• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Linux header file for the ATP pocket ethernet adapter. */
2 /* v1.09 8/9/2000 becker@scyld.com. */
3 
4 #include <linux/if_ether.h>
5 #include <linux/types.h>
6 
7 /* The header prepended to received packets. */
8 struct rx_header {
9     ushort pad;			/* Pad. */
10     ushort rx_count;
11     ushort rx_status;		/* Unknown bit assignments :-<.  */
12     ushort cur_addr;		/* Apparently the current buffer address(?) */
13 };
14 
15 #define PAR_DATA	0
16 #define PAR_STATUS	1
17 #define PAR_CONTROL 2
18 
19 enum chip_type { RTL8002, RTL8012 };
20 
21 #define Ctrl_LNibRead	0x08	/* LP_PSELECP */
22 #define Ctrl_HNibRead	0
23 #define Ctrl_LNibWrite	0x08	/* LP_PSELECP */
24 #define Ctrl_HNibWrite	0
25 #define Ctrl_SelData	0x04	/* LP_PINITP */
26 #define Ctrl_IRQEN	0x10	/* LP_PINTEN */
27 
28 #define EOW	0xE0
29 #define EOC	0xE0
30 #define WrAddr	0x40	/* Set address of EPLC read, write register. */
31 #define RdAddr	0xC0
32 #define HNib	0x10
33 
34 enum page0_regs
35 {
36     /* The first six registers hold the ethernet physical station address. */
37     PAR0 = 0, PAR1 = 1, PAR2 = 2, PAR3 = 3, PAR4 = 4, PAR5 = 5,
38     TxCNT0 = 6, TxCNT1 = 7,		/* The transmit byte count. */
39     TxSTAT = 8, RxSTAT = 9,		/* Tx and Rx status. */
40     ISR = 10, IMR = 11,			/* Interrupt status and mask. */
41     CMR1 = 12,				/* Command register 1. */
42     CMR2 = 13,				/* Command register 2. */
43     MODSEL = 14,			/* Mode select register. */
44     MAR = 14,				/* Memory address register (?). */
45     CMR2_h = 0x1d, };
46 
47 enum eepage_regs
48 { PROM_CMD = 6, PROM_DATA = 7 };	/* Note that PROM_CMD is in the "high" bits. */
49 
50 
51 #define ISR_TxOK	0x01
52 #define ISR_RxOK	0x04
53 #define ISR_TxErr	0x02
54 #define ISRh_RxErr	0x11	/* ISR, high nibble */
55 
56 #define CMR1h_MUX	0x08	/* Select printer multiplexor on 8012. */
57 #define CMR1h_RESET	0x04	/* Reset. */
58 #define CMR1h_RxENABLE	0x02	/* Rx unit enable.  */
59 #define CMR1h_TxENABLE	0x01	/* Tx unit enable.  */
60 #define CMR1h_TxRxOFF	0x00
61 #define CMR1_ReXmit	0x08	/* Trigger a retransmit. */
62 #define CMR1_Xmit	0x04	/* Trigger a transmit. */
63 #define	CMR1_IRQ	0x02	/* Interrupt active. */
64 #define	CMR1_BufEnb	0x01	/* Enable the buffer(?). */
65 #define	CMR1_NextPkt	0x01	/* Enable the buffer(?). */
66 
67 #define CMR2_NULL	8
68 #define CMR2_IRQOUT	9
69 #define CMR2_RAMTEST	10
70 #define CMR2_EEPROM	12	/* Set to page 1, for reading the EEPROM. */
71 
72 #define CMR2h_OFF	0	/* No accept mode. */
73 #define CMR2h_Physical	1	/* Accept a physical address match only. */
74 #define CMR2h_Normal	2	/* Accept physical and broadcast address. */
75 #define CMR2h_PROMISC	3	/* Promiscuous mode. */
76 
77 /* An inline function used below: it differs from inb() by explicitly return an unsigned
78    char, saving a truncation. */
inbyte(unsigned short port)79 static inline unsigned char inbyte(unsigned short port)
80 {
81     unsigned char _v;
82     __asm__ __volatile__ ("inb %w1,%b0" :"=a" (_v):"d" (port));
83     return _v;
84 }
85 
86 /* Read register OFFSET.
87    This command should always be terminated with read_end(). */
read_nibble(short port,unsigned char offset)88 static inline unsigned char read_nibble(short port, unsigned char offset)
89 {
90     unsigned char retval;
91     outb(EOC+offset, port + PAR_DATA);
92     outb(RdAddr+offset, port + PAR_DATA);
93     inbyte(port + PAR_STATUS);		/* Settling time delay */
94     retval = inbyte(port + PAR_STATUS);
95     outb(EOC+offset, port + PAR_DATA);
96 
97     return retval;
98 }
99 
100 /* Functions for bulk data read.  The interrupt line is always disabled. */
101 /* Get a byte using read mode 0, reading data from the control lines. */
read_byte_mode0(short ioaddr)102 static inline unsigned char read_byte_mode0(short ioaddr)
103 {
104     unsigned char low_nib;
105 
106     outb(Ctrl_LNibRead, ioaddr + PAR_CONTROL);
107     inbyte(ioaddr + PAR_STATUS);
108     low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
109     outb(Ctrl_HNibRead, ioaddr + PAR_CONTROL);
110     inbyte(ioaddr + PAR_STATUS);	/* Settling time delay -- needed!  */
111     inbyte(ioaddr + PAR_STATUS);	/* Settling time delay -- needed!  */
112     return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
113 }
114 
115 /* The same as read_byte_mode0(), but does multiple inb()s for stability. */
read_byte_mode2(short ioaddr)116 static inline unsigned char read_byte_mode2(short ioaddr)
117 {
118     unsigned char low_nib;
119 
120     outb(Ctrl_LNibRead, ioaddr + PAR_CONTROL);
121     inbyte(ioaddr + PAR_STATUS);
122     low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
123     outb(Ctrl_HNibRead, ioaddr + PAR_CONTROL);
124     inbyte(ioaddr + PAR_STATUS);	/* Settling time delay -- needed!  */
125     return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
126 }
127 
128 /* Read a byte through the data register. */
read_byte_mode4(short ioaddr)129 static inline unsigned char read_byte_mode4(short ioaddr)
130 {
131     unsigned char low_nib;
132 
133     outb(RdAddr | MAR, ioaddr + PAR_DATA);
134     low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
135     outb(RdAddr | HNib | MAR, ioaddr + PAR_DATA);
136     return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
137 }
138 
139 /* Read a byte through the data register, double reading to allow settling. */
read_byte_mode6(short ioaddr)140 static inline unsigned char read_byte_mode6(short ioaddr)
141 {
142     unsigned char low_nib;
143 
144     outb(RdAddr | MAR, ioaddr + PAR_DATA);
145     inbyte(ioaddr + PAR_STATUS);
146     low_nib = (inbyte(ioaddr + PAR_STATUS) >> 3) & 0x0f;
147     outb(RdAddr | HNib | MAR, ioaddr + PAR_DATA);
148     inbyte(ioaddr + PAR_STATUS);
149     return low_nib | ((inbyte(ioaddr + PAR_STATUS) << 1) & 0xf0);
150 }
151 
152 static inline void
write_reg(short port,unsigned char reg,unsigned char value)153 write_reg(short port, unsigned char reg, unsigned char value)
154 {
155     unsigned char outval;
156     outb(EOC | reg, port + PAR_DATA);
157     outval = WrAddr | reg;
158     outb(outval, port + PAR_DATA);
159     outb(outval, port + PAR_DATA);	/* Double write for PS/2. */
160 
161     outval &= 0xf0;
162     outval |= value;
163     outb(outval, port + PAR_DATA);
164     outval &= 0x1f;
165     outb(outval, port + PAR_DATA);
166     outb(outval, port + PAR_DATA);
167 
168     outb(EOC | outval, port + PAR_DATA);
169 }
170 
171 static inline void
write_reg_high(short port,unsigned char reg,unsigned char value)172 write_reg_high(short port, unsigned char reg, unsigned char value)
173 {
174     unsigned char outval = EOC | HNib | reg;
175 
176     outb(outval, port + PAR_DATA);
177     outval &= WrAddr | HNib | 0x0f;
178     outb(outval, port + PAR_DATA);
179     outb(outval, port + PAR_DATA);	/* Double write for PS/2. */
180 
181     outval = WrAddr | HNib | value;
182     outb(outval, port + PAR_DATA);
183     outval &= HNib | 0x0f;		/* HNib | value */
184     outb(outval, port + PAR_DATA);
185     outb(outval, port + PAR_DATA);
186 
187     outb(EOC | HNib | outval, port + PAR_DATA);
188 }
189 
190 /* Write a byte out using nibble mode.  The low nibble is written first. */
191 static inline void
write_reg_byte(short port,unsigned char reg,unsigned char value)192 write_reg_byte(short port, unsigned char reg, unsigned char value)
193 {
194     unsigned char outval;
195     outb(EOC | reg, port + PAR_DATA); 	/* Reset the address register. */
196     outval = WrAddr | reg;
197     outb(outval, port + PAR_DATA);
198     outb(outval, port + PAR_DATA);	/* Double write for PS/2. */
199 
200     outb((outval & 0xf0) | (value & 0x0f), port + PAR_DATA);
201     outb(value & 0x0f, port + PAR_DATA);
202     value >>= 4;
203     outb(value, port + PAR_DATA);
204     outb(0x10 | value, port + PAR_DATA);
205     outb(0x10 | value, port + PAR_DATA);
206 
207     outb(EOC  | value, port + PAR_DATA); 	/* Reset the address register. */
208 }
209 
210 /*
211  * Bulk data writes to the packet buffer.  The interrupt line remains enabled.
212  * The first, faster method uses only the dataport (data modes 0, 2 & 4).
213  * The second (backup) method uses data and control regs (modes 1, 3 & 5).
214  * It should only be needed when there is skew between the individual data
215  * lines.
216  */
write_byte_mode0(short ioaddr,unsigned char value)217 static inline void write_byte_mode0(short ioaddr, unsigned char value)
218 {
219     outb(value & 0x0f, ioaddr + PAR_DATA);
220     outb((value>>4) | 0x10, ioaddr + PAR_DATA);
221 }
222 
write_byte_mode1(short ioaddr,unsigned char value)223 static inline void write_byte_mode1(short ioaddr, unsigned char value)
224 {
225     outb(value & 0x0f, ioaddr + PAR_DATA);
226     outb(Ctrl_IRQEN | Ctrl_LNibWrite, ioaddr + PAR_CONTROL);
227     outb((value>>4) | 0x10, ioaddr + PAR_DATA);
228     outb(Ctrl_IRQEN | Ctrl_HNibWrite, ioaddr + PAR_CONTROL);
229 }
230 
231 /* Write 16bit VALUE to the packet buffer: the same as above just doubled. */
write_word_mode0(short ioaddr,unsigned short value)232 static inline void write_word_mode0(short ioaddr, unsigned short value)
233 {
234     outb(value & 0x0f, ioaddr + PAR_DATA);
235     value >>= 4;
236     outb((value & 0x0f) | 0x10, ioaddr + PAR_DATA);
237     value >>= 4;
238     outb(value & 0x0f, ioaddr + PAR_DATA);
239     value >>= 4;
240     outb((value & 0x0f) | 0x10, ioaddr + PAR_DATA);
241 }
242 
243 /*  EEPROM_Ctrl bits. */
244 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
245 #define EE_CS		0x02	/* EEPROM chip select. */
246 #define EE_CLK_HIGH	0x12
247 #define EE_CLK_LOW	0x16
248 #define EE_DATA_WRITE	0x01	/* EEPROM chip data in. */
249 #define EE_DATA_READ	0x08	/* EEPROM chip data out. */
250 
251 /* Delay between EEPROM clock transitions. */
252 #define eeprom_delay(ticks) \
253 do { int _i = 40; while (--_i > 0) { __SLOW_DOWN_IO; }} while (0)
254 
255 /* The EEPROM commands include the alway-set leading bit. */
256 #define EE_WRITE_CMD(offset)	(((5 << 6) + (offset)) << 17)
257 #define EE_READ(offset) 	(((6 << 6) + (offset)) << 17)
258 #define EE_ERASE(offset)	(((7 << 6) + (offset)) << 17)
259 #define EE_CMD_SIZE	27	/* The command+address+data size. */
260