• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SN Platform GRU Driver
3  *
4  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <asm/pgtable.h>
36 #include "gru.h"
37 #include "grutables.h"
38 #include "grulib.h"
39 #include "gru_instructions.h"
40 #include <asm/uv/uv_hub.h>
41 
42 /*
43  * Test if a physical address is a valid GRU GSEG address
44  */
is_gru_paddr(unsigned long paddr)45 static inline int is_gru_paddr(unsigned long paddr)
46 {
47 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
48 }
49 
50 /*
51  * Find the vma of a GRU segment. Caller must hold mmap_sem.
52  */
gru_find_vma(unsigned long vaddr)53 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
54 {
55 	struct vm_area_struct *vma;
56 
57 	vma = find_vma(current->mm, vaddr);
58 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
59 		return vma;
60 	return NULL;
61 }
62 
63 /*
64  * Find and lock the gts that contains the specified user vaddr.
65  *
66  * Returns:
67  * 	- *gts with the mmap_sem locked for read and the GTS locked.
68  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
69  */
70 
gru_find_lock_gts(unsigned long vaddr)71 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
72 {
73 	struct mm_struct *mm = current->mm;
74 	struct vm_area_struct *vma;
75 	struct gru_thread_state *gts = NULL;
76 
77 	down_read(&mm->mmap_sem);
78 	vma = gru_find_vma(vaddr);
79 	if (vma)
80 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
81 	if (gts)
82 		mutex_lock(&gts->ts_ctxlock);
83 	else
84 		up_read(&mm->mmap_sem);
85 	return gts;
86 }
87 
gru_alloc_locked_gts(unsigned long vaddr)88 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
89 {
90 	struct mm_struct *mm = current->mm;
91 	struct vm_area_struct *vma;
92 	struct gru_thread_state *gts = NULL;
93 
94 	down_write(&mm->mmap_sem);
95 	vma = gru_find_vma(vaddr);
96 	if (vma)
97 		gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
98 	if (gts) {
99 		mutex_lock(&gts->ts_ctxlock);
100 		downgrade_write(&mm->mmap_sem);
101 	} else {
102 		up_write(&mm->mmap_sem);
103 	}
104 
105 	return gts;
106 }
107 
108 /*
109  * Unlock a GTS that was previously locked with gru_find_lock_gts().
110  */
gru_unlock_gts(struct gru_thread_state * gts)111 static void gru_unlock_gts(struct gru_thread_state *gts)
112 {
113 	mutex_unlock(&gts->ts_ctxlock);
114 	up_read(&current->mm->mmap_sem);
115 }
116 
117 /*
118  * Set a CB.istatus to active using a user virtual address. This must be done
119  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
120  * If the line is evicted, the status may be lost. The in-cache update
121  * is necessary to prevent the user from seeing a stale cb.istatus that will
122  * change as soon as the TFH restart is complete. Races may cause an
123  * occasional failure to clear the cb.istatus, but that is ok.
124  *
125  * If the cb address is not valid (should not happen, but...), nothing
126  * bad will happen.. The get_user()/put_user() will fail but there
127  * are no bad side-effects.
128  */
gru_cb_set_istatus_active(unsigned long __user * cb)129 static void gru_cb_set_istatus_active(unsigned long __user *cb)
130 {
131 	union {
132 		struct gru_instruction_bits bits;
133 		unsigned long dw;
134 	} u;
135 
136 	if (cb) {
137 		get_user(u.dw, cb);
138 		u.bits.istatus = CBS_ACTIVE;
139 		put_user(u.dw, cb);
140 	}
141 }
142 
143 /*
144  * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the
145  * interrupt. Interrupts are always sent to a cpu on the blade that contains the
146  * GRU (except for headless blades which are not currently supported). A blade
147  * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ
148  * number uniquely identifies the GRU chiplet on the local blade that caused the
149  * interrupt. Always called in interrupt context.
150  */
irq_to_gru(int irq)151 static inline struct gru_state *irq_to_gru(int irq)
152 {
153 	return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU];
154 }
155 
156 /*
157  * Read & clear a TFM
158  *
159  * The GRU has an array of fault maps. A map is private to a cpu
160  * Only one cpu will be accessing a cpu's fault map.
161  *
162  * This function scans the cpu-private fault map & clears all bits that
163  * are set. The function returns a bitmap that indicates the bits that
164  * were cleared. Note that sense the maps may be updated asynchronously by
165  * the GRU, atomic operations must be used to clear bits.
166  */
get_clear_fault_map(struct gru_state * gru,struct gru_tlb_fault_map * map)167 static void get_clear_fault_map(struct gru_state *gru,
168 				struct gru_tlb_fault_map *map)
169 {
170 	unsigned long i, k;
171 	struct gru_tlb_fault_map *tfm;
172 
173 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
174 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
175 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
176 		k = tfm->fault_bits[i];
177 		if (k)
178 			k = xchg(&tfm->fault_bits[i], 0UL);
179 		map->fault_bits[i] = k;
180 	}
181 
182 	/*
183 	 * Not functionally required but helps performance. (Required
184 	 * on emulator)
185 	 */
186 	gru_flush_cache(tfm);
187 }
188 
189 /*
190  * Atomic (interrupt context) & non-atomic (user context) functions to
191  * convert a vaddr into a physical address. The size of the page
192  * is returned in pageshift.
193  * 	returns:
194  * 		  0 - successful
195  * 		< 0 - error code
196  * 		  1 - (atomic only) try again in non-atomic context
197  */
non_atomic_pte_lookup(struct vm_area_struct * vma,unsigned long vaddr,int write,unsigned long * paddr,int * pageshift)198 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
199 				 unsigned long vaddr, int write,
200 				 unsigned long *paddr, int *pageshift)
201 {
202 	struct page *page;
203 
204 	/* ZZZ Need to handle HUGE pages */
205 	if (is_vm_hugetlb_page(vma))
206 		return -EFAULT;
207 	*pageshift = PAGE_SHIFT;
208 	if (get_user_pages
209 	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
210 		return -EFAULT;
211 	*paddr = page_to_phys(page);
212 	put_page(page);
213 	return 0;
214 }
215 
216 /*
217  * atomic_pte_lookup
218  *
219  * Convert a user virtual address to a physical address
220  * Only supports Intel large pages (2MB only) on x86_64.
221  *	ZZZ - hugepage support is incomplete
222  *
223  * NOTE: mmap_sem is already held on entry to this function. This
224  * guarantees existence of the page tables.
225  */
atomic_pte_lookup(struct vm_area_struct * vma,unsigned long vaddr,int write,unsigned long * paddr,int * pageshift)226 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
227 	int write, unsigned long *paddr, int *pageshift)
228 {
229 	pgd_t *pgdp;
230 	pmd_t *pmdp;
231 	pud_t *pudp;
232 	pte_t pte;
233 
234 	pgdp = pgd_offset(vma->vm_mm, vaddr);
235 	if (unlikely(pgd_none(*pgdp)))
236 		goto err;
237 
238 	pudp = pud_offset(pgdp, vaddr);
239 	if (unlikely(pud_none(*pudp)))
240 		goto err;
241 
242 	pmdp = pmd_offset(pudp, vaddr);
243 	if (unlikely(pmd_none(*pmdp)))
244 		goto err;
245 #ifdef CONFIG_X86_64
246 	if (unlikely(pmd_large(*pmdp)))
247 		pte = *(pte_t *) pmdp;
248 	else
249 #endif
250 		pte = *pte_offset_kernel(pmdp, vaddr);
251 
252 	if (unlikely(!pte_present(pte) ||
253 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
254 		return 1;
255 
256 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
257 #ifdef CONFIG_HUGETLB_PAGE
258 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
259 #else
260 	*pageshift = PAGE_SHIFT;
261 #endif
262 	return 0;
263 
264 err:
265 	local_irq_enable();
266 	return 1;
267 }
268 
269 /*
270  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
271  *	Input:
272  *		cb    Address of user CBR. Null if not running in user context
273  * 	Return:
274  * 		  0 = dropin, exception, or switch to UPM successful
275  * 		  1 = range invalidate active
276  * 		< 0 = error code
277  *
278  */
gru_try_dropin(struct gru_thread_state * gts,struct gru_tlb_fault_handle * tfh,unsigned long __user * cb)279 static int gru_try_dropin(struct gru_thread_state *gts,
280 			  struct gru_tlb_fault_handle *tfh,
281 			  unsigned long __user *cb)
282 {
283 	struct mm_struct *mm = gts->ts_mm;
284 	struct vm_area_struct *vma;
285 	int pageshift, asid, write, ret;
286 	unsigned long paddr, gpa, vaddr;
287 
288 	/*
289 	 * NOTE: The GRU contains magic hardware that eliminates races between
290 	 * TLB invalidates and TLB dropins. If an invalidate occurs
291 	 * in the window between reading the TFH and the subsequent TLB dropin,
292 	 * the dropin is ignored. This eliminates the need for additional locks.
293 	 */
294 
295 	/*
296 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
297 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
298 	 * is a transient state.
299 	 */
300 	if (tfh->state == TFHSTATE_IDLE)
301 		goto failidle;
302 	if (tfh->state == TFHSTATE_MISS_FMM && cb)
303 		goto failfmm;
304 
305 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
306 	vaddr = tfh->missvaddr;
307 	asid = tfh->missasid;
308 	if (asid == 0)
309 		goto failnoasid;
310 
311 	rmb();	/* TFH must be cache resident before reading ms_range_active */
312 
313 	/*
314 	 * TFH is cache resident - at least briefly. Fail the dropin
315 	 * if a range invalidate is active.
316 	 */
317 	if (atomic_read(&gts->ts_gms->ms_range_active))
318 		goto failactive;
319 
320 	vma = find_vma(mm, vaddr);
321 	if (!vma)
322 		goto failinval;
323 
324 	/*
325 	 * Atomic lookup is faster & usually works even if called in non-atomic
326 	 * context.
327 	 */
328 	rmb();	/* Must/check ms_range_active before loading PTEs */
329 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &pageshift);
330 	if (ret) {
331 		if (!cb)
332 			goto failupm;
333 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr,
334 					  &pageshift))
335 			goto failinval;
336 	}
337 	if (is_gru_paddr(paddr))
338 		goto failinval;
339 
340 	paddr = paddr & ~((1UL << pageshift) - 1);
341 	gpa = uv_soc_phys_ram_to_gpa(paddr);
342 	gru_cb_set_istatus_active(cb);
343 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
344 			  GRU_PAGESIZE(pageshift));
345 	STAT(tlb_dropin);
346 	gru_dbg(grudev,
347 		"%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n",
348 		ret ? "non-atomic" : "atomic", tfh, vaddr, asid,
349 		pageshift, gpa);
350 	return 0;
351 
352 failnoasid:
353 	/* No asid (delayed unload). */
354 	STAT(tlb_dropin_fail_no_asid);
355 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
356 	if (!cb)
357 		tfh_user_polling_mode(tfh);
358 	else
359 		gru_flush_cache(tfh);
360 	return -EAGAIN;
361 
362 failupm:
363 	/* Atomic failure switch CBR to UPM */
364 	tfh_user_polling_mode(tfh);
365 	STAT(tlb_dropin_fail_upm);
366 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
367 	return 1;
368 
369 failfmm:
370 	/* FMM state on UPM call */
371 	STAT(tlb_dropin_fail_fmm);
372 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
373 	return 0;
374 
375 failidle:
376 	/* TFH was idle  - no miss pending */
377 	gru_flush_cache(tfh);
378 	if (cb)
379 		gru_flush_cache(cb);
380 	STAT(tlb_dropin_fail_idle);
381 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
382 	return 0;
383 
384 failinval:
385 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
386 	tfh_exception(tfh);
387 	STAT(tlb_dropin_fail_invalid);
388 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
389 	return -EFAULT;
390 
391 failactive:
392 	/* Range invalidate active. Switch to UPM iff atomic */
393 	if (!cb)
394 		tfh_user_polling_mode(tfh);
395 	else
396 		gru_flush_cache(tfh);
397 	STAT(tlb_dropin_fail_range_active);
398 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
399 		tfh, vaddr);
400 	return 1;
401 }
402 
403 /*
404  * Process an external interrupt from the GRU. This interrupt is
405  * caused by a TLB miss.
406  * Note that this is the interrupt handler that is registered with linux
407  * interrupt handlers.
408  */
gru_intr(int irq,void * dev_id)409 irqreturn_t gru_intr(int irq, void *dev_id)
410 {
411 	struct gru_state *gru;
412 	struct gru_tlb_fault_map map;
413 	struct gru_thread_state *gts;
414 	struct gru_tlb_fault_handle *tfh = NULL;
415 	int cbrnum, ctxnum;
416 
417 	STAT(intr);
418 
419 	gru = irq_to_gru(irq);
420 	if (!gru) {
421 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n",
422 			raw_smp_processor_id(), irq);
423 		return IRQ_NONE;
424 	}
425 	get_clear_fault_map(gru, &map);
426 	gru_dbg(grudev, "irq %d, gru %x, map 0x%lx\n", irq, gru->gs_gid,
427 		map.fault_bits[0]);
428 
429 	for_each_cbr_in_tfm(cbrnum, map.fault_bits) {
430 		tfh = get_tfh_by_index(gru, cbrnum);
431 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
432 
433 		/*
434 		 * When hardware sets a bit in the faultmap, it implicitly
435 		 * locks the GRU context so that it cannot be unloaded.
436 		 * The gts cannot change until a TFH start/writestart command
437 		 * is issued.
438 		 */
439 		ctxnum = tfh->ctxnum;
440 		gts = gru->gs_gts[ctxnum];
441 
442 		/*
443 		 * This is running in interrupt context. Trylock the mmap_sem.
444 		 * If it fails, retry the fault in user context.
445 		 */
446 		if (down_read_trylock(&gts->ts_mm->mmap_sem)) {
447 			gru_try_dropin(gts, tfh, NULL);
448 			up_read(&gts->ts_mm->mmap_sem);
449 		} else {
450 			tfh_user_polling_mode(tfh);
451 		}
452 	}
453 	return IRQ_HANDLED;
454 }
455 
456 
gru_user_dropin(struct gru_thread_state * gts,struct gru_tlb_fault_handle * tfh,unsigned long __user * cb)457 static int gru_user_dropin(struct gru_thread_state *gts,
458 			   struct gru_tlb_fault_handle *tfh,
459 			   unsigned long __user *cb)
460 {
461 	struct gru_mm_struct *gms = gts->ts_gms;
462 	int ret;
463 
464 	while (1) {
465 		wait_event(gms->ms_wait_queue,
466 			   atomic_read(&gms->ms_range_active) == 0);
467 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
468 		ret = gru_try_dropin(gts, tfh, cb);
469 		if (ret <= 0)
470 			return ret;
471 		STAT(call_os_wait_queue);
472 	}
473 }
474 
475 /*
476  * This interface is called as a result of a user detecting a "call OS" bit
477  * in a user CB. Normally means that a TLB fault has occurred.
478  * 	cb - user virtual address of the CB
479  */
gru_handle_user_call_os(unsigned long cb)480 int gru_handle_user_call_os(unsigned long cb)
481 {
482 	struct gru_tlb_fault_handle *tfh;
483 	struct gru_thread_state *gts;
484 	unsigned long __user *cbp;
485 	int ucbnum, cbrnum, ret = -EINVAL;
486 
487 	STAT(call_os);
488 	gru_dbg(grudev, "address 0x%lx\n", cb);
489 
490 	/* sanity check the cb pointer */
491 	ucbnum = get_cb_number((void *)cb);
492 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
493 		return -EINVAL;
494 	cbp = (unsigned long *)cb;
495 
496 	gts = gru_find_lock_gts(cb);
497 	if (!gts)
498 		return -EINVAL;
499 
500 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
501 		ret = -EINVAL;
502 		goto exit;
503 	}
504 
505 	/*
506 	 * If force_unload is set, the UPM TLB fault is phony. The task
507 	 * has migrated to another node and the GSEG must be moved. Just
508 	 * unload the context. The task will page fault and assign a new
509 	 * context.
510 	 */
511 	ret = -EAGAIN;
512 	cbrnum = thread_cbr_number(gts, ucbnum);
513 	if (gts->ts_force_unload) {
514 		gru_unload_context(gts, 1);
515 	} else if (gts->ts_gru) {
516 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
517 		ret = gru_user_dropin(gts, tfh, cbp);
518 	}
519 exit:
520 	gru_unlock_gts(gts);
521 	return ret;
522 }
523 
524 /*
525  * Fetch the exception detail information for a CB that terminated with
526  * an exception.
527  */
gru_get_exception_detail(unsigned long arg)528 int gru_get_exception_detail(unsigned long arg)
529 {
530 	struct control_block_extended_exc_detail excdet;
531 	struct gru_control_block_extended *cbe;
532 	struct gru_thread_state *gts;
533 	int ucbnum, cbrnum, ret;
534 
535 	STAT(user_exception);
536 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
537 		return -EFAULT;
538 
539 	gru_dbg(grudev, "address 0x%lx\n", excdet.cb);
540 	gts = gru_find_lock_gts(excdet.cb);
541 	if (!gts)
542 		return -EINVAL;
543 
544 	if (gts->ts_gru) {
545 		ucbnum = get_cb_number((void *)excdet.cb);
546 		cbrnum = thread_cbr_number(gts, ucbnum);
547 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
548 		prefetchw(cbe);		/* Harmless on hardware, required for emulator */
549 		excdet.opc = cbe->opccpy;
550 		excdet.exopc = cbe->exopccpy;
551 		excdet.ecause = cbe->ecause;
552 		excdet.exceptdet0 = cbe->idef1upd;
553 		excdet.exceptdet1 = cbe->idef3upd;
554 		ret = 0;
555 	} else {
556 		ret = -EAGAIN;
557 	}
558 	gru_unlock_gts(gts);
559 
560 	gru_dbg(grudev, "address 0x%lx, ecause 0x%x\n", excdet.cb,
561 		excdet.ecause);
562 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
563 		ret = -EFAULT;
564 	return ret;
565 }
566 
567 /*
568  * User request to unload a context. Content is saved for possible reload.
569  */
gru_user_unload_context(unsigned long arg)570 int gru_user_unload_context(unsigned long arg)
571 {
572 	struct gru_thread_state *gts;
573 	struct gru_unload_context_req req;
574 
575 	STAT(user_unload_context);
576 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
577 		return -EFAULT;
578 
579 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
580 
581 	gts = gru_find_lock_gts(req.gseg);
582 	if (!gts)
583 		return -EINVAL;
584 
585 	if (gts->ts_gru)
586 		gru_unload_context(gts, 1);
587 	gru_unlock_gts(gts);
588 
589 	return 0;
590 }
591 
592 /*
593  * User request to flush a range of virtual addresses from the GRU TLB
594  * (Mainly for testing).
595  */
gru_user_flush_tlb(unsigned long arg)596 int gru_user_flush_tlb(unsigned long arg)
597 {
598 	struct gru_thread_state *gts;
599 	struct gru_flush_tlb_req req;
600 
601 	STAT(user_flush_tlb);
602 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
603 		return -EFAULT;
604 
605 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
606 		req.vaddr, req.len);
607 
608 	gts = gru_find_lock_gts(req.gseg);
609 	if (!gts)
610 		return -EINVAL;
611 
612 	gru_flush_tlb_range(gts->ts_gms, req.vaddr, req.vaddr + req.len);
613 	gru_unlock_gts(gts);
614 
615 	return 0;
616 }
617 
618 /*
619  * Register the current task as the user of the GSEG slice.
620  * Needed for TLB fault interrupt targeting.
621  */
gru_set_task_slice(long address)622 int gru_set_task_slice(long address)
623 {
624 	struct gru_thread_state *gts;
625 
626 	STAT(set_task_slice);
627 	gru_dbg(grudev, "address 0x%lx\n", address);
628 	gts = gru_alloc_locked_gts(address);
629 	if (!gts)
630 		return -EINVAL;
631 
632 	gts->ts_tgid_owner = current->tgid;
633 	gru_unlock_gts(gts);
634 
635 	return 0;
636 }
637