• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Alchemy Au1x00 ethernet driver
4  *
5  * Copyright 2001-2003, 2006 MontaVista Software Inc.
6  * Copyright 2002 TimeSys Corp.
7  * Added ethtool/mii-tool support,
8  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10  * or riemer@riemer-nt.de: fixed the link beat detection with
11  * ioctls (SIOCGMIIPHY)
12  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13  *  converted to use linux-2.6.x's PHY framework
14  *
15  * Author: MontaVista Software, Inc.
16  *         	ppopov@mvista.com or source@mvista.com
17  *
18  * ########################################################################
19  *
20  *  This program is free software; you can distribute it and/or modify it
21  *  under the terms of the GNU General Public License (Version 2) as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope it will be useful, but WITHOUT
25  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27  *  for more details.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32  *
33  * ########################################################################
34  *
35  *
36  */
37 #include <linux/dma-mapping.h>
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/string.h>
41 #include <linux/timer.h>
42 #include <linux/errno.h>
43 #include <linux/in.h>
44 #include <linux/ioport.h>
45 #include <linux/bitops.h>
46 #include <linux/slab.h>
47 #include <linux/interrupt.h>
48 #include <linux/init.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/ethtool.h>
52 #include <linux/mii.h>
53 #include <linux/skbuff.h>
54 #include <linux/delay.h>
55 #include <linux/crc32.h>
56 #include <linux/phy.h>
57 
58 #include <asm/cpu.h>
59 #include <asm/mipsregs.h>
60 #include <asm/irq.h>
61 #include <asm/io.h>
62 #include <asm/processor.h>
63 
64 #include <au1000.h>
65 #include <prom.h>
66 
67 #include "au1000_eth.h"
68 
69 #ifdef AU1000_ETH_DEBUG
70 static int au1000_debug = 5;
71 #else
72 static int au1000_debug = 3;
73 #endif
74 
75 #define DRV_NAME	"au1000_eth"
76 #define DRV_VERSION	"1.6"
77 #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
78 #define DRV_DESC	"Au1xxx on-chip Ethernet driver"
79 
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION(DRV_DESC);
82 MODULE_LICENSE("GPL");
83 
84 // prototypes
85 static void hard_stop(struct net_device *);
86 static void enable_rx_tx(struct net_device *dev);
87 static struct net_device * au1000_probe(int port_num);
88 static int au1000_init(struct net_device *);
89 static int au1000_open(struct net_device *);
90 static int au1000_close(struct net_device *);
91 static int au1000_tx(struct sk_buff *, struct net_device *);
92 static int au1000_rx(struct net_device *);
93 static irqreturn_t au1000_interrupt(int, void *);
94 static void au1000_tx_timeout(struct net_device *);
95 static void set_rx_mode(struct net_device *);
96 static int au1000_ioctl(struct net_device *, struct ifreq *, int);
97 static int au1000_mdio_read(struct net_device *, int, int);
98 static void au1000_mdio_write(struct net_device *, int, int, u16);
99 static void au1000_adjust_link(struct net_device *);
100 static void enable_mac(struct net_device *, int);
101 
102 /*
103  * Theory of operation
104  *
105  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
106  * There are four receive and four transmit descriptors.  These
107  * descriptors are not in memory; rather, they are just a set of
108  * hardware registers.
109  *
110  * Since the Au1000 has a coherent data cache, the receive and
111  * transmit buffers are allocated from the KSEG0 segment. The
112  * hardware registers, however, are still mapped at KSEG1 to
113  * make sure there's no out-of-order writes, and that all writes
114  * complete immediately.
115  */
116 
117 /* These addresses are only used if yamon doesn't tell us what
118  * the mac address is, and the mac address is not passed on the
119  * command line.
120  */
121 static unsigned char au1000_mac_addr[6] __devinitdata = {
122 	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
123 };
124 
125 struct au1000_private *au_macs[NUM_ETH_INTERFACES];
126 
127 /*
128  * board-specific configurations
129  *
130  * PHY detection algorithm
131  *
132  * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
133  * autodetected:
134  *
135  * mii_probe() first searches the current MAC's MII bus for a PHY,
136  * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
137  * defined) PHY address not already claimed by another netdev.
138  *
139  * If nothing was found that way when searching for the 2nd ethernet
140  * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
141  * the first MII bus is searched as well for an unclaimed PHY; this is
142  * needed in case of a dual-PHY accessible only through the MAC0's MII
143  * bus.
144  *
145  * Finally, if no PHY is found, then the corresponding ethernet
146  * controller is not registered to the network subsystem.
147  */
148 
149 /* autodetection defaults */
150 #undef  AU1XXX_PHY_SEARCH_HIGHEST_ADDR
151 #define AU1XXX_PHY1_SEARCH_ON_MAC0
152 
153 /* static PHY setup
154  *
155  * most boards PHY setup should be detectable properly with the
156  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
157  * you have a switch attached, or want to use the PHY's interrupt
158  * notification capabilities) you can provide a static PHY
159  * configuration here
160  *
161  * IRQs may only be set, if a PHY address was configured
162  * If a PHY address is given, also a bus id is required to be set
163  *
164  * ps: make sure the used irqs are configured properly in the board
165  * specific irq-map
166  */
167 
168 #if defined(CONFIG_MIPS_BOSPORUS)
169 /*
170  * Micrel/Kendin 5 port switch attached to MAC0,
171  * MAC0 is associated with PHY address 5 (== WAN port)
172  * MAC1 is not associated with any PHY, since it's connected directly
173  * to the switch.
174  * no interrupts are used
175  */
176 # define AU1XXX_PHY_STATIC_CONFIG
177 
178 # define AU1XXX_PHY0_ADDR  5
179 # define AU1XXX_PHY0_BUSID 0
180 #  undef AU1XXX_PHY0_IRQ
181 
182 #  undef AU1XXX_PHY1_ADDR
183 #  undef AU1XXX_PHY1_BUSID
184 #  undef AU1XXX_PHY1_IRQ
185 #endif
186 
187 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
188 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
189 #endif
190 
191 /*
192  * MII operations
193  */
au1000_mdio_read(struct net_device * dev,int phy_addr,int reg)194 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
195 {
196 	struct au1000_private *aup = netdev_priv(dev);
197 	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
198 	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
199 	u32 timedout = 20;
200 	u32 mii_control;
201 
202 	while (*mii_control_reg & MAC_MII_BUSY) {
203 		mdelay(1);
204 		if (--timedout == 0) {
205 			printk(KERN_ERR "%s: read_MII busy timeout!!\n",
206 					dev->name);
207 			return -1;
208 		}
209 	}
210 
211 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
212 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
213 
214 	*mii_control_reg = mii_control;
215 
216 	timedout = 20;
217 	while (*mii_control_reg & MAC_MII_BUSY) {
218 		mdelay(1);
219 		if (--timedout == 0) {
220 			printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
221 					dev->name);
222 			return -1;
223 		}
224 	}
225 	return (int)*mii_data_reg;
226 }
227 
au1000_mdio_write(struct net_device * dev,int phy_addr,int reg,u16 value)228 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
229 			      int reg, u16 value)
230 {
231 	struct au1000_private *aup = netdev_priv(dev);
232 	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
233 	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
234 	u32 timedout = 20;
235 	u32 mii_control;
236 
237 	while (*mii_control_reg & MAC_MII_BUSY) {
238 		mdelay(1);
239 		if (--timedout == 0) {
240 			printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
241 					dev->name);
242 			return;
243 		}
244 	}
245 
246 	mii_control = MAC_SET_MII_SELECT_REG(reg) |
247 		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
248 
249 	*mii_data_reg = value;
250 	*mii_control_reg = mii_control;
251 }
252 
au1000_mdiobus_read(struct mii_bus * bus,int phy_addr,int regnum)253 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
254 {
255 	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
256 	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
257 	struct net_device *const dev = bus->priv;
258 
259 	enable_mac(dev, 0); /* make sure the MAC associated with this
260 			     * mii_bus is enabled */
261 	return au1000_mdio_read(dev, phy_addr, regnum);
262 }
263 
au1000_mdiobus_write(struct mii_bus * bus,int phy_addr,int regnum,u16 value)264 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
265 				u16 value)
266 {
267 	struct net_device *const dev = bus->priv;
268 
269 	enable_mac(dev, 0); /* make sure the MAC associated with this
270 			     * mii_bus is enabled */
271 	au1000_mdio_write(dev, phy_addr, regnum, value);
272 	return 0;
273 }
274 
au1000_mdiobus_reset(struct mii_bus * bus)275 static int au1000_mdiobus_reset(struct mii_bus *bus)
276 {
277 	struct net_device *const dev = bus->priv;
278 
279 	enable_mac(dev, 0); /* make sure the MAC associated with this
280 			     * mii_bus is enabled */
281 	return 0;
282 }
283 
mii_probe(struct net_device * dev)284 static int mii_probe (struct net_device *dev)
285 {
286 	struct au1000_private *const aup = netdev_priv(dev);
287 	struct phy_device *phydev = NULL;
288 
289 #if defined(AU1XXX_PHY_STATIC_CONFIG)
290 	BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
291 
292 	if(aup->mac_id == 0) { /* get PHY0 */
293 # if defined(AU1XXX_PHY0_ADDR)
294 		phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus->phy_map[AU1XXX_PHY0_ADDR];
295 # else
296 		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
297 			dev->name);
298 		return 0;
299 # endif /* defined(AU1XXX_PHY0_ADDR) */
300 	} else if (aup->mac_id == 1) { /* get PHY1 */
301 # if defined(AU1XXX_PHY1_ADDR)
302 		phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus->phy_map[AU1XXX_PHY1_ADDR];
303 # else
304 		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
305 			dev->name);
306 		return 0;
307 # endif /* defined(AU1XXX_PHY1_ADDR) */
308 	}
309 
310 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
311 	int phy_addr;
312 
313 	/* find the first (lowest address) PHY on the current MAC's MII bus */
314 	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
315 		if (aup->mii_bus->phy_map[phy_addr]) {
316 			phydev = aup->mii_bus->phy_map[phy_addr];
317 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
318 			break; /* break out with first one found */
319 # endif
320 		}
321 
322 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
323 	/* try harder to find a PHY */
324 	if (!phydev && (aup->mac_id == 1)) {
325 		/* no PHY found, maybe we have a dual PHY? */
326 		printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
327 			"let's see if it's attached to MAC0...\n");
328 
329 		BUG_ON(!au_macs[0]);
330 
331 		/* find the first (lowest address) non-attached PHY on
332 		 * the MAC0 MII bus */
333 		for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
334 			struct phy_device *const tmp_phydev =
335 				au_macs[0]->mii_bus->phy_map[phy_addr];
336 
337 			if (!tmp_phydev)
338 				continue; /* no PHY here... */
339 
340 			if (tmp_phydev->attached_dev)
341 				continue; /* already claimed by MAC0 */
342 
343 			phydev = tmp_phydev;
344 			break; /* found it */
345 		}
346 	}
347 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
348 
349 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
350 	if (!phydev) {
351 		printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
352 		return -1;
353 	}
354 
355 	/* now we are supposed to have a proper phydev, to attach to... */
356 	BUG_ON(phydev->attached_dev);
357 
358 	phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
359 			PHY_INTERFACE_MODE_MII);
360 
361 	if (IS_ERR(phydev)) {
362 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
363 		return PTR_ERR(phydev);
364 	}
365 
366 	/* mask with MAC supported features */
367 	phydev->supported &= (SUPPORTED_10baseT_Half
368 			      | SUPPORTED_10baseT_Full
369 			      | SUPPORTED_100baseT_Half
370 			      | SUPPORTED_100baseT_Full
371 			      | SUPPORTED_Autoneg
372 			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
373 			      | SUPPORTED_MII
374 			      | SUPPORTED_TP);
375 
376 	phydev->advertising = phydev->supported;
377 
378 	aup->old_link = 0;
379 	aup->old_speed = 0;
380 	aup->old_duplex = -1;
381 	aup->phy_dev = phydev;
382 
383 	printk(KERN_INFO "%s: attached PHY driver [%s] "
384 	       "(mii_bus:phy_addr=%s, irq=%d)\n",
385 	       dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
386 
387 	return 0;
388 }
389 
390 
391 /*
392  * Buffer allocation/deallocation routines. The buffer descriptor returned
393  * has the virtual and dma address of a buffer suitable for
394  * both, receive and transmit operations.
395  */
GetFreeDB(struct au1000_private * aup)396 static db_dest_t *GetFreeDB(struct au1000_private *aup)
397 {
398 	db_dest_t *pDB;
399 	pDB = aup->pDBfree;
400 
401 	if (pDB) {
402 		aup->pDBfree = pDB->pnext;
403 	}
404 	return pDB;
405 }
406 
ReleaseDB(struct au1000_private * aup,db_dest_t * pDB)407 void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
408 {
409 	db_dest_t *pDBfree = aup->pDBfree;
410 	if (pDBfree)
411 		pDBfree->pnext = pDB;
412 	aup->pDBfree = pDB;
413 }
414 
enable_rx_tx(struct net_device * dev)415 static void enable_rx_tx(struct net_device *dev)
416 {
417 	struct au1000_private *aup = netdev_priv(dev);
418 
419 	if (au1000_debug > 4)
420 		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
421 
422 	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
423 	au_sync_delay(10);
424 }
425 
hard_stop(struct net_device * dev)426 static void hard_stop(struct net_device *dev)
427 {
428 	struct au1000_private *aup = netdev_priv(dev);
429 
430 	if (au1000_debug > 4)
431 		printk(KERN_INFO "%s: hard stop\n", dev->name);
432 
433 	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
434 	au_sync_delay(10);
435 }
436 
enable_mac(struct net_device * dev,int force_reset)437 static void enable_mac(struct net_device *dev, int force_reset)
438 {
439 	unsigned long flags;
440 	struct au1000_private *aup = netdev_priv(dev);
441 
442 	spin_lock_irqsave(&aup->lock, flags);
443 
444 	if(force_reset || (!aup->mac_enabled)) {
445 		*aup->enable = MAC_EN_CLOCK_ENABLE;
446 		au_sync_delay(2);
447 		*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
448 				| MAC_EN_CLOCK_ENABLE);
449 		au_sync_delay(2);
450 
451 		aup->mac_enabled = 1;
452 	}
453 
454 	spin_unlock_irqrestore(&aup->lock, flags);
455 }
456 
reset_mac_unlocked(struct net_device * dev)457 static void reset_mac_unlocked(struct net_device *dev)
458 {
459 	struct au1000_private *const aup = netdev_priv(dev);
460 	int i;
461 
462 	hard_stop(dev);
463 
464 	*aup->enable = MAC_EN_CLOCK_ENABLE;
465 	au_sync_delay(2);
466 	*aup->enable = 0;
467 	au_sync_delay(2);
468 
469 	aup->tx_full = 0;
470 	for (i = 0; i < NUM_RX_DMA; i++) {
471 		/* reset control bits */
472 		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
473 	}
474 	for (i = 0; i < NUM_TX_DMA; i++) {
475 		/* reset control bits */
476 		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
477 	}
478 
479 	aup->mac_enabled = 0;
480 
481 }
482 
reset_mac(struct net_device * dev)483 static void reset_mac(struct net_device *dev)
484 {
485 	struct au1000_private *const aup = netdev_priv(dev);
486 	unsigned long flags;
487 
488 	if (au1000_debug > 4)
489 		printk(KERN_INFO "%s: reset mac, aup %x\n",
490 		       dev->name, (unsigned)aup);
491 
492 	spin_lock_irqsave(&aup->lock, flags);
493 
494 	reset_mac_unlocked (dev);
495 
496 	spin_unlock_irqrestore(&aup->lock, flags);
497 }
498 
499 /*
500  * Setup the receive and transmit "rings".  These pointers are the addresses
501  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
502  * these are not descriptors sitting in memory.
503  */
504 static void
setup_hw_rings(struct au1000_private * aup,u32 rx_base,u32 tx_base)505 setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
506 {
507 	int i;
508 
509 	for (i = 0; i < NUM_RX_DMA; i++) {
510 		aup->rx_dma_ring[i] =
511 			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
512 	}
513 	for (i = 0; i < NUM_TX_DMA; i++) {
514 		aup->tx_dma_ring[i] =
515 			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
516 	}
517 }
518 
519 static struct {
520 	u32 base_addr;
521 	u32 macen_addr;
522 	int irq;
523 	struct net_device *dev;
524 } iflist[2] = {
525 #ifdef CONFIG_SOC_AU1000
526 	{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
527 	{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
528 #endif
529 #ifdef CONFIG_SOC_AU1100
530 	{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
531 #endif
532 #ifdef CONFIG_SOC_AU1500
533 	{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
534 	{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
535 #endif
536 #ifdef CONFIG_SOC_AU1550
537 	{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
538 	{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
539 #endif
540 };
541 
542 static int num_ifs;
543 
544 /*
545  * Setup the base address and interrupt of the Au1xxx ethernet macs
546  * based on cpu type and whether the interface is enabled in sys_pinfunc
547  * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
548  */
au1000_init_module(void)549 static int __init au1000_init_module(void)
550 {
551 	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
552 	struct net_device *dev;
553 	int i, found_one = 0;
554 
555 	num_ifs = NUM_ETH_INTERFACES - ni;
556 
557 	for(i = 0; i < num_ifs; i++) {
558 		dev = au1000_probe(i);
559 		iflist[i].dev = dev;
560 		if (dev)
561 			found_one++;
562 	}
563 	if (!found_one)
564 		return -ENODEV;
565 	return 0;
566 }
567 
568 /*
569  * ethtool operations
570  */
571 
au1000_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)572 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
573 {
574 	struct au1000_private *aup = netdev_priv(dev);
575 
576 	if (aup->phy_dev)
577 		return phy_ethtool_gset(aup->phy_dev, cmd);
578 
579 	return -EINVAL;
580 }
581 
au1000_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)582 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
583 {
584 	struct au1000_private *aup = netdev_priv(dev);
585 
586 	if (!capable(CAP_NET_ADMIN))
587 		return -EPERM;
588 
589 	if (aup->phy_dev)
590 		return phy_ethtool_sset(aup->phy_dev, cmd);
591 
592 	return -EINVAL;
593 }
594 
595 static void
au1000_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)596 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
597 {
598 	struct au1000_private *aup = netdev_priv(dev);
599 
600 	strcpy(info->driver, DRV_NAME);
601 	strcpy(info->version, DRV_VERSION);
602 	info->fw_version[0] = '\0';
603 	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
604 	info->regdump_len = 0;
605 }
606 
607 static const struct ethtool_ops au1000_ethtool_ops = {
608 	.get_settings = au1000_get_settings,
609 	.set_settings = au1000_set_settings,
610 	.get_drvinfo = au1000_get_drvinfo,
611 	.get_link = ethtool_op_get_link,
612 };
613 
au1000_probe(int port_num)614 static struct net_device * au1000_probe(int port_num)
615 {
616 	static unsigned version_printed = 0;
617 	struct au1000_private *aup = NULL;
618 	struct net_device *dev = NULL;
619 	db_dest_t *pDB, *pDBfree;
620 	char ethaddr[6];
621 	int irq, i, err;
622 	u32 base, macen;
623 
624 	if (port_num >= NUM_ETH_INTERFACES)
625  		return NULL;
626 
627 	base  = CPHYSADDR(iflist[port_num].base_addr );
628 	macen = CPHYSADDR(iflist[port_num].macen_addr);
629 	irq = iflist[port_num].irq;
630 
631 	if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
632 	    !request_mem_region(macen, 4, "Au1x00 ENET"))
633 		return NULL;
634 
635 	if (version_printed++ == 0)
636 		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
637 
638 	dev = alloc_etherdev(sizeof(struct au1000_private));
639 	if (!dev) {
640 		printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
641 		return NULL;
642 	}
643 
644 	if ((err = register_netdev(dev)) != 0) {
645 		printk(KERN_ERR "%s: Cannot register net device, error %d\n",
646 				DRV_NAME, err);
647 		free_netdev(dev);
648 		return NULL;
649 	}
650 
651 	printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
652 		dev->name, base, irq);
653 
654 	aup = netdev_priv(dev);
655 
656 	spin_lock_init(&aup->lock);
657 
658 	/* Allocate the data buffers */
659 	/* Snooping works fine with eth on all au1xxx */
660 	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
661 						(NUM_TX_BUFFS + NUM_RX_BUFFS),
662 						&aup->dma_addr,	0);
663 	if (!aup->vaddr) {
664 		free_netdev(dev);
665 		release_mem_region( base, MAC_IOSIZE);
666 		release_mem_region(macen, 4);
667 		return NULL;
668 	}
669 
670 	/* aup->mac is the base address of the MAC's registers */
671 	aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
672 
673 	/* Setup some variables for quick register address access */
674 	aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
675 	aup->mac_id = port_num;
676 	au_macs[port_num] = aup;
677 
678 	if (port_num == 0) {
679 		if (prom_get_ethernet_addr(ethaddr) == 0)
680 			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
681 		else {
682 			printk(KERN_INFO "%s: No MAC address found\n",
683 					 dev->name);
684 				/* Use the hard coded MAC addresses */
685 		}
686 
687 		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
688 	} else if (port_num == 1)
689 		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
690 
691 	/*
692 	 * Assign to the Ethernet ports two consecutive MAC addresses
693 	 * to match those that are printed on their stickers
694 	 */
695 	memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
696 	dev->dev_addr[5] += port_num;
697 
698 	*aup->enable = 0;
699 	aup->mac_enabled = 0;
700 
701 	aup->mii_bus = mdiobus_alloc();
702 	if (aup->mii_bus == NULL)
703 		goto err_out;
704 
705 	aup->mii_bus->priv = dev;
706 	aup->mii_bus->read = au1000_mdiobus_read;
707 	aup->mii_bus->write = au1000_mdiobus_write;
708 	aup->mii_bus->reset = au1000_mdiobus_reset;
709 	aup->mii_bus->name = "au1000_eth_mii";
710 	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
711 	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
712 	for(i = 0; i < PHY_MAX_ADDR; ++i)
713 		aup->mii_bus->irq[i] = PHY_POLL;
714 
715 	/* if known, set corresponding PHY IRQs */
716 #if defined(AU1XXX_PHY_STATIC_CONFIG)
717 # if defined(AU1XXX_PHY0_IRQ)
718 	if (AU1XXX_PHY0_BUSID == aup->mac_id)
719 		aup->mii_bus->irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
720 # endif
721 # if defined(AU1XXX_PHY1_IRQ)
722 	if (AU1XXX_PHY1_BUSID == aup->mac_id)
723 		aup->mii_bus->irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
724 # endif
725 #endif
726 	mdiobus_register(aup->mii_bus);
727 
728 	if (mii_probe(dev) != 0) {
729 		goto err_out;
730 	}
731 
732 	pDBfree = NULL;
733 	/* setup the data buffer descriptors and attach a buffer to each one */
734 	pDB = aup->db;
735 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
736 		pDB->pnext = pDBfree;
737 		pDBfree = pDB;
738 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
739 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
740 		pDB++;
741 	}
742 	aup->pDBfree = pDBfree;
743 
744 	for (i = 0; i < NUM_RX_DMA; i++) {
745 		pDB = GetFreeDB(aup);
746 		if (!pDB) {
747 			goto err_out;
748 		}
749 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
750 		aup->rx_db_inuse[i] = pDB;
751 	}
752 	for (i = 0; i < NUM_TX_DMA; i++) {
753 		pDB = GetFreeDB(aup);
754 		if (!pDB) {
755 			goto err_out;
756 		}
757 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
758 		aup->tx_dma_ring[i]->len = 0;
759 		aup->tx_db_inuse[i] = pDB;
760 	}
761 
762 	dev->base_addr = base;
763 	dev->irq = irq;
764 	dev->open = au1000_open;
765 	dev->hard_start_xmit = au1000_tx;
766 	dev->stop = au1000_close;
767 	dev->set_multicast_list = &set_rx_mode;
768 	dev->do_ioctl = &au1000_ioctl;
769 	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
770 	dev->tx_timeout = au1000_tx_timeout;
771 	dev->watchdog_timeo = ETH_TX_TIMEOUT;
772 
773 	/*
774 	 * The boot code uses the ethernet controller, so reset it to start
775 	 * fresh.  au1000_init() expects that the device is in reset state.
776 	 */
777 	reset_mac(dev);
778 
779 	return dev;
780 
781 err_out:
782 	if (aup->mii_bus != NULL) {
783 		mdiobus_unregister(aup->mii_bus);
784 		mdiobus_free(aup->mii_bus);
785 	}
786 
787 	/* here we should have a valid dev plus aup-> register addresses
788 	 * so we can reset the mac properly.*/
789 	reset_mac(dev);
790 
791 	for (i = 0; i < NUM_RX_DMA; i++) {
792 		if (aup->rx_db_inuse[i])
793 			ReleaseDB(aup, aup->rx_db_inuse[i]);
794 	}
795 	for (i = 0; i < NUM_TX_DMA; i++) {
796 		if (aup->tx_db_inuse[i])
797 			ReleaseDB(aup, aup->tx_db_inuse[i]);
798 	}
799 	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
800 			     (void *)aup->vaddr, aup->dma_addr);
801 	unregister_netdev(dev);
802 	free_netdev(dev);
803 	release_mem_region( base, MAC_IOSIZE);
804 	release_mem_region(macen, 4);
805 	return NULL;
806 }
807 
808 /*
809  * Initialize the interface.
810  *
811  * When the device powers up, the clocks are disabled and the
812  * mac is in reset state.  When the interface is closed, we
813  * do the same -- reset the device and disable the clocks to
814  * conserve power. Thus, whenever au1000_init() is called,
815  * the device should already be in reset state.
816  */
au1000_init(struct net_device * dev)817 static int au1000_init(struct net_device *dev)
818 {
819 	struct au1000_private *aup = netdev_priv(dev);
820 	unsigned long flags;
821 	int i;
822 	u32 control;
823 
824 	if (au1000_debug > 4)
825 		printk("%s: au1000_init\n", dev->name);
826 
827 	/* bring the device out of reset */
828 	enable_mac(dev, 1);
829 
830 	spin_lock_irqsave(&aup->lock, flags);
831 
832 	aup->mac->control = 0;
833 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
834 	aup->tx_tail = aup->tx_head;
835 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
836 
837 	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
838 	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
839 		dev->dev_addr[1]<<8 | dev->dev_addr[0];
840 
841 	for (i = 0; i < NUM_RX_DMA; i++) {
842 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
843 	}
844 	au_sync();
845 
846 	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
847 #ifndef CONFIG_CPU_LITTLE_ENDIAN
848 	control |= MAC_BIG_ENDIAN;
849 #endif
850 	if (aup->phy_dev) {
851 		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
852 			control |= MAC_FULL_DUPLEX;
853 		else
854 			control |= MAC_DISABLE_RX_OWN;
855 	} else { /* PHY-less op, assume full-duplex */
856 		control |= MAC_FULL_DUPLEX;
857 	}
858 
859 	aup->mac->control = control;
860 	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
861 	au_sync();
862 
863 	spin_unlock_irqrestore(&aup->lock, flags);
864 	return 0;
865 }
866 
867 static void
au1000_adjust_link(struct net_device * dev)868 au1000_adjust_link(struct net_device *dev)
869 {
870 	struct au1000_private *aup = netdev_priv(dev);
871 	struct phy_device *phydev = aup->phy_dev;
872 	unsigned long flags;
873 
874 	int status_change = 0;
875 
876 	BUG_ON(!aup->phy_dev);
877 
878 	spin_lock_irqsave(&aup->lock, flags);
879 
880 	if (phydev->link && (aup->old_speed != phydev->speed)) {
881 		// speed changed
882 
883 		switch(phydev->speed) {
884 		case SPEED_10:
885 		case SPEED_100:
886 			break;
887 		default:
888 			printk(KERN_WARNING
889 			       "%s: Speed (%d) is not 10/100 ???\n",
890 			       dev->name, phydev->speed);
891 			break;
892 		}
893 
894 		aup->old_speed = phydev->speed;
895 
896 		status_change = 1;
897 	}
898 
899 	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
900 		// duplex mode changed
901 
902 		/* switching duplex mode requires to disable rx and tx! */
903 		hard_stop(dev);
904 
905 		if (DUPLEX_FULL == phydev->duplex)
906 			aup->mac->control = ((aup->mac->control
907 					     | MAC_FULL_DUPLEX)
908 					     & ~MAC_DISABLE_RX_OWN);
909 		else
910 			aup->mac->control = ((aup->mac->control
911 					      & ~MAC_FULL_DUPLEX)
912 					     | MAC_DISABLE_RX_OWN);
913 		au_sync_delay(1);
914 
915 		enable_rx_tx(dev);
916 		aup->old_duplex = phydev->duplex;
917 
918 		status_change = 1;
919 	}
920 
921 	if(phydev->link != aup->old_link) {
922 		// link state changed
923 
924 		if (!phydev->link) {
925 			/* link went down */
926 			aup->old_speed = 0;
927 			aup->old_duplex = -1;
928 		}
929 
930 		aup->old_link = phydev->link;
931 		status_change = 1;
932 	}
933 
934 	spin_unlock_irqrestore(&aup->lock, flags);
935 
936 	if (status_change) {
937 		if (phydev->link)
938 			printk(KERN_INFO "%s: link up (%d/%s)\n",
939 			       dev->name, phydev->speed,
940 			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
941 		else
942 			printk(KERN_INFO "%s: link down\n", dev->name);
943 	}
944 }
945 
au1000_open(struct net_device * dev)946 static int au1000_open(struct net_device *dev)
947 {
948 	int retval;
949 	struct au1000_private *aup = netdev_priv(dev);
950 
951 	if (au1000_debug > 4)
952 		printk("%s: open: dev=%p\n", dev->name, dev);
953 
954 	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
955 					dev->name, dev))) {
956 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
957 				dev->name, dev->irq);
958 		return retval;
959 	}
960 
961 	if ((retval = au1000_init(dev))) {
962 		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
963 		free_irq(dev->irq, dev);
964 		return retval;
965 	}
966 
967 	if (aup->phy_dev) {
968 		/* cause the PHY state machine to schedule a link state check */
969 		aup->phy_dev->state = PHY_CHANGELINK;
970 		phy_start(aup->phy_dev);
971 	}
972 
973 	netif_start_queue(dev);
974 
975 	if (au1000_debug > 4)
976 		printk("%s: open: Initialization done.\n", dev->name);
977 
978 	return 0;
979 }
980 
au1000_close(struct net_device * dev)981 static int au1000_close(struct net_device *dev)
982 {
983 	unsigned long flags;
984 	struct au1000_private *const aup = netdev_priv(dev);
985 
986 	if (au1000_debug > 4)
987 		printk("%s: close: dev=%p\n", dev->name, dev);
988 
989 	if (aup->phy_dev)
990 		phy_stop(aup->phy_dev);
991 
992 	spin_lock_irqsave(&aup->lock, flags);
993 
994 	reset_mac_unlocked (dev);
995 
996 	/* stop the device */
997 	netif_stop_queue(dev);
998 
999 	/* disable the interrupt */
1000 	free_irq(dev->irq, dev);
1001 	spin_unlock_irqrestore(&aup->lock, flags);
1002 
1003 	return 0;
1004 }
1005 
au1000_cleanup_module(void)1006 static void __exit au1000_cleanup_module(void)
1007 {
1008 	int i, j;
1009 	struct net_device *dev;
1010 	struct au1000_private *aup;
1011 
1012 	for (i = 0; i < num_ifs; i++) {
1013 		dev = iflist[i].dev;
1014 		if (dev) {
1015 			aup = netdev_priv(dev);
1016 			unregister_netdev(dev);
1017 			mdiobus_unregister(aup->mii_bus);
1018 			mdiobus_free(aup->mii_bus);
1019 			for (j = 0; j < NUM_RX_DMA; j++)
1020 				if (aup->rx_db_inuse[j])
1021 					ReleaseDB(aup, aup->rx_db_inuse[j]);
1022 			for (j = 0; j < NUM_TX_DMA; j++)
1023 				if (aup->tx_db_inuse[j])
1024 					ReleaseDB(aup, aup->tx_db_inuse[j]);
1025  			dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1026  					     (NUM_TX_BUFFS + NUM_RX_BUFFS),
1027  					     (void *)aup->vaddr, aup->dma_addr);
1028  			release_mem_region(dev->base_addr, MAC_IOSIZE);
1029  			release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1030 			free_netdev(dev);
1031 		}
1032 	}
1033 }
1034 
update_tx_stats(struct net_device * dev,u32 status)1035 static void update_tx_stats(struct net_device *dev, u32 status)
1036 {
1037 	struct au1000_private *aup = netdev_priv(dev);
1038 	struct net_device_stats *ps = &dev->stats;
1039 
1040 	if (status & TX_FRAME_ABORTED) {
1041 		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1042 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1043 				/* any other tx errors are only valid
1044 				 * in half duplex mode */
1045 				ps->tx_errors++;
1046 				ps->tx_aborted_errors++;
1047 			}
1048 		}
1049 		else {
1050 			ps->tx_errors++;
1051 			ps->tx_aborted_errors++;
1052 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1053 				ps->tx_carrier_errors++;
1054 		}
1055 	}
1056 }
1057 
1058 
1059 /*
1060  * Called from the interrupt service routine to acknowledge
1061  * the TX DONE bits.  This is a must if the irq is setup as
1062  * edge triggered.
1063  */
au1000_tx_ack(struct net_device * dev)1064 static void au1000_tx_ack(struct net_device *dev)
1065 {
1066 	struct au1000_private *aup = netdev_priv(dev);
1067 	volatile tx_dma_t *ptxd;
1068 
1069 	ptxd = aup->tx_dma_ring[aup->tx_tail];
1070 
1071 	while (ptxd->buff_stat & TX_T_DONE) {
1072 		update_tx_stats(dev, ptxd->status);
1073 		ptxd->buff_stat &= ~TX_T_DONE;
1074 		ptxd->len = 0;
1075 		au_sync();
1076 
1077 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1078 		ptxd = aup->tx_dma_ring[aup->tx_tail];
1079 
1080 		if (aup->tx_full) {
1081 			aup->tx_full = 0;
1082 			netif_wake_queue(dev);
1083 		}
1084 	}
1085 }
1086 
1087 
1088 /*
1089  * Au1000 transmit routine.
1090  */
au1000_tx(struct sk_buff * skb,struct net_device * dev)1091 static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1092 {
1093 	struct au1000_private *aup = netdev_priv(dev);
1094 	struct net_device_stats *ps = &dev->stats;
1095 	volatile tx_dma_t *ptxd;
1096 	u32 buff_stat;
1097 	db_dest_t *pDB;
1098 	int i;
1099 
1100 	if (au1000_debug > 5)
1101 		printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1102 				dev->name, (unsigned)aup, skb->len,
1103 				skb->data, aup->tx_head);
1104 
1105 	ptxd = aup->tx_dma_ring[aup->tx_head];
1106 	buff_stat = ptxd->buff_stat;
1107 	if (buff_stat & TX_DMA_ENABLE) {
1108 		/* We've wrapped around and the transmitter is still busy */
1109 		netif_stop_queue(dev);
1110 		aup->tx_full = 1;
1111 		return 1;
1112 	}
1113 	else if (buff_stat & TX_T_DONE) {
1114 		update_tx_stats(dev, ptxd->status);
1115 		ptxd->len = 0;
1116 	}
1117 
1118 	if (aup->tx_full) {
1119 		aup->tx_full = 0;
1120 		netif_wake_queue(dev);
1121 	}
1122 
1123 	pDB = aup->tx_db_inuse[aup->tx_head];
1124 	skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
1125 	if (skb->len < ETH_ZLEN) {
1126 		for (i=skb->len; i<ETH_ZLEN; i++) {
1127 			((char *)pDB->vaddr)[i] = 0;
1128 		}
1129 		ptxd->len = ETH_ZLEN;
1130 	}
1131 	else
1132 		ptxd->len = skb->len;
1133 
1134 	ps->tx_packets++;
1135 	ps->tx_bytes += ptxd->len;
1136 
1137 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1138 	au_sync();
1139 	dev_kfree_skb(skb);
1140 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1141 	dev->trans_start = jiffies;
1142 	return 0;
1143 }
1144 
update_rx_stats(struct net_device * dev,u32 status)1145 static inline void update_rx_stats(struct net_device *dev, u32 status)
1146 {
1147 	struct au1000_private *aup = netdev_priv(dev);
1148 	struct net_device_stats *ps = &dev->stats;
1149 
1150 	ps->rx_packets++;
1151 	if (status & RX_MCAST_FRAME)
1152 		ps->multicast++;
1153 
1154 	if (status & RX_ERROR) {
1155 		ps->rx_errors++;
1156 		if (status & RX_MISSED_FRAME)
1157 			ps->rx_missed_errors++;
1158 		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1159 			ps->rx_length_errors++;
1160 		if (status & RX_CRC_ERROR)
1161 			ps->rx_crc_errors++;
1162 		if (status & RX_COLL)
1163 			ps->collisions++;
1164 	}
1165 	else
1166 		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1167 
1168 }
1169 
1170 /*
1171  * Au1000 receive routine.
1172  */
au1000_rx(struct net_device * dev)1173 static int au1000_rx(struct net_device *dev)
1174 {
1175 	struct au1000_private *aup = netdev_priv(dev);
1176 	struct sk_buff *skb;
1177 	volatile rx_dma_t *prxd;
1178 	u32 buff_stat, status;
1179 	db_dest_t *pDB;
1180 	u32	frmlen;
1181 
1182 	if (au1000_debug > 5)
1183 		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1184 
1185 	prxd = aup->rx_dma_ring[aup->rx_head];
1186 	buff_stat = prxd->buff_stat;
1187 	while (buff_stat & RX_T_DONE)  {
1188 		status = prxd->status;
1189 		pDB = aup->rx_db_inuse[aup->rx_head];
1190 		update_rx_stats(dev, status);
1191 		if (!(status & RX_ERROR))  {
1192 
1193 			/* good frame */
1194 			frmlen = (status & RX_FRAME_LEN_MASK);
1195 			frmlen -= 4; /* Remove FCS */
1196 			skb = dev_alloc_skb(frmlen + 2);
1197 			if (skb == NULL) {
1198 				printk(KERN_ERR
1199 				       "%s: Memory squeeze, dropping packet.\n",
1200 				       dev->name);
1201 				dev->stats.rx_dropped++;
1202 				continue;
1203 			}
1204 			skb_reserve(skb, 2);	/* 16 byte IP header align */
1205 			skb_copy_to_linear_data(skb,
1206 				(unsigned char *)pDB->vaddr, frmlen);
1207 			skb_put(skb, frmlen);
1208 			skb->protocol = eth_type_trans(skb, dev);
1209 			netif_rx(skb);	/* pass the packet to upper layers */
1210 		}
1211 		else {
1212 			if (au1000_debug > 4) {
1213 				if (status & RX_MISSED_FRAME)
1214 					printk("rx miss\n");
1215 				if (status & RX_WDOG_TIMER)
1216 					printk("rx wdog\n");
1217 				if (status & RX_RUNT)
1218 					printk("rx runt\n");
1219 				if (status & RX_OVERLEN)
1220 					printk("rx overlen\n");
1221 				if (status & RX_COLL)
1222 					printk("rx coll\n");
1223 				if (status & RX_MII_ERROR)
1224 					printk("rx mii error\n");
1225 				if (status & RX_CRC_ERROR)
1226 					printk("rx crc error\n");
1227 				if (status & RX_LEN_ERROR)
1228 					printk("rx len error\n");
1229 				if (status & RX_U_CNTRL_FRAME)
1230 					printk("rx u control frame\n");
1231 				if (status & RX_MISSED_FRAME)
1232 					printk("rx miss\n");
1233 			}
1234 		}
1235 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1236 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1237 		au_sync();
1238 
1239 		/* next descriptor */
1240 		prxd = aup->rx_dma_ring[aup->rx_head];
1241 		buff_stat = prxd->buff_stat;
1242 	}
1243 	return 0;
1244 }
1245 
1246 
1247 /*
1248  * Au1000 interrupt service routine.
1249  */
au1000_interrupt(int irq,void * dev_id)1250 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
1251 {
1252 	struct net_device *dev = dev_id;
1253 
1254 	/* Handle RX interrupts first to minimize chance of overrun */
1255 
1256 	au1000_rx(dev);
1257 	au1000_tx_ack(dev);
1258 	return IRQ_RETVAL(1);
1259 }
1260 
1261 
1262 /*
1263  * The Tx ring has been full longer than the watchdog timeout
1264  * value. The transmitter must be hung?
1265  */
au1000_tx_timeout(struct net_device * dev)1266 static void au1000_tx_timeout(struct net_device *dev)
1267 {
1268 	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1269 	reset_mac(dev);
1270 	au1000_init(dev);
1271 	dev->trans_start = jiffies;
1272 	netif_wake_queue(dev);
1273 }
1274 
set_rx_mode(struct net_device * dev)1275 static void set_rx_mode(struct net_device *dev)
1276 {
1277 	struct au1000_private *aup = netdev_priv(dev);
1278 
1279 	if (au1000_debug > 4)
1280 		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1281 
1282 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1283 		aup->mac->control |= MAC_PROMISCUOUS;
1284 	} else if ((dev->flags & IFF_ALLMULTI)  ||
1285 			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
1286 		aup->mac->control |= MAC_PASS_ALL_MULTI;
1287 		aup->mac->control &= ~MAC_PROMISCUOUS;
1288 		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1289 	} else {
1290 		int i;
1291 		struct dev_mc_list *mclist;
1292 		u32 mc_filter[2];	/* Multicast hash filter */
1293 
1294 		mc_filter[1] = mc_filter[0] = 0;
1295 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1296 			 i++, mclist = mclist->next) {
1297 			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1298 					(long *)mc_filter);
1299 		}
1300 		aup->mac->multi_hash_high = mc_filter[1];
1301 		aup->mac->multi_hash_low = mc_filter[0];
1302 		aup->mac->control &= ~MAC_PROMISCUOUS;
1303 		aup->mac->control |= MAC_HASH_MODE;
1304 	}
1305 }
1306 
au1000_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1307 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1308 {
1309 	struct au1000_private *aup = netdev_priv(dev);
1310 
1311 	if (!netif_running(dev)) return -EINVAL;
1312 
1313 	if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1314 
1315 	return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1316 }
1317 
1318 module_init(au1000_init_module);
1319 module_exit(au1000_cleanup_module);
1320