• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15 
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21 
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2	(MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2	((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2	((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31 
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2		0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2	(XPC_NOTIFY_IRQ_AMOS_SN2 + \
47 					 XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2	(XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49 					 XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2	(XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51 
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
58 
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61 
62 static int
xpc_setup_partitions_sn_sn2(void)63 xpc_setup_partitions_sn_sn2(void)
64 {
65 	/* nothing needs to be done */
66 	return 0;
67 }
68 
69 /* SH_IPI_ACCESS shub register value on startup */
70 static u64 xpc_sh1_IPI_access_sn2;
71 static u64 xpc_sh2_IPI_access0_sn2;
72 static u64 xpc_sh2_IPI_access1_sn2;
73 static u64 xpc_sh2_IPI_access2_sn2;
74 static u64 xpc_sh2_IPI_access3_sn2;
75 
76 /*
77  * Change protections to allow IPI operations.
78  */
79 static void
xpc_allow_IPI_ops_sn2(void)80 xpc_allow_IPI_ops_sn2(void)
81 {
82 	int node;
83 	int nasid;
84 
85 	/* !!! The following should get moved into SAL. */
86 	if (is_shub2()) {
87 		xpc_sh2_IPI_access0_sn2 =
88 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
89 		xpc_sh2_IPI_access1_sn2 =
90 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
91 		xpc_sh2_IPI_access2_sn2 =
92 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
93 		xpc_sh2_IPI_access3_sn2 =
94 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
95 
96 		for_each_online_node(node) {
97 			nasid = cnodeid_to_nasid(node);
98 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
99 			      -1UL);
100 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
101 			      -1UL);
102 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
103 			      -1UL);
104 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
105 			      -1UL);
106 		}
107 	} else {
108 		xpc_sh1_IPI_access_sn2 =
109 		    (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
110 
111 		for_each_online_node(node) {
112 			nasid = cnodeid_to_nasid(node);
113 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
114 			      -1UL);
115 		}
116 	}
117 }
118 
119 /*
120  * Restrict protections to disallow IPI operations.
121  */
122 static void
xpc_disallow_IPI_ops_sn2(void)123 xpc_disallow_IPI_ops_sn2(void)
124 {
125 	int node;
126 	int nasid;
127 
128 	/* !!! The following should get moved into SAL. */
129 	if (is_shub2()) {
130 		for_each_online_node(node) {
131 			nasid = cnodeid_to_nasid(node);
132 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
133 			      xpc_sh2_IPI_access0_sn2);
134 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
135 			      xpc_sh2_IPI_access1_sn2);
136 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
137 			      xpc_sh2_IPI_access2_sn2);
138 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
139 			      xpc_sh2_IPI_access3_sn2);
140 		}
141 	} else {
142 		for_each_online_node(node) {
143 			nasid = cnodeid_to_nasid(node);
144 			HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
145 			      xpc_sh1_IPI_access_sn2);
146 		}
147 	}
148 }
149 
150 /*
151  * The following set of functions are used for the sending and receiving of
152  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
153  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
154  * is associated with channel activity (SGI_XPC_NOTIFY).
155  */
156 
157 static u64
xpc_receive_IRQ_amo_sn2(struct amo * amo)158 xpc_receive_IRQ_amo_sn2(struct amo *amo)
159 {
160 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
161 }
162 
163 static enum xp_retval
xpc_send_IRQ_sn2(struct amo * amo,u64 flag,int nasid,int phys_cpuid,int vector)164 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
165 		 int vector)
166 {
167 	int ret = 0;
168 	unsigned long irq_flags;
169 
170 	local_irq_save(irq_flags);
171 
172 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
173 	sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
174 
175 	/*
176 	 * We must always use the nofault function regardless of whether we
177 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
178 	 * didn't, we'd never know that the other partition is down and would
179 	 * keep sending IRQs and amos to it until the heartbeat times out.
180 	 */
181 	ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
182 						     xp_nofault_PIOR_target));
183 
184 	local_irq_restore(irq_flags);
185 
186 	return (ret == 0) ? xpSuccess : xpPioReadError;
187 }
188 
189 static struct amo *
xpc_init_IRQ_amo_sn2(int index)190 xpc_init_IRQ_amo_sn2(int index)
191 {
192 	struct amo *amo = xpc_vars_sn2->amos_page + index;
193 
194 	(void)xpc_receive_IRQ_amo_sn2(amo);	/* clear amo variable */
195 	return amo;
196 }
197 
198 /*
199  * Functions associated with SGI_XPC_ACTIVATE IRQ.
200  */
201 
202 /*
203  * Notify the heartbeat check thread that an activate IRQ has been received.
204  */
205 static irqreturn_t
xpc_handle_activate_IRQ_sn2(int irq,void * dev_id)206 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
207 {
208 	unsigned long irq_flags;
209 
210 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
211 	xpc_activate_IRQ_rcvd++;
212 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
213 
214 	wake_up_interruptible(&xpc_activate_IRQ_wq);
215 	return IRQ_HANDLED;
216 }
217 
218 /*
219  * Flag the appropriate amo variable and send an IRQ to the specified node.
220  */
221 static void
xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa,int from_nasid,int to_nasid,int to_phys_cpuid)222 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
223 			  int to_nasid, int to_phys_cpuid)
224 {
225 	struct amo *amos = (struct amo *)__va(amos_page_pa +
226 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227 					      sizeof(struct amo)));
228 
229 	(void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
230 			       BIT_MASK(from_nasid / 2), to_nasid,
231 			       to_phys_cpuid, SGI_XPC_ACTIVATE);
232 }
233 
234 static void
xpc_send_local_activate_IRQ_sn2(int from_nasid)235 xpc_send_local_activate_IRQ_sn2(int from_nasid)
236 {
237 	unsigned long irq_flags;
238 	struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
239 					      (XPC_ACTIVATE_IRQ_AMOS_SN2 *
240 					      sizeof(struct amo)));
241 
242 	/* fake the sending and receipt of an activate IRQ from remote nasid */
243 	FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
244 			 FETCHOP_OR, BIT_MASK(from_nasid / 2));
245 
246 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
247 	xpc_activate_IRQ_rcvd++;
248 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
249 
250 	wake_up_interruptible(&xpc_activate_IRQ_wq);
251 }
252 
253 /*
254  * Functions associated with SGI_XPC_NOTIFY IRQ.
255  */
256 
257 /*
258  * Check to see if any chctl flags were sent from the specified partition.
259  */
260 static void
xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition * part)261 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
262 {
263 	union xpc_channel_ctl_flags chctl;
264 	unsigned long irq_flags;
265 
266 	chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
267 						  local_chctl_amo_va);
268 	if (chctl.all_flags == 0)
269 		return;
270 
271 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
272 	part->chctl.all_flags |= chctl.all_flags;
273 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
274 
275 	dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
276 		"0x%lx\n", XPC_PARTID(part), chctl.all_flags);
277 
278 	xpc_wakeup_channel_mgr(part);
279 }
280 
281 /*
282  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
283  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
284  * than one partition, we use an amo structure per partition to indicate
285  * whether a partition has sent an IRQ or not.  If it has, then wake up the
286  * associated kthread to handle it.
287  *
288  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
289  * running on other partitions.
290  *
291  * Noteworthy Arguments:
292  *
293  *	irq - Interrupt ReQuest number. NOT USED.
294  *
295  *	dev_id - partid of IRQ's potential sender.
296  */
297 static irqreturn_t
xpc_handle_notify_IRQ_sn2(int irq,void * dev_id)298 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
299 {
300 	short partid = (short)(u64)dev_id;
301 	struct xpc_partition *part = &xpc_partitions[partid];
302 
303 	DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
304 
305 	if (xpc_part_ref(part)) {
306 		xpc_check_for_sent_chctl_flags_sn2(part);
307 
308 		xpc_part_deref(part);
309 	}
310 	return IRQ_HANDLED;
311 }
312 
313 /*
314  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
315  * because the write to their associated amo variable completed after the IRQ
316  * was received.
317  */
318 static void
xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition * part)319 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
320 {
321 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
322 
323 	if (xpc_part_ref(part)) {
324 		xpc_check_for_sent_chctl_flags_sn2(part);
325 
326 		part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
327 		    XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
328 		add_timer(&part_sn2->dropped_notify_IRQ_timer);
329 		xpc_part_deref(part);
330 	}
331 }
332 
333 /*
334  * Send a notify IRQ to the remote partition that is associated with the
335  * specified channel.
336  */
337 static void
xpc_send_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string,unsigned long * irq_flags)338 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
339 			char *chctl_flag_string, unsigned long *irq_flags)
340 {
341 	struct xpc_partition *part = &xpc_partitions[ch->partid];
342 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
343 	union xpc_channel_ctl_flags chctl = { 0 };
344 	enum xp_retval ret;
345 
346 	if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
347 		chctl.flags[ch->number] = chctl_flag;
348 		ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
349 				       chctl.all_flags,
350 				       part_sn2->notify_IRQ_nasid,
351 				       part_sn2->notify_IRQ_phys_cpuid,
352 				       SGI_XPC_NOTIFY);
353 		dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
354 			chctl_flag_string, ch->partid, ch->number, ret);
355 		if (unlikely(ret != xpSuccess)) {
356 			if (irq_flags != NULL)
357 				spin_unlock_irqrestore(&ch->lock, *irq_flags);
358 			XPC_DEACTIVATE_PARTITION(part, ret);
359 			if (irq_flags != NULL)
360 				spin_lock_irqsave(&ch->lock, *irq_flags);
361 		}
362 	}
363 }
364 
365 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
366 		xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
367 
368 /*
369  * Make it look like the remote partition, which is associated with the
370  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
371  * by xpc_check_for_dropped_notify_IRQ_sn2().
372  */
373 static void
xpc_send_local_notify_IRQ_sn2(struct xpc_channel * ch,u8 chctl_flag,char * chctl_flag_string)374 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
375 			      char *chctl_flag_string)
376 {
377 	struct xpc_partition *part = &xpc_partitions[ch->partid];
378 	union xpc_channel_ctl_flags chctl = { 0 };
379 
380 	chctl.flags[ch->number] = chctl_flag;
381 	FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
382 				variable), FETCHOP_OR, chctl.all_flags);
383 	dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
384 		chctl_flag_string, ch->partid, ch->number);
385 }
386 
387 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
388 		xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
389 
390 static void
xpc_send_chctl_closerequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)391 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
392 				unsigned long *irq_flags)
393 {
394 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
395 
396 	args->reason = ch->reason;
397 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
398 }
399 
400 static void
xpc_send_chctl_closereply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)401 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
402 {
403 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
404 }
405 
406 static void
xpc_send_chctl_openrequest_sn2(struct xpc_channel * ch,unsigned long * irq_flags)407 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
408 {
409 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
410 
411 	args->entry_size = ch->entry_size;
412 	args->local_nentries = ch->local_nentries;
413 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
414 }
415 
416 static void
xpc_send_chctl_openreply_sn2(struct xpc_channel * ch,unsigned long * irq_flags)417 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
418 {
419 	struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
420 
421 	args->remote_nentries = ch->remote_nentries;
422 	args->local_nentries = ch->local_nentries;
423 	args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
424 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
425 }
426 
427 static void
xpc_send_chctl_msgrequest_sn2(struct xpc_channel * ch)428 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
429 {
430 	XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
431 }
432 
433 static void
xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel * ch)434 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
435 {
436 	XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
437 }
438 
439 static void
xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel * ch,unsigned long msgqueue_pa)440 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
441 				unsigned long msgqueue_pa)
442 {
443 	ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
444 }
445 
446 /*
447  * This next set of functions are used to keep track of when a partition is
448  * potentially engaged in accessing memory belonging to another partition.
449  */
450 
451 static void
xpc_indicate_partition_engaged_sn2(struct xpc_partition * part)452 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
453 {
454 	unsigned long irq_flags;
455 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
456 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
457 					     sizeof(struct amo)));
458 
459 	local_irq_save(irq_flags);
460 
461 	/* set bit corresponding to our partid in remote partition's amo */
462 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
463 			 BIT(sn_partition_id));
464 
465 	/*
466 	 * We must always use the nofault function regardless of whether we
467 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
468 	 * didn't, we'd never know that the other partition is down and would
469 	 * keep sending IRQs and amos to it until the heartbeat times out.
470 	 */
471 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
472 							       variable),
473 						     xp_nofault_PIOR_target));
474 
475 	local_irq_restore(irq_flags);
476 }
477 
478 static void
xpc_indicate_partition_disengaged_sn2(struct xpc_partition * part)479 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
480 {
481 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
482 	unsigned long irq_flags;
483 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
484 					     (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
485 					     sizeof(struct amo)));
486 
487 	local_irq_save(irq_flags);
488 
489 	/* clear bit corresponding to our partid in remote partition's amo */
490 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
491 			 ~BIT(sn_partition_id));
492 
493 	/*
494 	 * We must always use the nofault function regardless of whether we
495 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
496 	 * didn't, we'd never know that the other partition is down and would
497 	 * keep sending IRQs and amos to it until the heartbeat times out.
498 	 */
499 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
500 							       variable),
501 						     xp_nofault_PIOR_target));
502 
503 	local_irq_restore(irq_flags);
504 
505 	/*
506 	 * Send activate IRQ to get other side to see that we've cleared our
507 	 * bit in their engaged partitions amo.
508 	 */
509 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
510 				  cnodeid_to_nasid(0),
511 				  part_sn2->activate_IRQ_nasid,
512 				  part_sn2->activate_IRQ_phys_cpuid);
513 }
514 
515 static void
xpc_assume_partition_disengaged_sn2(short partid)516 xpc_assume_partition_disengaged_sn2(short partid)
517 {
518 	struct amo *amo = xpc_vars_sn2->amos_page +
519 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
520 
521 	/* clear bit(s) based on partid mask in our partition's amo */
522 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
523 			 ~BIT(partid));
524 }
525 
526 static int
xpc_partition_engaged_sn2(short partid)527 xpc_partition_engaged_sn2(short partid)
528 {
529 	struct amo *amo = xpc_vars_sn2->amos_page +
530 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
531 
532 	/* our partition's amo variable ANDed with partid mask */
533 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
534 		BIT(partid)) != 0;
535 }
536 
537 static int
xpc_any_partition_engaged_sn2(void)538 xpc_any_partition_engaged_sn2(void)
539 {
540 	struct amo *amo = xpc_vars_sn2->amos_page +
541 			  XPC_ENGAGED_PARTITIONS_AMO_SN2;
542 
543 	/* our partition's amo variable */
544 	return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
545 }
546 
547 /* original protection values for each node */
548 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
549 
550 /*
551  * Change protections to allow amo operations on non-Shub 1.1 systems.
552  */
553 static enum xp_retval
xpc_allow_amo_ops_sn2(struct amo * amos_page)554 xpc_allow_amo_ops_sn2(struct amo *amos_page)
555 {
556 	enum xp_retval ret = xpSuccess;
557 
558 	/*
559 	 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
560 	 * collides with memory operations. On those systems we call
561 	 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
562 	 */
563 	if (!enable_shub_wars_1_1())
564 		ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
565 
566 	return ret;
567 }
568 
569 /*
570  * Change protections to allow amo operations on Shub 1.1 systems.
571  */
572 static void
xpc_allow_amo_ops_shub_wars_1_1_sn2(void)573 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
574 {
575 	int node;
576 	int nasid;
577 
578 	if (!enable_shub_wars_1_1())
579 		return;
580 
581 	for_each_online_node(node) {
582 		nasid = cnodeid_to_nasid(node);
583 		/* save current protection values */
584 		xpc_prot_vec_sn2[node] =
585 		    (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
586 						  SH1_MD_DQLP_MMR_DIR_PRIVEC0));
587 		/* open up everything */
588 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
589 					     SH1_MD_DQLP_MMR_DIR_PRIVEC0),
590 		      -1UL);
591 		HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
592 					     SH1_MD_DQRP_MMR_DIR_PRIVEC0),
593 		      -1UL);
594 	}
595 }
596 
597 static enum xp_retval
xpc_get_partition_rsvd_page_pa_sn2(void * buf,u64 * cookie,unsigned long * rp_pa,size_t * len)598 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
599 				   size_t *len)
600 {
601 	s64 status;
602 	enum xp_retval ret;
603 
604 	status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
605 	if (status == SALRET_OK)
606 		ret = xpSuccess;
607 	else if (status == SALRET_MORE_PASSES)
608 		ret = xpNeedMoreInfo;
609 	else
610 		ret = xpSalError;
611 
612 	return ret;
613 }
614 
615 
616 static int
xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page * rp)617 xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page *rp)
618 {
619 	struct amo *amos_page;
620 	int i;
621 	int ret;
622 
623 	xpc_vars_sn2 = XPC_RP_VARS(rp);
624 
625 	rp->sn.vars_pa = xp_pa(xpc_vars_sn2);
626 
627 	/* vars_part array follows immediately after vars */
628 	xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
629 							 XPC_RP_VARS_SIZE);
630 
631 	/*
632 	 * Before clearing xpc_vars_sn2, see if a page of amos had been
633 	 * previously allocated. If not we'll need to allocate one and set
634 	 * permissions so that cross-partition amos are allowed.
635 	 *
636 	 * The allocated amo page needs MCA reporting to remain disabled after
637 	 * XPC has unloaded.  To make this work, we keep a copy of the pointer
638 	 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
639 	 * which is pointed to by the reserved page, and re-use that saved copy
640 	 * on subsequent loads of XPC. This amo page is never freed, and its
641 	 * memory protections are never restricted.
642 	 */
643 	amos_page = xpc_vars_sn2->amos_page;
644 	if (amos_page == NULL) {
645 		amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
646 		if (amos_page == NULL) {
647 			dev_err(xpc_part, "can't allocate page of amos\n");
648 			return -ENOMEM;
649 		}
650 
651 		/*
652 		 * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
653 		 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
654 		 */
655 		ret = xpc_allow_amo_ops_sn2(amos_page);
656 		if (ret != xpSuccess) {
657 			dev_err(xpc_part, "can't allow amo operations\n");
658 			uncached_free_page(__IA64_UNCACHED_OFFSET |
659 					   TO_PHYS((u64)amos_page), 1);
660 			return -EPERM;
661 		}
662 	}
663 
664 	/* clear xpc_vars_sn2 */
665 	memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
666 
667 	xpc_vars_sn2->version = XPC_V_VERSION;
668 	xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
669 	xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
670 	xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
671 	xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
672 	xpc_vars_sn2->amos_page = amos_page;	/* save for next load of XPC */
673 
674 	/* clear xpc_vars_part_sn2 */
675 	memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
676 	       XP_MAX_NPARTITIONS_SN2);
677 
678 	/* initialize the activate IRQ related amo variables */
679 	for (i = 0; i < xpc_nasid_mask_nlongs; i++)
680 		(void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
681 
682 	/* initialize the engaged remote partitions related amo variables */
683 	(void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
684 	(void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
685 
686 	return 0;
687 }
688 
689 static void
xpc_increment_heartbeat_sn2(void)690 xpc_increment_heartbeat_sn2(void)
691 {
692 	xpc_vars_sn2->heartbeat++;
693 }
694 
695 static void
xpc_offline_heartbeat_sn2(void)696 xpc_offline_heartbeat_sn2(void)
697 {
698 	xpc_increment_heartbeat_sn2();
699 	xpc_vars_sn2->heartbeat_offline = 1;
700 }
701 
702 static void
xpc_online_heartbeat_sn2(void)703 xpc_online_heartbeat_sn2(void)
704 {
705 	xpc_increment_heartbeat_sn2();
706 	xpc_vars_sn2->heartbeat_offline = 0;
707 }
708 
709 static void
xpc_heartbeat_init_sn2(void)710 xpc_heartbeat_init_sn2(void)
711 {
712 	DBUG_ON(xpc_vars_sn2 == NULL);
713 
714 	bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
715 	xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
716 	xpc_online_heartbeat_sn2();
717 }
718 
719 static void
xpc_heartbeat_exit_sn2(void)720 xpc_heartbeat_exit_sn2(void)
721 {
722 	xpc_offline_heartbeat_sn2();
723 }
724 
725 static enum xp_retval
xpc_get_remote_heartbeat_sn2(struct xpc_partition * part)726 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
727 {
728 	struct xpc_vars_sn2 *remote_vars;
729 	enum xp_retval ret;
730 
731 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
732 
733 	/* pull the remote vars structure that contains the heartbeat */
734 	ret = xp_remote_memcpy(xp_pa(remote_vars),
735 			       part->sn.sn2.remote_vars_pa,
736 			       XPC_RP_VARS_SIZE);
737 	if (ret != xpSuccess)
738 		return ret;
739 
740 	dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, "
741 		"heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
742 		remote_vars->heartbeat, part->last_heartbeat,
743 		remote_vars->heartbeat_offline,
744 		remote_vars->heartbeating_to_mask[0]);
745 
746 	if ((remote_vars->heartbeat == part->last_heartbeat &&
747 	    remote_vars->heartbeat_offline == 0) ||
748 	    !xpc_hb_allowed(sn_partition_id,
749 			    &remote_vars->heartbeating_to_mask)) {
750 		ret = xpNoHeartbeat;
751 	} else {
752 		part->last_heartbeat = remote_vars->heartbeat;
753 	}
754 
755 	return ret;
756 }
757 
758 /*
759  * Get a copy of the remote partition's XPC variables from the reserved page.
760  *
761  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
762  * assumed to be of size XPC_RP_VARS_SIZE.
763  */
764 static enum xp_retval
xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)765 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
766 			struct xpc_vars_sn2 *remote_vars)
767 {
768 	enum xp_retval ret;
769 
770 	if (remote_vars_pa == 0)
771 		return xpVarsNotSet;
772 
773 	/* pull over the cross partition variables */
774 	ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
775 			       XPC_RP_VARS_SIZE);
776 	if (ret != xpSuccess)
777 		return ret;
778 
779 	if (XPC_VERSION_MAJOR(remote_vars->version) !=
780 	    XPC_VERSION_MAJOR(XPC_V_VERSION)) {
781 		return xpBadVersion;
782 	}
783 
784 	return xpSuccess;
785 }
786 
787 static void
xpc_request_partition_activation_sn2(struct xpc_rsvd_page * remote_rp,unsigned long remote_rp_pa,int nasid)788 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
789 				     unsigned long remote_rp_pa, int nasid)
790 {
791 	xpc_send_local_activate_IRQ_sn2(nasid);
792 }
793 
794 static void
xpc_request_partition_reactivation_sn2(struct xpc_partition * part)795 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
796 {
797 	xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
798 }
799 
800 static void
xpc_request_partition_deactivation_sn2(struct xpc_partition * part)801 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
802 {
803 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
804 	unsigned long irq_flags;
805 	struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
806 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
807 					     sizeof(struct amo)));
808 
809 	local_irq_save(irq_flags);
810 
811 	/* set bit corresponding to our partid in remote partition's amo */
812 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
813 			 BIT(sn_partition_id));
814 
815 	/*
816 	 * We must always use the nofault function regardless of whether we
817 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
818 	 * didn't, we'd never know that the other partition is down and would
819 	 * keep sending IRQs and amos to it until the heartbeat times out.
820 	 */
821 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
822 							       variable),
823 						     xp_nofault_PIOR_target));
824 
825 	local_irq_restore(irq_flags);
826 
827 	/*
828 	 * Send activate IRQ to get other side to see that we've set our
829 	 * bit in their deactivate request amo.
830 	 */
831 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
832 				  cnodeid_to_nasid(0),
833 				  part_sn2->activate_IRQ_nasid,
834 				  part_sn2->activate_IRQ_phys_cpuid);
835 }
836 
837 static void
xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition * part)838 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
839 {
840 	unsigned long irq_flags;
841 	struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
842 					     (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
843 					     sizeof(struct amo)));
844 
845 	local_irq_save(irq_flags);
846 
847 	/* clear bit corresponding to our partid in remote partition's amo */
848 	FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
849 			 ~BIT(sn_partition_id));
850 
851 	/*
852 	 * We must always use the nofault function regardless of whether we
853 	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
854 	 * didn't, we'd never know that the other partition is down and would
855 	 * keep sending IRQs and amos to it until the heartbeat times out.
856 	 */
857 	(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
858 							       variable),
859 						     xp_nofault_PIOR_target));
860 
861 	local_irq_restore(irq_flags);
862 }
863 
864 static int
xpc_partition_deactivation_requested_sn2(short partid)865 xpc_partition_deactivation_requested_sn2(short partid)
866 {
867 	struct amo *amo = xpc_vars_sn2->amos_page +
868 			  XPC_DEACTIVATE_REQUEST_AMO_SN2;
869 
870 	/* our partition's amo variable ANDed with partid mask */
871 	return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
872 		BIT(partid)) != 0;
873 }
874 
875 /*
876  * Update the remote partition's info.
877  */
878 static void
xpc_update_partition_info_sn2(struct xpc_partition * part,u8 remote_rp_version,unsigned long * remote_rp_ts_jiffies,unsigned long remote_rp_pa,unsigned long remote_vars_pa,struct xpc_vars_sn2 * remote_vars)879 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
880 			      unsigned long *remote_rp_ts_jiffies,
881 			      unsigned long remote_rp_pa,
882 			      unsigned long remote_vars_pa,
883 			      struct xpc_vars_sn2 *remote_vars)
884 {
885 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
886 
887 	part->remote_rp_version = remote_rp_version;
888 	dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
889 		part->remote_rp_version);
890 
891 	part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
892 	dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
893 		part->remote_rp_ts_jiffies);
894 
895 	part->remote_rp_pa = remote_rp_pa;
896 	dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
897 
898 	part_sn2->remote_vars_pa = remote_vars_pa;
899 	dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
900 		part_sn2->remote_vars_pa);
901 
902 	part->last_heartbeat = remote_vars->heartbeat - 1;
903 	dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
904 		part->last_heartbeat);
905 
906 	part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
907 	dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
908 		part_sn2->remote_vars_part_pa);
909 
910 	part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
911 	dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
912 		part_sn2->activate_IRQ_nasid);
913 
914 	part_sn2->activate_IRQ_phys_cpuid =
915 	    remote_vars->activate_IRQ_phys_cpuid;
916 	dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
917 		part_sn2->activate_IRQ_phys_cpuid);
918 
919 	part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
920 	dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
921 		part_sn2->remote_amos_page_pa);
922 
923 	part_sn2->remote_vars_version = remote_vars->version;
924 	dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
925 		part_sn2->remote_vars_version);
926 }
927 
928 /*
929  * Prior code has determined the nasid which generated a activate IRQ.
930  * Inspect that nasid to determine if its partition needs to be activated
931  * or deactivated.
932  *
933  * A partition is considered "awaiting activation" if our partition
934  * flags indicate it is not active and it has a heartbeat.  A
935  * partition is considered "awaiting deactivation" if our partition
936  * flags indicate it is active but it has no heartbeat or it is not
937  * sending its heartbeat to us.
938  *
939  * To determine the heartbeat, the remote nasid must have a properly
940  * initialized reserved page.
941  */
942 static void
xpc_identify_activate_IRQ_req_sn2(int nasid)943 xpc_identify_activate_IRQ_req_sn2(int nasid)
944 {
945 	struct xpc_rsvd_page *remote_rp;
946 	struct xpc_vars_sn2 *remote_vars;
947 	unsigned long remote_rp_pa;
948 	unsigned long remote_vars_pa;
949 	int remote_rp_version;
950 	int reactivate = 0;
951 	unsigned long remote_rp_ts_jiffies = 0;
952 	short partid;
953 	struct xpc_partition *part;
954 	struct xpc_partition_sn2 *part_sn2;
955 	enum xp_retval ret;
956 
957 	/* pull over the reserved page structure */
958 
959 	remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
960 
961 	ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
962 	if (ret != xpSuccess) {
963 		dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
964 			 "which sent interrupt, reason=%d\n", nasid, ret);
965 		return;
966 	}
967 
968 	remote_vars_pa = remote_rp->sn.vars_pa;
969 	remote_rp_version = remote_rp->version;
970 	remote_rp_ts_jiffies = remote_rp->ts_jiffies;
971 
972 	partid = remote_rp->SAL_partid;
973 	part = &xpc_partitions[partid];
974 	part_sn2 = &part->sn.sn2;
975 
976 	/* pull over the cross partition variables */
977 
978 	remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
979 
980 	ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
981 	if (ret != xpSuccess) {
982 		dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
983 			 "which sent interrupt, reason=%d\n", nasid, ret);
984 
985 		XPC_DEACTIVATE_PARTITION(part, ret);
986 		return;
987 	}
988 
989 	part->activate_IRQ_rcvd++;
990 
991 	dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
992 		"%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
993 		remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
994 
995 	if (xpc_partition_disengaged(part) &&
996 	    part->act_state == XPC_P_AS_INACTIVE) {
997 
998 		xpc_update_partition_info_sn2(part, remote_rp_version,
999 					      &remote_rp_ts_jiffies,
1000 					      remote_rp_pa, remote_vars_pa,
1001 					      remote_vars);
1002 
1003 		if (xpc_partition_deactivation_requested_sn2(partid)) {
1004 			/*
1005 			 * Other side is waiting on us to deactivate even though
1006 			 * we already have.
1007 			 */
1008 			return;
1009 		}
1010 
1011 		xpc_activate_partition(part);
1012 		return;
1013 	}
1014 
1015 	DBUG_ON(part->remote_rp_version == 0);
1016 	DBUG_ON(part_sn2->remote_vars_version == 0);
1017 
1018 	if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1019 
1020 		/* the other side rebooted */
1021 
1022 		DBUG_ON(xpc_partition_engaged_sn2(partid));
1023 		DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1024 
1025 		xpc_update_partition_info_sn2(part, remote_rp_version,
1026 					      &remote_rp_ts_jiffies,
1027 					      remote_rp_pa, remote_vars_pa,
1028 					      remote_vars);
1029 		reactivate = 1;
1030 	}
1031 
1032 	if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1033 		/* still waiting on other side to disengage from us */
1034 		return;
1035 	}
1036 
1037 	if (reactivate)
1038 		XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1039 	else if (xpc_partition_deactivation_requested_sn2(partid))
1040 		XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1041 }
1042 
1043 /*
1044  * Loop through the activation amo variables and process any bits
1045  * which are set.  Each bit indicates a nasid sending a partition
1046  * activation or deactivation request.
1047  *
1048  * Return #of IRQs detected.
1049  */
1050 int
xpc_identify_activate_IRQ_sender_sn2(void)1051 xpc_identify_activate_IRQ_sender_sn2(void)
1052 {
1053 	int l;
1054 	int b;
1055 	unsigned long nasid_mask_long;
1056 	u64 nasid;		/* remote nasid */
1057 	int n_IRQs_detected = 0;
1058 	struct amo *act_amos;
1059 
1060 	act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1061 
1062 	/* scan through activate amo variables looking for non-zero entries */
1063 	for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1064 
1065 		if (xpc_exiting)
1066 			break;
1067 
1068 		nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1069 
1070 		b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1071 		if (b >= BITS_PER_LONG) {
1072 			/* no IRQs from nasids in this amo variable */
1073 			continue;
1074 		}
1075 
1076 		dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1077 			nasid_mask_long);
1078 
1079 		/*
1080 		 * If this nasid has been added to the machine since
1081 		 * our partition was reset, this will retain the
1082 		 * remote nasid in our reserved pages machine mask.
1083 		 * This is used in the event of module reload.
1084 		 */
1085 		xpc_mach_nasids[l] |= nasid_mask_long;
1086 
1087 		/* locate the nasid(s) which sent interrupts */
1088 
1089 		do {
1090 			n_IRQs_detected++;
1091 			nasid = (l * BITS_PER_LONG + b) * 2;
1092 			dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1093 			xpc_identify_activate_IRQ_req_sn2(nasid);
1094 
1095 			b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1096 					  b + 1);
1097 		} while (b < BITS_PER_LONG);
1098 	}
1099 	return n_IRQs_detected;
1100 }
1101 
1102 static void
xpc_process_activate_IRQ_rcvd_sn2(void)1103 xpc_process_activate_IRQ_rcvd_sn2(void)
1104 {
1105 	unsigned long irq_flags;
1106 	int n_IRQs_expected;
1107 	int n_IRQs_detected;
1108 
1109 	spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1110 	n_IRQs_expected = xpc_activate_IRQ_rcvd;
1111 	xpc_activate_IRQ_rcvd = 0;
1112 	spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1113 
1114 	n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1115 	if (n_IRQs_detected < n_IRQs_expected) {
1116 		/* retry once to help avoid missing amo */
1117 		(void)xpc_identify_activate_IRQ_sender_sn2();
1118 	}
1119 }
1120 
1121 /*
1122  * Setup the channel structures that are sn2 specific.
1123  */
1124 static enum xp_retval
xpc_setup_ch_structures_sn_sn2(struct xpc_partition * part)1125 xpc_setup_ch_structures_sn_sn2(struct xpc_partition *part)
1126 {
1127 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1128 	struct xpc_channel_sn2 *ch_sn2;
1129 	enum xp_retval retval;
1130 	int ret;
1131 	int cpuid;
1132 	int ch_number;
1133 	struct timer_list *timer;
1134 	short partid = XPC_PARTID(part);
1135 
1136 	/* allocate all the required GET/PUT values */
1137 
1138 	part_sn2->local_GPs =
1139 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1140 					  &part_sn2->local_GPs_base);
1141 	if (part_sn2->local_GPs == NULL) {
1142 		dev_err(xpc_chan, "can't get memory for local get/put "
1143 			"values\n");
1144 		return xpNoMemory;
1145 	}
1146 
1147 	part_sn2->remote_GPs =
1148 	    xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1149 					  &part_sn2->remote_GPs_base);
1150 	if (part_sn2->remote_GPs == NULL) {
1151 		dev_err(xpc_chan, "can't get memory for remote get/put "
1152 			"values\n");
1153 		retval = xpNoMemory;
1154 		goto out_1;
1155 	}
1156 
1157 	part_sn2->remote_GPs_pa = 0;
1158 
1159 	/* allocate all the required open and close args */
1160 
1161 	part_sn2->local_openclose_args =
1162 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1163 					  GFP_KERNEL, &part_sn2->
1164 					  local_openclose_args_base);
1165 	if (part_sn2->local_openclose_args == NULL) {
1166 		dev_err(xpc_chan, "can't get memory for local connect args\n");
1167 		retval = xpNoMemory;
1168 		goto out_2;
1169 	}
1170 
1171 	part_sn2->remote_openclose_args_pa = 0;
1172 
1173 	part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1174 
1175 	part_sn2->notify_IRQ_nasid = 0;
1176 	part_sn2->notify_IRQ_phys_cpuid = 0;
1177 	part_sn2->remote_chctl_amo_va = NULL;
1178 
1179 	sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1180 	ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1181 			  IRQF_SHARED, part_sn2->notify_IRQ_owner,
1182 			  (void *)(u64)partid);
1183 	if (ret != 0) {
1184 		dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1185 			"errno=%d\n", -ret);
1186 		retval = xpLackOfResources;
1187 		goto out_3;
1188 	}
1189 
1190 	/* Setup a timer to check for dropped notify IRQs */
1191 	timer = &part_sn2->dropped_notify_IRQ_timer;
1192 	init_timer(timer);
1193 	timer->function =
1194 	    (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1195 	timer->data = (unsigned long)part;
1196 	timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1197 	add_timer(timer);
1198 
1199 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1200 		ch_sn2 = &part->channels[ch_number].sn.sn2;
1201 
1202 		ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1203 		ch_sn2->local_openclose_args =
1204 		    &part_sn2->local_openclose_args[ch_number];
1205 
1206 		mutex_init(&ch_sn2->msg_to_pull_mutex);
1207 	}
1208 
1209 	/*
1210 	 * Setup the per partition specific variables required by the
1211 	 * remote partition to establish channel connections with us.
1212 	 *
1213 	 * The setting of the magic # indicates that these per partition
1214 	 * specific variables are ready to be used.
1215 	 */
1216 	xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1217 	xpc_vars_part_sn2[partid].openclose_args_pa =
1218 	    xp_pa(part_sn2->local_openclose_args);
1219 	xpc_vars_part_sn2[partid].chctl_amo_pa =
1220 	    xp_pa(part_sn2->local_chctl_amo_va);
1221 	cpuid = raw_smp_processor_id();	/* any CPU in this partition will do */
1222 	xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1223 	xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1224 	    cpu_physical_id(cpuid);
1225 	xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1226 	xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1227 
1228 	return xpSuccess;
1229 
1230 	/* setup of ch structures failed */
1231 out_3:
1232 	kfree(part_sn2->local_openclose_args_base);
1233 	part_sn2->local_openclose_args = NULL;
1234 out_2:
1235 	kfree(part_sn2->remote_GPs_base);
1236 	part_sn2->remote_GPs = NULL;
1237 out_1:
1238 	kfree(part_sn2->local_GPs_base);
1239 	part_sn2->local_GPs = NULL;
1240 	return retval;
1241 }
1242 
1243 /*
1244  * Teardown the channel structures that are sn2 specific.
1245  */
1246 static void
xpc_teardown_ch_structures_sn_sn2(struct xpc_partition * part)1247 xpc_teardown_ch_structures_sn_sn2(struct xpc_partition *part)
1248 {
1249 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1250 	short partid = XPC_PARTID(part);
1251 
1252 	/*
1253 	 * Indicate that the variables specific to the remote partition are no
1254 	 * longer available for its use.
1255 	 */
1256 	xpc_vars_part_sn2[partid].magic = 0;
1257 
1258 	/* in case we've still got outstanding timers registered... */
1259 	del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1260 	free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1261 
1262 	kfree(part_sn2->local_openclose_args_base);
1263 	part_sn2->local_openclose_args = NULL;
1264 	kfree(part_sn2->remote_GPs_base);
1265 	part_sn2->remote_GPs = NULL;
1266 	kfree(part_sn2->local_GPs_base);
1267 	part_sn2->local_GPs = NULL;
1268 	part_sn2->local_chctl_amo_va = NULL;
1269 }
1270 
1271 /*
1272  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1273  * (or multiple cachelines) from a remote partition.
1274  *
1275  * src_pa must be a cacheline aligned physical address on the remote partition.
1276  * dst must be a cacheline aligned virtual address on this partition.
1277  * cnt must be cacheline sized
1278  */
1279 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1280 static enum xp_retval
xpc_pull_remote_cachelines_sn2(struct xpc_partition * part,void * dst,const unsigned long src_pa,size_t cnt)1281 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1282 			       const unsigned long src_pa, size_t cnt)
1283 {
1284 	enum xp_retval ret;
1285 
1286 	DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1287 	DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1288 	DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1289 
1290 	if (part->act_state == XPC_P_AS_DEACTIVATING)
1291 		return part->reason;
1292 
1293 	ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1294 	if (ret != xpSuccess) {
1295 		dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1296 			" ret=%d\n", XPC_PARTID(part), ret);
1297 	}
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Pull the remote per partition specific variables from the specified
1303  * partition.
1304  */
1305 static enum xp_retval
xpc_pull_remote_vars_part_sn2(struct xpc_partition * part)1306 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1307 {
1308 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1309 	u8 buffer[L1_CACHE_BYTES * 2];
1310 	struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1311 	    (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1312 	struct xpc_vars_part_sn2 *pulled_entry;
1313 	unsigned long remote_entry_cacheline_pa;
1314 	unsigned long remote_entry_pa;
1315 	short partid = XPC_PARTID(part);
1316 	enum xp_retval ret;
1317 
1318 	/* pull the cacheline that contains the variables we're interested in */
1319 
1320 	DBUG_ON(part_sn2->remote_vars_part_pa !=
1321 		L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1322 	DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1323 
1324 	remote_entry_pa = part_sn2->remote_vars_part_pa +
1325 	    sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1326 
1327 	remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1328 
1329 	pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1330 						    + (remote_entry_pa &
1331 						    (L1_CACHE_BYTES - 1)));
1332 
1333 	ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1334 					     remote_entry_cacheline_pa,
1335 					     L1_CACHE_BYTES);
1336 	if (ret != xpSuccess) {
1337 		dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1338 			"partition %d, ret=%d\n", partid, ret);
1339 		return ret;
1340 	}
1341 
1342 	/* see if they've been set up yet */
1343 
1344 	if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1345 	    pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1346 
1347 		if (pulled_entry->magic != 0) {
1348 			dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1349 				"partition %d has bad magic value (=0x%lx)\n",
1350 				partid, sn_partition_id, pulled_entry->magic);
1351 			return xpBadMagic;
1352 		}
1353 
1354 		/* they've not been initialized yet */
1355 		return xpRetry;
1356 	}
1357 
1358 	if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1359 
1360 		/* validate the variables */
1361 
1362 		if (pulled_entry->GPs_pa == 0 ||
1363 		    pulled_entry->openclose_args_pa == 0 ||
1364 		    pulled_entry->chctl_amo_pa == 0) {
1365 
1366 			dev_err(xpc_chan, "partition %d's XPC vars_part for "
1367 				"partition %d are not valid\n", partid,
1368 				sn_partition_id);
1369 			return xpInvalidAddress;
1370 		}
1371 
1372 		/* the variables we imported look to be valid */
1373 
1374 		part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1375 		part_sn2->remote_openclose_args_pa =
1376 		    pulled_entry->openclose_args_pa;
1377 		part_sn2->remote_chctl_amo_va =
1378 		    (struct amo *)__va(pulled_entry->chctl_amo_pa);
1379 		part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1380 		part_sn2->notify_IRQ_phys_cpuid =
1381 		    pulled_entry->notify_IRQ_phys_cpuid;
1382 
1383 		if (part->nchannels > pulled_entry->nchannels)
1384 			part->nchannels = pulled_entry->nchannels;
1385 
1386 		/* let the other side know that we've pulled their variables */
1387 
1388 		xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1389 	}
1390 
1391 	if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1392 		return xpRetry;
1393 
1394 	return xpSuccess;
1395 }
1396 
1397 /*
1398  * Establish first contact with the remote partititon. This involves pulling
1399  * the XPC per partition variables from the remote partition and waiting for
1400  * the remote partition to pull ours.
1401  */
1402 static enum xp_retval
xpc_make_first_contact_sn2(struct xpc_partition * part)1403 xpc_make_first_contact_sn2(struct xpc_partition *part)
1404 {
1405 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1406 	enum xp_retval ret;
1407 
1408 	/*
1409 	 * Register the remote partition's amos with SAL so it can handle
1410 	 * and cleanup errors within that address range should the remote
1411 	 * partition go down. We don't unregister this range because it is
1412 	 * difficult to tell when outstanding writes to the remote partition
1413 	 * are finished and thus when it is safe to unregister. This should
1414 	 * not result in wasted space in the SAL xp_addr_region table because
1415 	 * we should get the same page for remote_amos_page_pa after module
1416 	 * reloads and system reboots.
1417 	 */
1418 	if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1419 				       PAGE_SIZE, 1) < 0) {
1420 		dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1421 			 "xp_addr region\n", XPC_PARTID(part));
1422 
1423 		ret = xpPhysAddrRegFailed;
1424 		XPC_DEACTIVATE_PARTITION(part, ret);
1425 		return ret;
1426 	}
1427 
1428 	/*
1429 	 * Send activate IRQ to get other side to activate if they've not
1430 	 * already begun to do so.
1431 	 */
1432 	xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1433 				  cnodeid_to_nasid(0),
1434 				  part_sn2->activate_IRQ_nasid,
1435 				  part_sn2->activate_IRQ_phys_cpuid);
1436 
1437 	while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1438 		if (ret != xpRetry) {
1439 			XPC_DEACTIVATE_PARTITION(part, ret);
1440 			return ret;
1441 		}
1442 
1443 		dev_dbg(xpc_part, "waiting to make first contact with "
1444 			"partition %d\n", XPC_PARTID(part));
1445 
1446 		/* wait a 1/4 of a second or so */
1447 		(void)msleep_interruptible(250);
1448 
1449 		if (part->act_state == XPC_P_AS_DEACTIVATING)
1450 			return part->reason;
1451 	}
1452 
1453 	return xpSuccess;
1454 }
1455 
1456 /*
1457  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1458  */
1459 static u64
xpc_get_chctl_all_flags_sn2(struct xpc_partition * part)1460 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1461 {
1462 	struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1463 	unsigned long irq_flags;
1464 	union xpc_channel_ctl_flags chctl;
1465 	enum xp_retval ret;
1466 
1467 	/*
1468 	 * See if there are any chctl flags to be handled.
1469 	 */
1470 
1471 	spin_lock_irqsave(&part->chctl_lock, irq_flags);
1472 	chctl = part->chctl;
1473 	if (chctl.all_flags != 0)
1474 		part->chctl.all_flags = 0;
1475 
1476 	spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1477 
1478 	if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1479 		ret = xpc_pull_remote_cachelines_sn2(part, part->
1480 						     remote_openclose_args,
1481 						     part_sn2->
1482 						     remote_openclose_args_pa,
1483 						     XPC_OPENCLOSE_ARGS_SIZE);
1484 		if (ret != xpSuccess) {
1485 			XPC_DEACTIVATE_PARTITION(part, ret);
1486 
1487 			dev_dbg(xpc_chan, "failed to pull openclose args from "
1488 				"partition %d, ret=%d\n", XPC_PARTID(part),
1489 				ret);
1490 
1491 			/* don't bother processing chctl flags anymore */
1492 			chctl.all_flags = 0;
1493 		}
1494 	}
1495 
1496 	if (xpc_any_msg_chctl_flags_set(&chctl)) {
1497 		ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1498 						     part_sn2->remote_GPs_pa,
1499 						     XPC_GP_SIZE);
1500 		if (ret != xpSuccess) {
1501 			XPC_DEACTIVATE_PARTITION(part, ret);
1502 
1503 			dev_dbg(xpc_chan, "failed to pull GPs from partition "
1504 				"%d, ret=%d\n", XPC_PARTID(part), ret);
1505 
1506 			/* don't bother processing chctl flags anymore */
1507 			chctl.all_flags = 0;
1508 		}
1509 	}
1510 
1511 	return chctl.all_flags;
1512 }
1513 
1514 /*
1515  * Allocate the local message queue and the notify queue.
1516  */
1517 static enum xp_retval
xpc_allocate_local_msgqueue_sn2(struct xpc_channel * ch)1518 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1519 {
1520 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1521 	unsigned long irq_flags;
1522 	int nentries;
1523 	size_t nbytes;
1524 
1525 	for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1526 
1527 		nbytes = nentries * ch->entry_size;
1528 		ch_sn2->local_msgqueue =
1529 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1530 						  &ch_sn2->local_msgqueue_base);
1531 		if (ch_sn2->local_msgqueue == NULL)
1532 			continue;
1533 
1534 		nbytes = nentries * sizeof(struct xpc_notify_sn2);
1535 		ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1536 		if (ch_sn2->notify_queue == NULL) {
1537 			kfree(ch_sn2->local_msgqueue_base);
1538 			ch_sn2->local_msgqueue = NULL;
1539 			continue;
1540 		}
1541 
1542 		spin_lock_irqsave(&ch->lock, irq_flags);
1543 		if (nentries < ch->local_nentries) {
1544 			dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1545 				"partid=%d, channel=%d\n", nentries,
1546 				ch->local_nentries, ch->partid, ch->number);
1547 
1548 			ch->local_nentries = nentries;
1549 		}
1550 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1551 		return xpSuccess;
1552 	}
1553 
1554 	dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1555 		"queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1556 	return xpNoMemory;
1557 }
1558 
1559 /*
1560  * Allocate the cached remote message queue.
1561  */
1562 static enum xp_retval
xpc_allocate_remote_msgqueue_sn2(struct xpc_channel * ch)1563 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1564 {
1565 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1566 	unsigned long irq_flags;
1567 	int nentries;
1568 	size_t nbytes;
1569 
1570 	DBUG_ON(ch->remote_nentries <= 0);
1571 
1572 	for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1573 
1574 		nbytes = nentries * ch->entry_size;
1575 		ch_sn2->remote_msgqueue =
1576 		    xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1577 						  remote_msgqueue_base);
1578 		if (ch_sn2->remote_msgqueue == NULL)
1579 			continue;
1580 
1581 		spin_lock_irqsave(&ch->lock, irq_flags);
1582 		if (nentries < ch->remote_nentries) {
1583 			dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1584 				"partid=%d, channel=%d\n", nentries,
1585 				ch->remote_nentries, ch->partid, ch->number);
1586 
1587 			ch->remote_nentries = nentries;
1588 		}
1589 		spin_unlock_irqrestore(&ch->lock, irq_flags);
1590 		return xpSuccess;
1591 	}
1592 
1593 	dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1594 		"partid=%d, channel=%d\n", ch->partid, ch->number);
1595 	return xpNoMemory;
1596 }
1597 
1598 /*
1599  * Allocate message queues and other stuff associated with a channel.
1600  *
1601  * Note: Assumes all of the channel sizes are filled in.
1602  */
1603 static enum xp_retval
xpc_setup_msg_structures_sn2(struct xpc_channel * ch)1604 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1605 {
1606 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1607 	enum xp_retval ret;
1608 
1609 	DBUG_ON(ch->flags & XPC_C_SETUP);
1610 
1611 	ret = xpc_allocate_local_msgqueue_sn2(ch);
1612 	if (ret == xpSuccess) {
1613 
1614 		ret = xpc_allocate_remote_msgqueue_sn2(ch);
1615 		if (ret != xpSuccess) {
1616 			kfree(ch_sn2->local_msgqueue_base);
1617 			ch_sn2->local_msgqueue = NULL;
1618 			kfree(ch_sn2->notify_queue);
1619 			ch_sn2->notify_queue = NULL;
1620 		}
1621 	}
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Free up message queues and other stuff that were allocated for the specified
1627  * channel.
1628  */
1629 static void
xpc_teardown_msg_structures_sn2(struct xpc_channel * ch)1630 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1631 {
1632 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1633 
1634 	DBUG_ON(!spin_is_locked(&ch->lock));
1635 
1636 	ch_sn2->remote_msgqueue_pa = 0;
1637 
1638 	ch_sn2->local_GP->get = 0;
1639 	ch_sn2->local_GP->put = 0;
1640 	ch_sn2->remote_GP.get = 0;
1641 	ch_sn2->remote_GP.put = 0;
1642 	ch_sn2->w_local_GP.get = 0;
1643 	ch_sn2->w_local_GP.put = 0;
1644 	ch_sn2->w_remote_GP.get = 0;
1645 	ch_sn2->w_remote_GP.put = 0;
1646 	ch_sn2->next_msg_to_pull = 0;
1647 
1648 	if (ch->flags & XPC_C_SETUP) {
1649 		dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1650 			ch->flags, ch->partid, ch->number);
1651 
1652 		kfree(ch_sn2->local_msgqueue_base);
1653 		ch_sn2->local_msgqueue = NULL;
1654 		kfree(ch_sn2->remote_msgqueue_base);
1655 		ch_sn2->remote_msgqueue = NULL;
1656 		kfree(ch_sn2->notify_queue);
1657 		ch_sn2->notify_queue = NULL;
1658 	}
1659 }
1660 
1661 /*
1662  * Notify those who wanted to be notified upon delivery of their message.
1663  */
1664 static void
xpc_notify_senders_sn2(struct xpc_channel * ch,enum xp_retval reason,s64 put)1665 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1666 {
1667 	struct xpc_notify_sn2 *notify;
1668 	u8 notify_type;
1669 	s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1670 
1671 	while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1672 
1673 		notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1674 
1675 		/*
1676 		 * See if the notify entry indicates it was associated with
1677 		 * a message who's sender wants to be notified. It is possible
1678 		 * that it is, but someone else is doing or has done the
1679 		 * notification.
1680 		 */
1681 		notify_type = notify->type;
1682 		if (notify_type == 0 ||
1683 		    cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1684 			continue;
1685 		}
1686 
1687 		DBUG_ON(notify_type != XPC_N_CALL);
1688 
1689 		atomic_dec(&ch->n_to_notify);
1690 
1691 		if (notify->func != NULL) {
1692 			dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1693 				"msg_number=%ld partid=%d channel=%d\n",
1694 				(void *)notify, get, ch->partid, ch->number);
1695 
1696 			notify->func(reason, ch->partid, ch->number,
1697 				     notify->key);
1698 
1699 			dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1700 				" msg_number=%ld partid=%d channel=%d\n",
1701 				(void *)notify, get, ch->partid, ch->number);
1702 		}
1703 	}
1704 }
1705 
1706 static void
xpc_notify_senders_of_disconnect_sn2(struct xpc_channel * ch)1707 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1708 {
1709 	xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1710 }
1711 
1712 /*
1713  * Clear some of the msg flags in the local message queue.
1714  */
1715 static inline void
xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel * ch)1716 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1717 {
1718 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1719 	struct xpc_msg_sn2 *msg;
1720 	s64 get;
1721 
1722 	get = ch_sn2->w_remote_GP.get;
1723 	do {
1724 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1725 					     (get % ch->local_nentries) *
1726 					     ch->entry_size);
1727 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1728 		msg->flags = 0;
1729 	} while (++get < ch_sn2->remote_GP.get);
1730 }
1731 
1732 /*
1733  * Clear some of the msg flags in the remote message queue.
1734  */
1735 static inline void
xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel * ch)1736 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1737 {
1738 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1739 	struct xpc_msg_sn2 *msg;
1740 	s64 put;
1741 
1742 	/* flags are zeroed when the buffer is allocated */
1743 	if (ch_sn2->remote_GP.put < ch->remote_nentries)
1744 		return;
1745 
1746 	put = max(ch_sn2->w_remote_GP.put, ch->remote_nentries);
1747 	do {
1748 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1749 					     (put % ch->remote_nentries) *
1750 					     ch->entry_size);
1751 		DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1752 		DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1753 		DBUG_ON(msg->number != put - ch->remote_nentries);
1754 		msg->flags = 0;
1755 	} while (++put < ch_sn2->remote_GP.put);
1756 }
1757 
1758 static int
xpc_n_of_deliverable_payloads_sn2(struct xpc_channel * ch)1759 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1760 {
1761 	return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1762 }
1763 
1764 static void
xpc_process_msg_chctl_flags_sn2(struct xpc_partition * part,int ch_number)1765 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1766 {
1767 	struct xpc_channel *ch = &part->channels[ch_number];
1768 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1769 	int npayloads_sent;
1770 
1771 	ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1772 
1773 	/* See what, if anything, has changed for each connected channel */
1774 
1775 	xpc_msgqueue_ref(ch);
1776 
1777 	if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1778 	    ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1779 		/* nothing changed since GPs were last pulled */
1780 		xpc_msgqueue_deref(ch);
1781 		return;
1782 	}
1783 
1784 	if (!(ch->flags & XPC_C_CONNECTED)) {
1785 		xpc_msgqueue_deref(ch);
1786 		return;
1787 	}
1788 
1789 	/*
1790 	 * First check to see if messages recently sent by us have been
1791 	 * received by the other side. (The remote GET value will have
1792 	 * changed since we last looked at it.)
1793 	 */
1794 
1795 	if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1796 
1797 		/*
1798 		 * We need to notify any senders that want to be notified
1799 		 * that their sent messages have been received by their
1800 		 * intended recipients. We need to do this before updating
1801 		 * w_remote_GP.get so that we don't allocate the same message
1802 		 * queue entries prematurely (see xpc_allocate_msg()).
1803 		 */
1804 		if (atomic_read(&ch->n_to_notify) > 0) {
1805 			/*
1806 			 * Notify senders that messages sent have been
1807 			 * received and delivered by the other side.
1808 			 */
1809 			xpc_notify_senders_sn2(ch, xpMsgDelivered,
1810 					       ch_sn2->remote_GP.get);
1811 		}
1812 
1813 		/*
1814 		 * Clear msg->flags in previously sent messages, so that
1815 		 * they're ready for xpc_allocate_msg().
1816 		 */
1817 		xpc_clear_local_msgqueue_flags_sn2(ch);
1818 
1819 		ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1820 
1821 		dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1822 			"channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1823 			ch->number);
1824 
1825 		/*
1826 		 * If anyone was waiting for message queue entries to become
1827 		 * available, wake them up.
1828 		 */
1829 		if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1830 			wake_up(&ch->msg_allocate_wq);
1831 	}
1832 
1833 	/*
1834 	 * Now check for newly sent messages by the other side. (The remote
1835 	 * PUT value will have changed since we last looked at it.)
1836 	 */
1837 
1838 	if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1839 		/*
1840 		 * Clear msg->flags in previously received messages, so that
1841 		 * they're ready for xpc_get_deliverable_payload_sn2().
1842 		 */
1843 		xpc_clear_remote_msgqueue_flags_sn2(ch);
1844 
1845 		smp_wmb(); /* ensure flags have been cleared before bte_copy */
1846 		ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1847 
1848 		dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1849 			"channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1850 			ch->number);
1851 
1852 		npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1853 		if (npayloads_sent > 0) {
1854 			dev_dbg(xpc_chan, "msgs waiting to be copied and "
1855 				"delivered=%d, partid=%d, channel=%d\n",
1856 				npayloads_sent, ch->partid, ch->number);
1857 
1858 			if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1859 				xpc_activate_kthreads(ch, npayloads_sent);
1860 		}
1861 	}
1862 
1863 	xpc_msgqueue_deref(ch);
1864 }
1865 
1866 static struct xpc_msg_sn2 *
xpc_pull_remote_msg_sn2(struct xpc_channel * ch,s64 get)1867 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1868 {
1869 	struct xpc_partition *part = &xpc_partitions[ch->partid];
1870 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1871 	unsigned long remote_msg_pa;
1872 	struct xpc_msg_sn2 *msg;
1873 	u32 msg_index;
1874 	u32 nmsgs;
1875 	u64 msg_offset;
1876 	enum xp_retval ret;
1877 
1878 	if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1879 		/* we were interrupted by a signal */
1880 		return NULL;
1881 	}
1882 
1883 	while (get >= ch_sn2->next_msg_to_pull) {
1884 
1885 		/* pull as many messages as are ready and able to be pulled */
1886 
1887 		msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1888 
1889 		DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1890 		nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1891 		if (msg_index + nmsgs > ch->remote_nentries) {
1892 			/* ignore the ones that wrap the msg queue for now */
1893 			nmsgs = ch->remote_nentries - msg_index;
1894 		}
1895 
1896 		msg_offset = msg_index * ch->entry_size;
1897 		msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1898 		    msg_offset);
1899 		remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1900 
1901 		ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1902 						     nmsgs * ch->entry_size);
1903 		if (ret != xpSuccess) {
1904 
1905 			dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1906 				" msg %ld from partition %d, channel=%d, "
1907 				"ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1908 				ch->partid, ch->number, ret);
1909 
1910 			XPC_DEACTIVATE_PARTITION(part, ret);
1911 
1912 			mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1913 			return NULL;
1914 		}
1915 
1916 		ch_sn2->next_msg_to_pull += nmsgs;
1917 	}
1918 
1919 	mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1920 
1921 	/* return the message we were looking for */
1922 	msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1923 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1924 
1925 	return msg;
1926 }
1927 
1928 /*
1929  * Get the next deliverable message's payload.
1930  */
1931 static void *
xpc_get_deliverable_payload_sn2(struct xpc_channel * ch)1932 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1933 {
1934 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1935 	struct xpc_msg_sn2 *msg;
1936 	void *payload = NULL;
1937 	s64 get;
1938 
1939 	do {
1940 		if (ch->flags & XPC_C_DISCONNECTING)
1941 			break;
1942 
1943 		get = ch_sn2->w_local_GP.get;
1944 		smp_rmb();	/* guarantee that .get loads before .put */
1945 		if (get == ch_sn2->w_remote_GP.put)
1946 			break;
1947 
1948 		/* There are messages waiting to be pulled and delivered.
1949 		 * We need to try to secure one for ourselves. We'll do this
1950 		 * by trying to increment w_local_GP.get and hope that no one
1951 		 * else beats us to it. If they do, we'll we'll simply have
1952 		 * to try again for the next one.
1953 		 */
1954 
1955 		if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1956 			/* we got the entry referenced by get */
1957 
1958 			dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1959 				"partid=%d, channel=%d\n", get + 1,
1960 				ch->partid, ch->number);
1961 
1962 			/* pull the message from the remote partition */
1963 
1964 			msg = xpc_pull_remote_msg_sn2(ch, get);
1965 
1966 			if (msg != NULL) {
1967 				DBUG_ON(msg->number != get);
1968 				DBUG_ON(msg->flags & XPC_M_SN2_DONE);
1969 				DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1970 
1971 				payload = &msg->payload;
1972 			}
1973 			break;
1974 		}
1975 
1976 	} while (1);
1977 
1978 	return payload;
1979 }
1980 
1981 /*
1982  * Now we actually send the messages that are ready to be sent by advancing
1983  * the local message queue's Put value and then send a chctl msgrequest to the
1984  * recipient partition.
1985  */
1986 static void
xpc_send_msgs_sn2(struct xpc_channel * ch,s64 initial_put)1987 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
1988 {
1989 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1990 	struct xpc_msg_sn2 *msg;
1991 	s64 put = initial_put + 1;
1992 	int send_msgrequest = 0;
1993 
1994 	while (1) {
1995 
1996 		while (1) {
1997 			if (put == ch_sn2->w_local_GP.put)
1998 				break;
1999 
2000 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2001 						     local_msgqueue + (put %
2002 						     ch->local_nentries) *
2003 						     ch->entry_size);
2004 
2005 			if (!(msg->flags & XPC_M_SN2_READY))
2006 				break;
2007 
2008 			put++;
2009 		}
2010 
2011 		if (put == initial_put) {
2012 			/* nothing's changed */
2013 			break;
2014 		}
2015 
2016 		if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2017 		    initial_put) {
2018 			/* someone else beat us to it */
2019 			DBUG_ON(ch_sn2->local_GP->put < initial_put);
2020 			break;
2021 		}
2022 
2023 		/* we just set the new value of local_GP->put */
2024 
2025 		dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2026 			"channel=%d\n", put, ch->partid, ch->number);
2027 
2028 		send_msgrequest = 1;
2029 
2030 		/*
2031 		 * We need to ensure that the message referenced by
2032 		 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2033 		 * equals w_local_GP.put, so we'll go have a look.
2034 		 */
2035 		initial_put = put;
2036 	}
2037 
2038 	if (send_msgrequest)
2039 		xpc_send_chctl_msgrequest_sn2(ch);
2040 }
2041 
2042 /*
2043  * Allocate an entry for a message from the message queue associated with the
2044  * specified channel.
2045  */
2046 static enum xp_retval
xpc_allocate_msg_sn2(struct xpc_channel * ch,u32 flags,struct xpc_msg_sn2 ** address_of_msg)2047 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2048 		     struct xpc_msg_sn2 **address_of_msg)
2049 {
2050 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2051 	struct xpc_msg_sn2 *msg;
2052 	enum xp_retval ret;
2053 	s64 put;
2054 
2055 	/*
2056 	 * Get the next available message entry from the local message queue.
2057 	 * If none are available, we'll make sure that we grab the latest
2058 	 * GP values.
2059 	 */
2060 	ret = xpTimeout;
2061 
2062 	while (1) {
2063 
2064 		put = ch_sn2->w_local_GP.put;
2065 		smp_rmb();	/* guarantee that .put loads before .get */
2066 		if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2067 
2068 			/* There are available message entries. We need to try
2069 			 * to secure one for ourselves. We'll do this by trying
2070 			 * to increment w_local_GP.put as long as someone else
2071 			 * doesn't beat us to it. If they do, we'll have to
2072 			 * try again.
2073 			 */
2074 			if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2075 			    put) {
2076 				/* we got the entry referenced by put */
2077 				break;
2078 			}
2079 			continue;	/* try again */
2080 		}
2081 
2082 		/*
2083 		 * There aren't any available msg entries at this time.
2084 		 *
2085 		 * In waiting for a message entry to become available,
2086 		 * we set a timeout in case the other side is not sending
2087 		 * completion interrupts. This lets us fake a notify IRQ
2088 		 * that will cause the notify IRQ handler to fetch the latest
2089 		 * GP values as if an interrupt was sent by the other side.
2090 		 */
2091 		if (ret == xpTimeout)
2092 			xpc_send_chctl_local_msgrequest_sn2(ch);
2093 
2094 		if (flags & XPC_NOWAIT)
2095 			return xpNoWait;
2096 
2097 		ret = xpc_allocate_msg_wait(ch);
2098 		if (ret != xpInterrupted && ret != xpTimeout)
2099 			return ret;
2100 	}
2101 
2102 	/* get the message's address and initialize it */
2103 	msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2104 				     (put % ch->local_nentries) *
2105 				     ch->entry_size);
2106 
2107 	DBUG_ON(msg->flags != 0);
2108 	msg->number = put;
2109 
2110 	dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2111 		"msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2112 		(void *)msg, msg->number, ch->partid, ch->number);
2113 
2114 	*address_of_msg = msg;
2115 	return xpSuccess;
2116 }
2117 
2118 /*
2119  * Common code that does the actual sending of the message by advancing the
2120  * local message queue's Put value and sends a chctl msgrequest to the
2121  * partition the message is being sent to.
2122  */
2123 static enum xp_retval
xpc_send_payload_sn2(struct xpc_channel * ch,u32 flags,void * payload,u16 payload_size,u8 notify_type,xpc_notify_func func,void * key)2124 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2125 		     u16 payload_size, u8 notify_type, xpc_notify_func func,
2126 		     void *key)
2127 {
2128 	enum xp_retval ret = xpSuccess;
2129 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2130 	struct xpc_msg_sn2 *msg = msg;
2131 	struct xpc_notify_sn2 *notify = notify;
2132 	s64 msg_number;
2133 	s64 put;
2134 
2135 	DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2136 
2137 	if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2138 		return xpPayloadTooBig;
2139 
2140 	xpc_msgqueue_ref(ch);
2141 
2142 	if (ch->flags & XPC_C_DISCONNECTING) {
2143 		ret = ch->reason;
2144 		goto out_1;
2145 	}
2146 	if (!(ch->flags & XPC_C_CONNECTED)) {
2147 		ret = xpNotConnected;
2148 		goto out_1;
2149 	}
2150 
2151 	ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2152 	if (ret != xpSuccess)
2153 		goto out_1;
2154 
2155 	msg_number = msg->number;
2156 
2157 	if (notify_type != 0) {
2158 		/*
2159 		 * Tell the remote side to send an ACK interrupt when the
2160 		 * message has been delivered.
2161 		 */
2162 		msg->flags |= XPC_M_SN2_INTERRUPT;
2163 
2164 		atomic_inc(&ch->n_to_notify);
2165 
2166 		notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2167 		notify->func = func;
2168 		notify->key = key;
2169 		notify->type = notify_type;
2170 
2171 		/* ??? Is a mb() needed here? */
2172 
2173 		if (ch->flags & XPC_C_DISCONNECTING) {
2174 			/*
2175 			 * An error occurred between our last error check and
2176 			 * this one. We will try to clear the type field from
2177 			 * the notify entry. If we succeed then
2178 			 * xpc_disconnect_channel() didn't already process
2179 			 * the notify entry.
2180 			 */
2181 			if (cmpxchg(&notify->type, notify_type, 0) ==
2182 			    notify_type) {
2183 				atomic_dec(&ch->n_to_notify);
2184 				ret = ch->reason;
2185 			}
2186 			goto out_1;
2187 		}
2188 	}
2189 
2190 	memcpy(&msg->payload, payload, payload_size);
2191 
2192 	msg->flags |= XPC_M_SN2_READY;
2193 
2194 	/*
2195 	 * The preceding store of msg->flags must occur before the following
2196 	 * load of local_GP->put.
2197 	 */
2198 	smp_mb();
2199 
2200 	/* see if the message is next in line to be sent, if so send it */
2201 
2202 	put = ch_sn2->local_GP->put;
2203 	if (put == msg_number)
2204 		xpc_send_msgs_sn2(ch, put);
2205 
2206 out_1:
2207 	xpc_msgqueue_deref(ch);
2208 	return ret;
2209 }
2210 
2211 /*
2212  * Now we actually acknowledge the messages that have been delivered and ack'd
2213  * by advancing the cached remote message queue's Get value and if requested
2214  * send a chctl msgrequest to the message sender's partition.
2215  *
2216  * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2217  * that sent the message.
2218  */
2219 static void
xpc_acknowledge_msgs_sn2(struct xpc_channel * ch,s64 initial_get,u8 msg_flags)2220 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2221 {
2222 	struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2223 	struct xpc_msg_sn2 *msg;
2224 	s64 get = initial_get + 1;
2225 	int send_msgrequest = 0;
2226 
2227 	while (1) {
2228 
2229 		while (1) {
2230 			if (get == ch_sn2->w_local_GP.get)
2231 				break;
2232 
2233 			msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2234 						     remote_msgqueue + (get %
2235 						     ch->remote_nentries) *
2236 						     ch->entry_size);
2237 
2238 			if (!(msg->flags & XPC_M_SN2_DONE))
2239 				break;
2240 
2241 			msg_flags |= msg->flags;
2242 			get++;
2243 		}
2244 
2245 		if (get == initial_get) {
2246 			/* nothing's changed */
2247 			break;
2248 		}
2249 
2250 		if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2251 		    initial_get) {
2252 			/* someone else beat us to it */
2253 			DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2254 			break;
2255 		}
2256 
2257 		/* we just set the new value of local_GP->get */
2258 
2259 		dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2260 			"channel=%d\n", get, ch->partid, ch->number);
2261 
2262 		send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2263 
2264 		/*
2265 		 * We need to ensure that the message referenced by
2266 		 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2267 		 * equals w_local_GP.get, so we'll go have a look.
2268 		 */
2269 		initial_get = get;
2270 	}
2271 
2272 	if (send_msgrequest)
2273 		xpc_send_chctl_msgrequest_sn2(ch);
2274 }
2275 
2276 static void
xpc_received_payload_sn2(struct xpc_channel * ch,void * payload)2277 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2278 {
2279 	struct xpc_msg_sn2 *msg;
2280 	s64 msg_number;
2281 	s64 get;
2282 
2283 	msg = container_of(payload, struct xpc_msg_sn2, payload);
2284 	msg_number = msg->number;
2285 
2286 	dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2287 		(void *)msg, msg_number, ch->partid, ch->number);
2288 
2289 	DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2290 		msg_number % ch->remote_nentries);
2291 	DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2292 	DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2293 
2294 	msg->flags |= XPC_M_SN2_DONE;
2295 
2296 	/*
2297 	 * The preceding store of msg->flags must occur before the following
2298 	 * load of local_GP->get.
2299 	 */
2300 	smp_mb();
2301 
2302 	/*
2303 	 * See if this message is next in line to be acknowledged as having
2304 	 * been delivered.
2305 	 */
2306 	get = ch->sn.sn2.local_GP->get;
2307 	if (get == msg_number)
2308 		xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2309 }
2310 
2311 int
xpc_init_sn2(void)2312 xpc_init_sn2(void)
2313 {
2314 	int ret;
2315 	size_t buf_size;
2316 
2317 	xpc_setup_partitions_sn = xpc_setup_partitions_sn_sn2;
2318 	xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2319 	xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_sn2;
2320 	xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2321 	xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2322 	xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2323 	xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2324 	xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2325 	xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2;
2326 
2327 	xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2328 	xpc_request_partition_reactivation =
2329 	    xpc_request_partition_reactivation_sn2;
2330 	xpc_request_partition_deactivation =
2331 	    xpc_request_partition_deactivation_sn2;
2332 	xpc_cancel_partition_deactivation_request =
2333 	    xpc_cancel_partition_deactivation_request_sn2;
2334 
2335 	xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2336 	xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_sn2;
2337 	xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_sn2;
2338 	xpc_make_first_contact = xpc_make_first_contact_sn2;
2339 
2340 	xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2341 	xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2342 	xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2343 	xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2344 	xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2345 
2346 	xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2;
2347 
2348 	xpc_setup_msg_structures = xpc_setup_msg_structures_sn2;
2349 	xpc_teardown_msg_structures = xpc_teardown_msg_structures_sn2;
2350 
2351 	xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2352 	xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2353 	xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2;
2354 	xpc_get_deliverable_payload = xpc_get_deliverable_payload_sn2;
2355 
2356 	xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2357 	xpc_indicate_partition_disengaged =
2358 	    xpc_indicate_partition_disengaged_sn2;
2359 	xpc_partition_engaged = xpc_partition_engaged_sn2;
2360 	xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2361 	xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2362 
2363 	xpc_send_payload = xpc_send_payload_sn2;
2364 	xpc_received_payload = xpc_received_payload_sn2;
2365 
2366 	if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2367 		dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2368 			"larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2369 		return -E2BIG;
2370 	}
2371 
2372 	buf_size = max(XPC_RP_VARS_SIZE,
2373 		       XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2374 	xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2375 								   GFP_KERNEL,
2376 					      &xpc_remote_copy_buffer_base_sn2);
2377 	if (xpc_remote_copy_buffer_sn2 == NULL) {
2378 		dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2379 		return -ENOMEM;
2380 	}
2381 
2382 	/* open up protections for IPI and [potentially] amo operations */
2383 	xpc_allow_IPI_ops_sn2();
2384 	xpc_allow_amo_ops_shub_wars_1_1_sn2();
2385 
2386 	/*
2387 	 * This is safe to do before the xpc_hb_checker thread has started
2388 	 * because the handler releases a wait queue.  If an interrupt is
2389 	 * received before the thread is waiting, it will not go to sleep,
2390 	 * but rather immediately process the interrupt.
2391 	 */
2392 	ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2393 			  "xpc hb", NULL);
2394 	if (ret != 0) {
2395 		dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2396 			"errno=%d\n", -ret);
2397 		xpc_disallow_IPI_ops_sn2();
2398 		kfree(xpc_remote_copy_buffer_base_sn2);
2399 	}
2400 	return ret;
2401 }
2402 
2403 void
xpc_exit_sn2(void)2404 xpc_exit_sn2(void)
2405 {
2406 	free_irq(SGI_XPC_ACTIVATE, NULL);
2407 	xpc_disallow_IPI_ops_sn2();
2408 	kfree(xpc_remote_copy_buffer_base_sn2);
2409 }
2410