• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://www.marvell.com/products/pcconn/88ALP01.jsp
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10 
11 #define DEBUG
12 
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <asm/io.h>
24 
25 #define CAFE_NAND_CTRL1		0x00
26 #define CAFE_NAND_CTRL2		0x04
27 #define CAFE_NAND_CTRL3		0x08
28 #define CAFE_NAND_STATUS	0x0c
29 #define CAFE_NAND_IRQ		0x10
30 #define CAFE_NAND_IRQ_MASK	0x14
31 #define CAFE_NAND_DATA_LEN	0x18
32 #define CAFE_NAND_ADDR1		0x1c
33 #define CAFE_NAND_ADDR2		0x20
34 #define CAFE_NAND_TIMING1	0x24
35 #define CAFE_NAND_TIMING2	0x28
36 #define CAFE_NAND_TIMING3	0x2c
37 #define CAFE_NAND_NONMEM	0x30
38 #define CAFE_NAND_ECC_RESULT	0x3C
39 #define CAFE_NAND_DMA_CTRL	0x40
40 #define CAFE_NAND_DMA_ADDR0	0x44
41 #define CAFE_NAND_DMA_ADDR1	0x48
42 #define CAFE_NAND_ECC_SYN01	0x50
43 #define CAFE_NAND_ECC_SYN23	0x54
44 #define CAFE_NAND_ECC_SYN45	0x58
45 #define CAFE_NAND_ECC_SYN67	0x5c
46 #define CAFE_NAND_READ_DATA	0x1000
47 #define CAFE_NAND_WRITE_DATA	0x2000
48 
49 #define CAFE_GLOBAL_CTRL	0x3004
50 #define CAFE_GLOBAL_IRQ		0x3008
51 #define CAFE_GLOBAL_IRQ_MASK	0x300c
52 #define CAFE_NAND_RESET		0x3034
53 
54 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
55 #define CTRL1_CHIPSELECT	(1<<19)
56 
57 struct cafe_priv {
58 	struct nand_chip nand;
59 	struct mtd_partition *parts;
60 	struct pci_dev *pdev;
61 	void __iomem *mmio;
62 	struct rs_control *rs;
63 	uint32_t ctl1;
64 	uint32_t ctl2;
65 	int datalen;
66 	int nr_data;
67 	int data_pos;
68 	int page_addr;
69 	dma_addr_t dmaaddr;
70 	unsigned char *dmabuf;
71 };
72 
73 static int usedma = 1;
74 module_param(usedma, int, 0644);
75 
76 static int skipbbt = 0;
77 module_param(skipbbt, int, 0644);
78 
79 static int debug = 0;
80 module_param(debug, int, 0644);
81 
82 static int regdebug = 0;
83 module_param(regdebug, int, 0644);
84 
85 static int checkecc = 1;
86 module_param(checkecc, int, 0644);
87 
88 static unsigned int numtimings;
89 static int timing[3];
90 module_param_array(timing, int, &numtimings, 0644);
91 
92 #ifdef CONFIG_MTD_PARTITIONS
93 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
94 #endif
95 
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98 
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
102 
cafe_device_ready(struct mtd_info * mtd)103 static int cafe_device_ready(struct mtd_info *mtd)
104 {
105 	struct cafe_priv *cafe = mtd->priv;
106 	int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
107 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108 
109 	cafe_writel(cafe, irqs, NAND_IRQ);
110 
111 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114 
115 	return result;
116 }
117 
118 
cafe_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)119 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
120 {
121 	struct cafe_priv *cafe = mtd->priv;
122 
123 	if (usedma)
124 		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
125 	else
126 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127 
128 	cafe->datalen += len;
129 
130 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131 		len, cafe->datalen);
132 }
133 
cafe_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)134 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
135 {
136 	struct cafe_priv *cafe = mtd->priv;
137 
138 	if (usedma)
139 		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
140 	else
141 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
142 
143 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144 		  len, cafe->datalen);
145 	cafe->datalen += len;
146 }
147 
cafe_read_byte(struct mtd_info * mtd)148 static uint8_t cafe_read_byte(struct mtd_info *mtd)
149 {
150 	struct cafe_priv *cafe = mtd->priv;
151 	uint8_t d;
152 
153 	cafe_read_buf(mtd, &d, 1);
154 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155 
156 	return d;
157 }
158 
cafe_nand_cmdfunc(struct mtd_info * mtd,unsigned command,int column,int page_addr)159 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
160 			      int column, int page_addr)
161 {
162 	struct cafe_priv *cafe = mtd->priv;
163 	int adrbytes = 0;
164 	uint32_t ctl1;
165 	uint32_t doneint = 0x80000000;
166 
167 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
168 		command, column, page_addr);
169 
170 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
171 		/* Second half of a command we already calculated */
172 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
173 		ctl1 = cafe->ctl1;
174 		cafe->ctl2 &= ~(1<<30);
175 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
176 			  cafe->ctl1, cafe->nr_data);
177 		goto do_command;
178 	}
179 	/* Reset ECC engine */
180 	cafe_writel(cafe, 0, NAND_CTRL2);
181 
182 	/* Emulate NAND_CMD_READOOB on large-page chips */
183 	if (mtd->writesize > 512 &&
184 	    command == NAND_CMD_READOOB) {
185 		column += mtd->writesize;
186 		command = NAND_CMD_READ0;
187 	}
188 
189 	/* FIXME: Do we need to send read command before sending data
190 	   for small-page chips, to position the buffer correctly? */
191 
192 	if (column != -1) {
193 		cafe_writel(cafe, column, NAND_ADDR1);
194 		adrbytes = 2;
195 		if (page_addr != -1)
196 			goto write_adr2;
197 	} else if (page_addr != -1) {
198 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
199 		page_addr >>= 16;
200 	write_adr2:
201 		cafe_writel(cafe, page_addr, NAND_ADDR2);
202 		adrbytes += 2;
203 		if (mtd->size > mtd->writesize << 16)
204 			adrbytes++;
205 	}
206 
207 	cafe->data_pos = cafe->datalen = 0;
208 
209 	/* Set command valid bit, mask in the chip select bit  */
210 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
211 
212 	/* Set RD or WR bits as appropriate */
213 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
214 		ctl1 |= (1<<26); /* rd */
215 		/* Always 5 bytes, for now */
216 		cafe->datalen = 4;
217 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
218 		adrbytes = 1;
219 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
220 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
221 		ctl1 |= 1<<26; /* rd */
222 		/* For now, assume just read to end of page */
223 		cafe->datalen = mtd->writesize + mtd->oobsize - column;
224 	} else if (command == NAND_CMD_SEQIN)
225 		ctl1 |= 1<<25; /* wr */
226 
227 	/* Set number of address bytes */
228 	if (adrbytes)
229 		ctl1 |= ((adrbytes-1)|8) << 27;
230 
231 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
232 		/* Ignore the first command of a pair; the hardware
233 		   deals with them both at once, later */
234 		cafe->ctl1 = ctl1;
235 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
236 			  cafe->ctl1, cafe->datalen);
237 		return;
238 	}
239 	/* RNDOUT and READ0 commands need a following byte */
240 	if (command == NAND_CMD_RNDOUT)
241 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
242 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
243 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
244 
245  do_command:
246 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
247 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
248 
249 	/* NB: The datasheet lies -- we really should be subtracting 1 here */
250 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
251 	cafe_writel(cafe, 0x90000000, NAND_IRQ);
252 	if (usedma && (ctl1 & (3<<25))) {
253 		uint32_t dmactl = 0xc0000000 + cafe->datalen;
254 		/* If WR or RD bits set, set up DMA */
255 		if (ctl1 & (1<<26)) {
256 			/* It's a read */
257 			dmactl |= (1<<29);
258 			/* ... so it's done when the DMA is done, not just
259 			   the command. */
260 			doneint = 0x10000000;
261 		}
262 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
263 	}
264 	cafe->datalen = 0;
265 
266 	if (unlikely(regdebug)) {
267 		int i;
268 		printk("About to write command %08x to register 0\n", ctl1);
269 		for (i=4; i< 0x5c; i+=4)
270 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
271 	}
272 
273 	cafe_writel(cafe, ctl1, NAND_CTRL1);
274 	/* Apply this short delay always to ensure that we do wait tWB in
275 	 * any case on any machine. */
276 	ndelay(100);
277 
278 	if (1) {
279 		int c;
280 		uint32_t irqs;
281 
282 		for (c = 500000; c != 0; c--) {
283 			irqs = cafe_readl(cafe, NAND_IRQ);
284 			if (irqs & doneint)
285 				break;
286 			udelay(1);
287 			if (!(c % 100000))
288 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
289 			cpu_relax();
290 		}
291 		cafe_writel(cafe, doneint, NAND_IRQ);
292 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
293 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
294 	}
295 
296 	WARN_ON(cafe->ctl2 & (1<<30));
297 
298 	switch (command) {
299 
300 	case NAND_CMD_CACHEDPROG:
301 	case NAND_CMD_PAGEPROG:
302 	case NAND_CMD_ERASE1:
303 	case NAND_CMD_ERASE2:
304 	case NAND_CMD_SEQIN:
305 	case NAND_CMD_RNDIN:
306 	case NAND_CMD_STATUS:
307 	case NAND_CMD_DEPLETE1:
308 	case NAND_CMD_RNDOUT:
309 	case NAND_CMD_STATUS_ERROR:
310 	case NAND_CMD_STATUS_ERROR0:
311 	case NAND_CMD_STATUS_ERROR1:
312 	case NAND_CMD_STATUS_ERROR2:
313 	case NAND_CMD_STATUS_ERROR3:
314 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
315 		return;
316 	}
317 	nand_wait_ready(mtd);
318 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
319 }
320 
cafe_select_chip(struct mtd_info * mtd,int chipnr)321 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
322 {
323 	struct cafe_priv *cafe = mtd->priv;
324 
325 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
326 
327 	/* Mask the appropriate bit into the stored value of ctl1
328 	   which will be used by cafe_nand_cmdfunc() */
329 	if (chipnr)
330 		cafe->ctl1 |= CTRL1_CHIPSELECT;
331 	else
332 		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
333 }
334 
cafe_nand_interrupt(int irq,void * id)335 static int cafe_nand_interrupt(int irq, void *id)
336 {
337 	struct mtd_info *mtd = id;
338 	struct cafe_priv *cafe = mtd->priv;
339 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
340 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
341 	if (!irqs)
342 		return IRQ_NONE;
343 
344 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
345 	return IRQ_HANDLED;
346 }
347 
cafe_nand_bug(struct mtd_info * mtd)348 static void cafe_nand_bug(struct mtd_info *mtd)
349 {
350 	BUG();
351 }
352 
cafe_nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)353 static int cafe_nand_write_oob(struct mtd_info *mtd,
354 			       struct nand_chip *chip, int page)
355 {
356 	int status = 0;
357 
358 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
359 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
360 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
361 	status = chip->waitfunc(mtd, chip);
362 
363 	return status & NAND_STATUS_FAIL ? -EIO : 0;
364 }
365 
366 /* Don't use -- use nand_read_oob_std for now */
cafe_nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)367 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
368 			      int page, int sndcmd)
369 {
370 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
371 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372 	return 1;
373 }
374 /**
375  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
376  * @mtd:	mtd info structure
377  * @chip:	nand chip info structure
378  * @buf:	buffer to store read data
379  *
380  * The hw generator calculates the error syndrome automatically. Therefor
381  * we need a special oob layout and handling.
382  */
cafe_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf)383 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
384 			       uint8_t *buf)
385 {
386 	struct cafe_priv *cafe = mtd->priv;
387 
388 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
389 		     cafe_readl(cafe, NAND_ECC_RESULT),
390 		     cafe_readl(cafe, NAND_ECC_SYN01));
391 
392 	chip->read_buf(mtd, buf, mtd->writesize);
393 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
394 
395 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
396 		unsigned short syn[8], pat[4];
397 		int pos[4];
398 		u8 *oob = chip->oob_poi;
399 		int i, n;
400 
401 		for (i=0; i<8; i+=2) {
402 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
403 			syn[i] = cafe->rs->index_of[tmp & 0xfff];
404 			syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
405 		}
406 
407 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
408 		                pat);
409 
410 		for (i = 0; i < n; i++) {
411 			int p = pos[i];
412 
413 			/* The 12-bit symbols are mapped to bytes here */
414 
415 			if (p > 1374) {
416 				/* out of range */
417 				n = -1374;
418 			} else if (p == 0) {
419 				/* high four bits do not correspond to data */
420 				if (pat[i] > 0xff)
421 					n = -2048;
422 				else
423 					buf[0] ^= pat[i];
424 			} else if (p == 1365) {
425 				buf[2047] ^= pat[i] >> 4;
426 				oob[0] ^= pat[i] << 4;
427 			} else if (p > 1365) {
428 				if ((p & 1) == 1) {
429 					oob[3*p/2 - 2048] ^= pat[i] >> 4;
430 					oob[3*p/2 - 2047] ^= pat[i] << 4;
431 				} else {
432 					oob[3*p/2 - 2049] ^= pat[i] >> 8;
433 					oob[3*p/2 - 2048] ^= pat[i];
434 				}
435 			} else if ((p & 1) == 1) {
436 				buf[3*p/2] ^= pat[i] >> 4;
437 				buf[3*p/2 + 1] ^= pat[i] << 4;
438 			} else {
439 				buf[3*p/2 - 1] ^= pat[i] >> 8;
440 				buf[3*p/2] ^= pat[i];
441 			}
442 		}
443 
444 		if (n < 0) {
445 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
446 				cafe_readl(cafe, NAND_ADDR2) * 2048);
447 			for (i = 0; i < 0x5c; i += 4)
448 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
449 			mtd->ecc_stats.failed++;
450 		} else {
451 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
452 			mtd->ecc_stats.corrected += n;
453 		}
454 	}
455 
456 	return 0;
457 }
458 
459 static struct nand_ecclayout cafe_oobinfo_2048 = {
460 	.eccbytes = 14,
461 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
462 	.oobfree = {{14, 50}}
463 };
464 
465 /* Ick. The BBT code really ought to be able to work this bit out
466    for itself from the above, at least for the 2KiB case */
467 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
468 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
469 
470 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
471 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
472 
473 
474 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
475 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
476 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
477 	.offs =	14,
478 	.len = 4,
479 	.veroffs = 18,
480 	.maxblocks = 4,
481 	.pattern = cafe_bbt_pattern_2048
482 };
483 
484 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
485 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
486 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
487 	.offs =	14,
488 	.len = 4,
489 	.veroffs = 18,
490 	.maxblocks = 4,
491 	.pattern = cafe_mirror_pattern_2048
492 };
493 
494 static struct nand_ecclayout cafe_oobinfo_512 = {
495 	.eccbytes = 14,
496 	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
497 	.oobfree = {{14, 2}}
498 };
499 
500 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
501 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
502 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
503 	.offs =	14,
504 	.len = 1,
505 	.veroffs = 15,
506 	.maxblocks = 4,
507 	.pattern = cafe_bbt_pattern_512
508 };
509 
510 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
511 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
512 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
513 	.offs =	14,
514 	.len = 1,
515 	.veroffs = 15,
516 	.maxblocks = 4,
517 	.pattern = cafe_mirror_pattern_512
518 };
519 
520 
cafe_nand_write_page_lowlevel(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)521 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
522 					  struct nand_chip *chip, const uint8_t *buf)
523 {
524 	struct cafe_priv *cafe = mtd->priv;
525 
526 	chip->write_buf(mtd, buf, mtd->writesize);
527 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
528 
529 	/* Set up ECC autogeneration */
530 	cafe->ctl2 |= (1<<30);
531 }
532 
cafe_nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int page,int cached,int raw)533 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
534 				const uint8_t *buf, int page, int cached, int raw)
535 {
536 	int status;
537 
538 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
539 
540 	if (unlikely(raw))
541 		chip->ecc.write_page_raw(mtd, chip, buf);
542 	else
543 		chip->ecc.write_page(mtd, chip, buf);
544 
545 	/*
546 	 * Cached progamming disabled for now, Not sure if its worth the
547 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
548 	 */
549 	cached = 0;
550 
551 	if (!cached || !(chip->options & NAND_CACHEPRG)) {
552 
553 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
554 		status = chip->waitfunc(mtd, chip);
555 		/*
556 		 * See if operation failed and additional status checks are
557 		 * available
558 		 */
559 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
560 			status = chip->errstat(mtd, chip, FL_WRITING, status,
561 					       page);
562 
563 		if (status & NAND_STATUS_FAIL)
564 			return -EIO;
565 	} else {
566 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
567 		status = chip->waitfunc(mtd, chip);
568 	}
569 
570 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
571 	/* Send command to read back the data */
572 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
573 
574 	if (chip->verify_buf(mtd, buf, mtd->writesize))
575 		return -EIO;
576 #endif
577 	return 0;
578 }
579 
cafe_nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)580 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
581 {
582 	return 0;
583 }
584 
585 /* F_2[X]/(X**6+X+1)  */
gf64_mul(u8 a,u8 b)586 static unsigned short __devinit gf64_mul(u8 a, u8 b)
587 {
588 	u8 c;
589 	unsigned int i;
590 
591 	c = 0;
592 	for (i = 0; i < 6; i++) {
593 		if (a & 1)
594 			c ^= b;
595 		a >>= 1;
596 		b <<= 1;
597 		if ((b & 0x40) != 0)
598 			b ^= 0x43;
599 	}
600 
601 	return c;
602 }
603 
604 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
gf4096_mul(u16 a,u16 b)605 static u16 __devinit gf4096_mul(u16 a, u16 b)
606 {
607 	u8 ah, al, bh, bl, ch, cl;
608 
609 	ah = a >> 6;
610 	al = a & 0x3f;
611 	bh = b >> 6;
612 	bl = b & 0x3f;
613 
614 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
615 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
616 
617 	return (ch << 6) ^ cl;
618 }
619 
cafe_mul(int x)620 static int __devinit cafe_mul(int x)
621 {
622 	if (x == 0)
623 		return 1;
624 	return gf4096_mul(x, 0xe01);
625 }
626 
cafe_nand_probe(struct pci_dev * pdev,const struct pci_device_id * ent)627 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
628 				     const struct pci_device_id *ent)
629 {
630 	struct mtd_info *mtd;
631 	struct cafe_priv *cafe;
632 	uint32_t ctrl;
633 	int err = 0;
634 #ifdef CONFIG_MTD_PARTITIONS
635 	struct mtd_partition *parts;
636 	int nr_parts;
637 #endif
638 
639 	/* Very old versions shared the same PCI ident for all three
640 	   functions on the chip. Verify the class too... */
641 	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
642 		return -ENODEV;
643 
644 	err = pci_enable_device(pdev);
645 	if (err)
646 		return err;
647 
648 	pci_set_master(pdev);
649 
650 	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
651 	if (!mtd) {
652 		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
653 		return  -ENOMEM;
654 	}
655 	cafe = (void *)(&mtd[1]);
656 
657 	mtd->priv = cafe;
658 	mtd->owner = THIS_MODULE;
659 
660 	cafe->pdev = pdev;
661 	cafe->mmio = pci_iomap(pdev, 0, 0);
662 	if (!cafe->mmio) {
663 		dev_warn(&pdev->dev, "failed to iomap\n");
664 		err = -ENOMEM;
665 		goto out_free_mtd;
666 	}
667 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
668 					  &cafe->dmaaddr, GFP_KERNEL);
669 	if (!cafe->dmabuf) {
670 		err = -ENOMEM;
671 		goto out_ior;
672 	}
673 	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
674 
675 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
676 	if (!cafe->rs) {
677 		err = -ENOMEM;
678 		goto out_ior;
679 	}
680 
681 	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
682 	cafe->nand.dev_ready = cafe_device_ready;
683 	cafe->nand.read_byte = cafe_read_byte;
684 	cafe->nand.read_buf = cafe_read_buf;
685 	cafe->nand.write_buf = cafe_write_buf;
686 	cafe->nand.select_chip = cafe_select_chip;
687 
688 	cafe->nand.chip_delay = 0;
689 
690 	/* Enable the following for a flash based bad block table */
691 	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
692 
693 	if (skipbbt) {
694 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
695 		cafe->nand.block_bad = cafe_nand_block_bad;
696 	}
697 
698 	if (numtimings && numtimings != 3) {
699 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
700 	}
701 
702 	if (numtimings == 3) {
703 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
704 			     timing[0], timing[1], timing[2]);
705 	} else {
706 		timing[0] = cafe_readl(cafe, NAND_TIMING1);
707 		timing[1] = cafe_readl(cafe, NAND_TIMING2);
708 		timing[2] = cafe_readl(cafe, NAND_TIMING3);
709 
710 		if (timing[0] | timing[1] | timing[2]) {
711 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
712 				     timing[0], timing[1], timing[2]);
713 		} else {
714 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
715 			timing[0] = timing[1] = timing[2] = 0xffffffff;
716 		}
717 	}
718 
719 	/* Start off by resetting the NAND controller completely */
720 	cafe_writel(cafe, 1, NAND_RESET);
721 	cafe_writel(cafe, 0, NAND_RESET);
722 
723 	cafe_writel(cafe, timing[0], NAND_TIMING1);
724 	cafe_writel(cafe, timing[1], NAND_TIMING2);
725 	cafe_writel(cafe, timing[2], NAND_TIMING3);
726 
727 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
728 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
729 			  "CAFE NAND", mtd);
730 	if (err) {
731 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
732 		goto out_free_dma;
733 	}
734 
735 	/* Disable master reset, enable NAND clock */
736 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
737 	ctrl &= 0xffffeff0;
738 	ctrl |= 0x00007000;
739 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
740 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
741 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
742 
743 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
744 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
745 
746 	/* Set up DMA address */
747 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
748 	if (sizeof(cafe->dmaaddr) > 4)
749 		/* Shift in two parts to shut the compiler up */
750 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
751 	else
752 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
753 
754 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
755 		cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
756 
757 	/* Enable NAND IRQ in global IRQ mask register */
758 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
759 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
760 		cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
761 
762 	/* Scan to find existence of the device */
763 	if (nand_scan_ident(mtd, 2)) {
764 		err = -ENXIO;
765 		goto out_irq;
766 	}
767 
768 	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
769 	if (mtd->writesize == 2048)
770 		cafe->ctl2 |= 1<<29; /* 2KiB page size */
771 
772 	/* Set up ECC according to the type of chip we found */
773 	if (mtd->writesize == 2048) {
774 		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
775 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
776 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
777 	} else if (mtd->writesize == 512) {
778 		cafe->nand.ecc.layout = &cafe_oobinfo_512;
779 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
780 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
781 	} else {
782 		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
783 		       mtd->writesize);
784 		goto out_irq;
785 	}
786 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
787 	cafe->nand.ecc.size = mtd->writesize;
788 	cafe->nand.ecc.bytes = 14;
789 	cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
790 	cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
791 	cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
792 	cafe->nand.write_page = cafe_nand_write_page;
793 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
794 	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
795 	cafe->nand.ecc.read_page = cafe_nand_read_page;
796 	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
797 
798 	err = nand_scan_tail(mtd);
799 	if (err)
800 		goto out_irq;
801 
802 	pci_set_drvdata(pdev, mtd);
803 
804 	/* We register the whole device first, separate from the partitions */
805 	add_mtd_device(mtd);
806 
807 #ifdef CONFIG_MTD_PARTITIONS
808 #ifdef CONFIG_MTD_CMDLINE_PARTS
809 	mtd->name = "cafe_nand";
810 #endif
811 	nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
812 	if (nr_parts > 0) {
813 		cafe->parts = parts;
814 		dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
815 		add_mtd_partitions(mtd, parts, nr_parts);
816 	}
817 #endif
818 	goto out;
819 
820  out_irq:
821 	/* Disable NAND IRQ in global IRQ mask register */
822 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
823 	free_irq(pdev->irq, mtd);
824  out_free_dma:
825 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
826  out_ior:
827 	pci_iounmap(pdev, cafe->mmio);
828  out_free_mtd:
829 	kfree(mtd);
830  out:
831 	return err;
832 }
833 
cafe_nand_remove(struct pci_dev * pdev)834 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
835 {
836 	struct mtd_info *mtd = pci_get_drvdata(pdev);
837 	struct cafe_priv *cafe = mtd->priv;
838 
839 	del_mtd_device(mtd);
840 	/* Disable NAND IRQ in global IRQ mask register */
841 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
842 	free_irq(pdev->irq, mtd);
843 	nand_release(mtd);
844 	free_rs(cafe->rs);
845 	pci_iounmap(pdev, cafe->mmio);
846 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
847 	kfree(mtd);
848 }
849 
850 static struct pci_device_id cafe_nand_tbl[] = {
851 	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
852 	  PCI_ANY_ID, PCI_ANY_ID },
853 	{ }
854 };
855 
856 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
857 
cafe_nand_resume(struct pci_dev * pdev)858 static int cafe_nand_resume(struct pci_dev *pdev)
859 {
860 	uint32_t ctrl;
861 	struct mtd_info *mtd = pci_get_drvdata(pdev);
862 	struct cafe_priv *cafe = mtd->priv;
863 
864        /* Start off by resetting the NAND controller completely */
865 	cafe_writel(cafe, 1, NAND_RESET);
866 	cafe_writel(cafe, 0, NAND_RESET);
867 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
868 
869 	/* Restore timing configuration */
870 	cafe_writel(cafe, timing[0], NAND_TIMING1);
871 	cafe_writel(cafe, timing[1], NAND_TIMING2);
872 	cafe_writel(cafe, timing[2], NAND_TIMING3);
873 
874         /* Disable master reset, enable NAND clock */
875 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
876 	ctrl &= 0xffffeff0;
877 	ctrl |= 0x00007000;
878 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
879 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
880 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
881 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
882 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
883 
884 	/* Set up DMA address */
885 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
886 	if (sizeof(cafe->dmaaddr) > 4)
887 	/* Shift in two parts to shut the compiler up */
888 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
889 	else
890 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
891 
892 	/* Enable NAND IRQ in global IRQ mask register */
893 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
894 	return 0;
895 }
896 
897 static struct pci_driver cafe_nand_pci_driver = {
898 	.name = "CAFÉ NAND",
899 	.id_table = cafe_nand_tbl,
900 	.probe = cafe_nand_probe,
901 	.remove = __devexit_p(cafe_nand_remove),
902 	.resume = cafe_nand_resume,
903 };
904 
cafe_nand_init(void)905 static int cafe_nand_init(void)
906 {
907 	return pci_register_driver(&cafe_nand_pci_driver);
908 }
909 
cafe_nand_exit(void)910 static void cafe_nand_exit(void)
911 {
912 	pci_unregister_driver(&cafe_nand_pci_driver);
913 }
914 module_init(cafe_nand_init);
915 module_exit(cafe_nand_exit);
916 
917 MODULE_LICENSE("GPL");
918 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
919 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
920