• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
40 
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44 
45 struct fsl_elbc_ctrl;
46 
47 /* mtd information per set */
48 
49 struct fsl_elbc_mtd {
50 	struct mtd_info mtd;
51 	struct nand_chip chip;
52 	struct fsl_elbc_ctrl *ctrl;
53 
54 	struct device *dev;
55 	int bank;               /* Chip select bank number           */
56 	u8 __iomem *vbase;      /* Chip select base virtual address  */
57 	int page_size;          /* NAND page size (0=512, 1=2048)    */
58 	unsigned int fmr;       /* FCM Flash Mode Register value     */
59 };
60 
61 /* overview of the fsl elbc controller */
62 
63 struct fsl_elbc_ctrl {
64 	struct nand_hw_control controller;
65 	struct fsl_elbc_mtd *chips[MAX_BANKS];
66 
67 	/* device info */
68 	struct device *dev;
69 	struct fsl_lbc_regs __iomem *regs;
70 	int irq;
71 	wait_queue_head_t irq_wait;
72 	unsigned int irq_status; /* status read from LTESR by irq handler */
73 	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
74 	unsigned int page;       /* Last page written to / read from      */
75 	unsigned int read_bytes; /* Number of bytes read during command   */
76 	unsigned int column;     /* Saved column from SEQIN               */
77 	unsigned int index;      /* Pointer to next byte to 'read'        */
78 	unsigned int status;     /* status read from LTESR after last op  */
79 	unsigned int mdr;        /* UPM/FCM Data Register value           */
80 	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
81 	unsigned int oob;        /* Non zero if operating on OOB data     */
82 	char *oob_poi;           /* Place to write ECC after read back    */
83 };
84 
85 /* These map to the positions used by the FCM hardware ECC generator */
86 
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89 	.eccbytes = 3,
90 	.eccpos = {6, 7, 8},
91 	.oobfree = { {0, 5}, {9, 7} },
92 };
93 
94 /* Small Page FLASH with FMR[ECCM] = 1 */
95 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
96 	.eccbytes = 3,
97 	.eccpos = {8, 9, 10},
98 	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
99 };
100 
101 /* Large Page FLASH with FMR[ECCM] = 0 */
102 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
103 	.eccbytes = 12,
104 	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
105 	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
106 };
107 
108 /* Large Page FLASH with FMR[ECCM] = 1 */
109 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
110 	.eccbytes = 12,
111 	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
112 	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
113 };
114 
115 /*
116  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
117  * 1, so we have to adjust bad block pattern. This pattern should be used for
118  * x8 chips only. So far hardware does not support x16 chips anyway.
119  */
120 static u8 scan_ff_pattern[] = { 0xff, };
121 
122 static struct nand_bbt_descr largepage_memorybased = {
123 	.options = 0,
124 	.offs = 0,
125 	.len = 1,
126 	.pattern = scan_ff_pattern,
127 };
128 
129 /*
130  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
131  * interfere with ECC positions, that's why we implement our own descriptors.
132  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
133  */
134 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
135 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
136 
137 static struct nand_bbt_descr bbt_main_descr = {
138 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
139 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
140 	.offs =	11,
141 	.len = 4,
142 	.veroffs = 15,
143 	.maxblocks = 4,
144 	.pattern = bbt_pattern,
145 };
146 
147 static struct nand_bbt_descr bbt_mirror_descr = {
148 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
149 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
150 	.offs =	11,
151 	.len = 4,
152 	.veroffs = 15,
153 	.maxblocks = 4,
154 	.pattern = mirror_pattern,
155 };
156 
157 /*=================================*/
158 
159 /*
160  * Set up the FCM hardware block and page address fields, and the fcm
161  * structure addr field to point to the correct FCM buffer in memory
162  */
set_addr(struct mtd_info * mtd,int column,int page_addr,int oob)163 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
164 {
165 	struct nand_chip *chip = mtd->priv;
166 	struct fsl_elbc_mtd *priv = chip->priv;
167 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
168 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
169 	int buf_num;
170 
171 	ctrl->page = page_addr;
172 
173 	out_be32(&lbc->fbar,
174 	         page_addr >> (chip->phys_erase_shift - chip->page_shift));
175 
176 	if (priv->page_size) {
177 		out_be32(&lbc->fpar,
178 		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
179 		         (oob ? FPAR_LP_MS : 0) | column);
180 		buf_num = (page_addr & 1) << 2;
181 	} else {
182 		out_be32(&lbc->fpar,
183 		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
184 		         (oob ? FPAR_SP_MS : 0) | column);
185 		buf_num = page_addr & 7;
186 	}
187 
188 	ctrl->addr = priv->vbase + buf_num * 1024;
189 	ctrl->index = column;
190 
191 	/* for OOB data point to the second half of the buffer */
192 	if (oob)
193 		ctrl->index += priv->page_size ? 2048 : 512;
194 
195 	dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
196 	                    "index %x, pes %d ps %d\n",
197 	         buf_num, ctrl->addr, priv->vbase, ctrl->index,
198 	         chip->phys_erase_shift, chip->page_shift);
199 }
200 
201 /*
202  * execute FCM command and wait for it to complete
203  */
fsl_elbc_run_command(struct mtd_info * mtd)204 static int fsl_elbc_run_command(struct mtd_info *mtd)
205 {
206 	struct nand_chip *chip = mtd->priv;
207 	struct fsl_elbc_mtd *priv = chip->priv;
208 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
209 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
210 
211 	/* Setup the FMR[OP] to execute without write protection */
212 	out_be32(&lbc->fmr, priv->fmr | 3);
213 	if (ctrl->use_mdr)
214 		out_be32(&lbc->mdr, ctrl->mdr);
215 
216 	dev_vdbg(ctrl->dev,
217 	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
218 	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
219 	dev_vdbg(ctrl->dev,
220 	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
221 	         "fbcr=%08x bank=%d\n",
222 	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
223 	         in_be32(&lbc->fbcr), priv->bank);
224 
225 	ctrl->irq_status = 0;
226 	/* execute special operation */
227 	out_be32(&lbc->lsor, priv->bank);
228 
229 	/* wait for FCM complete flag or timeout */
230 	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
231 	                   FCM_TIMEOUT_MSECS * HZ/1000);
232 	ctrl->status = ctrl->irq_status;
233 
234 	/* store mdr value in case it was needed */
235 	if (ctrl->use_mdr)
236 		ctrl->mdr = in_be32(&lbc->mdr);
237 
238 	ctrl->use_mdr = 0;
239 
240 	dev_vdbg(ctrl->dev,
241 	         "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
242 	         ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
243 
244 	/* returns 0 on success otherwise non-zero) */
245 	return ctrl->status == LTESR_CC ? 0 : -EIO;
246 }
247 
fsl_elbc_do_read(struct nand_chip * chip,int oob)248 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
249 {
250 	struct fsl_elbc_mtd *priv = chip->priv;
251 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
252 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
253 
254 	if (priv->page_size) {
255 		out_be32(&lbc->fir,
256 		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
257 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
258 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
259 		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
260 		         (FIR_OP_RBW << FIR_OP4_SHIFT));
261 
262 		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
263 		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
264 	} else {
265 		out_be32(&lbc->fir,
266 		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
267 		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
268 		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
269 		         (FIR_OP_RBW << FIR_OP3_SHIFT));
270 
271 		if (oob)
272 			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
273 		else
274 			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
275 	}
276 }
277 
278 /* cmdfunc send commands to the FCM */
fsl_elbc_cmdfunc(struct mtd_info * mtd,unsigned int command,int column,int page_addr)279 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
280                              int column, int page_addr)
281 {
282 	struct nand_chip *chip = mtd->priv;
283 	struct fsl_elbc_mtd *priv = chip->priv;
284 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
285 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
286 
287 	ctrl->use_mdr = 0;
288 
289 	/* clear the read buffer */
290 	ctrl->read_bytes = 0;
291 	if (command != NAND_CMD_PAGEPROG)
292 		ctrl->index = 0;
293 
294 	switch (command) {
295 	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
296 	case NAND_CMD_READ1:
297 		column += 256;
298 
299 	/* fall-through */
300 	case NAND_CMD_READ0:
301 		dev_dbg(ctrl->dev,
302 		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
303 		        " 0x%x, column: 0x%x.\n", page_addr, column);
304 
305 
306 		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
307 		set_addr(mtd, 0, page_addr, 0);
308 
309 		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
310 		ctrl->index += column;
311 
312 		fsl_elbc_do_read(chip, 0);
313 		fsl_elbc_run_command(mtd);
314 		return;
315 
316 	/* READOOB reads only the OOB because no ECC is performed. */
317 	case NAND_CMD_READOOB:
318 		dev_vdbg(ctrl->dev,
319 		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
320 			 " 0x%x, column: 0x%x.\n", page_addr, column);
321 
322 		out_be32(&lbc->fbcr, mtd->oobsize - column);
323 		set_addr(mtd, column, page_addr, 1);
324 
325 		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
326 
327 		fsl_elbc_do_read(chip, 1);
328 		fsl_elbc_run_command(mtd);
329 		return;
330 
331 	/* READID must read all 5 possible bytes while CEB is active */
332 	case NAND_CMD_READID:
333 		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
334 
335 		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
336 		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
337 		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
338 		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
339 		/* 5 bytes for manuf, device and exts */
340 		out_be32(&lbc->fbcr, 5);
341 		ctrl->read_bytes = 5;
342 		ctrl->use_mdr = 1;
343 		ctrl->mdr = 0;
344 
345 		set_addr(mtd, 0, 0, 0);
346 		fsl_elbc_run_command(mtd);
347 		return;
348 
349 	/* ERASE1 stores the block and page address */
350 	case NAND_CMD_ERASE1:
351 		dev_vdbg(ctrl->dev,
352 		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
353 		         "page_addr: 0x%x.\n", page_addr);
354 		set_addr(mtd, 0, page_addr, 0);
355 		return;
356 
357 	/* ERASE2 uses the block and page address from ERASE1 */
358 	case NAND_CMD_ERASE2:
359 		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
360 
361 		out_be32(&lbc->fir,
362 		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
363 		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
364 		         (FIR_OP_CM1 << FIR_OP2_SHIFT));
365 
366 		out_be32(&lbc->fcr,
367 		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
368 		         (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
369 
370 		out_be32(&lbc->fbcr, 0);
371 		ctrl->read_bytes = 0;
372 
373 		fsl_elbc_run_command(mtd);
374 		return;
375 
376 	/* SEQIN sets up the addr buffer and all registers except the length */
377 	case NAND_CMD_SEQIN: {
378 		__be32 fcr;
379 		dev_vdbg(ctrl->dev,
380 		         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
381 		         "page_addr: 0x%x, column: 0x%x.\n",
382 		         page_addr, column);
383 
384 		ctrl->column = column;
385 		ctrl->oob = 0;
386 
387 		if (priv->page_size) {
388 			fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
389 			      (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
390 
391 			out_be32(&lbc->fir,
392 			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
393 			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
394 			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
395 			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
396 			         (FIR_OP_CW1 << FIR_OP4_SHIFT));
397 		} else {
398 			fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
399 			      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
400 
401 			out_be32(&lbc->fir,
402 			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
403 			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
404 			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
405 			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
406 			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
407 			         (FIR_OP_CW1 << FIR_OP5_SHIFT));
408 
409 			if (column >= mtd->writesize) {
410 				/* OOB area --> READOOB */
411 				column -= mtd->writesize;
412 				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
413 				ctrl->oob = 1;
414 			} else if (column < 256) {
415 				/* First 256 bytes --> READ0 */
416 				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
417 			} else {
418 				/* Second 256 bytes --> READ1 */
419 				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
420 			}
421 		}
422 
423 		out_be32(&lbc->fcr, fcr);
424 		set_addr(mtd, column, page_addr, ctrl->oob);
425 		return;
426 	}
427 
428 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
429 	case NAND_CMD_PAGEPROG: {
430 		int full_page;
431 		dev_vdbg(ctrl->dev,
432 		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
433 		         "writing %d bytes.\n", ctrl->index);
434 
435 		/* if the write did not start at 0 or is not a full page
436 		 * then set the exact length, otherwise use a full page
437 		 * write so the HW generates the ECC.
438 		 */
439 		if (ctrl->oob || ctrl->column != 0 ||
440 		    ctrl->index != mtd->writesize + mtd->oobsize) {
441 			out_be32(&lbc->fbcr, ctrl->index);
442 			full_page = 0;
443 		} else {
444 			out_be32(&lbc->fbcr, 0);
445 			full_page = 1;
446 		}
447 
448 		fsl_elbc_run_command(mtd);
449 
450 		/* Read back the page in order to fill in the ECC for the
451 		 * caller.  Is this really needed?
452 		 */
453 		if (full_page && ctrl->oob_poi) {
454 			out_be32(&lbc->fbcr, 3);
455 			set_addr(mtd, 6, page_addr, 1);
456 
457 			ctrl->read_bytes = mtd->writesize + 9;
458 
459 			fsl_elbc_do_read(chip, 1);
460 			fsl_elbc_run_command(mtd);
461 
462 			memcpy_fromio(ctrl->oob_poi + 6,
463 			              &ctrl->addr[ctrl->index], 3);
464 			ctrl->index += 3;
465 		}
466 
467 		ctrl->oob_poi = NULL;
468 		return;
469 	}
470 
471 	/* CMD_STATUS must read the status byte while CEB is active */
472 	/* Note - it does not wait for the ready line */
473 	case NAND_CMD_STATUS:
474 		out_be32(&lbc->fir,
475 		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
476 		         (FIR_OP_RBW << FIR_OP1_SHIFT));
477 		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
478 		out_be32(&lbc->fbcr, 1);
479 		set_addr(mtd, 0, 0, 0);
480 		ctrl->read_bytes = 1;
481 
482 		fsl_elbc_run_command(mtd);
483 
484 		/* The chip always seems to report that it is
485 		 * write-protected, even when it is not.
486 		 */
487 		setbits8(ctrl->addr, NAND_STATUS_WP);
488 		return;
489 
490 	/* RESET without waiting for the ready line */
491 	case NAND_CMD_RESET:
492 		dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
493 		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
494 		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
495 		fsl_elbc_run_command(mtd);
496 		return;
497 
498 	default:
499 		dev_err(ctrl->dev,
500 		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
501 		        command);
502 	}
503 }
504 
fsl_elbc_select_chip(struct mtd_info * mtd,int chip)505 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
506 {
507 	/* The hardware does not seem to support multiple
508 	 * chips per bank.
509 	 */
510 }
511 
512 /*
513  * Write buf to the FCM Controller Data Buffer
514  */
fsl_elbc_write_buf(struct mtd_info * mtd,const u8 * buf,int len)515 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
516 {
517 	struct nand_chip *chip = mtd->priv;
518 	struct fsl_elbc_mtd *priv = chip->priv;
519 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
520 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
521 
522 	if (len <= 0) {
523 		dev_err(ctrl->dev, "write_buf of %d bytes", len);
524 		ctrl->status = 0;
525 		return;
526 	}
527 
528 	if ((unsigned int)len > bufsize - ctrl->index) {
529 		dev_err(ctrl->dev,
530 		        "write_buf beyond end of buffer "
531 		        "(%d requested, %u available)\n",
532 		        len, bufsize - ctrl->index);
533 		len = bufsize - ctrl->index;
534 	}
535 
536 	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
537 	/*
538 	 * This is workaround for the weird elbc hangs during nand write,
539 	 * Scott Wood says: "...perhaps difference in how long it takes a
540 	 * write to make it through the localbus compared to a write to IMMR
541 	 * is causing problems, and sync isn't helping for some reason."
542 	 * Reading back the last byte helps though.
543 	 */
544 	in_8(&ctrl->addr[ctrl->index] + len - 1);
545 
546 	ctrl->index += len;
547 }
548 
549 /*
550  * read a byte from either the FCM hardware buffer if it has any data left
551  * otherwise issue a command to read a single byte.
552  */
fsl_elbc_read_byte(struct mtd_info * mtd)553 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
554 {
555 	struct nand_chip *chip = mtd->priv;
556 	struct fsl_elbc_mtd *priv = chip->priv;
557 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
558 
559 	/* If there are still bytes in the FCM, then use the next byte. */
560 	if (ctrl->index < ctrl->read_bytes)
561 		return in_8(&ctrl->addr[ctrl->index++]);
562 
563 	dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
564 	return ERR_BYTE;
565 }
566 
567 /*
568  * Read from the FCM Controller Data Buffer
569  */
fsl_elbc_read_buf(struct mtd_info * mtd,u8 * buf,int len)570 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
571 {
572 	struct nand_chip *chip = mtd->priv;
573 	struct fsl_elbc_mtd *priv = chip->priv;
574 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
575 	int avail;
576 
577 	if (len < 0)
578 		return;
579 
580 	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
581 	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
582 	ctrl->index += avail;
583 
584 	if (len > avail)
585 		dev_err(ctrl->dev,
586 		        "read_buf beyond end of buffer "
587 		        "(%d requested, %d available)\n",
588 		        len, avail);
589 }
590 
591 /*
592  * Verify buffer against the FCM Controller Data Buffer
593  */
fsl_elbc_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)594 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
595 {
596 	struct nand_chip *chip = mtd->priv;
597 	struct fsl_elbc_mtd *priv = chip->priv;
598 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
599 	int i;
600 
601 	if (len < 0) {
602 		dev_err(ctrl->dev, "write_buf of %d bytes", len);
603 		return -EINVAL;
604 	}
605 
606 	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
607 		dev_err(ctrl->dev,
608 		        "verify_buf beyond end of buffer "
609 		        "(%d requested, %u available)\n",
610 		        len, ctrl->read_bytes - ctrl->index);
611 
612 		ctrl->index = ctrl->read_bytes;
613 		return -EINVAL;
614 	}
615 
616 	for (i = 0; i < len; i++)
617 		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
618 			break;
619 
620 	ctrl->index += len;
621 	return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
622 }
623 
624 /* This function is called after Program and Erase Operations to
625  * check for success or failure.
626  */
fsl_elbc_wait(struct mtd_info * mtd,struct nand_chip * chip)627 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
628 {
629 	struct fsl_elbc_mtd *priv = chip->priv;
630 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
631 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
632 
633 	if (ctrl->status != LTESR_CC)
634 		return NAND_STATUS_FAIL;
635 
636 	/* Use READ_STATUS command, but wait for the device to be ready */
637 	ctrl->use_mdr = 0;
638 	out_be32(&lbc->fir,
639 	         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
640 	         (FIR_OP_RBW << FIR_OP1_SHIFT));
641 	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
642 	out_be32(&lbc->fbcr, 1);
643 	set_addr(mtd, 0, 0, 0);
644 	ctrl->read_bytes = 1;
645 
646 	fsl_elbc_run_command(mtd);
647 
648 	if (ctrl->status != LTESR_CC)
649 		return NAND_STATUS_FAIL;
650 
651 	/* The chip always seems to report that it is
652 	 * write-protected, even when it is not.
653 	 */
654 	setbits8(ctrl->addr, NAND_STATUS_WP);
655 	return fsl_elbc_read_byte(mtd);
656 }
657 
fsl_elbc_chip_init_tail(struct mtd_info * mtd)658 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
659 {
660 	struct nand_chip *chip = mtd->priv;
661 	struct fsl_elbc_mtd *priv = chip->priv;
662 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
663 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
664 	unsigned int al;
665 
666 	/* calculate FMR Address Length field */
667 	al = 0;
668 	if (chip->pagemask & 0xffff0000)
669 		al++;
670 	if (chip->pagemask & 0xff000000)
671 		al++;
672 
673 	/* add to ECCM mode set in fsl_elbc_init */
674 	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
675 	             (al << FMR_AL_SHIFT);
676 
677 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
678 	        chip->numchips);
679 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
680 	        chip->chipsize);
681 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
682 	        chip->pagemask);
683 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
684 	        chip->chip_delay);
685 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
686 	        chip->badblockpos);
687 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
688 	        chip->chip_shift);
689 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
690 	        chip->page_shift);
691 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
692 	        chip->phys_erase_shift);
693 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
694 	        chip->ecclayout);
695 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
696 	        chip->ecc.mode);
697 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
698 	        chip->ecc.steps);
699 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
700 	        chip->ecc.bytes);
701 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
702 	        chip->ecc.total);
703 	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
704 	        chip->ecc.layout);
705 	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
706 	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
707 	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
708 	        mtd->erasesize);
709 	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
710 	        mtd->writesize);
711 	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
712 	        mtd->oobsize);
713 
714 	/* adjust Option Register and ECC to match Flash page size */
715 	if (mtd->writesize == 512) {
716 		priv->page_size = 0;
717 		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
718 	} else if (mtd->writesize == 2048) {
719 		priv->page_size = 1;
720 		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
721 		/* adjust ecc setup if needed */
722 		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
723 		    BR_DECC_CHK_GEN) {
724 			chip->ecc.size = 512;
725 			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
726 			                   &fsl_elbc_oob_lp_eccm1 :
727 			                   &fsl_elbc_oob_lp_eccm0;
728 			chip->badblock_pattern = &largepage_memorybased;
729 		}
730 	} else {
731 		dev_err(ctrl->dev,
732 		        "fsl_elbc_init: page size %d is not supported\n",
733 		        mtd->writesize);
734 		return -1;
735 	}
736 
737 	return 0;
738 }
739 
fsl_elbc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf)740 static int fsl_elbc_read_page(struct mtd_info *mtd,
741                               struct nand_chip *chip,
742                               uint8_t *buf)
743 {
744 	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
745 	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
746 
747 	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
748 		mtd->ecc_stats.failed++;
749 
750 	return 0;
751 }
752 
753 /* ECC will be calculated automatically, and errors will be detected in
754  * waitfunc.
755  */
fsl_elbc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)756 static void fsl_elbc_write_page(struct mtd_info *mtd,
757                                 struct nand_chip *chip,
758                                 const uint8_t *buf)
759 {
760 	struct fsl_elbc_mtd *priv = chip->priv;
761 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
762 
763 	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
764 	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
765 
766 	ctrl->oob_poi = chip->oob_poi;
767 }
768 
fsl_elbc_chip_init(struct fsl_elbc_mtd * priv)769 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
770 {
771 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
772 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
773 	struct nand_chip *chip = &priv->chip;
774 
775 	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
776 
777 	/* Fill in fsl_elbc_mtd structure */
778 	priv->mtd.priv = chip;
779 	priv->mtd.owner = THIS_MODULE;
780 
781 	/* Set the ECCM according to the settings in bootloader.*/
782 	priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
783 
784 	/* fill in nand_chip structure */
785 	/* set up function call table */
786 	chip->read_byte = fsl_elbc_read_byte;
787 	chip->write_buf = fsl_elbc_write_buf;
788 	chip->read_buf = fsl_elbc_read_buf;
789 	chip->verify_buf = fsl_elbc_verify_buf;
790 	chip->select_chip = fsl_elbc_select_chip;
791 	chip->cmdfunc = fsl_elbc_cmdfunc;
792 	chip->waitfunc = fsl_elbc_wait;
793 
794 	chip->bbt_td = &bbt_main_descr;
795 	chip->bbt_md = &bbt_mirror_descr;
796 
797 	/* set up nand options */
798 	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
799 			NAND_USE_FLASH_BBT;
800 
801 	chip->controller = &ctrl->controller;
802 	chip->priv = priv;
803 
804 	chip->ecc.read_page = fsl_elbc_read_page;
805 	chip->ecc.write_page = fsl_elbc_write_page;
806 
807 	/* If CS Base Register selects full hardware ECC then use it */
808 	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
809 	    BR_DECC_CHK_GEN) {
810 		chip->ecc.mode = NAND_ECC_HW;
811 		/* put in small page settings and adjust later if needed */
812 		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
813 				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
814 		chip->ecc.size = 512;
815 		chip->ecc.bytes = 3;
816 	} else {
817 		/* otherwise fall back to default software ECC */
818 		chip->ecc.mode = NAND_ECC_SOFT;
819 	}
820 
821 	return 0;
822 }
823 
fsl_elbc_chip_remove(struct fsl_elbc_mtd * priv)824 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
825 {
826 	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
827 
828 	nand_release(&priv->mtd);
829 
830 	kfree(priv->mtd.name);
831 
832 	if (priv->vbase)
833 		iounmap(priv->vbase);
834 
835 	ctrl->chips[priv->bank] = NULL;
836 	kfree(priv);
837 
838 	return 0;
839 }
840 
fsl_elbc_chip_probe(struct fsl_elbc_ctrl * ctrl,struct device_node * node)841 static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
842 					 struct device_node *node)
843 {
844 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
845 	struct fsl_elbc_mtd *priv;
846 	struct resource res;
847 #ifdef CONFIG_MTD_PARTITIONS
848 	static const char *part_probe_types[]
849 		= { "cmdlinepart", "RedBoot", NULL };
850 	struct mtd_partition *parts;
851 #endif
852 	int ret;
853 	int bank;
854 
855 	/* get, allocate and map the memory resource */
856 	ret = of_address_to_resource(node, 0, &res);
857 	if (ret) {
858 		dev_err(ctrl->dev, "failed to get resource\n");
859 		return ret;
860 	}
861 
862 	/* find which chip select it is connected to */
863 	for (bank = 0; bank < MAX_BANKS; bank++)
864 		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
865 		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
866 		    (in_be32(&lbc->bank[bank].br) &
867 		     in_be32(&lbc->bank[bank].or) & BR_BA)
868 		     == res.start)
869 			break;
870 
871 	if (bank >= MAX_BANKS) {
872 		dev_err(ctrl->dev, "address did not match any chip selects\n");
873 		return -ENODEV;
874 	}
875 
876 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
877 	if (!priv)
878 		return -ENOMEM;
879 
880 	ctrl->chips[bank] = priv;
881 	priv->bank = bank;
882 	priv->ctrl = ctrl;
883 	priv->dev = ctrl->dev;
884 
885 	priv->vbase = ioremap(res.start, res.end - res.start + 1);
886 	if (!priv->vbase) {
887 		dev_err(ctrl->dev, "failed to map chip region\n");
888 		ret = -ENOMEM;
889 		goto err;
890 	}
891 
892 	priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
893 	if (!priv->mtd.name) {
894 		ret = -ENOMEM;
895 		goto err;
896 	}
897 
898 	ret = fsl_elbc_chip_init(priv);
899 	if (ret)
900 		goto err;
901 
902 	ret = nand_scan_ident(&priv->mtd, 1);
903 	if (ret)
904 		goto err;
905 
906 	ret = fsl_elbc_chip_init_tail(&priv->mtd);
907 	if (ret)
908 		goto err;
909 
910 	ret = nand_scan_tail(&priv->mtd);
911 	if (ret)
912 		goto err;
913 
914 #ifdef CONFIG_MTD_PARTITIONS
915 	/* First look for RedBoot table or partitions on the command
916 	 * line, these take precedence over device tree information */
917 	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
918 	if (ret < 0)
919 		goto err;
920 
921 #ifdef CONFIG_MTD_OF_PARTS
922 	if (ret == 0) {
923 		ret = of_mtd_parse_partitions(priv->dev, node, &parts);
924 		if (ret < 0)
925 			goto err;
926 	}
927 #endif
928 
929 	if (ret > 0)
930 		add_mtd_partitions(&priv->mtd, parts, ret);
931 	else
932 #endif
933 		add_mtd_device(&priv->mtd);
934 
935 	printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
936 	       (unsigned long long)res.start, priv->bank);
937 	return 0;
938 
939 err:
940 	fsl_elbc_chip_remove(priv);
941 	return ret;
942 }
943 
fsl_elbc_ctrl_init(struct fsl_elbc_ctrl * ctrl)944 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
945 {
946 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
947 
948 	/* clear event registers */
949 	setbits32(&lbc->ltesr, LTESR_NAND_MASK);
950 	out_be32(&lbc->lteatr, 0);
951 
952 	/* Enable interrupts for any detected events */
953 	out_be32(&lbc->lteir, LTESR_NAND_MASK);
954 
955 	ctrl->read_bytes = 0;
956 	ctrl->index = 0;
957 	ctrl->addr = NULL;
958 
959 	return 0;
960 }
961 
fsl_elbc_ctrl_remove(struct of_device * ofdev)962 static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
963 {
964 	struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
965 	int i;
966 
967 	for (i = 0; i < MAX_BANKS; i++)
968 		if (ctrl->chips[i])
969 			fsl_elbc_chip_remove(ctrl->chips[i]);
970 
971 	if (ctrl->irq)
972 		free_irq(ctrl->irq, ctrl);
973 
974 	if (ctrl->regs)
975 		iounmap(ctrl->regs);
976 
977 	dev_set_drvdata(&ofdev->dev, NULL);
978 	kfree(ctrl);
979 	return 0;
980 }
981 
982 /* NOTE: This interrupt is also used to report other localbus events,
983  * such as transaction errors on other chipselects.  If we want to
984  * capture those, we'll need to move the IRQ code into a shared
985  * LBC driver.
986  */
987 
fsl_elbc_ctrl_irq(int irqno,void * data)988 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
989 {
990 	struct fsl_elbc_ctrl *ctrl = data;
991 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
992 	__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
993 
994 	if (status) {
995 		out_be32(&lbc->ltesr, status);
996 		out_be32(&lbc->lteatr, 0);
997 
998 		ctrl->irq_status = status;
999 		smp_wmb();
1000 		wake_up(&ctrl->irq_wait);
1001 
1002 		return IRQ_HANDLED;
1003 	}
1004 
1005 	return IRQ_NONE;
1006 }
1007 
1008 /* fsl_elbc_ctrl_probe
1009  *
1010  * called by device layer when it finds a device matching
1011  * one our driver can handled. This code allocates all of
1012  * the resources needed for the controller only.  The
1013  * resources for the NAND banks themselves are allocated
1014  * in the chip probe function.
1015 */
1016 
fsl_elbc_ctrl_probe(struct of_device * ofdev,const struct of_device_id * match)1017 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
1018                                          const struct of_device_id *match)
1019 {
1020 	struct device_node *child;
1021 	struct fsl_elbc_ctrl *ctrl;
1022 	int ret;
1023 
1024 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1025 	if (!ctrl)
1026 		return -ENOMEM;
1027 
1028 	dev_set_drvdata(&ofdev->dev, ctrl);
1029 
1030 	spin_lock_init(&ctrl->controller.lock);
1031 	init_waitqueue_head(&ctrl->controller.wq);
1032 	init_waitqueue_head(&ctrl->irq_wait);
1033 
1034 	ctrl->regs = of_iomap(ofdev->node, 0);
1035 	if (!ctrl->regs) {
1036 		dev_err(&ofdev->dev, "failed to get memory region\n");
1037 		ret = -ENODEV;
1038 		goto err;
1039 	}
1040 
1041 	ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1042 	if (ctrl->irq == NO_IRQ) {
1043 		dev_err(&ofdev->dev, "failed to get irq resource\n");
1044 		ret = -ENODEV;
1045 		goto err;
1046 	}
1047 
1048 	ctrl->dev = &ofdev->dev;
1049 
1050 	ret = fsl_elbc_ctrl_init(ctrl);
1051 	if (ret < 0)
1052 		goto err;
1053 
1054 	ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1055 	if (ret != 0) {
1056 		dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1057 		        ctrl->irq);
1058 		ret = ctrl->irq;
1059 		goto err;
1060 	}
1061 
1062 	for_each_child_of_node(ofdev->node, child)
1063 		if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1064 			fsl_elbc_chip_probe(ctrl, child);
1065 
1066 	return 0;
1067 
1068 err:
1069 	fsl_elbc_ctrl_remove(ofdev);
1070 	return ret;
1071 }
1072 
1073 static const struct of_device_id fsl_elbc_match[] = {
1074 	{
1075 		.compatible = "fsl,elbc",
1076 	},
1077 	{}
1078 };
1079 
1080 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1081 	.driver = {
1082 		.name	= "fsl-elbc",
1083 	},
1084 	.match_table = fsl_elbc_match,
1085 	.probe = fsl_elbc_ctrl_probe,
1086 	.remove = fsl_elbc_ctrl_remove,
1087 };
1088 
fsl_elbc_init(void)1089 static int __init fsl_elbc_init(void)
1090 {
1091 	return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1092 }
1093 
fsl_elbc_exit(void)1094 static void __exit fsl_elbc_exit(void)
1095 {
1096 	of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1097 }
1098 
1099 module_init(fsl_elbc_init);
1100 module_exit(fsl_elbc_exit);
1101 
1102 MODULE_LICENSE("GPL");
1103 MODULE_AUTHOR("Freescale");
1104 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
1105