• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20 
21 #include <linux/spi/spi.h>
22 #include <linux/spi/flash.h>
23 
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/partitions.h>
26 
27 
28 /*
29  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
30  * each chip, which may be used for double buffered I/O; but this driver
31  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32  *
33  * Sometimes DataFlash is packaged in MMC-format cards, although the
34  * MMC stack can't (yet?) distinguish between MMC and DataFlash
35  * protocols during enumeration.
36  */
37 
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS	0xE8
40 #define OP_READ_PAGE		0xD2
41 
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS		0xD7	/* group B */
44 
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1		0xD4	/* group B */
47 #define OP_READ_BUFFER2		0xD6	/* group B */
48 #define OP_WRITE_BUFFER1	0x84	/* group B */
49 #define OP_WRITE_BUFFER2	0x87	/* group B */
50 
51 /* erasing flash */
52 #define OP_ERASE_PAGE		0x81
53 #define OP_ERASE_BLOCK		0x50
54 
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1	0x53
57 #define OP_TRANSFER_BUF2	0x55
58 #define OP_MREAD_BUFFER1	0xD4
59 #define OP_MREAD_BUFFER2	0xD6
60 #define OP_MWERASE_BUFFER1	0x83
61 #define OP_MWERASE_BUFFER2	0x86
62 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
64 
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1	0x82
67 #define OP_PROGRAM_VIA_BUF2	0x85
68 
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1		0x60
71 #define OP_COMPARE_BUF2		0x61
72 
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1	0x58
75 #define OP_REWRITE_VIA_BUF2	0x59
76 
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78  * serial number and OTP bits; and per-sector writeprotect.
79  */
80 #define OP_READ_ID		0x9F
81 #define OP_READ_SECURITY	0x77
82 #define OP_WRITE_SECURITY_REVC	0x9A
83 #define OP_WRITE_SECURITY	0x9B	/* revision D */
84 
85 
86 struct dataflash {
87 	uint8_t			command[4];
88 	char			name[24];
89 
90 	unsigned		partitioned:1;
91 
92 	unsigned short		page_offset;	/* offset in flash address */
93 	unsigned int		page_size;	/* of bytes per page */
94 
95 	struct mutex		lock;
96 	struct spi_device	*spi;
97 
98 	struct mtd_info		mtd;
99 };
100 
101 #ifdef CONFIG_MTD_PARTITIONS
102 #define	mtd_has_partitions()	(1)
103 #else
104 #define	mtd_has_partitions()	(0)
105 #endif
106 
107 /* ......................................................................... */
108 
109 /*
110  * Return the status of the DataFlash device.
111  */
dataflash_status(struct spi_device * spi)112 static inline int dataflash_status(struct spi_device *spi)
113 {
114 	/* NOTE:  at45db321c over 25 MHz wants to write
115 	 * a dummy byte after the opcode...
116 	 */
117 	return spi_w8r8(spi, OP_READ_STATUS);
118 }
119 
120 /*
121  * Poll the DataFlash device until it is READY.
122  * This usually takes 5-20 msec or so; more for sector erase.
123  */
dataflash_waitready(struct spi_device * spi)124 static int dataflash_waitready(struct spi_device *spi)
125 {
126 	int	status;
127 
128 	for (;;) {
129 		status = dataflash_status(spi);
130 		if (status < 0) {
131 			DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
132 					dev_name(&spi->dev), status);
133 			status = 0;
134 		}
135 
136 		if (status & (1 << 7))	/* RDY/nBSY */
137 			return status;
138 
139 		msleep(3);
140 	}
141 }
142 
143 /* ......................................................................... */
144 
145 /*
146  * Erase pages of flash.
147  */
dataflash_erase(struct mtd_info * mtd,struct erase_info * instr)148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
151 	struct spi_device	*spi = priv->spi;
152 	struct spi_transfer	x = { .tx_dma = 0, };
153 	struct spi_message	msg;
154 	unsigned		blocksize = priv->page_size << 3;
155 	uint8_t			*command;
156 	uint32_t		rem;
157 
158 	DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
159 	      dev_name(&spi->dev), (long long)instr->addr,
160 	      (long long)instr->len);
161 
162 	/* Sanity checks */
163 	if (instr->addr + instr->len > mtd->size)
164 		return -EINVAL;
165 	div_u64_rem(instr->len, priv->page_size, &rem);
166 	if (rem)
167 		return -EINVAL;
168 	div_u64_rem(instr->addr, priv->page_size, &rem);
169 	if (rem)
170 		return -EINVAL;
171 
172 	spi_message_init(&msg);
173 
174 	x.tx_buf = command = priv->command;
175 	x.len = 4;
176 	spi_message_add_tail(&x, &msg);
177 
178 	mutex_lock(&priv->lock);
179 	while (instr->len > 0) {
180 		unsigned int	pageaddr;
181 		int		status;
182 		int		do_block;
183 
184 		/* Calculate flash page address; use block erase (for speed) if
185 		 * we're at a block boundary and need to erase the whole block.
186 		 */
187 		pageaddr = div_u64(instr->len, priv->page_size);
188 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
189 		pageaddr = pageaddr << priv->page_offset;
190 
191 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
192 		command[1] = (uint8_t)(pageaddr >> 16);
193 		command[2] = (uint8_t)(pageaddr >> 8);
194 		command[3] = 0;
195 
196 		DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
197 			do_block ? "block" : "page",
198 			command[0], command[1], command[2], command[3],
199 			pageaddr);
200 
201 		status = spi_sync(spi, &msg);
202 		(void) dataflash_waitready(spi);
203 
204 		if (status < 0) {
205 			printk(KERN_ERR "%s: erase %x, err %d\n",
206 				dev_name(&spi->dev), pageaddr, status);
207 			/* REVISIT:  can retry instr->retries times; or
208 			 * giveup and instr->fail_addr = instr->addr;
209 			 */
210 			continue;
211 		}
212 
213 		if (do_block) {
214 			instr->addr += blocksize;
215 			instr->len -= blocksize;
216 		} else {
217 			instr->addr += priv->page_size;
218 			instr->len -= priv->page_size;
219 		}
220 	}
221 	mutex_unlock(&priv->lock);
222 
223 	/* Inform MTD subsystem that erase is complete */
224 	instr->state = MTD_ERASE_DONE;
225 	mtd_erase_callback(instr);
226 
227 	return 0;
228 }
229 
230 /*
231  * Read from the DataFlash device.
232  *   from   : Start offset in flash device
233  *   len    : Amount to read
234  *   retlen : About of data actually read
235  *   buf    : Buffer containing the data
236  */
dataflash_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)237 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
238 			       size_t *retlen, u_char *buf)
239 {
240 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
241 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
242 	struct spi_message	msg;
243 	unsigned int		addr;
244 	uint8_t			*command;
245 	int			status;
246 
247 	DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
248 		dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
249 
250 	*retlen = 0;
251 
252 	/* Sanity checks */
253 	if (!len)
254 		return 0;
255 	if (from + len > mtd->size)
256 		return -EINVAL;
257 
258 	/* Calculate flash page/byte address */
259 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
260 		+ ((unsigned)from % priv->page_size);
261 
262 	command = priv->command;
263 
264 	DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
265 		command[0], command[1], command[2], command[3]);
266 
267 	spi_message_init(&msg);
268 
269 	x[0].tx_buf = command;
270 	x[0].len = 8;
271 	spi_message_add_tail(&x[0], &msg);
272 
273 	x[1].rx_buf = buf;
274 	x[1].len = len;
275 	spi_message_add_tail(&x[1], &msg);
276 
277 	mutex_lock(&priv->lock);
278 
279 	/* Continuous read, max clock = f(car) which may be less than
280 	 * the peak rate available.  Some chips support commands with
281 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
282 	 */
283 	command[0] = OP_READ_CONTINUOUS;
284 	command[1] = (uint8_t)(addr >> 16);
285 	command[2] = (uint8_t)(addr >> 8);
286 	command[3] = (uint8_t)(addr >> 0);
287 	/* plus 4 "don't care" bytes */
288 
289 	status = spi_sync(priv->spi, &msg);
290 	mutex_unlock(&priv->lock);
291 
292 	if (status >= 0) {
293 		*retlen = msg.actual_length - 8;
294 		status = 0;
295 	} else
296 		DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
297 			dev_name(&priv->spi->dev),
298 			(unsigned)from, (unsigned)(from + len),
299 			status);
300 	return status;
301 }
302 
303 /*
304  * Write to the DataFlash device.
305  *   to     : Start offset in flash device
306  *   len    : Amount to write
307  *   retlen : Amount of data actually written
308  *   buf    : Buffer containing the data
309  */
dataflash_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)310 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
311 				size_t * retlen, const u_char * buf)
312 {
313 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
314 	struct spi_device	*spi = priv->spi;
315 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
316 	struct spi_message	msg;
317 	unsigned int		pageaddr, addr, offset, writelen;
318 	size_t			remaining = len;
319 	u_char			*writebuf = (u_char *) buf;
320 	int			status = -EINVAL;
321 	uint8_t			*command;
322 
323 	DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
324 		dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
325 
326 	*retlen = 0;
327 
328 	/* Sanity checks */
329 	if (!len)
330 		return 0;
331 	if ((to + len) > mtd->size)
332 		return -EINVAL;
333 
334 	spi_message_init(&msg);
335 
336 	x[0].tx_buf = command = priv->command;
337 	x[0].len = 4;
338 	spi_message_add_tail(&x[0], &msg);
339 
340 	pageaddr = ((unsigned)to / priv->page_size);
341 	offset = ((unsigned)to % priv->page_size);
342 	if (offset + len > priv->page_size)
343 		writelen = priv->page_size - offset;
344 	else
345 		writelen = len;
346 
347 	mutex_lock(&priv->lock);
348 	while (remaining > 0) {
349 		DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
350 			pageaddr, offset, writelen);
351 
352 		/* REVISIT:
353 		 * (a) each page in a sector must be rewritten at least
354 		 *     once every 10K sibling erase/program operations.
355 		 * (b) for pages that are already erased, we could
356 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
357 		 * (c) WRITE to buffer could be done while waiting for
358 		 *     a previous MWRITE/MWERASE to complete ...
359 		 * (d) error handling here seems to be mostly missing.
360 		 *
361 		 * Two persistent bits per page, plus a per-sector counter,
362 		 * could support (a) and (b) ... we might consider using
363 		 * the second half of sector zero, which is just one block,
364 		 * to track that state.  (On AT91, that sector should also
365 		 * support boot-from-DataFlash.)
366 		 */
367 
368 		addr = pageaddr << priv->page_offset;
369 
370 		/* (1) Maybe transfer partial page to Buffer1 */
371 		if (writelen != priv->page_size) {
372 			command[0] = OP_TRANSFER_BUF1;
373 			command[1] = (addr & 0x00FF0000) >> 16;
374 			command[2] = (addr & 0x0000FF00) >> 8;
375 			command[3] = 0;
376 
377 			DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
378 				command[0], command[1], command[2], command[3]);
379 
380 			status = spi_sync(spi, &msg);
381 			if (status < 0)
382 				DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
383 					dev_name(&spi->dev), addr, status);
384 
385 			(void) dataflash_waitready(priv->spi);
386 		}
387 
388 		/* (2) Program full page via Buffer1 */
389 		addr += offset;
390 		command[0] = OP_PROGRAM_VIA_BUF1;
391 		command[1] = (addr & 0x00FF0000) >> 16;
392 		command[2] = (addr & 0x0000FF00) >> 8;
393 		command[3] = (addr & 0x000000FF);
394 
395 		DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
396 			command[0], command[1], command[2], command[3]);
397 
398 		x[1].tx_buf = writebuf;
399 		x[1].len = writelen;
400 		spi_message_add_tail(x + 1, &msg);
401 		status = spi_sync(spi, &msg);
402 		spi_transfer_del(x + 1);
403 		if (status < 0)
404 			DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
405 				dev_name(&spi->dev), addr, writelen, status);
406 
407 		(void) dataflash_waitready(priv->spi);
408 
409 
410 #ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE
411 
412 		/* (3) Compare to Buffer1 */
413 		addr = pageaddr << priv->page_offset;
414 		command[0] = OP_COMPARE_BUF1;
415 		command[1] = (addr & 0x00FF0000) >> 16;
416 		command[2] = (addr & 0x0000FF00) >> 8;
417 		command[3] = 0;
418 
419 		DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
420 			command[0], command[1], command[2], command[3]);
421 
422 		status = spi_sync(spi, &msg);
423 		if (status < 0)
424 			DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
425 				dev_name(&spi->dev), addr, status);
426 
427 		status = dataflash_waitready(priv->spi);
428 
429 		/* Check result of the compare operation */
430 		if (status & (1 << 6)) {
431 			printk(KERN_ERR "%s: compare page %u, err %d\n",
432 				dev_name(&spi->dev), pageaddr, status);
433 			remaining = 0;
434 			status = -EIO;
435 			break;
436 		} else
437 			status = 0;
438 
439 #endif	/* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */
440 
441 		remaining = remaining - writelen;
442 		pageaddr++;
443 		offset = 0;
444 		writebuf += writelen;
445 		*retlen += writelen;
446 
447 		if (remaining > priv->page_size)
448 			writelen = priv->page_size;
449 		else
450 			writelen = remaining;
451 	}
452 	mutex_unlock(&priv->lock);
453 
454 	return status;
455 }
456 
457 /* ......................................................................... */
458 
459 #ifdef CONFIG_MTD_DATAFLASH_OTP
460 
dataflash_get_otp_info(struct mtd_info * mtd,struct otp_info * info,size_t len)461 static int dataflash_get_otp_info(struct mtd_info *mtd,
462 		struct otp_info *info, size_t len)
463 {
464 	/* Report both blocks as identical:  bytes 0..64, locked.
465 	 * Unless the user block changed from all-ones, we can't
466 	 * tell whether it's still writable; so we assume it isn't.
467 	 */
468 	info->start = 0;
469 	info->length = 64;
470 	info->locked = 1;
471 	return sizeof(*info);
472 }
473 
otp_read(struct spi_device * spi,unsigned base,uint8_t * buf,loff_t off,size_t len)474 static ssize_t otp_read(struct spi_device *spi, unsigned base,
475 		uint8_t *buf, loff_t off, size_t len)
476 {
477 	struct spi_message	m;
478 	size_t			l;
479 	uint8_t			*scratch;
480 	struct spi_transfer	t;
481 	int			status;
482 
483 	if (off > 64)
484 		return -EINVAL;
485 
486 	if ((off + len) > 64)
487 		len = 64 - off;
488 	if (len == 0)
489 		return len;
490 
491 	spi_message_init(&m);
492 
493 	l = 4 + base + off + len;
494 	scratch = kzalloc(l, GFP_KERNEL);
495 	if (!scratch)
496 		return -ENOMEM;
497 
498 	/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
499 	 * IN:  ignore 4 bytes, data bytes 0..N (max 127)
500 	 */
501 	scratch[0] = OP_READ_SECURITY;
502 
503 	memset(&t, 0, sizeof t);
504 	t.tx_buf = scratch;
505 	t.rx_buf = scratch;
506 	t.len = l;
507 	spi_message_add_tail(&t, &m);
508 
509 	dataflash_waitready(spi);
510 
511 	status = spi_sync(spi, &m);
512 	if (status >= 0) {
513 		memcpy(buf, scratch + 4 + base + off, len);
514 		status = len;
515 	}
516 
517 	kfree(scratch);
518 	return status;
519 }
520 
dataflash_read_fact_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)521 static int dataflash_read_fact_otp(struct mtd_info *mtd,
522 		loff_t from, size_t len, size_t *retlen, u_char *buf)
523 {
524 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
525 	int			status;
526 
527 	/* 64 bytes, from 0..63 ... start at 64 on-chip */
528 	mutex_lock(&priv->lock);
529 	status = otp_read(priv->spi, 64, buf, from, len);
530 	mutex_unlock(&priv->lock);
531 
532 	if (status < 0)
533 		return status;
534 	*retlen = status;
535 	return 0;
536 }
537 
dataflash_read_user_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)538 static int dataflash_read_user_otp(struct mtd_info *mtd,
539 		loff_t from, size_t len, size_t *retlen, u_char *buf)
540 {
541 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
542 	int			status;
543 
544 	/* 64 bytes, from 0..63 ... start at 0 on-chip */
545 	mutex_lock(&priv->lock);
546 	status = otp_read(priv->spi, 0, buf, from, len);
547 	mutex_unlock(&priv->lock);
548 
549 	if (status < 0)
550 		return status;
551 	*retlen = status;
552 	return 0;
553 }
554 
dataflash_write_user_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)555 static int dataflash_write_user_otp(struct mtd_info *mtd,
556 		loff_t from, size_t len, size_t *retlen, u_char *buf)
557 {
558 	struct spi_message	m;
559 	const size_t		l = 4 + 64;
560 	uint8_t			*scratch;
561 	struct spi_transfer	t;
562 	struct dataflash	*priv = (struct dataflash *)mtd->priv;
563 	int			status;
564 
565 	if (len > 64)
566 		return -EINVAL;
567 
568 	/* Strictly speaking, we *could* truncate the write ... but
569 	 * let's not do that for the only write that's ever possible.
570 	 */
571 	if ((from + len) > 64)
572 		return -EINVAL;
573 
574 	/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
575 	 * IN:  ignore all
576 	 */
577 	scratch = kzalloc(l, GFP_KERNEL);
578 	if (!scratch)
579 		return -ENOMEM;
580 	scratch[0] = OP_WRITE_SECURITY;
581 	memcpy(scratch + 4 + from, buf, len);
582 
583 	spi_message_init(&m);
584 
585 	memset(&t, 0, sizeof t);
586 	t.tx_buf = scratch;
587 	t.len = l;
588 	spi_message_add_tail(&t, &m);
589 
590 	/* Write the OTP bits, if they've not yet been written.
591 	 * This modifies SRAM buffer1.
592 	 */
593 	mutex_lock(&priv->lock);
594 	dataflash_waitready(priv->spi);
595 	status = spi_sync(priv->spi, &m);
596 	mutex_unlock(&priv->lock);
597 
598 	kfree(scratch);
599 
600 	if (status >= 0) {
601 		status = 0;
602 		*retlen = len;
603 	}
604 	return status;
605 }
606 
otp_setup(struct mtd_info * device,char revision)607 static char *otp_setup(struct mtd_info *device, char revision)
608 {
609 	device->get_fact_prot_info = dataflash_get_otp_info;
610 	device->read_fact_prot_reg = dataflash_read_fact_otp;
611 	device->get_user_prot_info = dataflash_get_otp_info;
612 	device->read_user_prot_reg = dataflash_read_user_otp;
613 
614 	/* rev c parts (at45db321c and at45db1281 only!) use a
615 	 * different write procedure; not (yet?) implemented.
616 	 */
617 	if (revision > 'c')
618 		device->write_user_prot_reg = dataflash_write_user_otp;
619 
620 	return ", OTP";
621 }
622 
623 #else
624 
otp_setup(struct mtd_info * device,char revision)625 static char *otp_setup(struct mtd_info *device, char revision)
626 {
627 	return " (OTP)";
628 }
629 
630 #endif
631 
632 /* ......................................................................... */
633 
634 /*
635  * Register DataFlash device with MTD subsystem.
636  */
637 static int __devinit
add_dataflash_otp(struct spi_device * spi,char * name,int nr_pages,int pagesize,int pageoffset,char revision)638 add_dataflash_otp(struct spi_device *spi, char *name,
639 		int nr_pages, int pagesize, int pageoffset, char revision)
640 {
641 	struct dataflash		*priv;
642 	struct mtd_info			*device;
643 	struct flash_platform_data	*pdata = spi->dev.platform_data;
644 	char				*otp_tag = "";
645 
646 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
647 	if (!priv)
648 		return -ENOMEM;
649 
650 	mutex_init(&priv->lock);
651 	priv->spi = spi;
652 	priv->page_size = pagesize;
653 	priv->page_offset = pageoffset;
654 
655 	/* name must be usable with cmdlinepart */
656 	sprintf(priv->name, "spi%d.%d-%s",
657 			spi->master->bus_num, spi->chip_select,
658 			name);
659 
660 	device = &priv->mtd;
661 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
662 	device->size = nr_pages * pagesize;
663 	device->erasesize = pagesize;
664 	device->writesize = pagesize;
665 	device->owner = THIS_MODULE;
666 	device->type = MTD_DATAFLASH;
667 	device->flags = MTD_WRITEABLE;
668 	device->erase = dataflash_erase;
669 	device->read = dataflash_read;
670 	device->write = dataflash_write;
671 	device->priv = priv;
672 
673 	if (revision >= 'c')
674 		otp_tag = otp_setup(device, revision);
675 
676 	dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
677 			name, (long long)((device->size + 1023) >> 10),
678 			pagesize, otp_tag);
679 	dev_set_drvdata(&spi->dev, priv);
680 
681 	if (mtd_has_partitions()) {
682 		struct mtd_partition	*parts;
683 		int			nr_parts = 0;
684 
685 #ifdef CONFIG_MTD_CMDLINE_PARTS
686 		static const char *part_probes[] = { "cmdlinepart", NULL, };
687 
688 		nr_parts = parse_mtd_partitions(device, part_probes, &parts, 0);
689 #endif
690 
691 		if (nr_parts <= 0 && pdata && pdata->parts) {
692 			parts = pdata->parts;
693 			nr_parts = pdata->nr_parts;
694 		}
695 
696 		if (nr_parts > 0) {
697 			priv->partitioned = 1;
698 			return add_mtd_partitions(device, parts, nr_parts);
699 		}
700 	} else if (pdata && pdata->nr_parts)
701 		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
702 				pdata->nr_parts, device->name);
703 
704 	return add_mtd_device(device) == 1 ? -ENODEV : 0;
705 }
706 
707 static inline int __devinit
add_dataflash(struct spi_device * spi,char * name,int nr_pages,int pagesize,int pageoffset)708 add_dataflash(struct spi_device *spi, char *name,
709 		int nr_pages, int pagesize, int pageoffset)
710 {
711 	return add_dataflash_otp(spi, name, nr_pages, pagesize,
712 			pageoffset, 0);
713 }
714 
715 struct flash_info {
716 	char		*name;
717 
718 	/* JEDEC id has a high byte of zero plus three data bytes:
719 	 * the manufacturer id, then a two byte device id.
720 	 */
721 	uint32_t	jedec_id;
722 
723 	/* The size listed here is what works with OP_ERASE_PAGE. */
724 	unsigned	nr_pages;
725 	uint16_t	pagesize;
726 	uint16_t	pageoffset;
727 
728 	uint16_t	flags;
729 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
730 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
731 };
732 
733 static struct flash_info __devinitdata dataflash_data [] = {
734 
735 	/*
736 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
737 	 * one with IS_POW2PS and the other without.  The entry with the
738 	 * non-2^N byte page size can't name exact chip revisions without
739 	 * losing backwards compatibility for cmdlinepart.
740 	 *
741 	 * These newer chips also support 128-byte security registers (with
742 	 * 64 bytes one-time-programmable) and software write-protection.
743 	 */
744 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
745 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
746 
747 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
748 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
749 
750 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
751 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
752 
753 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
754 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
755 
756 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
757 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
758 
759 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
760 
761 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
762 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
763 
764 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
765 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
766 };
767 
jedec_probe(struct spi_device * spi)768 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
769 {
770 	int			tmp;
771 	uint8_t			code = OP_READ_ID;
772 	uint8_t			id[3];
773 	uint32_t		jedec;
774 	struct flash_info	*info;
775 	int status;
776 
777 	/* JEDEC also defines an optional "extended device information"
778 	 * string for after vendor-specific data, after the three bytes
779 	 * we use here.  Supporting some chips might require using it.
780 	 *
781 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
782 	 * That's not an error; only rev C and newer chips handle it, and
783 	 * only Atmel sells these chips.
784 	 */
785 	tmp = spi_write_then_read(spi, &code, 1, id, 3);
786 	if (tmp < 0) {
787 		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
788 			dev_name(&spi->dev), tmp);
789 		return ERR_PTR(tmp);
790 	}
791 	if (id[0] != 0x1f)
792 		return NULL;
793 
794 	jedec = id[0];
795 	jedec = jedec << 8;
796 	jedec |= id[1];
797 	jedec = jedec << 8;
798 	jedec |= id[2];
799 
800 	for (tmp = 0, info = dataflash_data;
801 			tmp < ARRAY_SIZE(dataflash_data);
802 			tmp++, info++) {
803 		if (info->jedec_id == jedec) {
804 			DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
805 				dev_name(&spi->dev),
806 				(info->flags & SUP_POW2PS)
807 					? ", binary pagesize" : ""
808 				);
809 			if (info->flags & SUP_POW2PS) {
810 				status = dataflash_status(spi);
811 				if (status < 0) {
812 					DEBUG(MTD_DEBUG_LEVEL1,
813 						"%s: status error %d\n",
814 						dev_name(&spi->dev), status);
815 					return ERR_PTR(status);
816 				}
817 				if (status & 0x1) {
818 					if (info->flags & IS_POW2PS)
819 						return info;
820 				} else {
821 					if (!(info->flags & IS_POW2PS))
822 						return info;
823 				}
824 			} else
825 				return info;
826 		}
827 	}
828 
829 	/*
830 	 * Treat other chips as errors ... we won't know the right page
831 	 * size (it might be binary) even when we can tell which density
832 	 * class is involved (legacy chip id scheme).
833 	 */
834 	dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
835 	return ERR_PTR(-ENODEV);
836 }
837 
838 /*
839  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
840  * or else the ID code embedded in the status bits:
841  *
842  *   Device      Density         ID code          #Pages PageSize  Offset
843  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
844  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
845  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
846  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
847  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
848  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
849  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
850  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
851  */
dataflash_probe(struct spi_device * spi)852 static int __devinit dataflash_probe(struct spi_device *spi)
853 {
854 	int status;
855 	struct flash_info	*info;
856 
857 	/*
858 	 * Try to detect dataflash by JEDEC ID.
859 	 * If it succeeds we know we have either a C or D part.
860 	 * D will support power of 2 pagesize option.
861 	 * Both support the security register, though with different
862 	 * write procedures.
863 	 */
864 	info = jedec_probe(spi);
865 	if (IS_ERR(info))
866 		return PTR_ERR(info);
867 	if (info != NULL)
868 		return add_dataflash_otp(spi, info->name, info->nr_pages,
869 				info->pagesize, info->pageoffset,
870 				(info->flags & SUP_POW2PS) ? 'd' : 'c');
871 
872 	/*
873 	 * Older chips support only legacy commands, identifing
874 	 * capacity using bits in the status byte.
875 	 */
876 	status = dataflash_status(spi);
877 	if (status <= 0 || status == 0xff) {
878 		DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
879 				dev_name(&spi->dev), status);
880 		if (status == 0 || status == 0xff)
881 			status = -ENODEV;
882 		return status;
883 	}
884 
885 	/* if there's a device there, assume it's dataflash.
886 	 * board setup should have set spi->max_speed_max to
887 	 * match f(car) for continuous reads, mode 0 or 3.
888 	 */
889 	switch (status & 0x3c) {
890 	case 0x0c:	/* 0 0 1 1 x x */
891 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
892 		break;
893 	case 0x14:	/* 0 1 0 1 x x */
894 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
895 		break;
896 	case 0x1c:	/* 0 1 1 1 x x */
897 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
898 		break;
899 	case 0x24:	/* 1 0 0 1 x x */
900 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
901 		break;
902 	case 0x2c:	/* 1 0 1 1 x x */
903 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
904 		break;
905 	case 0x34:	/* 1 1 0 1 x x */
906 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
907 		break;
908 	case 0x38:	/* 1 1 1 x x x */
909 	case 0x3c:
910 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
911 		break;
912 	/* obsolete AT45DB1282 not (yet?) supported */
913 	default:
914 		DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
915 				dev_name(&spi->dev), status & 0x3c);
916 		status = -ENODEV;
917 	}
918 
919 	if (status < 0)
920 		DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
921 				dev_name(&spi->dev), status);
922 
923 	return status;
924 }
925 
dataflash_remove(struct spi_device * spi)926 static int __devexit dataflash_remove(struct spi_device *spi)
927 {
928 	struct dataflash	*flash = dev_get_drvdata(&spi->dev);
929 	int			status;
930 
931 	DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
932 
933 	if (mtd_has_partitions() && flash->partitioned)
934 		status = del_mtd_partitions(&flash->mtd);
935 	else
936 		status = del_mtd_device(&flash->mtd);
937 	if (status == 0)
938 		kfree(flash);
939 	return status;
940 }
941 
942 static struct spi_driver dataflash_driver = {
943 	.driver = {
944 		.name		= "mtd_dataflash",
945 		.bus		= &spi_bus_type,
946 		.owner		= THIS_MODULE,
947 	},
948 
949 	.probe		= dataflash_probe,
950 	.remove		= __devexit_p(dataflash_remove),
951 
952 	/* FIXME:  investigate suspend and resume... */
953 };
954 
dataflash_init(void)955 static int __init dataflash_init(void)
956 {
957 	return spi_register_driver(&dataflash_driver);
958 }
959 module_init(dataflash_init);
960 
dataflash_exit(void)961 static void __exit dataflash_exit(void)
962 {
963 	spi_unregister_driver(&dataflash_driver);
964 }
965 module_exit(dataflash_exit);
966 
967 
968 MODULE_LICENSE("GPL");
969 MODULE_AUTHOR("Andrew Victor, David Brownell");
970 MODULE_DESCRIPTION("MTD DataFlash driver");
971