• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Network device driver for the BMAC ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1998 Randy Gobbel.
6  *
7  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8  * dynamic procfs inode.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/bitrev.h>
22 #include <linux/ethtool.h>
23 #include <asm/prom.h>
24 #include <asm/dbdma.h>
25 #include <asm/io.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/pmac_feature.h>
30 #include <asm/macio.h>
31 #include <asm/irq.h>
32 
33 #include "bmac.h"
34 
35 #define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
36 #define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
37 
38 /*
39  * CRC polynomial - used in working out multicast filter bits.
40  */
41 #define ENET_CRCPOLY 0x04c11db7
42 
43 /* switch to use multicast code lifted from sunhme driver */
44 #define SUNHME_MULTICAST
45 
46 #define N_RX_RING	64
47 #define N_TX_RING	32
48 #define MAX_TX_ACTIVE	1
49 #define ETHERCRC	4
50 #define ETHERMINPACKET	64
51 #define ETHERMTU	1500
52 #define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
53 #define TX_TIMEOUT	HZ	/* 1 second */
54 
55 /* Bits in transmit DMA status */
56 #define TX_DMA_ERR	0x80
57 
58 #define XXDEBUG(args)
59 
60 struct bmac_data {
61 	/* volatile struct bmac *bmac; */
62 	struct sk_buff_head *queue;
63 	volatile struct dbdma_regs __iomem *tx_dma;
64 	int tx_dma_intr;
65 	volatile struct dbdma_regs __iomem *rx_dma;
66 	int rx_dma_intr;
67 	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
68 	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
69 	struct macio_dev *mdev;
70 	int is_bmac_plus;
71 	struct sk_buff *rx_bufs[N_RX_RING];
72 	int rx_fill;
73 	int rx_empty;
74 	struct sk_buff *tx_bufs[N_TX_RING];
75 	int tx_fill;
76 	int tx_empty;
77 	unsigned char tx_fullup;
78 	struct timer_list tx_timeout;
79 	int timeout_active;
80 	int sleeping;
81 	int opened;
82 	unsigned short hash_use_count[64];
83 	unsigned short hash_table_mask[4];
84 	spinlock_t lock;
85 };
86 
87 #if 0 /* Move that to ethtool */
88 
89 typedef struct bmac_reg_entry {
90 	char *name;
91 	unsigned short reg_offset;
92 } bmac_reg_entry_t;
93 
94 #define N_REG_ENTRIES 31
95 
96 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
97 	{"MEMADD", MEMADD},
98 	{"MEMDATAHI", MEMDATAHI},
99 	{"MEMDATALO", MEMDATALO},
100 	{"TXPNTR", TXPNTR},
101 	{"RXPNTR", RXPNTR},
102 	{"IPG1", IPG1},
103 	{"IPG2", IPG2},
104 	{"ALIMIT", ALIMIT},
105 	{"SLOT", SLOT},
106 	{"PALEN", PALEN},
107 	{"PAPAT", PAPAT},
108 	{"TXSFD", TXSFD},
109 	{"JAM", JAM},
110 	{"TXCFG", TXCFG},
111 	{"TXMAX", TXMAX},
112 	{"TXMIN", TXMIN},
113 	{"PAREG", PAREG},
114 	{"DCNT", DCNT},
115 	{"NCCNT", NCCNT},
116 	{"NTCNT", NTCNT},
117 	{"EXCNT", EXCNT},
118 	{"LTCNT", LTCNT},
119 	{"TXSM", TXSM},
120 	{"RXCFG", RXCFG},
121 	{"RXMAX", RXMAX},
122 	{"RXMIN", RXMIN},
123 	{"FRCNT", FRCNT},
124 	{"AECNT", AECNT},
125 	{"FECNT", FECNT},
126 	{"RXSM", RXSM},
127 	{"RXCV", RXCV}
128 };
129 
130 #endif
131 
132 static unsigned char *bmac_emergency_rxbuf;
133 
134 /*
135  * Number of bytes of private data per BMAC: allow enough for
136  * the rx and tx dma commands plus a branch dma command each,
137  * and another 16 bytes to allow us to align the dma command
138  * buffers on a 16 byte boundary.
139  */
140 #define PRIV_BYTES	(sizeof(struct bmac_data) \
141 	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142 	+ sizeof(struct sk_buff_head))
143 
144 static int bmac_open(struct net_device *dev);
145 static int bmac_close(struct net_device *dev);
146 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
147 static void bmac_set_multicast(struct net_device *dev);
148 static void bmac_reset_and_enable(struct net_device *dev);
149 static void bmac_start_chip(struct net_device *dev);
150 static void bmac_init_chip(struct net_device *dev);
151 static void bmac_init_registers(struct net_device *dev);
152 static void bmac_enable_and_reset_chip(struct net_device *dev);
153 static int bmac_set_address(struct net_device *dev, void *addr);
154 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
155 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
156 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
157 static void bmac_set_timeout(struct net_device *dev);
158 static void bmac_tx_timeout(unsigned long data);
159 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
160 static void bmac_start(struct net_device *dev);
161 
162 #define	DBDMA_SET(x)	( ((x) | (x) << 16) )
163 #define	DBDMA_CLEAR(x)	( (x) << 16)
164 
165 static inline void
dbdma_st32(volatile __u32 __iomem * a,unsigned long x)166 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
167 {
168 	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
169 	return;
170 }
171 
172 static inline unsigned long
dbdma_ld32(volatile __u32 __iomem * a)173 dbdma_ld32(volatile __u32 __iomem *a)
174 {
175 	__u32 swap;
176 	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
177 	return swap;
178 }
179 
180 static void
dbdma_continue(volatile struct dbdma_regs __iomem * dmap)181 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
182 {
183 	dbdma_st32(&dmap->control,
184 		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
185 	eieio();
186 }
187 
188 static void
dbdma_reset(volatile struct dbdma_regs __iomem * dmap)189 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
190 {
191 	dbdma_st32(&dmap->control,
192 		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
193 	eieio();
194 	while (dbdma_ld32(&dmap->status) & RUN)
195 		eieio();
196 }
197 
198 static void
dbdma_setcmd(volatile struct dbdma_cmd * cp,unsigned short cmd,unsigned count,unsigned long addr,unsigned long cmd_dep)199 dbdma_setcmd(volatile struct dbdma_cmd *cp,
200 	     unsigned short cmd, unsigned count, unsigned long addr,
201 	     unsigned long cmd_dep)
202 {
203 	out_le16(&cp->command, cmd);
204 	out_le16(&cp->req_count, count);
205 	out_le32(&cp->phy_addr, addr);
206 	out_le32(&cp->cmd_dep, cmd_dep);
207 	out_le16(&cp->xfer_status, 0);
208 	out_le16(&cp->res_count, 0);
209 }
210 
211 static inline
bmwrite(struct net_device * dev,unsigned long reg_offset,unsigned data)212 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
213 {
214 	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
215 }
216 
217 
218 static inline
bmread(struct net_device * dev,unsigned long reg_offset)219 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
220 {
221 	return in_le16((void __iomem *)dev->base_addr + reg_offset);
222 }
223 
224 static void
bmac_enable_and_reset_chip(struct net_device * dev)225 bmac_enable_and_reset_chip(struct net_device *dev)
226 {
227 	struct bmac_data *bp = netdev_priv(dev);
228 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
229 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
230 
231 	if (rd)
232 		dbdma_reset(rd);
233 	if (td)
234 		dbdma_reset(td);
235 
236 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
237 }
238 
239 #define MIFDELAY	udelay(10)
240 
241 static unsigned int
bmac_mif_readbits(struct net_device * dev,int nb)242 bmac_mif_readbits(struct net_device *dev, int nb)
243 {
244 	unsigned int val = 0;
245 
246 	while (--nb >= 0) {
247 		bmwrite(dev, MIFCSR, 0);
248 		MIFDELAY;
249 		if (bmread(dev, MIFCSR) & 8)
250 			val |= 1 << nb;
251 		bmwrite(dev, MIFCSR, 1);
252 		MIFDELAY;
253 	}
254 	bmwrite(dev, MIFCSR, 0);
255 	MIFDELAY;
256 	bmwrite(dev, MIFCSR, 1);
257 	MIFDELAY;
258 	return val;
259 }
260 
261 static void
bmac_mif_writebits(struct net_device * dev,unsigned int val,int nb)262 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
263 {
264 	int b;
265 
266 	while (--nb >= 0) {
267 		b = (val & (1 << nb))? 6: 4;
268 		bmwrite(dev, MIFCSR, b);
269 		MIFDELAY;
270 		bmwrite(dev, MIFCSR, b|1);
271 		MIFDELAY;
272 	}
273 }
274 
275 static unsigned int
bmac_mif_read(struct net_device * dev,unsigned int addr)276 bmac_mif_read(struct net_device *dev, unsigned int addr)
277 {
278 	unsigned int val;
279 
280 	bmwrite(dev, MIFCSR, 4);
281 	MIFDELAY;
282 	bmac_mif_writebits(dev, ~0U, 32);
283 	bmac_mif_writebits(dev, 6, 4);
284 	bmac_mif_writebits(dev, addr, 10);
285 	bmwrite(dev, MIFCSR, 2);
286 	MIFDELAY;
287 	bmwrite(dev, MIFCSR, 1);
288 	MIFDELAY;
289 	val = bmac_mif_readbits(dev, 17);
290 	bmwrite(dev, MIFCSR, 4);
291 	MIFDELAY;
292 	return val;
293 }
294 
295 static void
bmac_mif_write(struct net_device * dev,unsigned int addr,unsigned int val)296 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
297 {
298 	bmwrite(dev, MIFCSR, 4);
299 	MIFDELAY;
300 	bmac_mif_writebits(dev, ~0U, 32);
301 	bmac_mif_writebits(dev, 5, 4);
302 	bmac_mif_writebits(dev, addr, 10);
303 	bmac_mif_writebits(dev, 2, 2);
304 	bmac_mif_writebits(dev, val, 16);
305 	bmac_mif_writebits(dev, 3, 2);
306 }
307 
308 static void
bmac_init_registers(struct net_device * dev)309 bmac_init_registers(struct net_device *dev)
310 {
311 	struct bmac_data *bp = netdev_priv(dev);
312 	volatile unsigned short regValue;
313 	unsigned short *pWord16;
314 	int i;
315 
316 	/* XXDEBUG(("bmac: enter init_registers\n")); */
317 
318 	bmwrite(dev, RXRST, RxResetValue);
319 	bmwrite(dev, TXRST, TxResetBit);
320 
321 	i = 100;
322 	do {
323 		--i;
324 		udelay(10000);
325 		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
326 	} while ((regValue & TxResetBit) && i > 0);
327 
328 	if (!bp->is_bmac_plus) {
329 		regValue = bmread(dev, XCVRIF);
330 		regValue |= ClkBit | SerialMode | COLActiveLow;
331 		bmwrite(dev, XCVRIF, regValue);
332 		udelay(10000);
333 	}
334 
335 	bmwrite(dev, RSEED, (unsigned short)0x1968);
336 
337 	regValue = bmread(dev, XIFC);
338 	regValue |= TxOutputEnable;
339 	bmwrite(dev, XIFC, regValue);
340 
341 	bmread(dev, PAREG);
342 
343 	/* set collision counters to 0 */
344 	bmwrite(dev, NCCNT, 0);
345 	bmwrite(dev, NTCNT, 0);
346 	bmwrite(dev, EXCNT, 0);
347 	bmwrite(dev, LTCNT, 0);
348 
349 	/* set rx counters to 0 */
350 	bmwrite(dev, FRCNT, 0);
351 	bmwrite(dev, LECNT, 0);
352 	bmwrite(dev, AECNT, 0);
353 	bmwrite(dev, FECNT, 0);
354 	bmwrite(dev, RXCV, 0);
355 
356 	/* set tx fifo information */
357 	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
358 
359 	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
360 	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
361 
362 	/* set rx fifo information */
363 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
364 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
365 
366 	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
367 	bmread(dev, STATUS);		/* read it just to clear it */
368 
369 	/* zero out the chip Hash Filter registers */
370 	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
371 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
372 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
373 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
374 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
375 
376 	pWord16 = (unsigned short *)dev->dev_addr;
377 	bmwrite(dev, MADD0, *pWord16++);
378 	bmwrite(dev, MADD1, *pWord16++);
379 	bmwrite(dev, MADD2, *pWord16);
380 
381 	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
382 
383 	bmwrite(dev, INTDISABLE, EnableNormal);
384 
385 	return;
386 }
387 
388 #if 0
389 static void
390 bmac_disable_interrupts(struct net_device *dev)
391 {
392 	bmwrite(dev, INTDISABLE, DisableAll);
393 }
394 
395 static void
396 bmac_enable_interrupts(struct net_device *dev)
397 {
398 	bmwrite(dev, INTDISABLE, EnableNormal);
399 }
400 #endif
401 
402 
403 static void
bmac_start_chip(struct net_device * dev)404 bmac_start_chip(struct net_device *dev)
405 {
406 	struct bmac_data *bp = netdev_priv(dev);
407 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
408 	unsigned short	oldConfig;
409 
410 	/* enable rx dma channel */
411 	dbdma_continue(rd);
412 
413 	oldConfig = bmread(dev, TXCFG);
414 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
415 
416 	/* turn on rx plus any other bits already on (promiscuous possibly) */
417 	oldConfig = bmread(dev, RXCFG);
418 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
419 	udelay(20000);
420 }
421 
422 static void
bmac_init_phy(struct net_device * dev)423 bmac_init_phy(struct net_device *dev)
424 {
425 	unsigned int addr;
426 	struct bmac_data *bp = netdev_priv(dev);
427 
428 	printk(KERN_DEBUG "phy registers:");
429 	for (addr = 0; addr < 32; ++addr) {
430 		if ((addr & 7) == 0)
431 			printk("\n" KERN_DEBUG);
432 		printk(" %.4x", bmac_mif_read(dev, addr));
433 	}
434 	printk("\n");
435 	if (bp->is_bmac_plus) {
436 		unsigned int capable, ctrl;
437 
438 		ctrl = bmac_mif_read(dev, 0);
439 		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440 		if (bmac_mif_read(dev, 4) != capable
441 		    || (ctrl & 0x1000) == 0) {
442 			bmac_mif_write(dev, 4, capable);
443 			bmac_mif_write(dev, 0, 0x1200);
444 		} else
445 			bmac_mif_write(dev, 0, 0x1000);
446 	}
447 }
448 
bmac_init_chip(struct net_device * dev)449 static void bmac_init_chip(struct net_device *dev)
450 {
451 	bmac_init_phy(dev);
452 	bmac_init_registers(dev);
453 }
454 
455 #ifdef CONFIG_PM
bmac_suspend(struct macio_dev * mdev,pm_message_t state)456 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457 {
458 	struct net_device* dev = macio_get_drvdata(mdev);
459 	struct bmac_data *bp = netdev_priv(dev);
460 	unsigned long flags;
461 	unsigned short config;
462 	int i;
463 
464 	netif_device_detach(dev);
465 	/* prolly should wait for dma to finish & turn off the chip */
466 	spin_lock_irqsave(&bp->lock, flags);
467 	if (bp->timeout_active) {
468 		del_timer(&bp->tx_timeout);
469 		bp->timeout_active = 0;
470 	}
471 	disable_irq(dev->irq);
472 	disable_irq(bp->tx_dma_intr);
473 	disable_irq(bp->rx_dma_intr);
474 	bp->sleeping = 1;
475 	spin_unlock_irqrestore(&bp->lock, flags);
476 	if (bp->opened) {
477 		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478 		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479 
480 		config = bmread(dev, RXCFG);
481 		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482 		config = bmread(dev, TXCFG);
483        		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484 		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485        		/* disable rx and tx dma */
486        		st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
487        		st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
488        		/* free some skb's */
489        		for (i=0; i<N_RX_RING; i++) {
490        			if (bp->rx_bufs[i] != NULL) {
491        				dev_kfree_skb(bp->rx_bufs[i]);
492        				bp->rx_bufs[i] = NULL;
493        			}
494        		}
495        		for (i = 0; i<N_TX_RING; i++) {
496 			if (bp->tx_bufs[i] != NULL) {
497 		       		dev_kfree_skb(bp->tx_bufs[i]);
498 	       			bp->tx_bufs[i] = NULL;
499 		       	}
500 		}
501 	}
502        	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503 	return 0;
504 }
505 
bmac_resume(struct macio_dev * mdev)506 static int bmac_resume(struct macio_dev *mdev)
507 {
508 	struct net_device* dev = macio_get_drvdata(mdev);
509 	struct bmac_data *bp = netdev_priv(dev);
510 
511 	/* see if this is enough */
512 	if (bp->opened)
513 		bmac_reset_and_enable(dev);
514 
515 	enable_irq(dev->irq);
516        	enable_irq(bp->tx_dma_intr);
517        	enable_irq(bp->rx_dma_intr);
518        	netif_device_attach(dev);
519 
520 	return 0;
521 }
522 #endif /* CONFIG_PM */
523 
bmac_set_address(struct net_device * dev,void * addr)524 static int bmac_set_address(struct net_device *dev, void *addr)
525 {
526 	struct bmac_data *bp = netdev_priv(dev);
527 	unsigned char *p = addr;
528 	unsigned short *pWord16;
529 	unsigned long flags;
530 	int i;
531 
532 	XXDEBUG(("bmac: enter set_address\n"));
533 	spin_lock_irqsave(&bp->lock, flags);
534 
535 	for (i = 0; i < 6; ++i) {
536 		dev->dev_addr[i] = p[i];
537 	}
538 	/* load up the hardware address */
539 	pWord16  = (unsigned short *)dev->dev_addr;
540 	bmwrite(dev, MADD0, *pWord16++);
541 	bmwrite(dev, MADD1, *pWord16++);
542 	bmwrite(dev, MADD2, *pWord16);
543 
544 	spin_unlock_irqrestore(&bp->lock, flags);
545 	XXDEBUG(("bmac: exit set_address\n"));
546 	return 0;
547 }
548 
bmac_set_timeout(struct net_device * dev)549 static inline void bmac_set_timeout(struct net_device *dev)
550 {
551 	struct bmac_data *bp = netdev_priv(dev);
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&bp->lock, flags);
555 	if (bp->timeout_active)
556 		del_timer(&bp->tx_timeout);
557 	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558 	bp->tx_timeout.function = bmac_tx_timeout;
559 	bp->tx_timeout.data = (unsigned long) dev;
560 	add_timer(&bp->tx_timeout);
561 	bp->timeout_active = 1;
562 	spin_unlock_irqrestore(&bp->lock, flags);
563 }
564 
565 static void
bmac_construct_xmt(struct sk_buff * skb,volatile struct dbdma_cmd * cp)566 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567 {
568 	void *vaddr;
569 	unsigned long baddr;
570 	unsigned long len;
571 
572 	len = skb->len;
573 	vaddr = skb->data;
574 	baddr = virt_to_bus(vaddr);
575 
576 	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577 }
578 
579 static void
bmac_construct_rxbuff(struct sk_buff * skb,volatile struct dbdma_cmd * cp)580 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581 {
582 	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583 
584 	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585 		     virt_to_bus(addr), 0);
586 }
587 
588 static void
bmac_init_tx_ring(struct bmac_data * bp)589 bmac_init_tx_ring(struct bmac_data *bp)
590 {
591 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592 
593 	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594 
595 	bp->tx_empty = 0;
596 	bp->tx_fill = 0;
597 	bp->tx_fullup = 0;
598 
599 	/* put a branch at the end of the tx command list */
600 	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602 
603 	/* reset tx dma */
604 	dbdma_reset(td);
605 	out_le32(&td->wait_sel, 0x00200020);
606 	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607 }
608 
609 static int
bmac_init_rx_ring(struct bmac_data * bp)610 bmac_init_rx_ring(struct bmac_data *bp)
611 {
612 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
613 	int i;
614 	struct sk_buff *skb;
615 
616 	/* initialize list of sk_buffs for receiving and set up recv dma */
617 	memset((char *)bp->rx_cmds, 0,
618 	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
619 	for (i = 0; i < N_RX_RING; i++) {
620 		if ((skb = bp->rx_bufs[i]) == NULL) {
621 			bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
622 			if (skb != NULL)
623 				skb_reserve(skb, 2);
624 		}
625 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
626 	}
627 
628 	bp->rx_empty = 0;
629 	bp->rx_fill = i;
630 
631 	/* Put a branch back to the beginning of the receive command list */
632 	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
633 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
634 
635 	/* start rx dma */
636 	dbdma_reset(rd);
637 	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
638 
639 	return 1;
640 }
641 
642 
bmac_transmit_packet(struct sk_buff * skb,struct net_device * dev)643 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
644 {
645 	struct bmac_data *bp = netdev_priv(dev);
646 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
647 	int i;
648 
649 	/* see if there's a free slot in the tx ring */
650 	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
651 	/* 	     bp->tx_empty, bp->tx_fill)); */
652 	i = bp->tx_fill + 1;
653 	if (i >= N_TX_RING)
654 		i = 0;
655 	if (i == bp->tx_empty) {
656 		netif_stop_queue(dev);
657 		bp->tx_fullup = 1;
658 		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
659 		return -1;		/* can't take it at the moment */
660 	}
661 
662 	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
663 
664 	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
665 
666 	bp->tx_bufs[bp->tx_fill] = skb;
667 	bp->tx_fill = i;
668 
669 	dev->stats.tx_bytes += skb->len;
670 
671 	dbdma_continue(td);
672 
673 	return 0;
674 }
675 
676 static int rxintcount;
677 
bmac_rxdma_intr(int irq,void * dev_id)678 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
679 {
680 	struct net_device *dev = (struct net_device *) dev_id;
681 	struct bmac_data *bp = netdev_priv(dev);
682 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
683 	volatile struct dbdma_cmd *cp;
684 	int i, nb, stat;
685 	struct sk_buff *skb;
686 	unsigned int residual;
687 	int last;
688 	unsigned long flags;
689 
690 	spin_lock_irqsave(&bp->lock, flags);
691 
692 	if (++rxintcount < 10) {
693 		XXDEBUG(("bmac_rxdma_intr\n"));
694 	}
695 
696 	last = -1;
697 	i = bp->rx_empty;
698 
699 	while (1) {
700 		cp = &bp->rx_cmds[i];
701 		stat = ld_le16(&cp->xfer_status);
702 		residual = ld_le16(&cp->res_count);
703 		if ((stat & ACTIVE) == 0)
704 			break;
705 		nb = RX_BUFLEN - residual - 2;
706 		if (nb < (ETHERMINPACKET - ETHERCRC)) {
707 			skb = NULL;
708 			dev->stats.rx_length_errors++;
709 			dev->stats.rx_errors++;
710 		} else {
711 			skb = bp->rx_bufs[i];
712 			bp->rx_bufs[i] = NULL;
713 		}
714 		if (skb != NULL) {
715 			nb -= ETHERCRC;
716 			skb_put(skb, nb);
717 			skb->protocol = eth_type_trans(skb, dev);
718 			netif_rx(skb);
719 			++dev->stats.rx_packets;
720 			dev->stats.rx_bytes += nb;
721 		} else {
722 			++dev->stats.rx_dropped;
723 		}
724 		if ((skb = bp->rx_bufs[i]) == NULL) {
725 			bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
726 			if (skb != NULL)
727 				skb_reserve(bp->rx_bufs[i], 2);
728 		}
729 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
730 		st_le16(&cp->res_count, 0);
731 		st_le16(&cp->xfer_status, 0);
732 		last = i;
733 		if (++i >= N_RX_RING) i = 0;
734 	}
735 
736 	if (last != -1) {
737 		bp->rx_fill = last;
738 		bp->rx_empty = i;
739 	}
740 
741 	dbdma_continue(rd);
742 	spin_unlock_irqrestore(&bp->lock, flags);
743 
744 	if (rxintcount < 10) {
745 		XXDEBUG(("bmac_rxdma_intr done\n"));
746 	}
747 	return IRQ_HANDLED;
748 }
749 
750 static int txintcount;
751 
bmac_txdma_intr(int irq,void * dev_id)752 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
753 {
754 	struct net_device *dev = (struct net_device *) dev_id;
755 	struct bmac_data *bp = netdev_priv(dev);
756 	volatile struct dbdma_cmd *cp;
757 	int stat;
758 	unsigned long flags;
759 
760 	spin_lock_irqsave(&bp->lock, flags);
761 
762 	if (txintcount++ < 10) {
763 		XXDEBUG(("bmac_txdma_intr\n"));
764 	}
765 
766 	/*     del_timer(&bp->tx_timeout); */
767 	/*     bp->timeout_active = 0; */
768 
769 	while (1) {
770 		cp = &bp->tx_cmds[bp->tx_empty];
771 		stat = ld_le16(&cp->xfer_status);
772 		if (txintcount < 10) {
773 			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
774 		}
775 		if (!(stat & ACTIVE)) {
776 			/*
777 			 * status field might not have been filled by DBDMA
778 			 */
779 			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
780 				break;
781 		}
782 
783 		if (bp->tx_bufs[bp->tx_empty]) {
784 			++dev->stats.tx_packets;
785 			dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
786 		}
787 		bp->tx_bufs[bp->tx_empty] = NULL;
788 		bp->tx_fullup = 0;
789 		netif_wake_queue(dev);
790 		if (++bp->tx_empty >= N_TX_RING)
791 			bp->tx_empty = 0;
792 		if (bp->tx_empty == bp->tx_fill)
793 			break;
794 	}
795 
796 	spin_unlock_irqrestore(&bp->lock, flags);
797 
798 	if (txintcount < 10) {
799 		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
800 	}
801 
802 	bmac_start(dev);
803 	return IRQ_HANDLED;
804 }
805 
806 #ifndef SUNHME_MULTICAST
807 /* Real fast bit-reversal algorithm, 6-bit values */
808 static int reverse6[64] = {
809 	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
810 	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
811 	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
812 	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
813 	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
814 	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
815 	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
816 	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
817 };
818 
819 static unsigned int
crc416(unsigned int curval,unsigned short nxtval)820 crc416(unsigned int curval, unsigned short nxtval)
821 {
822 	register unsigned int counter, cur = curval, next = nxtval;
823 	register int high_crc_set, low_data_set;
824 
825 	/* Swap bytes */
826 	next = ((next & 0x00FF) << 8) | (next >> 8);
827 
828 	/* Compute bit-by-bit */
829 	for (counter = 0; counter < 16; ++counter) {
830 		/* is high CRC bit set? */
831 		if ((cur & 0x80000000) == 0) high_crc_set = 0;
832 		else high_crc_set = 1;
833 
834 		cur = cur << 1;
835 
836 		if ((next & 0x0001) == 0) low_data_set = 0;
837 		else low_data_set = 1;
838 
839 		next = next >> 1;
840 
841 		/* do the XOR */
842 		if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
843 	}
844 	return cur;
845 }
846 
847 static unsigned int
bmac_crc(unsigned short * address)848 bmac_crc(unsigned short *address)
849 {
850 	unsigned int newcrc;
851 
852 	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
853 	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
854 	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
855 	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
856 
857 	return(newcrc);
858 }
859 
860 /*
861  * Add requested mcast addr to BMac's hash table filter.
862  *
863  */
864 
865 static void
bmac_addhash(struct bmac_data * bp,unsigned char * addr)866 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
867 {
868 	unsigned int	 crc;
869 	unsigned short	 mask;
870 
871 	if (!(*addr)) return;
872 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
873 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
874 	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
875 	mask = crc % 16;
876 	mask = (unsigned char)1 << mask;
877 	bp->hash_use_count[crc/16] |= mask;
878 }
879 
880 static void
bmac_removehash(struct bmac_data * bp,unsigned char * addr)881 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
882 {
883 	unsigned int crc;
884 	unsigned char mask;
885 
886 	/* Now, delete the address from the filter copy, as indicated */
887 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
888 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
889 	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
890 	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
891 	mask = crc % 16;
892 	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
893 	bp->hash_table_mask[crc/16] &= mask;
894 }
895 
896 /*
897  * Sync the adapter with the software copy of the multicast mask
898  *  (logical address filter).
899  */
900 
901 static void
bmac_rx_off(struct net_device * dev)902 bmac_rx_off(struct net_device *dev)
903 {
904 	unsigned short rx_cfg;
905 
906 	rx_cfg = bmread(dev, RXCFG);
907 	rx_cfg &= ~RxMACEnable;
908 	bmwrite(dev, RXCFG, rx_cfg);
909 	do {
910 		rx_cfg = bmread(dev, RXCFG);
911 	}  while (rx_cfg & RxMACEnable);
912 }
913 
914 unsigned short
bmac_rx_on(struct net_device * dev,int hash_enable,int promisc_enable)915 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
916 {
917 	unsigned short rx_cfg;
918 
919 	rx_cfg = bmread(dev, RXCFG);
920 	rx_cfg |= RxMACEnable;
921 	if (hash_enable) rx_cfg |= RxHashFilterEnable;
922 	else rx_cfg &= ~RxHashFilterEnable;
923 	if (promisc_enable) rx_cfg |= RxPromiscEnable;
924 	else rx_cfg &= ~RxPromiscEnable;
925 	bmwrite(dev, RXRST, RxResetValue);
926 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
927 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
928 	bmwrite(dev, RXCFG, rx_cfg );
929 	return rx_cfg;
930 }
931 
932 static void
bmac_update_hash_table_mask(struct net_device * dev,struct bmac_data * bp)933 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
934 {
935 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
936 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
937 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
938 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
939 }
940 
941 #if 0
942 static void
943 bmac_add_multi(struct net_device *dev,
944 	       struct bmac_data *bp, unsigned char *addr)
945 {
946 	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
947 	bmac_addhash(bp, addr);
948 	bmac_rx_off(dev);
949 	bmac_update_hash_table_mask(dev, bp);
950 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
951 	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
952 }
953 
954 static void
955 bmac_remove_multi(struct net_device *dev,
956 		  struct bmac_data *bp, unsigned char *addr)
957 {
958 	bmac_removehash(bp, addr);
959 	bmac_rx_off(dev);
960 	bmac_update_hash_table_mask(dev, bp);
961 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
962 }
963 #endif
964 
965 /* Set or clear the multicast filter for this adaptor.
966     num_addrs == -1	Promiscuous mode, receive all packets
967     num_addrs == 0	Normal mode, clear multicast list
968     num_addrs > 0	Multicast mode, receive normal and MC packets, and do
969 			best-effort filtering.
970  */
bmac_set_multicast(struct net_device * dev)971 static void bmac_set_multicast(struct net_device *dev)
972 {
973 	struct dev_mc_list *dmi;
974 	struct bmac_data *bp = netdev_priv(dev);
975 	int num_addrs = dev->mc_count;
976 	unsigned short rx_cfg;
977 	int i;
978 
979 	if (bp->sleeping)
980 		return;
981 
982 	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
983 
984 	if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
985 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
986 		bmac_update_hash_table_mask(dev, bp);
987 		rx_cfg = bmac_rx_on(dev, 1, 0);
988 		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
989 	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
990 		rx_cfg = bmread(dev, RXCFG);
991 		rx_cfg |= RxPromiscEnable;
992 		bmwrite(dev, RXCFG, rx_cfg);
993 		rx_cfg = bmac_rx_on(dev, 0, 1);
994 		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
995 	} else {
996 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
997 		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
998 		if (num_addrs == 0) {
999 			rx_cfg = bmac_rx_on(dev, 0, 0);
1000 			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1001 		} else {
1002 			for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
1003 				bmac_addhash(bp, dmi->dmi_addr);
1004 			bmac_update_hash_table_mask(dev, bp);
1005 			rx_cfg = bmac_rx_on(dev, 1, 0);
1006 			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1007 		}
1008 	}
1009 	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1010 }
1011 #else /* ifdef SUNHME_MULTICAST */
1012 
1013 /* The version of set_multicast below was lifted from sunhme.c */
1014 
bmac_set_multicast(struct net_device * dev)1015 static void bmac_set_multicast(struct net_device *dev)
1016 {
1017 	struct dev_mc_list *dmi = dev->mc_list;
1018 	char *addrs;
1019 	int i;
1020 	unsigned short rx_cfg;
1021 	u32 crc;
1022 
1023 	if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1024 		bmwrite(dev, BHASH0, 0xffff);
1025 		bmwrite(dev, BHASH1, 0xffff);
1026 		bmwrite(dev, BHASH2, 0xffff);
1027 		bmwrite(dev, BHASH3, 0xffff);
1028 	} else if(dev->flags & IFF_PROMISC) {
1029 		rx_cfg = bmread(dev, RXCFG);
1030 		rx_cfg |= RxPromiscEnable;
1031 		bmwrite(dev, RXCFG, rx_cfg);
1032 	} else {
1033 		u16 hash_table[4];
1034 
1035 		rx_cfg = bmread(dev, RXCFG);
1036 		rx_cfg &= ~RxPromiscEnable;
1037 		bmwrite(dev, RXCFG, rx_cfg);
1038 
1039 		for(i = 0; i < 4; i++) hash_table[i] = 0;
1040 
1041 		for(i = 0; i < dev->mc_count; i++) {
1042 			addrs = dmi->dmi_addr;
1043 			dmi = dmi->next;
1044 
1045 			if(!(*addrs & 1))
1046 				continue;
1047 
1048 			crc = ether_crc_le(6, addrs);
1049 			crc >>= 26;
1050 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1051 		}
1052 		bmwrite(dev, BHASH0, hash_table[0]);
1053 		bmwrite(dev, BHASH1, hash_table[1]);
1054 		bmwrite(dev, BHASH2, hash_table[2]);
1055 		bmwrite(dev, BHASH3, hash_table[3]);
1056 	}
1057 }
1058 #endif /* SUNHME_MULTICAST */
1059 
1060 static int miscintcount;
1061 
bmac_misc_intr(int irq,void * dev_id)1062 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1063 {
1064 	struct net_device *dev = (struct net_device *) dev_id;
1065 	struct bmac_data *bp = netdev_priv(dev);
1066 	unsigned int status = bmread(dev, STATUS);
1067 	if (miscintcount++ < 10) {
1068 		XXDEBUG(("bmac_misc_intr\n"));
1069 	}
1070 	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1071 	/*     bmac_txdma_intr_inner(irq, dev_id); */
1072 	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1073 	if (status & RxErrorMask) dev->stats.rx_errors++;
1074 	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1075 	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1076 	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1077 	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1078 
1079 	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1080 	if (status & TxErrorMask) dev->stats.tx_errors++;
1081 	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1082 	if (status & TxNormalCollExp) dev->stats.collisions++;
1083 	return IRQ_HANDLED;
1084 }
1085 
1086 /*
1087  * Procedure for reading EEPROM
1088  */
1089 #define SROMAddressLength	5
1090 #define DataInOn		0x0008
1091 #define DataInOff		0x0000
1092 #define Clk			0x0002
1093 #define ChipSelect		0x0001
1094 #define SDIShiftCount		3
1095 #define SD0ShiftCount		2
1096 #define	DelayValue		1000	/* number of microseconds */
1097 #define SROMStartOffset		10	/* this is in words */
1098 #define SROMReadCount		3	/* number of words to read from SROM */
1099 #define SROMAddressBits		6
1100 #define EnetAddressOffset	20
1101 
1102 static unsigned char
bmac_clock_out_bit(struct net_device * dev)1103 bmac_clock_out_bit(struct net_device *dev)
1104 {
1105 	unsigned short         data;
1106 	unsigned short         val;
1107 
1108 	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1109 	udelay(DelayValue);
1110 
1111 	data = bmread(dev, SROMCSR);
1112 	udelay(DelayValue);
1113 	val = (data >> SD0ShiftCount) & 1;
1114 
1115 	bmwrite(dev, SROMCSR, ChipSelect);
1116 	udelay(DelayValue);
1117 
1118 	return val;
1119 }
1120 
1121 static void
bmac_clock_in_bit(struct net_device * dev,unsigned int val)1122 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1123 {
1124 	unsigned short data;
1125 
1126 	if (val != 0 && val != 1) return;
1127 
1128 	data = (val << SDIShiftCount);
1129 	bmwrite(dev, SROMCSR, data | ChipSelect  );
1130 	udelay(DelayValue);
1131 
1132 	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1133 	udelay(DelayValue);
1134 
1135 	bmwrite(dev, SROMCSR, data | ChipSelect);
1136 	udelay(DelayValue);
1137 }
1138 
1139 static void
reset_and_select_srom(struct net_device * dev)1140 reset_and_select_srom(struct net_device *dev)
1141 {
1142 	/* first reset */
1143 	bmwrite(dev, SROMCSR, 0);
1144 	udelay(DelayValue);
1145 
1146 	/* send it the read command (110) */
1147 	bmac_clock_in_bit(dev, 1);
1148 	bmac_clock_in_bit(dev, 1);
1149 	bmac_clock_in_bit(dev, 0);
1150 }
1151 
1152 static unsigned short
read_srom(struct net_device * dev,unsigned int addr,unsigned int addr_len)1153 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1154 {
1155 	unsigned short data, val;
1156 	int i;
1157 
1158 	/* send out the address we want to read from */
1159 	for (i = 0; i < addr_len; i++)	{
1160 		val = addr >> (addr_len-i-1);
1161 		bmac_clock_in_bit(dev, val & 1);
1162 	}
1163 
1164 	/* Now read in the 16-bit data */
1165 	data = 0;
1166 	for (i = 0; i < 16; i++)	{
1167 		val = bmac_clock_out_bit(dev);
1168 		data <<= 1;
1169 		data |= val;
1170 	}
1171 	bmwrite(dev, SROMCSR, 0);
1172 
1173 	return data;
1174 }
1175 
1176 /*
1177  * It looks like Cogent and SMC use different methods for calculating
1178  * checksums. What a pain..
1179  */
1180 
1181 static int
bmac_verify_checksum(struct net_device * dev)1182 bmac_verify_checksum(struct net_device *dev)
1183 {
1184 	unsigned short data, storedCS;
1185 
1186 	reset_and_select_srom(dev);
1187 	data = read_srom(dev, 3, SROMAddressBits);
1188 	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1189 
1190 	return 0;
1191 }
1192 
1193 
1194 static void
bmac_get_station_address(struct net_device * dev,unsigned char * ea)1195 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1196 {
1197 	int i;
1198 	unsigned short data;
1199 
1200 	for (i = 0; i < 6; i++)
1201 		{
1202 			reset_and_select_srom(dev);
1203 			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1204 			ea[2*i]   = bitrev8(data & 0x0ff);
1205 			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1206 		}
1207 }
1208 
bmac_reset_and_enable(struct net_device * dev)1209 static void bmac_reset_and_enable(struct net_device *dev)
1210 {
1211 	struct bmac_data *bp = netdev_priv(dev);
1212 	unsigned long flags;
1213 	struct sk_buff *skb;
1214 	unsigned char *data;
1215 
1216 	spin_lock_irqsave(&bp->lock, flags);
1217 	bmac_enable_and_reset_chip(dev);
1218 	bmac_init_tx_ring(bp);
1219 	bmac_init_rx_ring(bp);
1220 	bmac_init_chip(dev);
1221 	bmac_start_chip(dev);
1222 	bmwrite(dev, INTDISABLE, EnableNormal);
1223 	bp->sleeping = 0;
1224 
1225 	/*
1226 	 * It seems that the bmac can't receive until it's transmitted
1227 	 * a packet.  So we give it a dummy packet to transmit.
1228 	 */
1229 	skb = dev_alloc_skb(ETHERMINPACKET);
1230 	if (skb != NULL) {
1231 		data = skb_put(skb, ETHERMINPACKET);
1232 		memset(data, 0, ETHERMINPACKET);
1233 		memcpy(data, dev->dev_addr, 6);
1234 		memcpy(data+6, dev->dev_addr, 6);
1235 		bmac_transmit_packet(skb, dev);
1236 	}
1237 	spin_unlock_irqrestore(&bp->lock, flags);
1238 }
bmac_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1239 static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1240 {
1241 	struct bmac_data *bp = netdev_priv(dev);
1242 	strcpy(info->driver, "bmac");
1243 	strcpy(info->bus_info, bp->mdev->ofdev.dev.bus_id);
1244 }
1245 
1246 static const struct ethtool_ops bmac_ethtool_ops = {
1247 	.get_drvinfo		= bmac_get_drvinfo,
1248 	.get_link		= ethtool_op_get_link,
1249 };
1250 
bmac_probe(struct macio_dev * mdev,const struct of_device_id * match)1251 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1252 {
1253 	int j, rev, ret;
1254 	struct bmac_data *bp;
1255 	const unsigned char *prop_addr;
1256 	unsigned char addr[6];
1257 	struct net_device *dev;
1258 	int is_bmac_plus = ((int)match->data) != 0;
1259 
1260 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1261 		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1262 		return -ENODEV;
1263 	}
1264 	prop_addr = of_get_property(macio_get_of_node(mdev),
1265 			"mac-address", NULL);
1266 	if (prop_addr == NULL) {
1267 		prop_addr = of_get_property(macio_get_of_node(mdev),
1268 				"local-mac-address", NULL);
1269 		if (prop_addr == NULL) {
1270 			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1271 			return -ENODEV;
1272 		}
1273 	}
1274 	memcpy(addr, prop_addr, sizeof(addr));
1275 
1276 	dev = alloc_etherdev(PRIV_BYTES);
1277 	if (!dev) {
1278 		printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1279 		return -ENOMEM;
1280 	}
1281 
1282 	bp = netdev_priv(dev);
1283 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1284 	macio_set_drvdata(mdev, dev);
1285 
1286 	bp->mdev = mdev;
1287 	spin_lock_init(&bp->lock);
1288 
1289 	if (macio_request_resources(mdev, "bmac")) {
1290 		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1291 		goto out_free;
1292 	}
1293 
1294 	dev->base_addr = (unsigned long)
1295 		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1296 	if (dev->base_addr == 0)
1297 		goto out_release;
1298 
1299 	dev->irq = macio_irq(mdev, 0);
1300 
1301 	bmac_enable_and_reset_chip(dev);
1302 	bmwrite(dev, INTDISABLE, DisableAll);
1303 
1304 	rev = addr[0] == 0 && addr[1] == 0xA0;
1305 	for (j = 0; j < 6; ++j)
1306 		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1307 
1308 	/* Enable chip without interrupts for now */
1309 	bmac_enable_and_reset_chip(dev);
1310 	bmwrite(dev, INTDISABLE, DisableAll);
1311 
1312 	dev->open = bmac_open;
1313 	dev->stop = bmac_close;
1314 	dev->ethtool_ops = &bmac_ethtool_ops;
1315 	dev->hard_start_xmit = bmac_output;
1316 	dev->set_multicast_list = bmac_set_multicast;
1317 	dev->set_mac_address = bmac_set_address;
1318 
1319 	bmac_get_station_address(dev, addr);
1320 	if (bmac_verify_checksum(dev) != 0)
1321 		goto err_out_iounmap;
1322 
1323 	bp->is_bmac_plus = is_bmac_plus;
1324 	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1325 	if (!bp->tx_dma)
1326 		goto err_out_iounmap;
1327 	bp->tx_dma_intr = macio_irq(mdev, 1);
1328 	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1329 	if (!bp->rx_dma)
1330 		goto err_out_iounmap_tx;
1331 	bp->rx_dma_intr = macio_irq(mdev, 2);
1332 
1333 	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1334 	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1335 
1336 	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1337 	skb_queue_head_init(bp->queue);
1338 
1339 	init_timer(&bp->tx_timeout);
1340 
1341 	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1342 	if (ret) {
1343 		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1344 		goto err_out_iounmap_rx;
1345 	}
1346 	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1347 	if (ret) {
1348 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1349 		goto err_out_irq0;
1350 	}
1351 	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1352 	if (ret) {
1353 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1354 		goto err_out_irq1;
1355 	}
1356 
1357 	/* Mask chip interrupts and disable chip, will be
1358 	 * re-enabled on open()
1359 	 */
1360 	disable_irq(dev->irq);
1361 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1362 
1363 	if (register_netdev(dev) != 0) {
1364 		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1365 		goto err_out_irq2;
1366 	}
1367 
1368 	printk(KERN_INFO "%s: BMAC%s at %pM",
1369 	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1370 	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1371 	printk("\n");
1372 
1373 	return 0;
1374 
1375 err_out_irq2:
1376 	free_irq(bp->rx_dma_intr, dev);
1377 err_out_irq1:
1378 	free_irq(bp->tx_dma_intr, dev);
1379 err_out_irq0:
1380 	free_irq(dev->irq, dev);
1381 err_out_iounmap_rx:
1382 	iounmap(bp->rx_dma);
1383 err_out_iounmap_tx:
1384 	iounmap(bp->tx_dma);
1385 err_out_iounmap:
1386 	iounmap((void __iomem *)dev->base_addr);
1387 out_release:
1388 	macio_release_resources(mdev);
1389 out_free:
1390 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1391 	free_netdev(dev);
1392 
1393 	return -ENODEV;
1394 }
1395 
bmac_open(struct net_device * dev)1396 static int bmac_open(struct net_device *dev)
1397 {
1398 	struct bmac_data *bp = netdev_priv(dev);
1399 	/* XXDEBUG(("bmac: enter open\n")); */
1400 	/* reset the chip */
1401 	bp->opened = 1;
1402 	bmac_reset_and_enable(dev);
1403 	enable_irq(dev->irq);
1404 	return 0;
1405 }
1406 
bmac_close(struct net_device * dev)1407 static int bmac_close(struct net_device *dev)
1408 {
1409 	struct bmac_data *bp = netdev_priv(dev);
1410 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1411 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1412 	unsigned short config;
1413 	int i;
1414 
1415 	bp->sleeping = 1;
1416 
1417 	/* disable rx and tx */
1418 	config = bmread(dev, RXCFG);
1419 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1420 
1421 	config = bmread(dev, TXCFG);
1422 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1423 
1424 	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1425 
1426 	/* disable rx and tx dma */
1427 	st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1428 	st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1429 
1430 	/* free some skb's */
1431 	XXDEBUG(("bmac: free rx bufs\n"));
1432 	for (i=0; i<N_RX_RING; i++) {
1433 		if (bp->rx_bufs[i] != NULL) {
1434 			dev_kfree_skb(bp->rx_bufs[i]);
1435 			bp->rx_bufs[i] = NULL;
1436 		}
1437 	}
1438 	XXDEBUG(("bmac: free tx bufs\n"));
1439 	for (i = 0; i<N_TX_RING; i++) {
1440 		if (bp->tx_bufs[i] != NULL) {
1441 			dev_kfree_skb(bp->tx_bufs[i]);
1442 			bp->tx_bufs[i] = NULL;
1443 		}
1444 	}
1445 	XXDEBUG(("bmac: all bufs freed\n"));
1446 
1447 	bp->opened = 0;
1448 	disable_irq(dev->irq);
1449 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1450 
1451 	return 0;
1452 }
1453 
1454 static void
bmac_start(struct net_device * dev)1455 bmac_start(struct net_device *dev)
1456 {
1457 	struct bmac_data *bp = netdev_priv(dev);
1458 	int i;
1459 	struct sk_buff *skb;
1460 	unsigned long flags;
1461 
1462 	if (bp->sleeping)
1463 		return;
1464 
1465 	spin_lock_irqsave(&bp->lock, flags);
1466 	while (1) {
1467 		i = bp->tx_fill + 1;
1468 		if (i >= N_TX_RING)
1469 			i = 0;
1470 		if (i == bp->tx_empty)
1471 			break;
1472 		skb = skb_dequeue(bp->queue);
1473 		if (skb == NULL)
1474 			break;
1475 		bmac_transmit_packet(skb, dev);
1476 	}
1477 	spin_unlock_irqrestore(&bp->lock, flags);
1478 }
1479 
1480 static int
bmac_output(struct sk_buff * skb,struct net_device * dev)1481 bmac_output(struct sk_buff *skb, struct net_device *dev)
1482 {
1483 	struct bmac_data *bp = netdev_priv(dev);
1484 	skb_queue_tail(bp->queue, skb);
1485 	bmac_start(dev);
1486 	return 0;
1487 }
1488 
bmac_tx_timeout(unsigned long data)1489 static void bmac_tx_timeout(unsigned long data)
1490 {
1491 	struct net_device *dev = (struct net_device *) data;
1492 	struct bmac_data *bp = netdev_priv(dev);
1493 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1494 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1495 	volatile struct dbdma_cmd *cp;
1496 	unsigned long flags;
1497 	unsigned short config, oldConfig;
1498 	int i;
1499 
1500 	XXDEBUG(("bmac: tx_timeout called\n"));
1501 	spin_lock_irqsave(&bp->lock, flags);
1502 	bp->timeout_active = 0;
1503 
1504 	/* update various counters */
1505 /*     	bmac_handle_misc_intrs(bp, 0); */
1506 
1507 	cp = &bp->tx_cmds[bp->tx_empty];
1508 /*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1509 /* 	   ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1510 /* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1511 
1512 	/* turn off both tx and rx and reset the chip */
1513 	config = bmread(dev, RXCFG);
1514 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1515 	config = bmread(dev, TXCFG);
1516 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1517 	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1518 	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1519 	bmac_enable_and_reset_chip(dev);
1520 
1521 	/* restart rx dma */
1522 	cp = bus_to_virt(ld_le32(&rd->cmdptr));
1523 	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1524 	out_le16(&cp->xfer_status, 0);
1525 	out_le32(&rd->cmdptr, virt_to_bus(cp));
1526 	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1527 
1528 	/* fix up the transmit side */
1529 	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1530 		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1531 	i = bp->tx_empty;
1532 	++dev->stats.tx_errors;
1533 	if (i != bp->tx_fill) {
1534 		dev_kfree_skb(bp->tx_bufs[i]);
1535 		bp->tx_bufs[i] = NULL;
1536 		if (++i >= N_TX_RING) i = 0;
1537 		bp->tx_empty = i;
1538 	}
1539 	bp->tx_fullup = 0;
1540 	netif_wake_queue(dev);
1541 	if (i != bp->tx_fill) {
1542 		cp = &bp->tx_cmds[i];
1543 		out_le16(&cp->xfer_status, 0);
1544 		out_le16(&cp->command, OUTPUT_LAST);
1545 		out_le32(&td->cmdptr, virt_to_bus(cp));
1546 		out_le32(&td->control, DBDMA_SET(RUN));
1547 		/* 	bmac_set_timeout(dev); */
1548 		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1549 	}
1550 
1551 	/* turn it back on */
1552 	oldConfig = bmread(dev, RXCFG);
1553 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1554 	oldConfig = bmread(dev, TXCFG);
1555 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1556 
1557 	spin_unlock_irqrestore(&bp->lock, flags);
1558 }
1559 
1560 #if 0
1561 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1562 {
1563 	int i,*ip;
1564 
1565 	for (i=0;i< count;i++) {
1566 		ip = (int*)(cp+i);
1567 
1568 		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1569 		       ld_le32(ip+0),
1570 		       ld_le32(ip+1),
1571 		       ld_le32(ip+2),
1572 		       ld_le32(ip+3));
1573 	}
1574 
1575 }
1576 #endif
1577 
1578 #if 0
1579 static int
1580 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1581 {
1582 	int len = 0;
1583 	off_t pos   = 0;
1584 	off_t begin = 0;
1585 	int i;
1586 
1587 	if (bmac_devs == NULL)
1588 		return (-ENOSYS);
1589 
1590 	len += sprintf(buffer, "BMAC counters & registers\n");
1591 
1592 	for (i = 0; i<N_REG_ENTRIES; i++) {
1593 		len += sprintf(buffer + len, "%s: %#08x\n",
1594 			       reg_entries[i].name,
1595 			       bmread(bmac_devs, reg_entries[i].reg_offset));
1596 		pos = begin + len;
1597 
1598 		if (pos < offset) {
1599 			len = 0;
1600 			begin = pos;
1601 		}
1602 
1603 		if (pos > offset+length) break;
1604 	}
1605 
1606 	*start = buffer + (offset - begin);
1607 	len -= (offset - begin);
1608 
1609 	if (len > length) len = length;
1610 
1611 	return len;
1612 }
1613 #endif
1614 
bmac_remove(struct macio_dev * mdev)1615 static int __devexit bmac_remove(struct macio_dev *mdev)
1616 {
1617 	struct net_device *dev = macio_get_drvdata(mdev);
1618 	struct bmac_data *bp = netdev_priv(dev);
1619 
1620 	unregister_netdev(dev);
1621 
1622        	free_irq(dev->irq, dev);
1623 	free_irq(bp->tx_dma_intr, dev);
1624 	free_irq(bp->rx_dma_intr, dev);
1625 
1626 	iounmap((void __iomem *)dev->base_addr);
1627 	iounmap(bp->tx_dma);
1628 	iounmap(bp->rx_dma);
1629 
1630 	macio_release_resources(mdev);
1631 
1632 	free_netdev(dev);
1633 
1634 	return 0;
1635 }
1636 
1637 static struct of_device_id bmac_match[] =
1638 {
1639 	{
1640 	.name 		= "bmac",
1641 	.data		= (void *)0,
1642 	},
1643 	{
1644 	.type		= "network",
1645 	.compatible	= "bmac+",
1646 	.data		= (void *)1,
1647 	},
1648 	{},
1649 };
1650 MODULE_DEVICE_TABLE (of, bmac_match);
1651 
1652 static struct macio_driver bmac_driver =
1653 {
1654 	.name 		= "bmac",
1655 	.match_table	= bmac_match,
1656 	.probe		= bmac_probe,
1657 	.remove		= bmac_remove,
1658 #ifdef CONFIG_PM
1659 	.suspend	= bmac_suspend,
1660 	.resume		= bmac_resume,
1661 #endif
1662 };
1663 
1664 
bmac_init(void)1665 static int __init bmac_init(void)
1666 {
1667 	if (bmac_emergency_rxbuf == NULL) {
1668 		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1669 		if (bmac_emergency_rxbuf == NULL) {
1670 			printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1671 			return -ENOMEM;
1672 		}
1673 	}
1674 
1675 	return macio_register_driver(&bmac_driver);
1676 }
1677 
bmac_exit(void)1678 static void __exit bmac_exit(void)
1679 {
1680 	macio_unregister_driver(&bmac_driver);
1681 
1682 	kfree(bmac_emergency_rxbuf);
1683 	bmac_emergency_rxbuf = NULL;
1684 }
1685 
1686 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1687 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1688 MODULE_LICENSE("GPL");
1689 
1690 module_init(bmac_init);
1691 module_exit(bmac_exit);
1692