1817 
1818 
cafe_frame_tasklet(unsigned long data)1819 static void cafe_frame_tasklet(unsigned long data)
1820 {
1821 	struct cafe_camera *cam = (struct cafe_camera *) data;
1822 	int i;
1823 	unsigned long flags;
1824 	struct cafe_sio_buffer *sbuf;
1825 
1826 	spin_lock_irqsave(&cam->dev_lock, flags);
1827 	for (i = 0; i < cam->nbufs; i++) {
1828 		int bufno = cam->next_buf;
1829 		if (bufno < 0) {  /* "will never happen" */
1830 			cam_err(cam, "No valid bufs in tasklet!\n");
1831 			break;
1832 		}
1833 		if (++(cam->next_buf) >= cam->nbufs)
1834 			cam->next_buf = 0;
1835 		if (! test_bit(bufno, &cam->flags))
1836 			continue;
1837 		if (list_empty(&cam->sb_avail))
1838 			break;  /* Leave it valid, hope for better later */
1839 		clear_bit(bufno, &cam->flags);
1840 		sbuf = list_entry(cam->sb_avail.next,
1841 				struct cafe_sio_buffer, list);
1842 		/*
1843 		 * Drop the lock during the big copy.  This *should* be safe...
1844 		 */
1845 		spin_unlock_irqrestore(&cam->dev_lock, flags);
1846 		memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1847 				cam->pix_format.sizeimage);
1848 		sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1849 		sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1850 		sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1851 		sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1852 		spin_lock_irqsave(&cam->dev_lock, flags);
1853 		list_move_tail(&sbuf->list, &cam->sb_full);
1854 	}
1855 	if (! list_empty(&cam->sb_full))
1856 		wake_up(&cam->iowait);
1857 	spin_unlock_irqrestore(&cam->dev_lock, flags);
1858 }
1859 
1860 
1861 
cafe_frame_complete(struct cafe_camera * cam,int frame)1862 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1863 {
1864 	/*
1865 	 * Basic frame housekeeping.
1866 	 */
1867 	if (test_bit(frame, &cam->flags) && printk_ratelimit())
1868 		cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1869 	set_bit(frame, &cam->flags);
1870 	clear_bit(CF_DMA_ACTIVE, &cam->flags);
1871 	if (cam->next_buf < 0)
1872 		cam->next_buf = frame;
1873 	cam->buf_seq[frame] = ++(cam->sequence);
1874 
1875 	switch (cam->state) {
1876 	/*
1877 	 * If in single read mode, try going speculative.
1878 	 */
1879 	    case S_SINGLEREAD:
1880 		cam->state = S_SPECREAD;
1881 		cam->specframes = 0;
1882 		wake_up(&cam->iowait);
1883 		break;
1884 
1885 	/*
1886 	 * If we are already doing speculative reads, and nobody is
1887 	 * reading them, just stop.
1888 	 */
1889 	    case S_SPECREAD:
1890 		if (++(cam->specframes) >= cam->nbufs) {
1891 			cafe_ctlr_stop(cam);
1892 			cafe_ctlr_irq_disable(cam);
1893 			cam->state = S_IDLE;
1894 		}
1895 		wake_up(&cam->iowait);
1896 		break;
1897 	/*
1898 	 * For the streaming case, we defer the real work to the
1899 	 * camera tasklet.
1900 	 *
1901 	 * FIXME: if the application is not consuming the buffers,
1902 	 * we should eventually put things on hold and restart in
1903 	 * vidioc_dqbuf().
1904 	 */
1905 	    case S_STREAMING:
1906 		tasklet_schedule(&cam->s_tasklet);
1907 		break;
1908 
1909 	    default:
1910 		cam_err(cam, "Frame interrupt in non-operational state\n");
1911 		break;
1912 	}
1913 }
1914 
1915 
1916 
1917 
cafe_frame_irq(struct cafe_camera * cam,unsigned int irqs)1918 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1919 {
1920 	unsigned int frame;
1921 
1922 	cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1923 	/*
1924 	 * Handle any frame completions.  There really should
1925 	 * not be more than one of these, or we have fallen
1926 	 * far behind.
1927 	 */
1928 	for (frame = 0; frame < cam->nbufs; frame++)
1929 		if (irqs & (IRQ_EOF0 << frame))
1930 			cafe_frame_complete(cam, frame);
1931 	/*
1932 	 * If a frame starts, note that we have DMA active.  This
1933 	 * code assumes that we won't get multiple frame interrupts
1934 	 * at once; may want to rethink that.
1935 	 */
1936 	if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1937 		set_bit(CF_DMA_ACTIVE, &cam->flags);
1938 }
1939 
1940 
1941 
cafe_irq(int irq,void * data)1942 static irqreturn_t cafe_irq(int irq, void *data)
1943 {
1944 	struct cafe_camera *cam = data;
1945 	unsigned int irqs;
1946 
1947 	spin_lock(&cam->dev_lock);
1948 	irqs = cafe_reg_read(cam, REG_IRQSTAT);
1949 	if ((irqs & ALLIRQS) == 0) {
1950 		spin_unlock(&cam->dev_lock);
1951 		return IRQ_NONE;
1952 	}
1953 	if (irqs & FRAMEIRQS)
1954 		cafe_frame_irq(cam, irqs);
1955 	if (irqs & TWSIIRQS) {
1956 		cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1957 		wake_up(&cam->smbus_wait);
1958 	}
1959 	spin_unlock(&cam->dev_lock);
1960 	return IRQ_HANDLED;
1961 }
1962 
1963 
1964 /* -------------------------------------------------------------------------- */
1965 #ifdef CONFIG_VIDEO_ADV_DEBUG
1966 /*
1967  * Debugfs stuff.
1968  */
1969 
1970 static char cafe_debug_buf[1024];
1971 static struct dentry *cafe_dfs_root;
1972 
cafe_dfs_setup(void)1973 static void cafe_dfs_setup(void)
1974 {
1975 	cafe_dfs_root = debugfs_create_dir("cafe_ccic", NULL);
1976 	if (IS_ERR(cafe_dfs_root)) {
1977 		cafe_dfs_root = NULL;  /* Never mind */
1978 		printk(KERN_NOTICE "cafe_ccic unable to set up debugfs\n");
1979 	}
1980 }
1981 
cafe_dfs_shutdown(void)1982 static void cafe_dfs_shutdown(void)
1983 {
1984 	if (cafe_dfs_root)
1985 		debugfs_remove(cafe_dfs_root);
1986 }
1987 
cafe_dfs_open(struct inode * inode,struct file * file)1988 static int cafe_dfs_open(struct inode *inode, struct file *file)
1989 {
1990 	file->private_data = inode->i_private;
1991 	return 0;
1992 }
1993 
cafe_dfs_read_regs(struct file * file,char __user * buf,size_t count,loff_t * ppos)1994 static ssize_t cafe_dfs_read_regs(struct file *file,
1995 		char __user *buf, size_t count, loff_t *ppos)
1996 {
1997 	struct cafe_camera *cam = file->private_data;
1998 	char *s = cafe_debug_buf;
1999 	int offset;
2000 
2001 	for (offset = 0; offset < 0x44; offset += 4)
2002 		s += sprintf(s, "%02x: %08x\n", offset,
2003 				cafe_reg_read(cam, offset));
2004 	for (offset = 0x88; offset <= 0x90; offset += 4)
2005 		s += sprintf(s, "%02x: %08x\n", offset,
2006 				cafe_reg_read(cam, offset));
2007 	for (offset = 0xb4; offset <= 0xbc; offset += 4)
2008 		s += sprintf(s, "%02x: %08x\n", offset,
2009 				cafe_reg_read(cam, offset));
2010 	for (offset = 0x3000; offset <= 0x300c; offset += 4)
2011 		s += sprintf(s, "%04x: %08x\n", offset,
2012 				cafe_reg_read(cam, offset));
2013 	return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2014 			s - cafe_debug_buf);
2015 }
2016 
2017 static const struct file_operations cafe_dfs_reg_ops = {
2018 	.owner = THIS_MODULE,
2019 	.read = cafe_dfs_read_regs,
2020 	.open = cafe_dfs_open
2021 };
2022 
cafe_dfs_read_cam(struct file * file,char __user * buf,size_t count,loff_t * ppos)2023 static ssize_t cafe_dfs_read_cam(struct file *file,
2024 		char __user *buf, size_t count, loff_t *ppos)
2025 {
2026 	struct cafe_camera *cam = file->private_data;
2027 	char *s = cafe_debug_buf;
2028 	int offset;
2029 
2030 	if (! cam->sensor)
2031 		return -EINVAL;
2032 	for (offset = 0x0; offset < 0x8a; offset++)
2033 	{
2034 		u8 v;
2035 
2036 		cafe_smbus_read_data(cam, cam->sensor->addr, offset, &v);
2037 		s += sprintf(s, "%02x: %02x\n", offset, v);
2038 	}
2039 	return simple_read_from_buffer(buf, count, ppos, cafe_debug_buf,
2040 			s - cafe_debug_buf);
2041 }
2042 
2043 static const struct file_operations cafe_dfs_cam_ops = {
2044 	.owner = THIS_MODULE,
2045 	.read = cafe_dfs_read_cam,
2046 	.open = cafe_dfs_open
2047 };
2048 
2049 
2050 
cafe_dfs_cam_setup(struct cafe_camera * cam)2051 static void cafe_dfs_cam_setup(struct cafe_camera *cam)
2052 {
2053 	char fname[40];
2054 
2055 	if (!cafe_dfs_root)
2056 		return;
2057 	sprintf(fname, "regs-%d", cam->v4ldev.num);
2058 	cam->dfs_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2059 			cam, &cafe_dfs_reg_ops);
2060 	sprintf(fname, "cam-%d", cam->v4ldev.num);
2061 	cam->dfs_cam_regs = debugfs_create_file(fname, 0444, cafe_dfs_root,
2062 			cam, &cafe_dfs_cam_ops);
2063 }
2064 
2065 
cafe_dfs_cam_shutdown(struct cafe_camera * cam)2066 static void cafe_dfs_cam_shutdown(struct cafe_camera *cam)
2067 {
2068 	if (! IS_ERR(cam->dfs_regs))
2069 		debugfs_remove(cam->dfs_regs);
2070 	if (! IS_ERR(cam->dfs_cam_regs))
2071 		debugfs_remove(cam->dfs_cam_regs);
2072 }
2073 
2074 #else
2075 
2076 #define cafe_dfs_setup()
2077 #define cafe_dfs_shutdown()
2078 #define cafe_dfs_cam_setup(cam)
2079 #define cafe_dfs_cam_shutdown(cam)
2080 #endif    /* CONFIG_VIDEO_ADV_DEBUG */
2081 
2082 
2083 
2084 
2085 /* ------------------------------------------------------------------------*/
2086 /*
2087  * PCI interface stuff.
2088  */
2089 
cafe_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)2090 static int cafe_pci_probe(struct pci_dev *pdev,
2091 		const struct pci_device_id *id)
2092 {
2093 	int ret;
2094 	struct cafe_camera *cam;
2095 
2096 	/*
2097 	 * Start putting together one of our big camera structures.
2098 	 */
2099 	ret = -ENOMEM;
2100 	cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
2101 	if (cam == NULL)
2102 		goto out;
2103 	mutex_init(&cam->s_mutex);
2104 	mutex_lock(&cam->s_mutex);
2105 	spin_lock_init(&cam->dev_lock);
2106 	cam->state = S_NOTREADY;
2107 	cafe_set_config_needed(cam, 1);
2108 	init_waitqueue_head(&cam->smbus_wait);
2109 	init_waitqueue_head(&cam->iowait);
2110 	cam->pdev = pdev;
2111 	cam->pix_format = cafe_def_pix_format;
2112 	INIT_LIST_HEAD(&cam->dev_list);
2113 	INIT_LIST_HEAD(&cam->sb_avail);
2114 	INIT_LIST_HEAD(&cam->sb_full);
2115 	tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
2116 	/*
2117 	 * Get set up on the PCI bus.
2118 	 */
2119 	ret = pci_enable_device(pdev);
2120 	if (ret)
2121 		goto out_free;
2122 	pci_set_master(pdev);
2123 
2124 	ret = -EIO;
2125 	cam->regs = pci_iomap(pdev, 0, 0);
2126 	if (! cam->regs) {
2127 		printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
2128 		goto out_free;
2129 	}
2130 	ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
2131 	if (ret)
2132 		goto out_iounmap;
2133 	/*
2134 	 * Initialize the controller and leave it powered up.  It will
2135 	 * stay that way until the sensor driver shows up.
2136 	 */
2137 	cafe_ctlr_init(cam);
2138 	cafe_ctlr_power_up(cam);
2139 	/*
2140 	 * Set up I2C/SMBUS communications.  We have to drop the mutex here
2141 	 * because the sensor could attach in this call chain, leading to
2142 	 * unsightly deadlocks.
2143 	 */
2144 	mutex_unlock(&cam->s_mutex);  /* attach can deadlock */
2145 	ret = cafe_smbus_setup(cam);
2146 	if (ret)
2147 		goto out_freeirq;
2148 	/*
2149 	 * Get the v4l2 setup done.
2150 	 */
2151 	mutex_lock(&cam->s_mutex);
2152 	cam->v4ldev = cafe_v4l_template;
2153 	cam->v4ldev.debug = 0;
2154 //	cam->v4ldev.debug = V4L2_DEBUG_IOCTL_ARG;
2155 	cam->v4ldev.parent = &pdev->dev;
2156 	ret = video_register_device(&cam->v4ldev, VFL_TYPE_GRABBER, -1);
2157 	if (ret)
2158 		goto out_smbus;
2159 	/*
2160 	 * If so requested, try to get our DMA buffers now.
2161 	 */
2162 	if (!alloc_bufs_at_read) {
2163 		if (cafe_alloc_dma_bufs(cam, 1))
2164 			cam_warn(cam, "Unable to alloc DMA buffers at load"
2165 					" will try again later.");
2166 	}
2167 
2168 	cafe_dfs_cam_setup(cam);
2169 	mutex_unlock(&cam->s_mutex);
2170 	cafe_add_dev(cam);
2171 	return 0;
2172 
2173   out_smbus:
2174 	cafe_smbus_shutdown(cam);
2175   out_freeirq:
2176 	cafe_ctlr_power_down(cam);
2177 	free_irq(pdev->irq, cam);
2178   out_iounmap:
2179 	pci_iounmap(pdev, cam->regs);
2180   out_free:
2181 	kfree(cam);
2182   out:
2183 	return ret;
2184 }
2185 
2186 
2187 /*
2188  * Shut down an initialized device
2189  */
cafe_shutdown(struct cafe_camera * cam)2190 static void cafe_shutdown(struct cafe_camera *cam)
2191 {
2192 /* FIXME: Make sure we take care of everything here */
2193 	cafe_dfs_cam_shutdown(cam);
2194 	if (cam->n_sbufs > 0)
2195 		/* What if they are still mapped?  Shouldn't be, but... */
2196 		cafe_free_sio_buffers(cam);
2197 	cafe_remove_dev(cam);
2198 	cafe_ctlr_stop_dma(cam);
2199 	cafe_ctlr_power_down(cam);
2200 	cafe_smbus_shutdown(cam);
2201 	cafe_free_dma_bufs(cam);
2202 	free_irq(cam->pdev->irq, cam);
2203 	pci_iounmap(cam->pdev, cam->regs);
2204 	video_unregister_device(&cam->v4ldev);
2205 	/* kfree(cam); done in v4l_release () */
2206 }
2207 
2208 
cafe_pci_remove(struct pci_dev * pdev)2209 static void cafe_pci_remove(struct pci_dev *pdev)
2210 {
2211 	struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2212 
2213 	if (cam == NULL) {
2214 		printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2215 		return;
2216 	}
2217 	mutex_lock(&cam->s_mutex);
2218 	if (cam->users > 0)
2219 		cam_warn(cam, "Removing a device with users!\n");
2220 	cafe_shutdown(cam);
2221 /* No unlock - it no longer exists */
2222 }
2223 
2224 
2225 #ifdef CONFIG_PM
2226 /*
2227  * Basic power management.
2228  */
cafe_pci_suspend(struct pci_dev * pdev,pm_message_t state)2229 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2230 {
2231 	struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2232 	int ret;
2233 	enum cafe_state cstate;
2234 
2235 	ret = pci_save_state(pdev);
2236 	if (ret)
2237 		return ret;
2238 	cstate = cam->state; /* HACK - stop_dma sets to idle */
2239 	cafe_ctlr_stop_dma(cam);
2240 	cafe_ctlr_power_down(cam);
2241 	pci_disable_device(pdev);
2242 	cam->state = cstate;
2243 	return 0;
2244 }
2245 
2246 
cafe_pci_resume(struct pci_dev * pdev)2247 static int cafe_pci_resume(struct pci_dev *pdev)
2248 {
2249 	struct cafe_camera *cam = cafe_find_by_pdev(pdev);
2250 	int ret = 0;
2251 
2252 	ret = pci_restore_state(pdev);
2253 	if (ret)
2254 		return ret;
2255 	ret = pci_enable_device(pdev);
2256 
2257 	if (ret) {
2258 		cam_warn(cam, "Unable to re-enable device on resume!\n");
2259 		return ret;
2260 	}
2261 	cafe_ctlr_init(cam);
2262 	cafe_ctlr_power_down(cam);
2263 
2264 	mutex_lock(&cam->s_mutex);
2265 	if (cam->users > 0) {
2266 		cafe_ctlr_power_up(cam);
2267 		__cafe_cam_reset(cam);
2268 	}
2269 	mutex_unlock(&cam->s_mutex);
2270 
2271 	set_bit(CF_CONFIG_NEEDED, &cam->flags);
2272 	if (cam->state == S_SPECREAD)
2273 		cam->state = S_IDLE;  /* Don't bother restarting */
2274 	else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2275 		ret = cafe_read_setup(cam, cam->state);
2276 	return ret;
2277 }
2278 
2279 #endif  /* CONFIG_PM */
2280 
2281 
2282 static struct pci_device_id cafe_ids[] = {
2283 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2284 		     PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2285 	{ 0, }
2286 };
2287 
2288 MODULE_DEVICE_TABLE(pci, cafe_ids);
2289 
2290 static struct pci_driver cafe_pci_driver = {
2291 	.name = "cafe1000-ccic",
2292 	.id_table = cafe_ids,
2293 	.probe = cafe_pci_probe,
2294 	.remove = cafe_pci_remove,
2295 #ifdef CONFIG_PM
2296 	.suspend = cafe_pci_suspend,
2297 	.resume = cafe_pci_resume,
2298 #endif
2299 };
2300 
2301 
2302 
2303 
cafe_init(void)2304 static int __init cafe_init(void)
2305 {
2306 	int ret;
2307 
2308 	printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2309 			CAFE_VERSION);
2310 	cafe_dfs_setup();
2311 	ret = pci_register_driver(&cafe_pci_driver);
2312 	if (ret) {
2313 		printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2314 		goto out;
2315 	}
2316 	request_module("ov7670");  /* FIXME want something more general */
2317 	ret = 0;
2318 
2319   out:
2320 	return ret;
2321 }
2322 
2323 
cafe_exit(void)2324 static void __exit cafe_exit(void)
2325 {
2326 	pci_unregister_driver(&cafe_pci_driver);
2327 	cafe_dfs_shutdown();
2328 }
2329 
2330 module_init(cafe_init);
2331 module_exit(cafe_exit);
2332