• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
36 
37 #define DRIVER_NAME "mxc_nand"
38 
39 /* Addresses for NFC registers */
40 #define NFC_BUF_SIZE		0xE00
41 #define NFC_BUF_ADDR		0xE04
42 #define NFC_FLASH_ADDR		0xE06
43 #define NFC_FLASH_CMD		0xE08
44 #define NFC_CONFIG		0xE0A
45 #define NFC_ECC_STATUS_RESULT	0xE0C
46 #define NFC_RSLTMAIN_AREA	0xE0E
47 #define NFC_RSLTSPARE_AREA	0xE10
48 #define NFC_WRPROT		0xE12
49 #define NFC_UNLOCKSTART_BLKADDR	0xE14
50 #define NFC_UNLOCKEND_BLKADDR	0xE16
51 #define NFC_NF_WRPRST		0xE18
52 #define NFC_CONFIG1		0xE1A
53 #define NFC_CONFIG2		0xE1C
54 
55 /* Addresses for NFC RAM BUFFER Main area 0 */
56 #define MAIN_AREA0		0x000
57 #define MAIN_AREA1		0x200
58 #define MAIN_AREA2		0x400
59 #define MAIN_AREA3		0x600
60 
61 /* Addresses for NFC SPARE BUFFER Spare area 0 */
62 #define SPARE_AREA0		0x800
63 #define SPARE_AREA1		0x810
64 #define SPARE_AREA2		0x820
65 #define SPARE_AREA3		0x830
66 
67 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68  * for Command operation */
69 #define NFC_CMD            0x1
70 
71 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72  * for Address operation */
73 #define NFC_ADDR           0x2
74 
75 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76  * for Input operation */
77 #define NFC_INPUT          0x4
78 
79 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80  * for Data Output operation */
81 #define NFC_OUTPUT         0x8
82 
83 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84  * for Read ID operation */
85 #define NFC_ID             0x10
86 
87 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88  * for Read Status operation */
89 #define NFC_STATUS         0x20
90 
91 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92  * Status operation */
93 #define NFC_INT            0x8000
94 
95 #define NFC_SP_EN           (1 << 2)
96 #define NFC_ECC_EN          (1 << 3)
97 #define NFC_INT_MSK         (1 << 4)
98 #define NFC_BIG             (1 << 5)
99 #define NFC_RST             (1 << 6)
100 #define NFC_CE              (1 << 7)
101 #define NFC_ONE_CYCLE       (1 << 8)
102 
103 struct mxc_nand_host {
104 	struct mtd_info		mtd;
105 	struct nand_chip	nand;
106 	struct mtd_partition	*parts;
107 	struct device		*dev;
108 
109 	void __iomem		*regs;
110 	int			spare_only;
111 	int			status_request;
112 	int			pagesize_2k;
113 	uint16_t		col_addr;
114 	struct clk		*clk;
115 	int			clk_act;
116 	int			irq;
117 
118 	wait_queue_head_t	irq_waitq;
119 };
120 
121 /* Define delays in microsec for NAND device operations */
122 #define TROP_US_DELAY   2000
123 /* Macros to get byte and bit positions of ECC */
124 #define COLPOS(x)  ((x) >> 3)
125 #define BITPOS(x) ((x) & 0xf)
126 
127 /* Define single bit Error positions in Main & Spare area */
128 #define MAIN_SINGLEBIT_ERROR 0x4
129 #define SPARE_SINGLEBIT_ERROR 0x1
130 
131 /* OOB placement block for use with hardware ecc generation */
132 static struct nand_ecclayout nand_hw_eccoob_8 = {
133 	.eccbytes = 5,
134 	.eccpos = {6, 7, 8, 9, 10},
135 	.oobfree = {{0, 5}, {11, 5}, }
136 };
137 
138 static struct nand_ecclayout nand_hw_eccoob_16 = {
139 	.eccbytes = 5,
140 	.eccpos = {6, 7, 8, 9, 10},
141 	.oobfree = {{0, 6}, {12, 4}, }
142 };
143 
144 #ifdef CONFIG_MTD_PARTITIONS
145 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
146 #endif
147 
mxc_nfc_irq(int irq,void * dev_id)148 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
149 {
150 	struct mxc_nand_host *host = dev_id;
151 
152 	uint16_t tmp;
153 
154 	tmp = readw(host->regs + NFC_CONFIG1);
155 	tmp |= NFC_INT_MSK; /* Disable interrupt */
156 	writew(tmp, host->regs + NFC_CONFIG1);
157 
158 	wake_up(&host->irq_waitq);
159 
160 	return IRQ_HANDLED;
161 }
162 
163 /* This function polls the NANDFC to wait for the basic operation to
164  * complete by checking the INT bit of config2 register.
165  */
wait_op_done(struct mxc_nand_host * host,int max_retries,uint16_t param,int useirq)166 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
167 				uint16_t param, int useirq)
168 {
169 	uint32_t tmp;
170 
171 	if (useirq) {
172 		if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
173 
174 			tmp = readw(host->regs + NFC_CONFIG1);
175 			tmp  &= ~NFC_INT_MSK;	/* Enable interrupt */
176 			writew(tmp, host->regs + NFC_CONFIG1);
177 
178 			wait_event(host->irq_waitq,
179 				readw(host->regs + NFC_CONFIG2) & NFC_INT);
180 
181 			tmp = readw(host->regs + NFC_CONFIG2);
182 			tmp  &= ~NFC_INT;
183 			writew(tmp, host->regs + NFC_CONFIG2);
184 		}
185 	} else {
186 		while (max_retries-- > 0) {
187 			if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
188 				tmp = readw(host->regs + NFC_CONFIG2);
189 				tmp  &= ~NFC_INT;
190 				writew(tmp, host->regs + NFC_CONFIG2);
191 				break;
192 			}
193 			udelay(1);
194 		}
195 		if (max_retries <= 0)
196 			DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
197 			      __func__, param);
198 	}
199 }
200 
201 /* This function issues the specified command to the NAND device and
202  * waits for completion. */
send_cmd(struct mxc_nand_host * host,uint16_t cmd,int useirq)203 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
204 {
205 	DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
206 
207 	writew(cmd, host->regs + NFC_FLASH_CMD);
208 	writew(NFC_CMD, host->regs + NFC_CONFIG2);
209 
210 	/* Wait for operation to complete */
211 	wait_op_done(host, TROP_US_DELAY, cmd, useirq);
212 }
213 
214 /* This function sends an address (or partial address) to the
215  * NAND device. The address is used to select the source/destination for
216  * a NAND command. */
send_addr(struct mxc_nand_host * host,uint16_t addr,int islast)217 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
218 {
219 	DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
220 
221 	writew(addr, host->regs + NFC_FLASH_ADDR);
222 	writew(NFC_ADDR, host->regs + NFC_CONFIG2);
223 
224 	/* Wait for operation to complete */
225 	wait_op_done(host, TROP_US_DELAY, addr, islast);
226 }
227 
228 /* This function requests the NANDFC to initate the transfer
229  * of data currently in the NANDFC RAM buffer to the NAND device. */
send_prog_page(struct mxc_nand_host * host,uint8_t buf_id,int spare_only)230 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
231 			int spare_only)
232 {
233 	DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
234 
235 	/* NANDFC buffer 0 is used for page read/write */
236 	writew(buf_id, host->regs + NFC_BUF_ADDR);
237 
238 	/* Configure spare or page+spare access */
239 	if (!host->pagesize_2k) {
240 		uint16_t config1 = readw(host->regs + NFC_CONFIG1);
241 		if (spare_only)
242 			config1 |= NFC_SP_EN;
243 		else
244 			config1 &= ~(NFC_SP_EN);
245 		writew(config1, host->regs + NFC_CONFIG1);
246 	}
247 
248 	writew(NFC_INPUT, host->regs + NFC_CONFIG2);
249 
250 	/* Wait for operation to complete */
251 	wait_op_done(host, TROP_US_DELAY, spare_only, true);
252 }
253 
254 /* Requests NANDFC to initated the transfer of data from the
255  * NAND device into in the NANDFC ram buffer. */
send_read_page(struct mxc_nand_host * host,uint8_t buf_id,int spare_only)256 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
257 		int spare_only)
258 {
259 	DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
260 
261 	/* NANDFC buffer 0 is used for page read/write */
262 	writew(buf_id, host->regs + NFC_BUF_ADDR);
263 
264 	/* Configure spare or page+spare access */
265 	if (!host->pagesize_2k) {
266 		uint32_t config1 = readw(host->regs + NFC_CONFIG1);
267 		if (spare_only)
268 			config1 |= NFC_SP_EN;
269 		else
270 			config1 &= ~NFC_SP_EN;
271 		writew(config1, host->regs + NFC_CONFIG1);
272 	}
273 
274 	writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
275 
276 	/* Wait for operation to complete */
277 	wait_op_done(host, TROP_US_DELAY, spare_only, true);
278 }
279 
280 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id(struct mxc_nand_host * host)281 static void send_read_id(struct mxc_nand_host *host)
282 {
283 	struct nand_chip *this = &host->nand;
284 	uint16_t tmp;
285 
286 	/* NANDFC buffer 0 is used for device ID output */
287 	writew(0x0, host->regs + NFC_BUF_ADDR);
288 
289 	/* Read ID into main buffer */
290 	tmp = readw(host->regs + NFC_CONFIG1);
291 	tmp &= ~NFC_SP_EN;
292 	writew(tmp, host->regs + NFC_CONFIG1);
293 
294 	writew(NFC_ID, host->regs + NFC_CONFIG2);
295 
296 	/* Wait for operation to complete */
297 	wait_op_done(host, TROP_US_DELAY, 0, true);
298 
299 	if (this->options & NAND_BUSWIDTH_16) {
300 		void __iomem *main_buf = host->regs + MAIN_AREA0;
301 		/* compress the ID info */
302 		writeb(readb(main_buf + 2), main_buf + 1);
303 		writeb(readb(main_buf + 4), main_buf + 2);
304 		writeb(readb(main_buf + 6), main_buf + 3);
305 		writeb(readb(main_buf + 8), main_buf + 4);
306 		writeb(readb(main_buf + 10), main_buf + 5);
307 	}
308 }
309 
310 /* This function requests the NANDFC to perform a read of the
311  * NAND device status and returns the current status. */
get_dev_status(struct mxc_nand_host * host)312 static uint16_t get_dev_status(struct mxc_nand_host *host)
313 {
314 	void __iomem *main_buf = host->regs + MAIN_AREA1;
315 	uint32_t store;
316 	uint16_t ret, tmp;
317 	/* Issue status request to NAND device */
318 
319 	/* store the main area1 first word, later do recovery */
320 	store = readl(main_buf);
321 	/* NANDFC buffer 1 is used for device status to prevent
322 	 * corruption of read/write buffer on status requests. */
323 	writew(1, host->regs + NFC_BUF_ADDR);
324 
325 	/* Read status into main buffer */
326 	tmp = readw(host->regs + NFC_CONFIG1);
327 	tmp &= ~NFC_SP_EN;
328 	writew(tmp, host->regs + NFC_CONFIG1);
329 
330 	writew(NFC_STATUS, host->regs + NFC_CONFIG2);
331 
332 	/* Wait for operation to complete */
333 	wait_op_done(host, TROP_US_DELAY, 0, true);
334 
335 	/* Status is placed in first word of main buffer */
336 	/* get status, then recovery area 1 data */
337 	ret = readw(main_buf);
338 	writel(store, main_buf);
339 
340 	return ret;
341 }
342 
343 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)344 static int mxc_nand_dev_ready(struct mtd_info *mtd)
345 {
346 	/*
347 	 * NFC handles R/B internally. Therefore, this function
348 	 * always returns status as ready.
349 	 */
350 	return 1;
351 }
352 
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)353 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
354 {
355 	/*
356 	 * If HW ECC is enabled, we turn it on during init. There is
357 	 * no need to enable again here.
358 	 */
359 }
360 
mxc_nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)361 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
362 				 u_char *read_ecc, u_char *calc_ecc)
363 {
364 	struct nand_chip *nand_chip = mtd->priv;
365 	struct mxc_nand_host *host = nand_chip->priv;
366 
367 	/*
368 	 * 1-Bit errors are automatically corrected in HW.  No need for
369 	 * additional correction.  2-Bit errors cannot be corrected by
370 	 * HW ECC, so we need to return failure
371 	 */
372 	uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
373 
374 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
375 		DEBUG(MTD_DEBUG_LEVEL0,
376 		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
377 		return -1;
378 	}
379 
380 	return 0;
381 }
382 
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)383 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
384 				  u_char *ecc_code)
385 {
386 	return 0;
387 }
388 
mxc_nand_read_byte(struct mtd_info * mtd)389 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
390 {
391 	struct nand_chip *nand_chip = mtd->priv;
392 	struct mxc_nand_host *host = nand_chip->priv;
393 	uint8_t ret = 0;
394 	uint16_t col, rd_word;
395 	uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
396 	uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
397 
398 	/* Check for status request */
399 	if (host->status_request)
400 		return get_dev_status(host) & 0xFF;
401 
402 	/* Get column for 16-bit access */
403 	col = host->col_addr >> 1;
404 
405 	/* If we are accessing the spare region */
406 	if (host->spare_only)
407 		rd_word = readw(&spare_buf[col]);
408 	else
409 		rd_word = readw(&main_buf[col]);
410 
411 	/* Pick upper/lower byte of word from RAM buffer */
412 	if (host->col_addr & 0x1)
413 		ret = (rd_word >> 8) & 0xFF;
414 	else
415 		ret = rd_word & 0xFF;
416 
417 	/* Update saved column address */
418 	host->col_addr++;
419 
420 	return ret;
421 }
422 
mxc_nand_read_word(struct mtd_info * mtd)423 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
424 {
425 	struct nand_chip *nand_chip = mtd->priv;
426 	struct mxc_nand_host *host = nand_chip->priv;
427 	uint16_t col, rd_word, ret;
428 	uint16_t __iomem *p;
429 
430 	DEBUG(MTD_DEBUG_LEVEL3,
431 	      "mxc_nand_read_word(col = %d)\n", host->col_addr);
432 
433 	col = host->col_addr;
434 	/* Adjust saved column address */
435 	if (col < mtd->writesize && host->spare_only)
436 		col += mtd->writesize;
437 
438 	if (col < mtd->writesize)
439 		p = (host->regs + MAIN_AREA0) + (col >> 1);
440 	else
441 		p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
442 
443 	if (col & 1) {
444 		rd_word = readw(p);
445 		ret = (rd_word >> 8) & 0xff;
446 		rd_word = readw(&p[1]);
447 		ret |= (rd_word << 8) & 0xff00;
448 
449 	} else
450 		ret = readw(p);
451 
452 	/* Update saved column address */
453 	host->col_addr = col + 2;
454 
455 	return ret;
456 }
457 
458 /* Write data of length len to buffer buf. The data to be
459  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
460  * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)461 static void mxc_nand_write_buf(struct mtd_info *mtd,
462 				const u_char *buf, int len)
463 {
464 	struct nand_chip *nand_chip = mtd->priv;
465 	struct mxc_nand_host *host = nand_chip->priv;
466 	int n, col, i = 0;
467 
468 	DEBUG(MTD_DEBUG_LEVEL3,
469 	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
470 	      len);
471 
472 	col = host->col_addr;
473 
474 	/* Adjust saved column address */
475 	if (col < mtd->writesize && host->spare_only)
476 		col += mtd->writesize;
477 
478 	n = mtd->writesize + mtd->oobsize - col;
479 	n = min(len, n);
480 
481 	DEBUG(MTD_DEBUG_LEVEL3,
482 	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
483 
484 	while (n) {
485 		void __iomem *p;
486 
487 		if (col < mtd->writesize)
488 			p = host->regs + MAIN_AREA0 + (col & ~3);
489 		else
490 			p = host->regs + SPARE_AREA0 -
491 						mtd->writesize + (col & ~3);
492 
493 		DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
494 		      __LINE__, p);
495 
496 		if (((col | (int)&buf[i]) & 3) || n < 16) {
497 			uint32_t data = 0;
498 
499 			if (col & 3 || n < 4)
500 				data = readl(p);
501 
502 			switch (col & 3) {
503 			case 0:
504 				if (n) {
505 					data = (data & 0xffffff00) |
506 					    (buf[i++] << 0);
507 					n--;
508 					col++;
509 				}
510 			case 1:
511 				if (n) {
512 					data = (data & 0xffff00ff) |
513 					    (buf[i++] << 8);
514 					n--;
515 					col++;
516 				}
517 			case 2:
518 				if (n) {
519 					data = (data & 0xff00ffff) |
520 					    (buf[i++] << 16);
521 					n--;
522 					col++;
523 				}
524 			case 3:
525 				if (n) {
526 					data = (data & 0x00ffffff) |
527 					    (buf[i++] << 24);
528 					n--;
529 					col++;
530 				}
531 			}
532 
533 			writel(data, p);
534 		} else {
535 			int m = mtd->writesize - col;
536 
537 			if (col >= mtd->writesize)
538 				m += mtd->oobsize;
539 
540 			m = min(n, m) & ~3;
541 
542 			DEBUG(MTD_DEBUG_LEVEL3,
543 			      "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
544 			      __func__,  __LINE__, n, m, i, col);
545 
546 			memcpy(p, &buf[i], m);
547 			col += m;
548 			i += m;
549 			n -= m;
550 		}
551 	}
552 	/* Update saved column address */
553 	host->col_addr = col;
554 }
555 
556 /* Read the data buffer from the NAND Flash. To read the data from NAND
557  * Flash first the data output cycle is initiated by the NFC, which copies
558  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
559  */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)560 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
561 {
562 	struct nand_chip *nand_chip = mtd->priv;
563 	struct mxc_nand_host *host = nand_chip->priv;
564 	int n, col, i = 0;
565 
566 	DEBUG(MTD_DEBUG_LEVEL3,
567 	      "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
568 
569 	col = host->col_addr;
570 
571 	/* Adjust saved column address */
572 	if (col < mtd->writesize && host->spare_only)
573 		col += mtd->writesize;
574 
575 	n = mtd->writesize + mtd->oobsize - col;
576 	n = min(len, n);
577 
578 	while (n) {
579 		void __iomem *p;
580 
581 		if (col < mtd->writesize)
582 			p = host->regs + MAIN_AREA0 + (col & ~3);
583 		else
584 			p = host->regs + SPARE_AREA0 -
585 					mtd->writesize + (col & ~3);
586 
587 		if (((col | (int)&buf[i]) & 3) || n < 16) {
588 			uint32_t data;
589 
590 			data = readl(p);
591 			switch (col & 3) {
592 			case 0:
593 				if (n) {
594 					buf[i++] = (uint8_t) (data);
595 					n--;
596 					col++;
597 				}
598 			case 1:
599 				if (n) {
600 					buf[i++] = (uint8_t) (data >> 8);
601 					n--;
602 					col++;
603 				}
604 			case 2:
605 				if (n) {
606 					buf[i++] = (uint8_t) (data >> 16);
607 					n--;
608 					col++;
609 				}
610 			case 3:
611 				if (n) {
612 					buf[i++] = (uint8_t) (data >> 24);
613 					n--;
614 					col++;
615 				}
616 			}
617 		} else {
618 			int m = mtd->writesize - col;
619 
620 			if (col >= mtd->writesize)
621 				m += mtd->oobsize;
622 
623 			m = min(n, m) & ~3;
624 			memcpy(&buf[i], p, m);
625 			col += m;
626 			i += m;
627 			n -= m;
628 		}
629 	}
630 	/* Update saved column address */
631 	host->col_addr = col;
632 
633 }
634 
635 /* Used by the upper layer to verify the data in NAND Flash
636  * with the data in the buf. */
mxc_nand_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)637 static int mxc_nand_verify_buf(struct mtd_info *mtd,
638 				const u_char *buf, int len)
639 {
640 	return -EFAULT;
641 }
642 
643 /* This function is used by upper layer for select and
644  * deselect of the NAND chip */
mxc_nand_select_chip(struct mtd_info * mtd,int chip)645 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
646 {
647 	struct nand_chip *nand_chip = mtd->priv;
648 	struct mxc_nand_host *host = nand_chip->priv;
649 
650 #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
651 	if (chip > 0) {
652 		DEBUG(MTD_DEBUG_LEVEL0,
653 		      "ERROR:  Illegal chip select (chip = %d)\n", chip);
654 		return;
655 	}
656 
657 	if (chip == -1) {
658 		writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
659 				host->regs + NFC_CONFIG1);
660 		return;
661 	}
662 
663 	writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
664 			host->regs + NFC_CONFIG1);
665 #endif
666 
667 	switch (chip) {
668 	case -1:
669 		/* Disable the NFC clock */
670 		if (host->clk_act) {
671 			clk_disable(host->clk);
672 			host->clk_act = 0;
673 		}
674 		break;
675 	case 0:
676 		/* Enable the NFC clock */
677 		if (!host->clk_act) {
678 			clk_enable(host->clk);
679 			host->clk_act = 1;
680 		}
681 		break;
682 
683 	default:
684 		break;
685 	}
686 }
687 
688 /* Used by the upper layer to write command to NAND Flash for
689  * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)690 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
691 				int column, int page_addr)
692 {
693 	struct nand_chip *nand_chip = mtd->priv;
694 	struct mxc_nand_host *host = nand_chip->priv;
695 	int useirq = true;
696 
697 	DEBUG(MTD_DEBUG_LEVEL3,
698 	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
699 	      command, column, page_addr);
700 
701 	/* Reset command state information */
702 	host->status_request = false;
703 
704 	/* Command pre-processing step */
705 	switch (command) {
706 
707 	case NAND_CMD_STATUS:
708 		host->col_addr = 0;
709 		host->status_request = true;
710 		break;
711 
712 	case NAND_CMD_READ0:
713 		host->col_addr = column;
714 		host->spare_only = false;
715 		useirq = false;
716 		break;
717 
718 	case NAND_CMD_READOOB:
719 		host->col_addr = column;
720 		host->spare_only = true;
721 		useirq = false;
722 		if (host->pagesize_2k)
723 			command = NAND_CMD_READ0; /* only READ0 is valid */
724 		break;
725 
726 	case NAND_CMD_SEQIN:
727 		if (column >= mtd->writesize) {
728 			/*
729 			 * FIXME: before send SEQIN command for write OOB,
730 			 * We must read one page out.
731 			 * For K9F1GXX has no READ1 command to set current HW
732 			 * pointer to spare area, we must write the whole page
733 			 * including OOB together.
734 			 */
735 			if (host->pagesize_2k)
736 				/* call ourself to read a page */
737 				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
738 						page_addr);
739 
740 			host->col_addr = column - mtd->writesize;
741 			host->spare_only = true;
742 
743 			/* Set program pointer to spare region */
744 			if (!host->pagesize_2k)
745 				send_cmd(host, NAND_CMD_READOOB, false);
746 		} else {
747 			host->spare_only = false;
748 			host->col_addr = column;
749 
750 			/* Set program pointer to page start */
751 			if (!host->pagesize_2k)
752 				send_cmd(host, NAND_CMD_READ0, false);
753 		}
754 		useirq = false;
755 		break;
756 
757 	case NAND_CMD_PAGEPROG:
758 		send_prog_page(host, 0, host->spare_only);
759 
760 		if (host->pagesize_2k) {
761 			/* data in 4 areas datas */
762 			send_prog_page(host, 1, host->spare_only);
763 			send_prog_page(host, 2, host->spare_only);
764 			send_prog_page(host, 3, host->spare_only);
765 		}
766 
767 		break;
768 
769 	case NAND_CMD_ERASE1:
770 		useirq = false;
771 		break;
772 	}
773 
774 	/* Write out the command to the device. */
775 	send_cmd(host, command, useirq);
776 
777 	/* Write out column address, if necessary */
778 	if (column != -1) {
779 		/*
780 		 * MXC NANDFC can only perform full page+spare or
781 		 * spare-only read/write.  When the upper layers
782 		 * layers perform a read/write buf operation,
783 		 * we will used the saved column adress to index into
784 		 * the full page.
785 		 */
786 		send_addr(host, 0, page_addr == -1);
787 		if (host->pagesize_2k)
788 			/* another col addr cycle for 2k page */
789 			send_addr(host, 0, false);
790 	}
791 
792 	/* Write out page address, if necessary */
793 	if (page_addr != -1) {
794 		/* paddr_0 - p_addr_7 */
795 		send_addr(host, (page_addr & 0xff), false);
796 
797 		if (host->pagesize_2k) {
798 			send_addr(host, (page_addr >> 8) & 0xFF, false);
799 			if (mtd->size >= 0x40000000)
800 				send_addr(host, (page_addr >> 16) & 0xff, true);
801 		} else {
802 			/* One more address cycle for higher density devices */
803 			if (mtd->size >= 0x4000000) {
804 				/* paddr_8 - paddr_15 */
805 				send_addr(host, (page_addr >> 8) & 0xff, false);
806 				send_addr(host, (page_addr >> 16) & 0xff, true);
807 			} else
808 				/* paddr_8 - paddr_15 */
809 				send_addr(host, (page_addr >> 8) & 0xff, true);
810 		}
811 	}
812 
813 	/* Command post-processing step */
814 	switch (command) {
815 
816 	case NAND_CMD_RESET:
817 		break;
818 
819 	case NAND_CMD_READOOB:
820 	case NAND_CMD_READ0:
821 		if (host->pagesize_2k) {
822 			/* send read confirm command */
823 			send_cmd(host, NAND_CMD_READSTART, true);
824 			/* read for each AREA */
825 			send_read_page(host, 0, host->spare_only);
826 			send_read_page(host, 1, host->spare_only);
827 			send_read_page(host, 2, host->spare_only);
828 			send_read_page(host, 3, host->spare_only);
829 		} else
830 			send_read_page(host, 0, host->spare_only);
831 		break;
832 
833 	case NAND_CMD_READID:
834 		send_read_id(host);
835 		break;
836 
837 	case NAND_CMD_PAGEPROG:
838 		break;
839 
840 	case NAND_CMD_STATUS:
841 		break;
842 
843 	case NAND_CMD_ERASE2:
844 		break;
845 	}
846 }
847 
mxcnd_probe(struct platform_device * pdev)848 static int __init mxcnd_probe(struct platform_device *pdev)
849 {
850 	struct nand_chip *this;
851 	struct mtd_info *mtd;
852 	struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
853 	struct mxc_nand_host *host;
854 	struct resource *res;
855 	uint16_t tmp;
856 	int err = 0, nr_parts = 0;
857 
858 	/* Allocate memory for MTD device structure and private data */
859 	host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
860 	if (!host)
861 		return -ENOMEM;
862 
863 	host->dev = &pdev->dev;
864 	/* structures must be linked */
865 	this = &host->nand;
866 	mtd = &host->mtd;
867 	mtd->priv = this;
868 	mtd->owner = THIS_MODULE;
869 
870 	/* 50 us command delay time */
871 	this->chip_delay = 5;
872 
873 	this->priv = host;
874 	this->dev_ready = mxc_nand_dev_ready;
875 	this->cmdfunc = mxc_nand_command;
876 	this->select_chip = mxc_nand_select_chip;
877 	this->read_byte = mxc_nand_read_byte;
878 	this->read_word = mxc_nand_read_word;
879 	this->write_buf = mxc_nand_write_buf;
880 	this->read_buf = mxc_nand_read_buf;
881 	this->verify_buf = mxc_nand_verify_buf;
882 
883 	host->clk = clk_get(&pdev->dev, "nfc_clk");
884 	if (IS_ERR(host->clk))
885 		goto eclk;
886 
887 	clk_enable(host->clk);
888 	host->clk_act = 1;
889 
890 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
891 	if (!res) {
892 		err = -ENODEV;
893 		goto eres;
894 	}
895 
896 	host->regs = ioremap(res->start, res->end - res->start + 1);
897 	if (!host->regs) {
898 		err = -EIO;
899 		goto eres;
900 	}
901 
902 	tmp = readw(host->regs + NFC_CONFIG1);
903 	tmp |= NFC_INT_MSK;
904 	writew(tmp, host->regs + NFC_CONFIG1);
905 
906 	init_waitqueue_head(&host->irq_waitq);
907 
908 	host->irq = platform_get_irq(pdev, 0);
909 
910 	err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
911 	if (err)
912 		goto eirq;
913 
914 	if (pdata->hw_ecc) {
915 		this->ecc.calculate = mxc_nand_calculate_ecc;
916 		this->ecc.hwctl = mxc_nand_enable_hwecc;
917 		this->ecc.correct = mxc_nand_correct_data;
918 		this->ecc.mode = NAND_ECC_HW;
919 		this->ecc.size = 512;
920 		this->ecc.bytes = 3;
921 		this->ecc.layout = &nand_hw_eccoob_8;
922 		tmp = readw(host->regs + NFC_CONFIG1);
923 		tmp |= NFC_ECC_EN;
924 		writew(tmp, host->regs + NFC_CONFIG1);
925 	} else {
926 		this->ecc.size = 512;
927 		this->ecc.bytes = 3;
928 		this->ecc.layout = &nand_hw_eccoob_8;
929 		this->ecc.mode = NAND_ECC_SOFT;
930 		tmp = readw(host->regs + NFC_CONFIG1);
931 		tmp &= ~NFC_ECC_EN;
932 		writew(tmp, host->regs + NFC_CONFIG1);
933 	}
934 
935 	/* Reset NAND */
936 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
937 
938 	/* preset operation */
939 	/* Unlock the internal RAM Buffer */
940 	writew(0x2, host->regs + NFC_CONFIG);
941 
942 	/* Blocks to be unlocked */
943 	writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
944 	writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
945 
946 	/* Unlock Block Command for given address range */
947 	writew(0x4, host->regs + NFC_WRPROT);
948 
949 	/* NAND bus width determines access funtions used by upper layer */
950 	if (pdata->width == 2) {
951 		this->options |= NAND_BUSWIDTH_16;
952 		this->ecc.layout = &nand_hw_eccoob_16;
953 	}
954 
955 	host->pagesize_2k = 0;
956 
957 	/* Scan to find existence of the device */
958 	if (nand_scan(mtd, 1)) {
959 		DEBUG(MTD_DEBUG_LEVEL0,
960 		      "MXC_ND: Unable to find any NAND device.\n");
961 		err = -ENXIO;
962 		goto escan;
963 	}
964 
965 	/* Register the partitions */
966 #ifdef CONFIG_MTD_PARTITIONS
967 	nr_parts =
968 	    parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
969 	if (nr_parts > 0)
970 		add_mtd_partitions(mtd, host->parts, nr_parts);
971 	else
972 #endif
973 	{
974 		pr_info("Registering %s as whole device\n", mtd->name);
975 		add_mtd_device(mtd);
976 	}
977 
978 	platform_set_drvdata(pdev, host);
979 
980 	return 0;
981 
982 escan:
983 	free_irq(host->irq, NULL);
984 eirq:
985 	iounmap(host->regs);
986 eres:
987 	clk_put(host->clk);
988 eclk:
989 	kfree(host);
990 
991 	return err;
992 }
993 
mxcnd_remove(struct platform_device * pdev)994 static int __devexit mxcnd_remove(struct platform_device *pdev)
995 {
996 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
997 
998 	clk_put(host->clk);
999 
1000 	platform_set_drvdata(pdev, NULL);
1001 
1002 	nand_release(&host->mtd);
1003 	free_irq(host->irq, NULL);
1004 	iounmap(host->regs);
1005 	kfree(host);
1006 
1007 	return 0;
1008 }
1009 
1010 #ifdef CONFIG_PM
mxcnd_suspend(struct platform_device * pdev,pm_message_t state)1011 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1012 {
1013 	struct mtd_info *info = platform_get_drvdata(pdev);
1014 	int ret = 0;
1015 
1016 	DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1017 	if (info)
1018 		ret = info->suspend(info);
1019 
1020 	/* Disable the NFC clock */
1021 	clk_disable(nfc_clk);	/* FIXME */
1022 
1023 	return ret;
1024 }
1025 
mxcnd_resume(struct platform_device * pdev)1026 static int mxcnd_resume(struct platform_device *pdev)
1027 {
1028 	struct mtd_info *info = platform_get_drvdata(pdev);
1029 	int ret = 0;
1030 
1031 	DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1032 	/* Enable the NFC clock */
1033 	clk_enable(nfc_clk);	/* FIXME */
1034 
1035 	if (info)
1036 		info->resume(info);
1037 
1038 	return ret;
1039 }
1040 
1041 #else
1042 # define mxcnd_suspend   NULL
1043 # define mxcnd_resume    NULL
1044 #endif				/* CONFIG_PM */
1045 
1046 static struct platform_driver mxcnd_driver = {
1047 	.driver = {
1048 		   .name = DRIVER_NAME,
1049 		   },
1050 	.remove = __exit_p(mxcnd_remove),
1051 	.suspend = mxcnd_suspend,
1052 	.resume = mxcnd_resume,
1053 };
1054 
mxc_nd_init(void)1055 static int __init mxc_nd_init(void)
1056 {
1057 	/* Register the device driver structure. */
1058 	pr_info("MXC MTD nand Driver\n");
1059 	if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) {
1060 		printk(KERN_ERR "Driver register failed for mxcnd_driver\n");
1061 		return -ENODEV;
1062 	}
1063 	return 0;
1064 }
1065 
mxc_nd_cleanup(void)1066 static void __exit mxc_nd_cleanup(void)
1067 {
1068 	/* Unregister the device structure */
1069 	platform_driver_unregister(&mxcnd_driver);
1070 }
1071 
1072 module_init(mxc_nd_init);
1073 module_exit(mxc_nd_cleanup);
1074 
1075 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1076 MODULE_DESCRIPTION("MXC NAND MTD driver");
1077 MODULE_LICENSE("GPL");
1078