• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static char version[] __devinitdata =
106 DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_1,
239 
240 	CH_3C905B_2,
241 	CH_3C905B_FX,
242 	CH_3C905C,
243 	CH_3C9202,
244 	CH_3C980,
245 	CH_3C9805,
246 
247 	CH_3CSOHO100_TX,
248 	CH_3C555,
249 	CH_3C556,
250 	CH_3C556B,
251 	CH_3C575,
252 
253 	CH_3C575_1,
254 	CH_3CCFE575,
255 	CH_3CCFE575CT,
256 	CH_3CCFE656,
257 	CH_3CCFEM656,
258 
259 	CH_3CCFEM656_1,
260 	CH_3C450,
261 	CH_3C920,
262 	CH_3C982A,
263 	CH_3C982B,
264 
265 	CH_905BT4,
266 	CH_920B_EMB_WNM,
267 };
268 
269 
270 /* note: this array directly indexed by above enums, and MUST
271  * be kept in sync with both the enums above, and the PCI device
272  * table below
273  */
274 static struct vortex_chip_info {
275 	const char *name;
276 	int flags;
277 	int drv_flags;
278 	int io_size;
279 } vortex_info_tbl[] __devinitdata = {
280 	{"3c590 Vortex 10Mbps",
281 	 PCI_USES_MASTER, IS_VORTEX, 32, },
282 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
283 	 PCI_USES_MASTER, IS_VORTEX, 32, },
284 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
285 	 PCI_USES_MASTER, IS_VORTEX, 32, },
286 	{"3c595 Vortex 100baseTx",
287 	 PCI_USES_MASTER, IS_VORTEX, 32, },
288 	{"3c595 Vortex 100baseT4",
289 	 PCI_USES_MASTER, IS_VORTEX, 32, },
290 
291 	{"3c595 Vortex 100base-MII",
292 	 PCI_USES_MASTER, IS_VORTEX, 32, },
293 	{"3c900 Boomerang 10baseT",
294 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 	{"3c900 Boomerang 10Mbps Combo",
296 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
298 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 	{"3c900 Cyclone 10Mbps Combo",
300 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
301 
302 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
303 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 	{"3c900B-FL Cyclone 10base-FL",
305 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 	{"3c905 Boomerang 100baseTx",
307 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 	{"3c905 Boomerang 100baseT4",
309 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 	{"3c905B Cyclone 100baseTx",
311 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
312 
313 	{"3c905B Cyclone 10/100/BNC",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 	{"3c905B-FX Cyclone 100baseFx",
316 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
317 	{"3c905C Tornado",
318 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
321 	{"3c980 Cyclone",
322 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
323 
324 	{"3c980C Python-T",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 	{"3cSOHO100-TX Hurricane",
327 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
328 	{"3c555 Laptop Hurricane",
329 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 	{"3c556 Laptop Tornado",
331 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
332 									HAS_HWCKSM, 128, },
333 	{"3c556B Laptop Hurricane",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
336 
337 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
338 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 	{"3c575 Boomerang CardBus",
340 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 	{"3CCFE575BT Cyclone CardBus",
342 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 	{"3CCFE575CT Tornado CardBus",
345 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 	{"3CCFE656 Cyclone CardBus",
348 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
350 
351 	{"3CCFEM656B Cyclone+Winmodem CardBus",
352 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
355 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
359 	{"3c920 Tornado",
360 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 	{"3c982 Hydra Dual Port A",
362 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
363 
364 	{"3c982 Hydra Dual Port B",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 	{"3c905B-T4",
367 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 	{"3c920B-EMB-WNM Tornado",
369 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
370 
371 	{NULL,}, /* NULL terminated list. */
372 };
373 
374 
375 static struct pci_device_id vortex_pci_tbl[] = {
376 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
381 
382 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
387 
388 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
393 
394 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
400 
401 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
406 
407 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
412 
413 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
418 
419 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
421 
422 	{0,}						/* 0 terminated list. */
423 };
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
425 
426 
427 /* Operational definitions.
428    These are not used by other compilation units and thus are not
429    exported in a ".h" file.
430 
431    First the windows.  There are eight register windows, with the command
432    and status registers available in each.
433    */
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
435 #define EL3_CMD 0x0e
436 #define EL3_STATUS 0x0e
437 
438 /* The top five bits written to EL3_CMD are a command, the lower
439    11 bits are the parameter, if applicable.
440    Note that 11 parameters bits was fine for ethernet, but the new chip
441    can handle FDDI length frames (~4500 octets) and now parameters count
442    32-bit 'Dwords' rather than octets. */
443 
444 enum vortex_cmd {
445 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
455 
456 /* The SetRxFilter command accepts the following classes: */
457 enum RxFilter {
458 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
459 
460 /* Bits in the general status register. */
461 enum vortex_status {
462 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 	IntReq = 0x0040, StatsFull = 0x0080,
465 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
467 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
468 };
469 
470 /* Register window 1 offsets, the window used in normal operation.
471    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
472 enum Window1 {
473 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
474 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
475 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
476 };
477 enum Window0 {
478 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
479 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
480 	IntrStatus=0x0E,		/* Valid in all windows. */
481 };
482 enum Win0_EEPROM_bits {
483 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
485 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
486 };
487 /* EEPROM locations. */
488 enum eeprom_offset {
489 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 	DriverTune=13, Checksum=15};
493 
494 enum Window2 {			/* Window 2. */
495 	Wn2_ResetOptions=12,
496 };
497 enum Window3 {			/* Window 3: MAC/config bits. */
498 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
499 };
500 
501 #define BFEXT(value, offset, bitcount)  \
502     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
503 
504 #define BFINS(lhs, rhs, offset, bitcount)					\
505 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
506 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
507 
508 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
510 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
511 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
513 #define XCVR(v)			BFEXT(v, 20, 4)
514 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
515 
516 enum Window4 {		/* Window 4: Xcvr/media bits. */
517 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
518 };
519 enum Win4_Media_bits {
520 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
521 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
522 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
523 	Media_LnkBeat = 0x0800,
524 };
525 enum Window7 {					/* Window 7: Bus Master control. */
526 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 	Wn7_MasterStatus = 12,
528 };
529 /* Boomerang bus master control registers. */
530 enum MasterCtrl {
531 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
533 };
534 
535 /* The Rx and Tx descriptor lists.
536    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
537    alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
540 struct boom_rx_desc {
541 	__le32 next;					/* Last entry points to 0.   */
542 	__le32 status;
543 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
544 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
545 };
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 	RxDComplete=0x00008000, RxDError=0x4000,
549 	/* See boomerang_rx() for actual error bits */
550 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
552 };
553 
554 #ifdef MAX_SKB_FRAGS
555 #define DO_ZEROCOPY 1
556 #else
557 #define DO_ZEROCOPY 0
558 #endif
559 
560 struct boom_tx_desc {
561 	__le32 next;					/* Last entry points to 0.   */
562 	__le32 status;					/* bits 0:12 length, others see below.  */
563 #if DO_ZEROCOPY
564 	struct {
565 		__le32 addr;
566 		__le32 length;
567 	} frag[1+MAX_SKB_FRAGS];
568 #else
569 		__le32 addr;
570 		__le32 length;
571 #endif
572 };
573 
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 	CRCDisable=0x2000, TxDComplete=0x8000,
577 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
579 };
580 
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
583 
584 struct vortex_extra_stats {
585 	unsigned long tx_deferred;
586 	unsigned long tx_max_collisions;
587 	unsigned long tx_multiple_collisions;
588 	unsigned long tx_single_collisions;
589 	unsigned long rx_bad_ssd;
590 };
591 
592 struct vortex_private {
593 	/* The Rx and Tx rings should be quad-word-aligned. */
594 	struct boom_rx_desc* rx_ring;
595 	struct boom_tx_desc* tx_ring;
596 	dma_addr_t rx_ring_dma;
597 	dma_addr_t tx_ring_dma;
598 	/* The addresses of transmit- and receive-in-place skbuffs. */
599 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
602 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
603 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
604 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
605 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
606 
607 	/* PCI configuration space information. */
608 	struct device *gendev;
609 	void __iomem *ioaddr;			/* IO address space */
610 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
611 
612 	/* Some values here only for performance evaluation and path-coverage */
613 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
614 	int card_idx;
615 
616 	/* The remainder are related to chip state, mostly media selection. */
617 	struct timer_list timer;			/* Media selection timer. */
618 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
619 	int options;						/* User-settable misc. driver options. */
620 	unsigned int media_override:4, 		/* Passed-in media type. */
621 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
622 		full_duplex:1, autoselect:1,
623 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
624 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
625 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
626 		partner_flow_ctrl:1,			/* Partner supports flow control */
627 		has_nway:1,
628 		enable_wol:1,					/* Wake-on-LAN is enabled */
629 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
630 		open:1,
631 		medialock:1,
632 		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
633 		large_frames:1;			/* accept large frames */
634 	int drv_flags;
635 	u16 status_enable;
636 	u16 intr_enable;
637 	u16 available_media;				/* From Wn3_Options. */
638 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
639 	u16 advertising;					/* NWay media advertisement */
640 	unsigned char phys[2];				/* MII device addresses. */
641 	u16 deferred;						/* Resend these interrupts when we
642 										 * bale from the ISR */
643 	u16 io_size;						/* Size of PCI region (for release_region) */
644 	spinlock_t lock;					/* Serialise access to device & its vortex_private */
645 	struct mii_if_info mii;				/* MII lib hooks/info */
646 };
647 
648 #ifdef CONFIG_PCI
649 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
650 #else
651 #define DEVICE_PCI(dev) NULL
652 #endif
653 
654 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
655 
656 #ifdef CONFIG_EISA
657 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
658 #else
659 #define DEVICE_EISA(dev) NULL
660 #endif
661 
662 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
663 
664 /* The action to take with a media selection timer tick.
665    Note that we deviate from the 3Com order by checking 10base2 before AUI.
666  */
667 enum xcvr_types {
668 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
669 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
670 };
671 
672 static const struct media_table {
673 	char *name;
674 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
675 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
676 		next:8;						/* The media type to try next. */
677 	int wait;						/* Time before we check media status. */
678 } media_tbl[] = {
679   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
680   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
681   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
682   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
683   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
684   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
685   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
686   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
687   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
688   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
689   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
690 };
691 
692 static struct {
693 	const char str[ETH_GSTRING_LEN];
694 } ethtool_stats_keys[] = {
695 	{ "tx_deferred" },
696 	{ "tx_max_collisions" },
697 	{ "tx_multiple_collisions" },
698 	{ "tx_single_collisions" },
699 	{ "rx_bad_ssd" },
700 };
701 
702 /* number of ETHTOOL_GSTATS u64's */
703 #define VORTEX_NUM_STATS    5
704 
705 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
706 				   int chip_idx, int card_idx);
707 static int vortex_up(struct net_device *dev);
708 static void vortex_down(struct net_device *dev, int final);
709 static int vortex_open(struct net_device *dev);
710 static void mdio_sync(void __iomem *ioaddr, int bits);
711 static int mdio_read(struct net_device *dev, int phy_id, int location);
712 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
713 static void vortex_timer(unsigned long arg);
714 static void rx_oom_timer(unsigned long arg);
715 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
716 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int vortex_rx(struct net_device *dev);
718 static int boomerang_rx(struct net_device *dev);
719 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
720 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
721 static int vortex_close(struct net_device *dev);
722 static void dump_tx_ring(struct net_device *dev);
723 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
724 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
725 static void set_rx_mode(struct net_device *dev);
726 #ifdef CONFIG_PCI
727 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
728 #endif
729 static void vortex_tx_timeout(struct net_device *dev);
730 static void acpi_set_WOL(struct net_device *dev);
731 static const struct ethtool_ops vortex_ethtool_ops;
732 static void set_8021q_mode(struct net_device *dev, int enable);
733 
734 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
735 /* Option count limit only -- unlimited interfaces are supported. */
736 #define MAX_UNITS 8
737 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
738 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
739 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int global_options = -1;
744 static int global_full_duplex = -1;
745 static int global_enable_wol = -1;
746 static int global_use_mmio = -1;
747 
748 /* Variables to work-around the Compaq PCI BIOS32 problem. */
749 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
750 static struct net_device *compaq_net_device;
751 
752 static int vortex_cards_found;
753 
754 module_param(debug, int, 0);
755 module_param(global_options, int, 0);
756 module_param_array(options, int, NULL, 0);
757 module_param(global_full_duplex, int, 0);
758 module_param_array(full_duplex, int, NULL, 0);
759 module_param_array(hw_checksums, int, NULL, 0);
760 module_param_array(flow_ctrl, int, NULL, 0);
761 module_param(global_enable_wol, int, 0);
762 module_param_array(enable_wol, int, NULL, 0);
763 module_param(rx_copybreak, int, 0);
764 module_param(max_interrupt_work, int, 0);
765 module_param(compaq_ioaddr, int, 0);
766 module_param(compaq_irq, int, 0);
767 module_param(compaq_device_id, int, 0);
768 module_param(watchdog, int, 0);
769 module_param(global_use_mmio, int, 0);
770 module_param_array(use_mmio, int, NULL, 0);
771 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
772 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
773 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
774 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
775 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
776 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
777 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
778 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
779 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
780 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
781 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
782 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
783 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
786 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
787 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
788 
789 #ifdef CONFIG_NET_POLL_CONTROLLER
poll_vortex(struct net_device * dev)790 static void poll_vortex(struct net_device *dev)
791 {
792 	struct vortex_private *vp = netdev_priv(dev);
793 	unsigned long flags;
794 	local_irq_save(flags);
795 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
796 	local_irq_restore(flags);
797 }
798 #endif
799 
800 #ifdef CONFIG_PM
801 
vortex_suspend(struct pci_dev * pdev,pm_message_t state)802 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
803 {
804 	struct net_device *dev = pci_get_drvdata(pdev);
805 
806 	if (dev && netdev_priv(dev)) {
807 		if (netif_running(dev)) {
808 			netif_device_detach(dev);
809 			vortex_down(dev, 1);
810 		}
811 		pci_save_state(pdev);
812 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
813 		free_irq(dev->irq, dev);
814 		pci_disable_device(pdev);
815 		pci_set_power_state(pdev, pci_choose_state(pdev, state));
816 	}
817 	return 0;
818 }
819 
vortex_resume(struct pci_dev * pdev)820 static int vortex_resume(struct pci_dev *pdev)
821 {
822 	struct net_device *dev = pci_get_drvdata(pdev);
823 	struct vortex_private *vp = netdev_priv(dev);
824 	int err;
825 
826 	if (dev && vp) {
827 		pci_set_power_state(pdev, PCI_D0);
828 		pci_restore_state(pdev);
829 		err = pci_enable_device(pdev);
830 		if (err) {
831 			printk(KERN_WARNING "%s: Could not enable device \n",
832 				dev->name);
833 			return err;
834 		}
835 		pci_set_master(pdev);
836 		if (request_irq(dev->irq, vp->full_bus_master_rx ?
837 				&boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
838 			printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
839 			pci_disable_device(pdev);
840 			return -EBUSY;
841 		}
842 		if (netif_running(dev)) {
843 			err = vortex_up(dev);
844 			if (err)
845 				return err;
846 			else
847 				netif_device_attach(dev);
848 		}
849 	}
850 	return 0;
851 }
852 
853 #endif /* CONFIG_PM */
854 
855 #ifdef CONFIG_EISA
856 static struct eisa_device_id vortex_eisa_ids[] = {
857 	{ "TCM5920", CH_3C592 },
858 	{ "TCM5970", CH_3C597 },
859 	{ "" }
860 };
861 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
862 
vortex_eisa_probe(struct device * device)863 static int __init vortex_eisa_probe(struct device *device)
864 {
865 	void __iomem *ioaddr;
866 	struct eisa_device *edev;
867 
868 	edev = to_eisa_device(device);
869 
870 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
871 		return -EBUSY;
872 
873 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
874 
875 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
876 					  edev->id.driver_data, vortex_cards_found)) {
877 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
878 		return -ENODEV;
879 	}
880 
881 	vortex_cards_found++;
882 
883 	return 0;
884 }
885 
vortex_eisa_remove(struct device * device)886 static int __devexit vortex_eisa_remove(struct device *device)
887 {
888 	struct eisa_device *edev;
889 	struct net_device *dev;
890 	struct vortex_private *vp;
891 	void __iomem *ioaddr;
892 
893 	edev = to_eisa_device(device);
894 	dev = eisa_get_drvdata(edev);
895 
896 	if (!dev) {
897 		printk("vortex_eisa_remove called for Compaq device!\n");
898 		BUG();
899 	}
900 
901 	vp = netdev_priv(dev);
902 	ioaddr = vp->ioaddr;
903 
904 	unregister_netdev(dev);
905 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
906 	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
907 
908 	free_netdev(dev);
909 	return 0;
910 }
911 
912 static struct eisa_driver vortex_eisa_driver = {
913 	.id_table = vortex_eisa_ids,
914 	.driver   = {
915 		.name    = "3c59x",
916 		.probe   = vortex_eisa_probe,
917 		.remove  = __devexit_p(vortex_eisa_remove)
918 	}
919 };
920 
921 #endif /* CONFIG_EISA */
922 
923 /* returns count found (>= 0), or negative on error */
vortex_eisa_init(void)924 static int __init vortex_eisa_init(void)
925 {
926 	int eisa_found = 0;
927 	int orig_cards_found = vortex_cards_found;
928 
929 #ifdef CONFIG_EISA
930 	int err;
931 
932 	err = eisa_driver_register (&vortex_eisa_driver);
933 	if (!err) {
934 		/*
935 		 * Because of the way EISA bus is probed, we cannot assume
936 		 * any device have been found when we exit from
937 		 * eisa_driver_register (the bus root driver may not be
938 		 * initialized yet). So we blindly assume something was
939 		 * found, and let the sysfs magic happend...
940 		 */
941 		eisa_found = 1;
942 	}
943 #endif
944 
945 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
946 	if (compaq_ioaddr) {
947 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
948 			      compaq_irq, compaq_device_id, vortex_cards_found++);
949 	}
950 
951 	return vortex_cards_found - orig_cards_found + eisa_found;
952 }
953 
954 /* returns count (>= 0), or negative on error */
vortex_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)955 static int __devinit vortex_init_one(struct pci_dev *pdev,
956 				      const struct pci_device_id *ent)
957 {
958 	int rc, unit, pci_bar;
959 	struct vortex_chip_info *vci;
960 	void __iomem *ioaddr;
961 
962 	/* wake up and enable device */
963 	rc = pci_enable_device(pdev);
964 	if (rc < 0)
965 		goto out;
966 
967 	unit = vortex_cards_found;
968 
969 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
970 		/* Determine the default if the user didn't override us */
971 		vci = &vortex_info_tbl[ent->driver_data];
972 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
973 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
974 		pci_bar = use_mmio[unit] ? 1 : 0;
975 	else
976 		pci_bar = global_use_mmio ? 1 : 0;
977 
978 	ioaddr = pci_iomap(pdev, pci_bar, 0);
979 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
980 		ioaddr = pci_iomap(pdev, 0, 0);
981 
982 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
983 			   ent->driver_data, unit);
984 	if (rc < 0) {
985 		pci_disable_device(pdev);
986 		goto out;
987 	}
988 
989 	vortex_cards_found++;
990 
991 out:
992 	return rc;
993 }
994 
995 /*
996  * Start up the PCI/EISA device which is described by *gendev.
997  * Return 0 on success.
998  *
999  * NOTE: pdev can be NULL, for the case of a Compaq device
1000  */
vortex_probe1(struct device * gendev,void __iomem * ioaddr,int irq,int chip_idx,int card_idx)1001 static int __devinit vortex_probe1(struct device *gendev,
1002 				   void __iomem *ioaddr, int irq,
1003 				   int chip_idx, int card_idx)
1004 {
1005 	struct vortex_private *vp;
1006 	int option;
1007 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1008 	int i, step;
1009 	struct net_device *dev;
1010 	static int printed_version;
1011 	int retval, print_info;
1012 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1013 	const char *print_name = "3c59x";
1014 	struct pci_dev *pdev = NULL;
1015 	struct eisa_device *edev = NULL;
1016 
1017 	if (!printed_version) {
1018 		printk (version);
1019 		printed_version = 1;
1020 	}
1021 
1022 	if (gendev) {
1023 		if ((pdev = DEVICE_PCI(gendev))) {
1024 			print_name = pci_name(pdev);
1025 		}
1026 
1027 		if ((edev = DEVICE_EISA(gendev))) {
1028 			print_name = dev_name(&edev->dev);
1029 		}
1030 	}
1031 
1032 	dev = alloc_etherdev(sizeof(*vp));
1033 	retval = -ENOMEM;
1034 	if (!dev) {
1035 		printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1036 		goto out;
1037 	}
1038 	SET_NETDEV_DEV(dev, gendev);
1039 	vp = netdev_priv(dev);
1040 
1041 	option = global_options;
1042 
1043 	/* The lower four bits are the media type. */
1044 	if (dev->mem_start) {
1045 		/*
1046 		 * The 'options' param is passed in as the third arg to the
1047 		 * LILO 'ether=' argument for non-modular use
1048 		 */
1049 		option = dev->mem_start;
1050 	}
1051 	else if (card_idx < MAX_UNITS) {
1052 		if (options[card_idx] >= 0)
1053 			option = options[card_idx];
1054 	}
1055 
1056 	if (option > 0) {
1057 		if (option & 0x8000)
1058 			vortex_debug = 7;
1059 		if (option & 0x4000)
1060 			vortex_debug = 2;
1061 		if (option & 0x0400)
1062 			vp->enable_wol = 1;
1063 	}
1064 
1065 	print_info = (vortex_debug > 1);
1066 	if (print_info)
1067 		printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1068 
1069 	printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1070 	       print_name,
1071 	       pdev ? "PCI" : "EISA",
1072 	       vci->name,
1073 	       ioaddr);
1074 
1075 	dev->base_addr = (unsigned long)ioaddr;
1076 	dev->irq = irq;
1077 	dev->mtu = mtu;
1078 	vp->ioaddr = ioaddr;
1079 	vp->large_frames = mtu > 1500;
1080 	vp->drv_flags = vci->drv_flags;
1081 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1082 	vp->io_size = vci->io_size;
1083 	vp->card_idx = card_idx;
1084 
1085 	/* module list only for Compaq device */
1086 	if (gendev == NULL) {
1087 		compaq_net_device = dev;
1088 	}
1089 
1090 	/* PCI-only startup logic */
1091 	if (pdev) {
1092 		/* EISA resources already marked, so only PCI needs to do this here */
1093 		/* Ignore return value, because Cardbus drivers already allocate for us */
1094 		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1095 			vp->must_free_region = 1;
1096 
1097 		/* enable bus-mastering if necessary */
1098 		if (vci->flags & PCI_USES_MASTER)
1099 			pci_set_master(pdev);
1100 
1101 		if (vci->drv_flags & IS_VORTEX) {
1102 			u8 pci_latency;
1103 			u8 new_latency = 248;
1104 
1105 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1106 			   must be set to the maximum value to avoid data corruption that occurs
1107 			   when the timer expires during a transfer.  This bug exists the Vortex
1108 			   chip only. */
1109 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1110 			if (pci_latency < new_latency) {
1111 				printk(KERN_INFO "%s: Overriding PCI latency"
1112 					" timer (CFLT) setting of %d, new value is %d.\n",
1113 					print_name, pci_latency, new_latency);
1114 					pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1115 			}
1116 		}
1117 	}
1118 
1119 	spin_lock_init(&vp->lock);
1120 	vp->gendev = gendev;
1121 	vp->mii.dev = dev;
1122 	vp->mii.mdio_read = mdio_read;
1123 	vp->mii.mdio_write = mdio_write;
1124 	vp->mii.phy_id_mask = 0x1f;
1125 	vp->mii.reg_num_mask = 0x1f;
1126 
1127 	/* Makes sure rings are at least 16 byte aligned. */
1128 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1129 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1130 					   &vp->rx_ring_dma);
1131 	retval = -ENOMEM;
1132 	if (!vp->rx_ring)
1133 		goto free_region;
1134 
1135 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1136 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1137 
1138 	/* if we are a PCI driver, we store info in pdev->driver_data
1139 	 * instead of a module list */
1140 	if (pdev)
1141 		pci_set_drvdata(pdev, dev);
1142 	if (edev)
1143 		eisa_set_drvdata(edev, dev);
1144 
1145 	vp->media_override = 7;
1146 	if (option >= 0) {
1147 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1148 		if (vp->media_override != 7)
1149 			vp->medialock = 1;
1150 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1151 		vp->bus_master = (option & 16) ? 1 : 0;
1152 	}
1153 
1154 	if (global_full_duplex > 0)
1155 		vp->full_duplex = 1;
1156 	if (global_enable_wol > 0)
1157 		vp->enable_wol = 1;
1158 
1159 	if (card_idx < MAX_UNITS) {
1160 		if (full_duplex[card_idx] > 0)
1161 			vp->full_duplex = 1;
1162 		if (flow_ctrl[card_idx] > 0)
1163 			vp->flow_ctrl = 1;
1164 		if (enable_wol[card_idx] > 0)
1165 			vp->enable_wol = 1;
1166 	}
1167 
1168 	vp->mii.force_media = vp->full_duplex;
1169 	vp->options = option;
1170 	/* Read the station address from the EEPROM. */
1171 	EL3WINDOW(0);
1172 	{
1173 		int base;
1174 
1175 		if (vci->drv_flags & EEPROM_8BIT)
1176 			base = 0x230;
1177 		else if (vci->drv_flags & EEPROM_OFFSET)
1178 			base = EEPROM_Read + 0x30;
1179 		else
1180 			base = EEPROM_Read;
1181 
1182 		for (i = 0; i < 0x40; i++) {
1183 			int timer;
1184 			iowrite16(base + i, ioaddr + Wn0EepromCmd);
1185 			/* Pause for at least 162 us. for the read to take place. */
1186 			for (timer = 10; timer >= 0; timer--) {
1187 				udelay(162);
1188 				if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1189 					break;
1190 			}
1191 			eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1192 		}
1193 	}
1194 	for (i = 0; i < 0x18; i++)
1195 		checksum ^= eeprom[i];
1196 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1197 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1198 		while (i < 0x21)
1199 			checksum ^= eeprom[i++];
1200 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1201 	}
1202 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1203 		printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1204 	for (i = 0; i < 3; i++)
1205 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1206 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1207 	if (print_info)
1208 		printk(" %pM", dev->dev_addr);
1209 	/* Unfortunately an all zero eeprom passes the checksum and this
1210 	   gets found in the wild in failure cases. Crypto is hard 8) */
1211 	if (!is_valid_ether_addr(dev->dev_addr)) {
1212 		retval = -EINVAL;
1213 		printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1214 		goto free_ring;	/* With every pack */
1215 	}
1216 	EL3WINDOW(2);
1217 	for (i = 0; i < 6; i++)
1218 		iowrite8(dev->dev_addr[i], ioaddr + i);
1219 
1220 	if (print_info)
1221 		printk(", IRQ %d\n", dev->irq);
1222 	/* Tell them about an invalid IRQ. */
1223 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1224 		printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1225 			   dev->irq);
1226 
1227 	EL3WINDOW(4);
1228 	step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1229 	if (print_info) {
1230 		printk(KERN_INFO "  product code %02x%02x rev %02x.%d date %02d-"
1231 			"%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1232 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1233 	}
1234 
1235 
1236 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1237 		unsigned short n;
1238 
1239 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1240 		if (!vp->cb_fn_base) {
1241 			retval = -ENOMEM;
1242 			goto free_ring;
1243 		}
1244 
1245 		if (print_info) {
1246 			printk(KERN_INFO "%s: CardBus functions mapped "
1247 				"%16.16llx->%p\n",
1248 				print_name,
1249 				(unsigned long long)pci_resource_start(pdev, 2),
1250 				vp->cb_fn_base);
1251 		}
1252 		EL3WINDOW(2);
1253 
1254 		n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1255 		if (vp->drv_flags & INVERT_LED_PWR)
1256 			n |= 0x10;
1257 		if (vp->drv_flags & INVERT_MII_PWR)
1258 			n |= 0x4000;
1259 		iowrite16(n, ioaddr + Wn2_ResetOptions);
1260 		if (vp->drv_flags & WNO_XCVR_PWR) {
1261 			EL3WINDOW(0);
1262 			iowrite16(0x0800, ioaddr);
1263 		}
1264 	}
1265 
1266 	/* Extract our information from the EEPROM data. */
1267 	vp->info1 = eeprom[13];
1268 	vp->info2 = eeprom[15];
1269 	vp->capabilities = eeprom[16];
1270 
1271 	if (vp->info1 & 0x8000) {
1272 		vp->full_duplex = 1;
1273 		if (print_info)
1274 			printk(KERN_INFO "Full duplex capable\n");
1275 	}
1276 
1277 	{
1278 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1279 		unsigned int config;
1280 		EL3WINDOW(3);
1281 		vp->available_media = ioread16(ioaddr + Wn3_Options);
1282 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1283 			vp->available_media = 0x40;
1284 		config = ioread32(ioaddr + Wn3_Config);
1285 		if (print_info) {
1286 			printk(KERN_DEBUG "  Internal config register is %4.4x, "
1287 				   "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1288 			printk(KERN_INFO "  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1289 				   8 << RAM_SIZE(config),
1290 				   RAM_WIDTH(config) ? "word" : "byte",
1291 				   ram_split[RAM_SPLIT(config)],
1292 				   AUTOSELECT(config) ? "autoselect/" : "",
1293 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1294 				   media_tbl[XCVR(config)].name);
1295 		}
1296 		vp->default_media = XCVR(config);
1297 		if (vp->default_media == XCVR_NWAY)
1298 			vp->has_nway = 1;
1299 		vp->autoselect = AUTOSELECT(config);
1300 	}
1301 
1302 	if (vp->media_override != 7) {
1303 		printk(KERN_INFO "%s:  Media override to transceiver type %d (%s).\n",
1304 				print_name, vp->media_override,
1305 				media_tbl[vp->media_override].name);
1306 		dev->if_port = vp->media_override;
1307 	} else
1308 		dev->if_port = vp->default_media;
1309 
1310 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1311 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1312 		int phy, phy_idx = 0;
1313 		EL3WINDOW(4);
1314 		mii_preamble_required++;
1315 		if (vp->drv_flags & EXTRA_PREAMBLE)
1316 			mii_preamble_required++;
1317 		mdio_sync(ioaddr, 32);
1318 		mdio_read(dev, 24, MII_BMSR);
1319 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1320 			int mii_status, phyx;
1321 
1322 			/*
1323 			 * For the 3c905CX we look at index 24 first, because it bogusly
1324 			 * reports an external PHY at all indices
1325 			 */
1326 			if (phy == 0)
1327 				phyx = 24;
1328 			else if (phy <= 24)
1329 				phyx = phy - 1;
1330 			else
1331 				phyx = phy;
1332 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1333 			if (mii_status  &&  mii_status != 0xffff) {
1334 				vp->phys[phy_idx++] = phyx;
1335 				if (print_info) {
1336 					printk(KERN_INFO "  MII transceiver found at address %d,"
1337 						" status %4x.\n", phyx, mii_status);
1338 				}
1339 				if ((mii_status & 0x0040) == 0)
1340 					mii_preamble_required++;
1341 			}
1342 		}
1343 		mii_preamble_required--;
1344 		if (phy_idx == 0) {
1345 			printk(KERN_WARNING"  ***WARNING*** No MII transceivers found!\n");
1346 			vp->phys[0] = 24;
1347 		} else {
1348 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1349 			if (vp->full_duplex) {
1350 				/* Only advertise the FD media types. */
1351 				vp->advertising &= ~0x02A0;
1352 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1353 			}
1354 		}
1355 		vp->mii.phy_id = vp->phys[0];
1356 	}
1357 
1358 	if (vp->capabilities & CapBusMaster) {
1359 		vp->full_bus_master_tx = 1;
1360 		if (print_info) {
1361 			printk(KERN_INFO "  Enabling bus-master transmits and %s receives.\n",
1362 			(vp->info2 & 1) ? "early" : "whole-frame" );
1363 		}
1364 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1365 		vp->bus_master = 0;		/* AKPM: vortex only */
1366 	}
1367 
1368 	/* The 3c59x-specific entries in the device structure. */
1369 	dev->open = vortex_open;
1370 	if (vp->full_bus_master_tx) {
1371 		dev->hard_start_xmit = boomerang_start_xmit;
1372 		/* Actually, it still should work with iommu. */
1373 		if (card_idx < MAX_UNITS &&
1374 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1375 				hw_checksums[card_idx] == 1)) {
1376 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1377 		}
1378 	} else {
1379 		dev->hard_start_xmit = vortex_start_xmit;
1380 	}
1381 
1382 	if (print_info) {
1383 		printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1384 				print_name,
1385 				(dev->features & NETIF_F_SG) ? "en":"dis",
1386 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1387 	}
1388 
1389 	dev->stop = vortex_close;
1390 	dev->get_stats = vortex_get_stats;
1391 #ifdef CONFIG_PCI
1392 	dev->do_ioctl = vortex_ioctl;
1393 #endif
1394 	dev->ethtool_ops = &vortex_ethtool_ops;
1395 	dev->set_multicast_list = set_rx_mode;
1396 	dev->tx_timeout = vortex_tx_timeout;
1397 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1398 #ifdef CONFIG_NET_POLL_CONTROLLER
1399 	dev->poll_controller = poll_vortex;
1400 #endif
1401 	if (pdev) {
1402 		vp->pm_state_valid = 1;
1403  		pci_save_state(VORTEX_PCI(vp));
1404  		acpi_set_WOL(dev);
1405 	}
1406 	retval = register_netdev(dev);
1407 	if (retval == 0)
1408 		return 0;
1409 
1410 free_ring:
1411 	pci_free_consistent(pdev,
1412 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1413 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1414 						vp->rx_ring,
1415 						vp->rx_ring_dma);
1416 free_region:
1417 	if (vp->must_free_region)
1418 		release_region(dev->base_addr, vci->io_size);
1419 	free_netdev(dev);
1420 	printk(KERN_ERR PFX "vortex_probe1 fails.  Returns %d\n", retval);
1421 out:
1422 	return retval;
1423 }
1424 
1425 static void
issue_and_wait(struct net_device * dev,int cmd)1426 issue_and_wait(struct net_device *dev, int cmd)
1427 {
1428 	struct vortex_private *vp = netdev_priv(dev);
1429 	void __iomem *ioaddr = vp->ioaddr;
1430 	int i;
1431 
1432 	iowrite16(cmd, ioaddr + EL3_CMD);
1433 	for (i = 0; i < 2000; i++) {
1434 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1435 			return;
1436 	}
1437 
1438 	/* OK, that didn't work.  Do it the slow way.  One second */
1439 	for (i = 0; i < 100000; i++) {
1440 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1441 			if (vortex_debug > 1)
1442 				printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1443 					   dev->name, cmd, i * 10);
1444 			return;
1445 		}
1446 		udelay(10);
1447 	}
1448 	printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1449 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1450 }
1451 
1452 static void
vortex_set_duplex(struct net_device * dev)1453 vortex_set_duplex(struct net_device *dev)
1454 {
1455 	struct vortex_private *vp = netdev_priv(dev);
1456 	void __iomem *ioaddr = vp->ioaddr;
1457 
1458 	printk(KERN_INFO "%s:  setting %s-duplex.\n",
1459 		dev->name, (vp->full_duplex) ? "full" : "half");
1460 
1461 	EL3WINDOW(3);
1462 	/* Set the full-duplex bit. */
1463 	iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1464 		 	(vp->large_frames ? 0x40 : 0) |
1465 			((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1466 					0x100 : 0),
1467 			ioaddr + Wn3_MAC_Ctrl);
1468 }
1469 
vortex_check_media(struct net_device * dev,unsigned int init)1470 static void vortex_check_media(struct net_device *dev, unsigned int init)
1471 {
1472 	struct vortex_private *vp = netdev_priv(dev);
1473 	unsigned int ok_to_print = 0;
1474 
1475 	if (vortex_debug > 3)
1476 		ok_to_print = 1;
1477 
1478 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1479 		vp->full_duplex = vp->mii.full_duplex;
1480 		vortex_set_duplex(dev);
1481 	} else if (init) {
1482 		vortex_set_duplex(dev);
1483 	}
1484 }
1485 
1486 static int
vortex_up(struct net_device * dev)1487 vortex_up(struct net_device *dev)
1488 {
1489 	struct vortex_private *vp = netdev_priv(dev);
1490 	void __iomem *ioaddr = vp->ioaddr;
1491 	unsigned int config;
1492 	int i, mii_reg1, mii_reg5, err = 0;
1493 
1494 	if (VORTEX_PCI(vp)) {
1495 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1496 		if (vp->pm_state_valid)
1497 			pci_restore_state(VORTEX_PCI(vp));
1498 		err = pci_enable_device(VORTEX_PCI(vp));
1499 		if (err) {
1500 			printk(KERN_WARNING "%s: Could not enable device \n",
1501 				dev->name);
1502 			goto err_out;
1503 		}
1504 	}
1505 
1506 	/* Before initializing select the active media port. */
1507 	EL3WINDOW(3);
1508 	config = ioread32(ioaddr + Wn3_Config);
1509 
1510 	if (vp->media_override != 7) {
1511 		printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1512 			   dev->name, vp->media_override,
1513 			   media_tbl[vp->media_override].name);
1514 		dev->if_port = vp->media_override;
1515 	} else if (vp->autoselect) {
1516 		if (vp->has_nway) {
1517 			if (vortex_debug > 1)
1518 				printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1519 								dev->name, dev->if_port);
1520 			dev->if_port = XCVR_NWAY;
1521 		} else {
1522 			/* Find first available media type, starting with 100baseTx. */
1523 			dev->if_port = XCVR_100baseTx;
1524 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1525 				dev->if_port = media_tbl[dev->if_port].next;
1526 			if (vortex_debug > 1)
1527 				printk(KERN_INFO "%s: first available media type: %s\n",
1528 					dev->name, media_tbl[dev->if_port].name);
1529 		}
1530 	} else {
1531 		dev->if_port = vp->default_media;
1532 		if (vortex_debug > 1)
1533 			printk(KERN_INFO "%s: using default media %s\n",
1534 				dev->name, media_tbl[dev->if_port].name);
1535 	}
1536 
1537 	init_timer(&vp->timer);
1538 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1539 	vp->timer.data = (unsigned long)dev;
1540 	vp->timer.function = vortex_timer;		/* timer handler */
1541 	add_timer(&vp->timer);
1542 
1543 	init_timer(&vp->rx_oom_timer);
1544 	vp->rx_oom_timer.data = (unsigned long)dev;
1545 	vp->rx_oom_timer.function = rx_oom_timer;
1546 
1547 	if (vortex_debug > 1)
1548 		printk(KERN_DEBUG "%s: Initial media type %s.\n",
1549 			   dev->name, media_tbl[dev->if_port].name);
1550 
1551 	vp->full_duplex = vp->mii.force_media;
1552 	config = BFINS(config, dev->if_port, 20, 4);
1553 	if (vortex_debug > 6)
1554 		printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1555 	iowrite32(config, ioaddr + Wn3_Config);
1556 
1557 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1558 		EL3WINDOW(4);
1559 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1560 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1561 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1562 		vp->mii.full_duplex = vp->full_duplex;
1563 
1564 		vortex_check_media(dev, 1);
1565 	}
1566 	else
1567 		vortex_set_duplex(dev);
1568 
1569 	issue_and_wait(dev, TxReset);
1570 	/*
1571 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1572 	 */
1573 	issue_and_wait(dev, RxReset|0x04);
1574 
1575 
1576 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1577 
1578 	if (vortex_debug > 1) {
1579 		EL3WINDOW(4);
1580 		printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1581 			   dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1582 	}
1583 
1584 	/* Set the station address and mask in window 2 each time opened. */
1585 	EL3WINDOW(2);
1586 	for (i = 0; i < 6; i++)
1587 		iowrite8(dev->dev_addr[i], ioaddr + i);
1588 	for (; i < 12; i+=2)
1589 		iowrite16(0, ioaddr + i);
1590 
1591 	if (vp->cb_fn_base) {
1592 		unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1593 		if (vp->drv_flags & INVERT_LED_PWR)
1594 			n |= 0x10;
1595 		if (vp->drv_flags & INVERT_MII_PWR)
1596 			n |= 0x4000;
1597 		iowrite16(n, ioaddr + Wn2_ResetOptions);
1598 	}
1599 
1600 	if (dev->if_port == XCVR_10base2)
1601 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1602 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1603 	if (dev->if_port != XCVR_NWAY) {
1604 		EL3WINDOW(4);
1605 		iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1606 			 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1607 	}
1608 
1609 	/* Switch to the stats window, and clear all stats by reading. */
1610 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1611 	EL3WINDOW(6);
1612 	for (i = 0; i < 10; i++)
1613 		ioread8(ioaddr + i);
1614 	ioread16(ioaddr + 10);
1615 	ioread16(ioaddr + 12);
1616 	/* New: On the Vortex we must also clear the BadSSD counter. */
1617 	EL3WINDOW(4);
1618 	ioread8(ioaddr + 12);
1619 	/* ..and on the Boomerang we enable the extra statistics bits. */
1620 	iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1621 
1622 	/* Switch to register set 7 for normal use. */
1623 	EL3WINDOW(7);
1624 
1625 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1626 		vp->cur_rx = vp->dirty_rx = 0;
1627 		/* Initialize the RxEarly register as recommended. */
1628 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1629 		iowrite32(0x0020, ioaddr + PktStatus);
1630 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1631 	}
1632 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1633 		vp->cur_tx = vp->dirty_tx = 0;
1634 		if (vp->drv_flags & IS_BOOMERANG)
1635 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1636 		/* Clear the Rx, Tx rings. */
1637 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1638 			vp->rx_ring[i].status = 0;
1639 		for (i = 0; i < TX_RING_SIZE; i++)
1640 			vp->tx_skbuff[i] = NULL;
1641 		iowrite32(0, ioaddr + DownListPtr);
1642 	}
1643 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1644 	set_rx_mode(dev);
1645 	/* enable 802.1q tagged frames */
1646 	set_8021q_mode(dev, 1);
1647 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1648 
1649 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1650 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1651 	/* Allow status bits to be seen. */
1652 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1653 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1654 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1655 		(vp->bus_master ? DMADone : 0);
1656 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1657 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1658 		StatsFull | HostError | TxComplete | IntReq
1659 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1660 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1661 	/* Ack all pending events, and set active indicator mask. */
1662 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1663 		 ioaddr + EL3_CMD);
1664 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1665 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1666 		iowrite32(0x8000, vp->cb_fn_base + 4);
1667 	netif_start_queue (dev);
1668 err_out:
1669 	return err;
1670 }
1671 
1672 static int
vortex_open(struct net_device * dev)1673 vortex_open(struct net_device *dev)
1674 {
1675 	struct vortex_private *vp = netdev_priv(dev);
1676 	int i;
1677 	int retval;
1678 
1679 	/* Use the now-standard shared IRQ implementation. */
1680 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1681 				&boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1682 		printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1683 		goto err;
1684 	}
1685 
1686 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1687 		if (vortex_debug > 2)
1688 			printk(KERN_DEBUG "%s:  Filling in the Rx ring.\n", dev->name);
1689 		for (i = 0; i < RX_RING_SIZE; i++) {
1690 			struct sk_buff *skb;
1691 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1692 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1693 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1694 
1695 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1696 						 GFP_KERNEL);
1697 			vp->rx_skbuff[i] = skb;
1698 			if (skb == NULL)
1699 				break;			/* Bad news!  */
1700 
1701 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1702 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1703 		}
1704 		if (i != RX_RING_SIZE) {
1705 			int j;
1706 			printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1707 			for (j = 0; j < i; j++) {
1708 				if (vp->rx_skbuff[j]) {
1709 					dev_kfree_skb(vp->rx_skbuff[j]);
1710 					vp->rx_skbuff[j] = NULL;
1711 				}
1712 			}
1713 			retval = -ENOMEM;
1714 			goto err_free_irq;
1715 		}
1716 		/* Wrap the ring. */
1717 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1718 	}
1719 
1720 	retval = vortex_up(dev);
1721 	if (!retval)
1722 		goto out;
1723 
1724 err_free_irq:
1725 	free_irq(dev->irq, dev);
1726 err:
1727 	if (vortex_debug > 1)
1728 		printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1729 out:
1730 	return retval;
1731 }
1732 
1733 static void
vortex_timer(unsigned long data)1734 vortex_timer(unsigned long data)
1735 {
1736 	struct net_device *dev = (struct net_device *)data;
1737 	struct vortex_private *vp = netdev_priv(dev);
1738 	void __iomem *ioaddr = vp->ioaddr;
1739 	int next_tick = 60*HZ;
1740 	int ok = 0;
1741 	int media_status, old_window;
1742 
1743 	if (vortex_debug > 2) {
1744 		printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1745 			   dev->name, media_tbl[dev->if_port].name);
1746 		printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1747 	}
1748 
1749 	disable_irq_lockdep(dev->irq);
1750 	old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1751 	EL3WINDOW(4);
1752 	media_status = ioread16(ioaddr + Wn4_Media);
1753 	switch (dev->if_port) {
1754 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1755 		if (media_status & Media_LnkBeat) {
1756 			netif_carrier_on(dev);
1757 			ok = 1;
1758 			if (vortex_debug > 1)
1759 				printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1760 					   dev->name, media_tbl[dev->if_port].name, media_status);
1761 		} else {
1762 			netif_carrier_off(dev);
1763 			if (vortex_debug > 1) {
1764 				printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1765 					   dev->name, media_tbl[dev->if_port].name, media_status);
1766 			}
1767 		}
1768 		break;
1769 	case XCVR_MII: case XCVR_NWAY:
1770 		{
1771 			ok = 1;
1772 			/* Interrupts are already disabled */
1773 			spin_lock(&vp->lock);
1774 			vortex_check_media(dev, 0);
1775 			spin_unlock(&vp->lock);
1776 		}
1777 		break;
1778 	  default:					/* Other media types handled by Tx timeouts. */
1779 		if (vortex_debug > 1)
1780 		  printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1781 				 dev->name, media_tbl[dev->if_port].name, media_status);
1782 		ok = 1;
1783 	}
1784 
1785 	if (!netif_carrier_ok(dev))
1786 		next_tick = 5*HZ;
1787 
1788 	if (vp->medialock)
1789 		goto leave_media_alone;
1790 
1791 	if (!ok) {
1792 		unsigned int config;
1793 
1794 		do {
1795 			dev->if_port = media_tbl[dev->if_port].next;
1796 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1797 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1798 		  dev->if_port = vp->default_media;
1799 		  if (vortex_debug > 1)
1800 			printk(KERN_DEBUG "%s: Media selection failing, using default "
1801 				   "%s port.\n",
1802 				   dev->name, media_tbl[dev->if_port].name);
1803 		} else {
1804 			if (vortex_debug > 1)
1805 				printk(KERN_DEBUG "%s: Media selection failed, now trying "
1806 					   "%s port.\n",
1807 					   dev->name, media_tbl[dev->if_port].name);
1808 			next_tick = media_tbl[dev->if_port].wait;
1809 		}
1810 		iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1811 			 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1812 
1813 		EL3WINDOW(3);
1814 		config = ioread32(ioaddr + Wn3_Config);
1815 		config = BFINS(config, dev->if_port, 20, 4);
1816 		iowrite32(config, ioaddr + Wn3_Config);
1817 
1818 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1819 			 ioaddr + EL3_CMD);
1820 		if (vortex_debug > 1)
1821 			printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1822 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1823 	}
1824 
1825 leave_media_alone:
1826 	if (vortex_debug > 2)
1827 	  printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1828 			 dev->name, media_tbl[dev->if_port].name);
1829 
1830 	EL3WINDOW(old_window);
1831 	enable_irq_lockdep(dev->irq);
1832 	mod_timer(&vp->timer, RUN_AT(next_tick));
1833 	if (vp->deferred)
1834 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1835 	return;
1836 }
1837 
vortex_tx_timeout(struct net_device * dev)1838 static void vortex_tx_timeout(struct net_device *dev)
1839 {
1840 	struct vortex_private *vp = netdev_priv(dev);
1841 	void __iomem *ioaddr = vp->ioaddr;
1842 
1843 	printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1844 		   dev->name, ioread8(ioaddr + TxStatus),
1845 		   ioread16(ioaddr + EL3_STATUS));
1846 	EL3WINDOW(4);
1847 	printk(KERN_ERR "  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1848 			ioread16(ioaddr + Wn4_NetDiag),
1849 			ioread16(ioaddr + Wn4_Media),
1850 			ioread32(ioaddr + PktStatus),
1851 			ioread16(ioaddr + Wn4_FIFODiag));
1852 	/* Slight code bloat to be user friendly. */
1853 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1854 		printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1855 			   " network cable problem?\n", dev->name);
1856 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1857 		printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1858 			   " IRQ blocked by another device?\n", dev->name);
1859 		/* Bad idea here.. but we might as well handle a few events. */
1860 		{
1861 			/*
1862 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1863 			 */
1864 			unsigned long flags;
1865 			local_irq_save(flags);
1866 			if (vp->full_bus_master_tx)
1867 				boomerang_interrupt(dev->irq, dev);
1868 			else
1869 				vortex_interrupt(dev->irq, dev);
1870 			local_irq_restore(flags);
1871 		}
1872 	}
1873 
1874 	if (vortex_debug > 0)
1875 		dump_tx_ring(dev);
1876 
1877 	issue_and_wait(dev, TxReset);
1878 
1879 	dev->stats.tx_errors++;
1880 	if (vp->full_bus_master_tx) {
1881 		printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
1882 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1883 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1884 				 ioaddr + DownListPtr);
1885 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1886 			netif_wake_queue (dev);
1887 		if (vp->drv_flags & IS_BOOMERANG)
1888 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1889 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1890 	} else {
1891 		dev->stats.tx_dropped++;
1892 		netif_wake_queue(dev);
1893 	}
1894 
1895 	/* Issue Tx Enable */
1896 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1897 	dev->trans_start = jiffies;
1898 
1899 	/* Switch to register set 7 for normal use. */
1900 	EL3WINDOW(7);
1901 }
1902 
1903 /*
1904  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1905  * the cache impact.
1906  */
1907 static void
vortex_error(struct net_device * dev,int status)1908 vortex_error(struct net_device *dev, int status)
1909 {
1910 	struct vortex_private *vp = netdev_priv(dev);
1911 	void __iomem *ioaddr = vp->ioaddr;
1912 	int do_tx_reset = 0, reset_mask = 0;
1913 	unsigned char tx_status = 0;
1914 
1915 	if (vortex_debug > 2) {
1916 		printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
1917 	}
1918 
1919 	if (status & TxComplete) {			/* Really "TxError" for us. */
1920 		tx_status = ioread8(ioaddr + TxStatus);
1921 		/* Presumably a tx-timeout. We must merely re-enable. */
1922 		if (vortex_debug > 2
1923 			|| (tx_status != 0x88 && vortex_debug > 0)) {
1924 			printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
1925 				   dev->name, tx_status);
1926 			if (tx_status == 0x82) {
1927 				printk(KERN_ERR "Probably a duplex mismatch.  See "
1928 						"Documentation/networking/vortex.txt\n");
1929 			}
1930 			dump_tx_ring(dev);
1931 		}
1932 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1933 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1934 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1935 		iowrite8(0, ioaddr + TxStatus);
1936 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1937 			do_tx_reset = 1;
1938 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1939 			do_tx_reset = 1;
1940 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1941 		} else {				/* Merely re-enable the transmitter. */
1942 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1943 		}
1944 	}
1945 
1946 	if (status & RxEarly) {				/* Rx early is unused. */
1947 		vortex_rx(dev);
1948 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1949 	}
1950 	if (status & StatsFull) {			/* Empty statistics. */
1951 		static int DoneDidThat;
1952 		if (vortex_debug > 4)
1953 			printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
1954 		update_stats(ioaddr, dev);
1955 		/* HACK: Disable statistics as an interrupt source. */
1956 		/* This occurs when we have the wrong media type! */
1957 		if (DoneDidThat == 0  &&
1958 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1959 			printk(KERN_WARNING "%s: Updating statistics failed, disabling "
1960 				   "stats as an interrupt source.\n", dev->name);
1961 			EL3WINDOW(5);
1962 			iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1963 			vp->intr_enable &= ~StatsFull;
1964 			EL3WINDOW(7);
1965 			DoneDidThat++;
1966 		}
1967 	}
1968 	if (status & IntReq) {		/* Restore all interrupt sources.  */
1969 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1970 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1971 	}
1972 	if (status & HostError) {
1973 		u16 fifo_diag;
1974 		EL3WINDOW(4);
1975 		fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1976 		printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
1977 			   dev->name, fifo_diag);
1978 		/* Adapter failure requires Tx/Rx reset and reinit. */
1979 		if (vp->full_bus_master_tx) {
1980 			int bus_status = ioread32(ioaddr + PktStatus);
1981 			/* 0x80000000 PCI master abort. */
1982 			/* 0x40000000 PCI target abort. */
1983 			if (vortex_debug)
1984 				printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
1985 
1986 			/* In this case, blow the card away */
1987 			/* Must not enter D3 or we can't legally issue the reset! */
1988 			vortex_down(dev, 0);
1989 			issue_and_wait(dev, TotalReset | 0xff);
1990 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
1991 		} else if (fifo_diag & 0x0400)
1992 			do_tx_reset = 1;
1993 		if (fifo_diag & 0x3000) {
1994 			/* Reset Rx fifo and upload logic */
1995 			issue_and_wait(dev, RxReset|0x07);
1996 			/* Set the Rx filter to the current state. */
1997 			set_rx_mode(dev);
1998 			/* enable 802.1q VLAN tagged frames */
1999 			set_8021q_mode(dev, 1);
2000 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2001 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2002 		}
2003 	}
2004 
2005 	if (do_tx_reset) {
2006 		issue_and_wait(dev, TxReset|reset_mask);
2007 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2008 		if (!vp->full_bus_master_tx)
2009 			netif_wake_queue(dev);
2010 	}
2011 }
2012 
2013 static int
vortex_start_xmit(struct sk_buff * skb,struct net_device * dev)2014 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2015 {
2016 	struct vortex_private *vp = netdev_priv(dev);
2017 	void __iomem *ioaddr = vp->ioaddr;
2018 
2019 	/* Put out the doubleword header... */
2020 	iowrite32(skb->len, ioaddr + TX_FIFO);
2021 	if (vp->bus_master) {
2022 		/* Set the bus-master controller to transfer the packet. */
2023 		int len = (skb->len + 3) & ~3;
2024 		iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2025 				ioaddr + Wn7_MasterAddr);
2026 		iowrite16(len, ioaddr + Wn7_MasterLen);
2027 		vp->tx_skb = skb;
2028 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2029 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2030 	} else {
2031 		/* ... and the packet rounded to a doubleword. */
2032 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2033 		dev_kfree_skb (skb);
2034 		if (ioread16(ioaddr + TxFree) > 1536) {
2035 			netif_start_queue (dev);	/* AKPM: redundant? */
2036 		} else {
2037 			/* Interrupt us when the FIFO has room for max-sized packet. */
2038 			netif_stop_queue(dev);
2039 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2040 		}
2041 	}
2042 
2043 	dev->trans_start = jiffies;
2044 
2045 	/* Clear the Tx status stack. */
2046 	{
2047 		int tx_status;
2048 		int i = 32;
2049 
2050 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2051 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2052 				if (vortex_debug > 2)
2053 				  printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2054 						 dev->name, tx_status);
2055 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2056 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2057 				if (tx_status & 0x30) {
2058 					issue_and_wait(dev, TxReset);
2059 				}
2060 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2061 			}
2062 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2063 		}
2064 	}
2065 	return 0;
2066 }
2067 
2068 static int
boomerang_start_xmit(struct sk_buff * skb,struct net_device * dev)2069 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2070 {
2071 	struct vortex_private *vp = netdev_priv(dev);
2072 	void __iomem *ioaddr = vp->ioaddr;
2073 	/* Calculate the next Tx descriptor entry. */
2074 	int entry = vp->cur_tx % TX_RING_SIZE;
2075 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2076 	unsigned long flags;
2077 
2078 	if (vortex_debug > 6) {
2079 		printk(KERN_DEBUG "boomerang_start_xmit()\n");
2080 		printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2081 			   dev->name, vp->cur_tx);
2082 	}
2083 
2084 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2085 		if (vortex_debug > 0)
2086 			printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2087 				   dev->name);
2088 		netif_stop_queue(dev);
2089 		return 1;
2090 	}
2091 
2092 	vp->tx_skbuff[entry] = skb;
2093 
2094 	vp->tx_ring[entry].next = 0;
2095 #if DO_ZEROCOPY
2096 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2097 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2098 	else
2099 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2100 
2101 	if (!skb_shinfo(skb)->nr_frags) {
2102 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2103 										skb->len, PCI_DMA_TODEVICE));
2104 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2105 	} else {
2106 		int i;
2107 
2108 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2109 										skb->len-skb->data_len, PCI_DMA_TODEVICE));
2110 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2111 
2112 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2113 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2114 
2115 			vp->tx_ring[entry].frag[i+1].addr =
2116 					cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2117 											   (void*)page_address(frag->page) + frag->page_offset,
2118 											   frag->size, PCI_DMA_TODEVICE));
2119 
2120 			if (i == skb_shinfo(skb)->nr_frags-1)
2121 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2122 			else
2123 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2124 		}
2125 	}
2126 #else
2127 	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2128 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2129 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2130 #endif
2131 
2132 	spin_lock_irqsave(&vp->lock, flags);
2133 	/* Wait for the stall to complete. */
2134 	issue_and_wait(dev, DownStall);
2135 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2136 	if (ioread32(ioaddr + DownListPtr) == 0) {
2137 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2138 		vp->queued_packet++;
2139 	}
2140 
2141 	vp->cur_tx++;
2142 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2143 		netif_stop_queue (dev);
2144 	} else {					/* Clear previous interrupt enable. */
2145 #if defined(tx_interrupt_mitigation)
2146 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2147 		 * were selected, this would corrupt DN_COMPLETE. No?
2148 		 */
2149 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2150 #endif
2151 	}
2152 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2153 	spin_unlock_irqrestore(&vp->lock, flags);
2154 	dev->trans_start = jiffies;
2155 	return 0;
2156 }
2157 
2158 /* The interrupt handler does all of the Rx thread work and cleans up
2159    after the Tx thread. */
2160 
2161 /*
2162  * This is the ISR for the vortex series chips.
2163  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2164  */
2165 
2166 static irqreturn_t
vortex_interrupt(int irq,void * dev_id)2167 vortex_interrupt(int irq, void *dev_id)
2168 {
2169 	struct net_device *dev = dev_id;
2170 	struct vortex_private *vp = netdev_priv(dev);
2171 	void __iomem *ioaddr;
2172 	int status;
2173 	int work_done = max_interrupt_work;
2174 	int handled = 0;
2175 
2176 	ioaddr = vp->ioaddr;
2177 	spin_lock(&vp->lock);
2178 
2179 	status = ioread16(ioaddr + EL3_STATUS);
2180 
2181 	if (vortex_debug > 6)
2182 		printk("vortex_interrupt(). status=0x%4x\n", status);
2183 
2184 	if ((status & IntLatch) == 0)
2185 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2186 	handled = 1;
2187 
2188 	if (status & IntReq) {
2189 		status |= vp->deferred;
2190 		vp->deferred = 0;
2191 	}
2192 
2193 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2194 		goto handler_exit;
2195 
2196 	if (vortex_debug > 4)
2197 		printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2198 			   dev->name, status, ioread8(ioaddr + Timer));
2199 
2200 	do {
2201 		if (vortex_debug > 5)
2202 				printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2203 					   dev->name, status);
2204 		if (status & RxComplete)
2205 			vortex_rx(dev);
2206 
2207 		if (status & TxAvailable) {
2208 			if (vortex_debug > 5)
2209 				printk(KERN_DEBUG "	TX room bit was handled.\n");
2210 			/* There's room in the FIFO for a full-sized packet. */
2211 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2212 			netif_wake_queue (dev);
2213 		}
2214 
2215 		if (status & DMADone) {
2216 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2217 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2218 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2219 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2220 				if (ioread16(ioaddr + TxFree) > 1536) {
2221 					/*
2222 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2223 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2224 					 * netif_wake_queue()
2225 					 */
2226 					netif_wake_queue(dev);
2227 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2228 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2229 					netif_stop_queue(dev);
2230 				}
2231 			}
2232 		}
2233 		/* Check for all uncommon interrupts at once. */
2234 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2235 			if (status == 0xffff)
2236 				break;
2237 			vortex_error(dev, status);
2238 		}
2239 
2240 		if (--work_done < 0) {
2241 			printk(KERN_WARNING "%s: Too much work in interrupt, status "
2242 				   "%4.4x.\n", dev->name, status);
2243 			/* Disable all pending interrupts. */
2244 			do {
2245 				vp->deferred |= status;
2246 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2247 					 ioaddr + EL3_CMD);
2248 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2249 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2250 			/* The timer will reenable interrupts. */
2251 			mod_timer(&vp->timer, jiffies + 1*HZ);
2252 			break;
2253 		}
2254 		/* Acknowledge the IRQ. */
2255 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2256 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2257 
2258 	if (vortex_debug > 4)
2259 		printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2260 			   dev->name, status);
2261 handler_exit:
2262 	spin_unlock(&vp->lock);
2263 	return IRQ_RETVAL(handled);
2264 }
2265 
2266 /*
2267  * This is the ISR for the boomerang series chips.
2268  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2269  */
2270 
2271 static irqreturn_t
boomerang_interrupt(int irq,void * dev_id)2272 boomerang_interrupt(int irq, void *dev_id)
2273 {
2274 	struct net_device *dev = dev_id;
2275 	struct vortex_private *vp = netdev_priv(dev);
2276 	void __iomem *ioaddr;
2277 	int status;
2278 	int work_done = max_interrupt_work;
2279 
2280 	ioaddr = vp->ioaddr;
2281 
2282 	/*
2283 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2284 	 * and boomerang_start_xmit
2285 	 */
2286 	spin_lock(&vp->lock);
2287 
2288 	status = ioread16(ioaddr + EL3_STATUS);
2289 
2290 	if (vortex_debug > 6)
2291 		printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2292 
2293 	if ((status & IntLatch) == 0)
2294 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2295 
2296 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2297 		if (vortex_debug > 1)
2298 			printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2299 		goto handler_exit;
2300 	}
2301 
2302 	if (status & IntReq) {
2303 		status |= vp->deferred;
2304 		vp->deferred = 0;
2305 	}
2306 
2307 	if (vortex_debug > 4)
2308 		printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2309 			   dev->name, status, ioread8(ioaddr + Timer));
2310 	do {
2311 		if (vortex_debug > 5)
2312 				printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2313 					   dev->name, status);
2314 		if (status & UpComplete) {
2315 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2316 			if (vortex_debug > 5)
2317 				printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2318 			boomerang_rx(dev);
2319 		}
2320 
2321 		if (status & DownComplete) {
2322 			unsigned int dirty_tx = vp->dirty_tx;
2323 
2324 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2325 			while (vp->cur_tx - dirty_tx > 0) {
2326 				int entry = dirty_tx % TX_RING_SIZE;
2327 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2328 				if (ioread32(ioaddr + DownListPtr) ==
2329 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2330 					break;			/* It still hasn't been processed. */
2331 #else
2332 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2333 					break;			/* It still hasn't been processed. */
2334 #endif
2335 
2336 				if (vp->tx_skbuff[entry]) {
2337 					struct sk_buff *skb = vp->tx_skbuff[entry];
2338 #if DO_ZEROCOPY
2339 					int i;
2340 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2341 							pci_unmap_single(VORTEX_PCI(vp),
2342 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2343 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2344 											 PCI_DMA_TODEVICE);
2345 #else
2346 					pci_unmap_single(VORTEX_PCI(vp),
2347 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2348 #endif
2349 					dev_kfree_skb_irq(skb);
2350 					vp->tx_skbuff[entry] = NULL;
2351 				} else {
2352 					printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2353 				}
2354 				/* dev->stats.tx_packets++;  Counted below. */
2355 				dirty_tx++;
2356 			}
2357 			vp->dirty_tx = dirty_tx;
2358 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2359 				if (vortex_debug > 6)
2360 					printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2361 				netif_wake_queue (dev);
2362 			}
2363 		}
2364 
2365 		/* Check for all uncommon interrupts at once. */
2366 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2367 			vortex_error(dev, status);
2368 
2369 		if (--work_done < 0) {
2370 			printk(KERN_WARNING "%s: Too much work in interrupt, status "
2371 				   "%4.4x.\n", dev->name, status);
2372 			/* Disable all pending interrupts. */
2373 			do {
2374 				vp->deferred |= status;
2375 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2376 					 ioaddr + EL3_CMD);
2377 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2378 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2379 			/* The timer will reenable interrupts. */
2380 			mod_timer(&vp->timer, jiffies + 1*HZ);
2381 			break;
2382 		}
2383 		/* Acknowledge the IRQ. */
2384 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2385 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2386 			iowrite32(0x8000, vp->cb_fn_base + 4);
2387 
2388 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2389 
2390 	if (vortex_debug > 4)
2391 		printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2392 			   dev->name, status);
2393 handler_exit:
2394 	spin_unlock(&vp->lock);
2395 	return IRQ_HANDLED;
2396 }
2397 
vortex_rx(struct net_device * dev)2398 static int vortex_rx(struct net_device *dev)
2399 {
2400 	struct vortex_private *vp = netdev_priv(dev);
2401 	void __iomem *ioaddr = vp->ioaddr;
2402 	int i;
2403 	short rx_status;
2404 
2405 	if (vortex_debug > 5)
2406 		printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2407 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2408 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2409 		if (rx_status & 0x4000) { /* Error, update stats. */
2410 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2411 			if (vortex_debug > 2)
2412 				printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2413 			dev->stats.rx_errors++;
2414 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2415 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2416 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2417 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2418 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2419 		} else {
2420 			/* The packet length: up to 4.5K!. */
2421 			int pkt_len = rx_status & 0x1fff;
2422 			struct sk_buff *skb;
2423 
2424 			skb = dev_alloc_skb(pkt_len + 5);
2425 			if (vortex_debug > 4)
2426 				printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2427 					   pkt_len, rx_status);
2428 			if (skb != NULL) {
2429 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2430 				/* 'skb_put()' points to the start of sk_buff data area. */
2431 				if (vp->bus_master &&
2432 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2433 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2434 									   pkt_len, PCI_DMA_FROMDEVICE);
2435 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2436 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2437 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2438 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2439 						;
2440 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2441 				} else {
2442 					ioread32_rep(ioaddr + RX_FIFO,
2443 					             skb_put(skb, pkt_len),
2444 						     (pkt_len + 3) >> 2);
2445 				}
2446 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2447 				skb->protocol = eth_type_trans(skb, dev);
2448 				netif_rx(skb);
2449 				dev->stats.rx_packets++;
2450 				/* Wait a limited time to go to next packet. */
2451 				for (i = 200; i >= 0; i--)
2452 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2453 						break;
2454 				continue;
2455 			} else if (vortex_debug > 0)
2456 				printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2457 					   "size %d.\n", dev->name, pkt_len);
2458 			dev->stats.rx_dropped++;
2459 		}
2460 		issue_and_wait(dev, RxDiscard);
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 static int
boomerang_rx(struct net_device * dev)2467 boomerang_rx(struct net_device *dev)
2468 {
2469 	struct vortex_private *vp = netdev_priv(dev);
2470 	int entry = vp->cur_rx % RX_RING_SIZE;
2471 	void __iomem *ioaddr = vp->ioaddr;
2472 	int rx_status;
2473 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2474 
2475 	if (vortex_debug > 5)
2476 		printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2477 
2478 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2479 		if (--rx_work_limit < 0)
2480 			break;
2481 		if (rx_status & RxDError) { /* Error, update stats. */
2482 			unsigned char rx_error = rx_status >> 16;
2483 			if (vortex_debug > 2)
2484 				printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2485 			dev->stats.rx_errors++;
2486 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2487 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2488 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2489 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2490 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2491 		} else {
2492 			/* The packet length: up to 4.5K!. */
2493 			int pkt_len = rx_status & 0x1fff;
2494 			struct sk_buff *skb;
2495 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2496 
2497 			if (vortex_debug > 4)
2498 				printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2499 					   pkt_len, rx_status);
2500 
2501 			/* Check if the packet is long enough to just accept without
2502 			   copying to a properly sized skbuff. */
2503 			if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2504 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2505 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2506 				/* 'skb_put()' points to the start of sk_buff data area. */
2507 				memcpy(skb_put(skb, pkt_len),
2508 					   vp->rx_skbuff[entry]->data,
2509 					   pkt_len);
2510 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2511 				vp->rx_copy++;
2512 			} else {
2513 				/* Pass up the skbuff already on the Rx ring. */
2514 				skb = vp->rx_skbuff[entry];
2515 				vp->rx_skbuff[entry] = NULL;
2516 				skb_put(skb, pkt_len);
2517 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2518 				vp->rx_nocopy++;
2519 			}
2520 			skb->protocol = eth_type_trans(skb, dev);
2521 			{					/* Use hardware checksum info. */
2522 				int csum_bits = rx_status & 0xee000000;
2523 				if (csum_bits &&
2524 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2525 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2526 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2527 					vp->rx_csumhits++;
2528 				}
2529 			}
2530 			netif_rx(skb);
2531 			dev->stats.rx_packets++;
2532 		}
2533 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2534 	}
2535 	/* Refill the Rx ring buffers. */
2536 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2537 		struct sk_buff *skb;
2538 		entry = vp->dirty_rx % RX_RING_SIZE;
2539 		if (vp->rx_skbuff[entry] == NULL) {
2540 			skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2541 			if (skb == NULL) {
2542 				static unsigned long last_jif;
2543 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2544 					printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2545 					last_jif = jiffies;
2546 				}
2547 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2548 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2549 				break;			/* Bad news!  */
2550 			}
2551 
2552 			skb_reserve(skb, NET_IP_ALIGN);
2553 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2554 			vp->rx_skbuff[entry] = skb;
2555 		}
2556 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2557 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2558 	}
2559 	return 0;
2560 }
2561 
2562 /*
2563  * If we've hit a total OOM refilling the Rx ring we poll once a second
2564  * for some memory.  Otherwise there is no way to restart the rx process.
2565  */
2566 static void
rx_oom_timer(unsigned long arg)2567 rx_oom_timer(unsigned long arg)
2568 {
2569 	struct net_device *dev = (struct net_device *)arg;
2570 	struct vortex_private *vp = netdev_priv(dev);
2571 
2572 	spin_lock_irq(&vp->lock);
2573 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2574 		boomerang_rx(dev);
2575 	if (vortex_debug > 1) {
2576 		printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2577 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2578 	}
2579 	spin_unlock_irq(&vp->lock);
2580 }
2581 
2582 static void
vortex_down(struct net_device * dev,int final_down)2583 vortex_down(struct net_device *dev, int final_down)
2584 {
2585 	struct vortex_private *vp = netdev_priv(dev);
2586 	void __iomem *ioaddr = vp->ioaddr;
2587 
2588 	netif_stop_queue (dev);
2589 
2590 	del_timer_sync(&vp->rx_oom_timer);
2591 	del_timer_sync(&vp->timer);
2592 
2593 	/* Turn off statistics ASAP.  We update dev->stats below. */
2594 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2595 
2596 	/* Disable the receiver and transmitter. */
2597 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2598 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2599 
2600 	/* Disable receiving 802.1q tagged frames */
2601 	set_8021q_mode(dev, 0);
2602 
2603 	if (dev->if_port == XCVR_10base2)
2604 		/* Turn off thinnet power.  Green! */
2605 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2606 
2607 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2608 
2609 	update_stats(ioaddr, dev);
2610 	if (vp->full_bus_master_rx)
2611 		iowrite32(0, ioaddr + UpListPtr);
2612 	if (vp->full_bus_master_tx)
2613 		iowrite32(0, ioaddr + DownListPtr);
2614 
2615 	if (final_down && VORTEX_PCI(vp)) {
2616 		vp->pm_state_valid = 1;
2617 		pci_save_state(VORTEX_PCI(vp));
2618 		acpi_set_WOL(dev);
2619 	}
2620 }
2621 
2622 static int
vortex_close(struct net_device * dev)2623 vortex_close(struct net_device *dev)
2624 {
2625 	struct vortex_private *vp = netdev_priv(dev);
2626 	void __iomem *ioaddr = vp->ioaddr;
2627 	int i;
2628 
2629 	if (netif_device_present(dev))
2630 		vortex_down(dev, 1);
2631 
2632 	if (vortex_debug > 1) {
2633 		printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2634 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2635 		printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2636 			   " tx_queued %d Rx pre-checksummed %d.\n",
2637 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2638 	}
2639 
2640 #if DO_ZEROCOPY
2641 	if (vp->rx_csumhits &&
2642 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2643 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2644 			printk(KERN_WARNING "%s supports hardware checksums, and we're "
2645 						"not using them!\n", dev->name);
2646 	}
2647 #endif
2648 
2649 	free_irq(dev->irq, dev);
2650 
2651 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2652 		for (i = 0; i < RX_RING_SIZE; i++)
2653 			if (vp->rx_skbuff[i]) {
2654 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2655 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2656 				dev_kfree_skb(vp->rx_skbuff[i]);
2657 				vp->rx_skbuff[i] = NULL;
2658 			}
2659 	}
2660 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2661 		for (i = 0; i < TX_RING_SIZE; i++) {
2662 			if (vp->tx_skbuff[i]) {
2663 				struct sk_buff *skb = vp->tx_skbuff[i];
2664 #if DO_ZEROCOPY
2665 				int k;
2666 
2667 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2668 						pci_unmap_single(VORTEX_PCI(vp),
2669 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2670 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2671 										 PCI_DMA_TODEVICE);
2672 #else
2673 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2674 #endif
2675 				dev_kfree_skb(skb);
2676 				vp->tx_skbuff[i] = NULL;
2677 			}
2678 		}
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 static void
dump_tx_ring(struct net_device * dev)2685 dump_tx_ring(struct net_device *dev)
2686 {
2687 	if (vortex_debug > 0) {
2688 	struct vortex_private *vp = netdev_priv(dev);
2689 		void __iomem *ioaddr = vp->ioaddr;
2690 
2691 		if (vp->full_bus_master_tx) {
2692 			int i;
2693 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2694 
2695 			printk(KERN_ERR "  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2696 					vp->full_bus_master_tx,
2697 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2698 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2699 			printk(KERN_ERR "  Transmit list %8.8x vs. %p.\n",
2700 				   ioread32(ioaddr + DownListPtr),
2701 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2702 			issue_and_wait(dev, DownStall);
2703 			for (i = 0; i < TX_RING_SIZE; i++) {
2704 				printk(KERN_ERR "  %d: @%p  length %8.8x status %8.8x\n", i,
2705 					   &vp->tx_ring[i],
2706 #if DO_ZEROCOPY
2707 					   le32_to_cpu(vp->tx_ring[i].frag[0].length),
2708 #else
2709 					   le32_to_cpu(vp->tx_ring[i].length),
2710 #endif
2711 					   le32_to_cpu(vp->tx_ring[i].status));
2712 			}
2713 			if (!stalled)
2714 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2715 		}
2716 	}
2717 }
2718 
vortex_get_stats(struct net_device * dev)2719 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2720 {
2721 	struct vortex_private *vp = netdev_priv(dev);
2722 	void __iomem *ioaddr = vp->ioaddr;
2723 	unsigned long flags;
2724 
2725 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2726 		spin_lock_irqsave (&vp->lock, flags);
2727 		update_stats(ioaddr, dev);
2728 		spin_unlock_irqrestore (&vp->lock, flags);
2729 	}
2730 	return &dev->stats;
2731 }
2732 
2733 /*  Update statistics.
2734 	Unlike with the EL3 we need not worry about interrupts changing
2735 	the window setting from underneath us, but we must still guard
2736 	against a race condition with a StatsUpdate interrupt updating the
2737 	table.  This is done by checking that the ASM (!) code generated uses
2738 	atomic updates with '+='.
2739 	*/
update_stats(void __iomem * ioaddr,struct net_device * dev)2740 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2741 {
2742 	struct vortex_private *vp = netdev_priv(dev);
2743 	int old_window = ioread16(ioaddr + EL3_CMD);
2744 
2745 	if (old_window == 0xffff)	/* Chip suspended or ejected. */
2746 		return;
2747 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2748 	/* Switch to the stats window, and read everything. */
2749 	EL3WINDOW(6);
2750 	dev->stats.tx_carrier_errors		+= ioread8(ioaddr + 0);
2751 	dev->stats.tx_heartbeat_errors		+= ioread8(ioaddr + 1);
2752 	dev->stats.tx_window_errors		+= ioread8(ioaddr + 4);
2753 	dev->stats.rx_fifo_errors		+= ioread8(ioaddr + 5);
2754 	dev->stats.tx_packets			+= ioread8(ioaddr + 6);
2755 	dev->stats.tx_packets			+= (ioread8(ioaddr + 9)&0x30) << 4;
2756 	/* Rx packets	*/			ioread8(ioaddr + 7);   /* Must read to clear */
2757 	/* Don't bother with register 9, an extension of registers 6&7.
2758 	   If we do use the 6&7 values the atomic update assumption above
2759 	   is invalid. */
2760 	dev->stats.rx_bytes 			+= ioread16(ioaddr + 10);
2761 	dev->stats.tx_bytes 			+= ioread16(ioaddr + 12);
2762 	/* Extra stats for get_ethtool_stats() */
2763 	vp->xstats.tx_multiple_collisions	+= ioread8(ioaddr + 2);
2764 	vp->xstats.tx_single_collisions         += ioread8(ioaddr + 3);
2765 	vp->xstats.tx_deferred			+= ioread8(ioaddr + 8);
2766 	EL3WINDOW(4);
2767 	vp->xstats.rx_bad_ssd			+= ioread8(ioaddr + 12);
2768 
2769 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2770 		+ vp->xstats.tx_single_collisions
2771 		+ vp->xstats.tx_max_collisions;
2772 
2773 	{
2774 		u8 up = ioread8(ioaddr + 13);
2775 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2776 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2777 	}
2778 
2779 	EL3WINDOW(old_window >> 13);
2780 	return;
2781 }
2782 
vortex_nway_reset(struct net_device * dev)2783 static int vortex_nway_reset(struct net_device *dev)
2784 {
2785 	struct vortex_private *vp = netdev_priv(dev);
2786 	void __iomem *ioaddr = vp->ioaddr;
2787 	unsigned long flags;
2788 	int rc;
2789 
2790 	spin_lock_irqsave(&vp->lock, flags);
2791 	EL3WINDOW(4);
2792 	rc = mii_nway_restart(&vp->mii);
2793 	spin_unlock_irqrestore(&vp->lock, flags);
2794 	return rc;
2795 }
2796 
vortex_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2797 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2798 {
2799 	struct vortex_private *vp = netdev_priv(dev);
2800 	void __iomem *ioaddr = vp->ioaddr;
2801 	unsigned long flags;
2802 	int rc;
2803 
2804 	spin_lock_irqsave(&vp->lock, flags);
2805 	EL3WINDOW(4);
2806 	rc = mii_ethtool_gset(&vp->mii, cmd);
2807 	spin_unlock_irqrestore(&vp->lock, flags);
2808 	return rc;
2809 }
2810 
vortex_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2811 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2812 {
2813 	struct vortex_private *vp = netdev_priv(dev);
2814 	void __iomem *ioaddr = vp->ioaddr;
2815 	unsigned long flags;
2816 	int rc;
2817 
2818 	spin_lock_irqsave(&vp->lock, flags);
2819 	EL3WINDOW(4);
2820 	rc = mii_ethtool_sset(&vp->mii, cmd);
2821 	spin_unlock_irqrestore(&vp->lock, flags);
2822 	return rc;
2823 }
2824 
vortex_get_msglevel(struct net_device * dev)2825 static u32 vortex_get_msglevel(struct net_device *dev)
2826 {
2827 	return vortex_debug;
2828 }
2829 
vortex_set_msglevel(struct net_device * dev,u32 dbg)2830 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2831 {
2832 	vortex_debug = dbg;
2833 }
2834 
vortex_get_sset_count(struct net_device * dev,int sset)2835 static int vortex_get_sset_count(struct net_device *dev, int sset)
2836 {
2837 	switch (sset) {
2838 	case ETH_SS_STATS:
2839 		return VORTEX_NUM_STATS;
2840 	default:
2841 		return -EOPNOTSUPP;
2842 	}
2843 }
2844 
vortex_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2845 static void vortex_get_ethtool_stats(struct net_device *dev,
2846 	struct ethtool_stats *stats, u64 *data)
2847 {
2848 	struct vortex_private *vp = netdev_priv(dev);
2849 	void __iomem *ioaddr = vp->ioaddr;
2850 	unsigned long flags;
2851 
2852 	spin_lock_irqsave(&vp->lock, flags);
2853 	update_stats(ioaddr, dev);
2854 	spin_unlock_irqrestore(&vp->lock, flags);
2855 
2856 	data[0] = vp->xstats.tx_deferred;
2857 	data[1] = vp->xstats.tx_max_collisions;
2858 	data[2] = vp->xstats.tx_multiple_collisions;
2859 	data[3] = vp->xstats.tx_single_collisions;
2860 	data[4] = vp->xstats.rx_bad_ssd;
2861 }
2862 
2863 
vortex_get_strings(struct net_device * dev,u32 stringset,u8 * data)2864 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2865 {
2866 	switch (stringset) {
2867 	case ETH_SS_STATS:
2868 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2869 		break;
2870 	default:
2871 		WARN_ON(1);
2872 		break;
2873 	}
2874 }
2875 
vortex_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2876 static void vortex_get_drvinfo(struct net_device *dev,
2877 					struct ethtool_drvinfo *info)
2878 {
2879 	struct vortex_private *vp = netdev_priv(dev);
2880 
2881 	strcpy(info->driver, DRV_NAME);
2882 	if (VORTEX_PCI(vp)) {
2883 		strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2884 	} else {
2885 		if (VORTEX_EISA(vp))
2886 			sprintf(info->bus_info, dev_name(vp->gendev));
2887 		else
2888 			sprintf(info->bus_info, "EISA 0x%lx %d",
2889 					dev->base_addr, dev->irq);
2890 	}
2891 }
2892 
2893 static const struct ethtool_ops vortex_ethtool_ops = {
2894 	.get_drvinfo		= vortex_get_drvinfo,
2895 	.get_strings            = vortex_get_strings,
2896 	.get_msglevel           = vortex_get_msglevel,
2897 	.set_msglevel           = vortex_set_msglevel,
2898 	.get_ethtool_stats      = vortex_get_ethtool_stats,
2899 	.get_sset_count		= vortex_get_sset_count,
2900 	.get_settings           = vortex_get_settings,
2901 	.set_settings           = vortex_set_settings,
2902 	.get_link               = ethtool_op_get_link,
2903 	.nway_reset             = vortex_nway_reset,
2904 };
2905 
2906 #ifdef CONFIG_PCI
2907 /*
2908  *	Must power the device up to do MDIO operations
2909  */
vortex_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2910 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2911 {
2912 	int err;
2913 	struct vortex_private *vp = netdev_priv(dev);
2914 	void __iomem *ioaddr = vp->ioaddr;
2915 	unsigned long flags;
2916 	pci_power_t state = 0;
2917 
2918 	if(VORTEX_PCI(vp))
2919 		state = VORTEX_PCI(vp)->current_state;
2920 
2921 	/* The kernel core really should have pci_get_power_state() */
2922 
2923 	if(state != 0)
2924 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2925 	spin_lock_irqsave(&vp->lock, flags);
2926 	EL3WINDOW(4);
2927 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2928 	spin_unlock_irqrestore(&vp->lock, flags);
2929 	if(state != 0)
2930 		pci_set_power_state(VORTEX_PCI(vp), state);
2931 
2932 	return err;
2933 }
2934 #endif
2935 
2936 
2937 /* Pre-Cyclone chips have no documented multicast filter, so the only
2938    multicast setting is to receive all multicast frames.  At least
2939    the chip has a very clean way to set the mode, unlike many others. */
set_rx_mode(struct net_device * dev)2940 static void set_rx_mode(struct net_device *dev)
2941 {
2942 	struct vortex_private *vp = netdev_priv(dev);
2943 	void __iomem *ioaddr = vp->ioaddr;
2944 	int new_mode;
2945 
2946 	if (dev->flags & IFF_PROMISC) {
2947 		if (vortex_debug > 3)
2948 			printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
2949 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2950 	} else	if ((dev->mc_list)  ||  (dev->flags & IFF_ALLMULTI)) {
2951 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2952 	} else
2953 		new_mode = SetRxFilter | RxStation | RxBroadcast;
2954 
2955 	iowrite16(new_mode, ioaddr + EL3_CMD);
2956 }
2957 
2958 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2959 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2960    Note that this must be done after each RxReset due to some backwards
2961    compatibility logic in the Cyclone and Tornado ASICs */
2962 
2963 /* The Ethernet Type used for 802.1q tagged frames */
2964 #define VLAN_ETHER_TYPE 0x8100
2965 
set_8021q_mode(struct net_device * dev,int enable)2966 static void set_8021q_mode(struct net_device *dev, int enable)
2967 {
2968 	struct vortex_private *vp = netdev_priv(dev);
2969 	void __iomem *ioaddr = vp->ioaddr;
2970 	int old_window = ioread16(ioaddr + EL3_CMD);
2971 	int mac_ctrl;
2972 
2973 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2974 		/* cyclone and tornado chipsets can recognize 802.1q
2975 		 * tagged frames and treat them correctly */
2976 
2977 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
2978 		if (enable)
2979 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
2980 
2981 		EL3WINDOW(3);
2982 		iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
2983 
2984 		/* set VlanEtherType to let the hardware checksumming
2985 		   treat tagged frames correctly */
2986 		EL3WINDOW(7);
2987 		iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
2988 	} else {
2989 		/* on older cards we have to enable large frames */
2990 
2991 		vp->large_frames = dev->mtu > 1500 || enable;
2992 
2993 		EL3WINDOW(3);
2994 		mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
2995 		if (vp->large_frames)
2996 			mac_ctrl |= 0x40;
2997 		else
2998 			mac_ctrl &= ~0x40;
2999 		iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3000 	}
3001 
3002 	EL3WINDOW(old_window);
3003 }
3004 #else
3005 
set_8021q_mode(struct net_device * dev,int enable)3006 static void set_8021q_mode(struct net_device *dev, int enable)
3007 {
3008 }
3009 
3010 
3011 #endif
3012 
3013 /* MII transceiver control section.
3014    Read and write the MII registers using software-generated serial
3015    MDIO protocol.  See the MII specifications or DP83840A data sheet
3016    for details. */
3017 
3018 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3019    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3020    "overclocking" issues. */
3021 #define mdio_delay() ioread32(mdio_addr)
3022 
3023 #define MDIO_SHIFT_CLK	0x01
3024 #define MDIO_DIR_WRITE	0x04
3025 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3026 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3027 #define MDIO_DATA_READ	0x02
3028 #define MDIO_ENB_IN		0x00
3029 
3030 /* Generate the preamble required for initial synchronization and
3031    a few older transceivers. */
mdio_sync(void __iomem * ioaddr,int bits)3032 static void mdio_sync(void __iomem *ioaddr, int bits)
3033 {
3034 	void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3035 
3036 	/* Establish sync by sending at least 32 logic ones. */
3037 	while (-- bits >= 0) {
3038 		iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3039 		mdio_delay();
3040 		iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3041 		mdio_delay();
3042 	}
3043 }
3044 
mdio_read(struct net_device * dev,int phy_id,int location)3045 static int mdio_read(struct net_device *dev, int phy_id, int location)
3046 {
3047 	int i;
3048 	struct vortex_private *vp = netdev_priv(dev);
3049 	void __iomem *ioaddr = vp->ioaddr;
3050 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3051 	unsigned int retval = 0;
3052 	void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3053 
3054 	if (mii_preamble_required)
3055 		mdio_sync(ioaddr, 32);
3056 
3057 	/* Shift the read command bits out. */
3058 	for (i = 14; i >= 0; i--) {
3059 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3060 		iowrite16(dataval, mdio_addr);
3061 		mdio_delay();
3062 		iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3063 		mdio_delay();
3064 	}
3065 	/* Read the two transition, 16 data, and wire-idle bits. */
3066 	for (i = 19; i > 0; i--) {
3067 		iowrite16(MDIO_ENB_IN, mdio_addr);
3068 		mdio_delay();
3069 		retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3070 		iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3071 		mdio_delay();
3072 	}
3073 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3074 }
3075 
mdio_write(struct net_device * dev,int phy_id,int location,int value)3076 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3077 {
3078 	struct vortex_private *vp = netdev_priv(dev);
3079 	void __iomem *ioaddr = vp->ioaddr;
3080 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3081 	void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3082 	int i;
3083 
3084 	if (mii_preamble_required)
3085 		mdio_sync(ioaddr, 32);
3086 
3087 	/* Shift the command bits out. */
3088 	for (i = 31; i >= 0; i--) {
3089 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3090 		iowrite16(dataval, mdio_addr);
3091 		mdio_delay();
3092 		iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3093 		mdio_delay();
3094 	}
3095 	/* Leave the interface idle. */
3096 	for (i = 1; i >= 0; i--) {
3097 		iowrite16(MDIO_ENB_IN, mdio_addr);
3098 		mdio_delay();
3099 		iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3100 		mdio_delay();
3101 	}
3102 	return;
3103 }
3104 
3105 /* ACPI: Advanced Configuration and Power Interface. */
3106 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
acpi_set_WOL(struct net_device * dev)3107 static void acpi_set_WOL(struct net_device *dev)
3108 {
3109 	struct vortex_private *vp = netdev_priv(dev);
3110 	void __iomem *ioaddr = vp->ioaddr;
3111 
3112 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3113 
3114 	if (vp->enable_wol) {
3115 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3116 		EL3WINDOW(7);
3117 		iowrite16(2, ioaddr + 0x0c);
3118 		/* The RxFilter must accept the WOL frames. */
3119 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3120 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3121 
3122 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3123 			printk(KERN_INFO "%s: WOL not supported.\n",
3124 					pci_name(VORTEX_PCI(vp)));
3125 
3126 			vp->enable_wol = 0;
3127 			return;
3128 		}
3129 
3130 		/* Change the power state to D3; RxEnable doesn't take effect. */
3131 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3132 	}
3133 }
3134 
3135 
vortex_remove_one(struct pci_dev * pdev)3136 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3137 {
3138 	struct net_device *dev = pci_get_drvdata(pdev);
3139 	struct vortex_private *vp;
3140 
3141 	if (!dev) {
3142 		printk("vortex_remove_one called for Compaq device!\n");
3143 		BUG();
3144 	}
3145 
3146 	vp = netdev_priv(dev);
3147 
3148 	if (vp->cb_fn_base)
3149 		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3150 
3151 	unregister_netdev(dev);
3152 
3153 	if (VORTEX_PCI(vp)) {
3154 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3155 		if (vp->pm_state_valid)
3156 			pci_restore_state(VORTEX_PCI(vp));
3157 		pci_disable_device(VORTEX_PCI(vp));
3158 	}
3159 	/* Should really use issue_and_wait() here */
3160 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3161 	     vp->ioaddr + EL3_CMD);
3162 
3163 	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3164 
3165 	pci_free_consistent(pdev,
3166 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3167 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3168 						vp->rx_ring,
3169 						vp->rx_ring_dma);
3170 	if (vp->must_free_region)
3171 		release_region(dev->base_addr, vp->io_size);
3172 	free_netdev(dev);
3173 }
3174 
3175 
3176 static struct pci_driver vortex_driver = {
3177 	.name		= "3c59x",
3178 	.probe		= vortex_init_one,
3179 	.remove		= __devexit_p(vortex_remove_one),
3180 	.id_table	= vortex_pci_tbl,
3181 #ifdef CONFIG_PM
3182 	.suspend	= vortex_suspend,
3183 	.resume		= vortex_resume,
3184 #endif
3185 };
3186 
3187 
3188 static int vortex_have_pci;
3189 static int vortex_have_eisa;
3190 
3191 
vortex_init(void)3192 static int __init vortex_init(void)
3193 {
3194 	int pci_rc, eisa_rc;
3195 
3196 	pci_rc = pci_register_driver(&vortex_driver);
3197 	eisa_rc = vortex_eisa_init();
3198 
3199 	if (pci_rc == 0)
3200 		vortex_have_pci = 1;
3201 	if (eisa_rc > 0)
3202 		vortex_have_eisa = 1;
3203 
3204 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3205 }
3206 
3207 
vortex_eisa_cleanup(void)3208 static void __exit vortex_eisa_cleanup(void)
3209 {
3210 	struct vortex_private *vp;
3211 	void __iomem *ioaddr;
3212 
3213 #ifdef CONFIG_EISA
3214 	/* Take care of the EISA devices */
3215 	eisa_driver_unregister(&vortex_eisa_driver);
3216 #endif
3217 
3218 	if (compaq_net_device) {
3219 		vp = netdev_priv(compaq_net_device);
3220 		ioaddr = ioport_map(compaq_net_device->base_addr,
3221 		                    VORTEX_TOTAL_SIZE);
3222 
3223 		unregister_netdev(compaq_net_device);
3224 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3225 		release_region(compaq_net_device->base_addr,
3226 		               VORTEX_TOTAL_SIZE);
3227 
3228 		free_netdev(compaq_net_device);
3229 	}
3230 }
3231 
3232 
vortex_cleanup(void)3233 static void __exit vortex_cleanup(void)
3234 {
3235 	if (vortex_have_pci)
3236 		pci_unregister_driver(&vortex_driver);
3237 	if (vortex_have_eisa)
3238 		vortex_eisa_cleanup();
3239 }
3240 
3241 
3242 module_init(vortex_init);
3243 module_exit(vortex_cleanup);
3244