• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22 
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/phy.h>
36 #include <linux/phy_fixed.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <asm/gpio.h>
40 #include <asm/atomic.h>
41 
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
46 
47 static int debug_level = 8;
48 static int dumb_switch;
49 
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
53 
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
56 
57 #define CPMAC_VERSION "0.5.0"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES	8
61 
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL		0x0004
64 #define CPMAC_TX_TEARDOWN		0x0008
65 #define CPMAC_RX_CONTROL		0x0014
66 #define CPMAC_RX_TEARDOWN		0x0018
67 #define CPMAC_MBP			0x0100
68 # define MBP_RXPASSCRC			0x40000000
69 # define MBP_RXQOS			0x20000000
70 # define MBP_RXNOCHAIN			0x10000000
71 # define MBP_RXCMF			0x01000000
72 # define MBP_RXSHORT			0x00800000
73 # define MBP_RXCEF			0x00400000
74 # define MBP_RXPROMISC			0x00200000
75 # define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
76 # define MBP_RXBCAST			0x00002000
77 # define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
78 # define MBP_RXMCAST			0x00000020
79 # define MBP_MCASTCHAN(channel)		((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE		0x0104
81 #define CPMAC_UNICAST_CLEAR		0x0108
82 #define CPMAC_MAX_LENGTH		0x010c
83 #define CPMAC_BUFFER_OFFSET		0x0110
84 #define CPMAC_MAC_CONTROL		0x0160
85 # define MAC_TXPTYPE			0x00000200
86 # define MAC_TXPACE			0x00000040
87 # define MAC_MII			0x00000020
88 # define MAC_TXFLOW			0x00000010
89 # define MAC_RXFLOW			0x00000008
90 # define MAC_MTEST			0x00000004
91 # define MAC_LOOPBACK			0x00000002
92 # define MAC_FDX			0x00000001
93 #define CPMAC_MAC_STATUS		0x0164
94 # define MAC_STATUS_QOS			0x00000004
95 # define MAC_STATUS_RXFLOW		0x00000002
96 # define MAC_STATUS_TXFLOW		0x00000001
97 #define CPMAC_TX_INT_ENABLE		0x0178
98 #define CPMAC_TX_INT_CLEAR		0x017c
99 #define CPMAC_MAC_INT_VECTOR		0x0180
100 # define MAC_INT_STATUS			0x00080000
101 # define MAC_INT_HOST			0x00040000
102 # define MAC_INT_RX			0x00020000
103 # define MAC_INT_TX			0x00010000
104 #define CPMAC_MAC_EOI_VECTOR		0x0184
105 #define CPMAC_RX_INT_ENABLE		0x0198
106 #define CPMAC_RX_INT_CLEAR		0x019c
107 #define CPMAC_MAC_INT_ENABLE		0x01a8
108 #define CPMAC_MAC_INT_CLEAR		0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel) 	(0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID		0x01d0
111 #define CPMAC_MAC_ADDR_HI		0x01d4
112 #define CPMAC_MAC_HASH_LO		0x01d8
113 #define CPMAC_MAC_HASH_HI		0x01dc
114 #define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
118 #define CPMAC_REG_END			0x0680
119 /*
120  * Rx/Tx statistics
121  * TODO: use some of them to fill stats in cpmac_stats()
122  */
123 #define CPMAC_STATS_RX_GOOD		0x0200
124 #define CPMAC_STATS_RX_BCAST		0x0204
125 #define CPMAC_STATS_RX_MCAST		0x0208
126 #define CPMAC_STATS_RX_PAUSE		0x020c
127 #define CPMAC_STATS_RX_CRC		0x0210
128 #define CPMAC_STATS_RX_ALIGN		0x0214
129 #define CPMAC_STATS_RX_OVER		0x0218
130 #define CPMAC_STATS_RX_JABBER		0x021c
131 #define CPMAC_STATS_RX_UNDER		0x0220
132 #define CPMAC_STATS_RX_FRAG		0x0224
133 #define CPMAC_STATS_RX_FILTER		0x0228
134 #define CPMAC_STATS_RX_QOSFILTER	0x022c
135 #define CPMAC_STATS_RX_OCTETS		0x0230
136 
137 #define CPMAC_STATS_TX_GOOD		0x0234
138 #define CPMAC_STATS_TX_BCAST		0x0238
139 #define CPMAC_STATS_TX_MCAST		0x023c
140 #define CPMAC_STATS_TX_PAUSE		0x0240
141 #define CPMAC_STATS_TX_DEFER		0x0244
142 #define CPMAC_STATS_TX_COLLISION	0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL	0x024c
144 #define CPMAC_STATS_TX_MULTICOLL	0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL	0x0254
146 #define CPMAC_STATS_TX_LATECOLL		0x0258
147 #define CPMAC_STATS_TX_UNDERRUN		0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE	0x0260
149 #define CPMAC_STATS_TX_OCTETS		0x0264
150 
151 #define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
153 						(reg)))
154 
155 /* MDIO bus */
156 #define CPMAC_MDIO_VERSION		0x0000
157 #define CPMAC_MDIO_CONTROL		0x0004
158 # define MDIOC_IDLE			0x80000000
159 # define MDIOC_ENABLE			0x40000000
160 # define MDIOC_PREAMBLE			0x00100000
161 # define MDIOC_FAULT			0x00080000
162 # define MDIOC_FAULTDETECT		0x00040000
163 # define MDIOC_INTTEST			0x00020000
164 # define MDIOC_CLKDIV(div)		((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE		0x0008
166 #define CPMAC_MDIO_LINK			0x000c
167 #define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
168 # define MDIO_BUSY			0x80000000
169 # define MDIO_WRITE			0x40000000
170 # define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data)		((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL			0x00000040
175 # define PHYSEL_LINKINT			0x00000020
176 
177 struct cpmac_desc {
178 	u32 hw_next;
179 	u32 hw_data;
180 	u16 buflen;
181 	u16 bufflags;
182 	u16 datalen;
183 	u16 dataflags;
184 #define CPMAC_SOP			0x8000
185 #define CPMAC_EOP			0x4000
186 #define CPMAC_OWN			0x2000
187 #define CPMAC_EOQ			0x1000
188 	struct sk_buff *skb;
189 	struct cpmac_desc *next;
190 	struct cpmac_desc *prev;
191 	dma_addr_t mapping;
192 	dma_addr_t data_mapping;
193 };
194 
195 struct cpmac_priv {
196 	spinlock_t lock;
197 	spinlock_t rx_lock;
198 	struct cpmac_desc *rx_head;
199 	int ring_size;
200 	struct cpmac_desc *desc_ring;
201 	dma_addr_t dma_ring;
202 	void __iomem *regs;
203 	struct mii_bus *mii_bus;
204 	struct phy_device *phy;
205 	char phy_name[BUS_ID_SIZE];
206 	int oldlink, oldspeed, oldduplex;
207 	u32 msg_enable;
208 	struct net_device *dev;
209 	struct work_struct reset_work;
210 	struct platform_device *pdev;
211 	struct napi_struct napi;
212 	atomic_t reset_pending;
213 };
214 
215 static irqreturn_t cpmac_irq(int, void *);
216 static void cpmac_hw_start(struct net_device *dev);
217 static void cpmac_hw_stop(struct net_device *dev);
218 static int cpmac_stop(struct net_device *dev);
219 static int cpmac_open(struct net_device *dev);
220 
cpmac_dump_regs(struct net_device * dev)221 static void cpmac_dump_regs(struct net_device *dev)
222 {
223 	int i;
224 	struct cpmac_priv *priv = netdev_priv(dev);
225 	for (i = 0; i < CPMAC_REG_END; i += 4) {
226 		if (i % 16 == 0) {
227 			if (i)
228 				printk("\n");
229 			printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
230 			       priv->regs + i);
231 		}
232 		printk(" %08x", cpmac_read(priv->regs, i));
233 	}
234 	printk("\n");
235 }
236 
cpmac_dump_desc(struct net_device * dev,struct cpmac_desc * desc)237 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
238 {
239 	int i;
240 	printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
241 	for (i = 0; i < sizeof(*desc) / 4; i++)
242 		printk(" %08x", ((u32 *)desc)[i]);
243 	printk("\n");
244 }
245 
cpmac_dump_all_desc(struct net_device * dev)246 static void cpmac_dump_all_desc(struct net_device *dev)
247 {
248 	struct cpmac_priv *priv = netdev_priv(dev);
249 	struct cpmac_desc *dump = priv->rx_head;
250 	do {
251 		cpmac_dump_desc(dev, dump);
252 		dump = dump->next;
253 	} while (dump != priv->rx_head);
254 }
255 
cpmac_dump_skb(struct net_device * dev,struct sk_buff * skb)256 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
257 {
258 	int i;
259 	printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
260 	for (i = 0; i < skb->len; i++) {
261 		if (i % 16 == 0) {
262 			if (i)
263 				printk("\n");
264 			printk(KERN_DEBUG "%s: data[%p]:", dev->name,
265 			       skb->data + i);
266 		}
267 		printk(" %02x", ((u8 *)skb->data)[i]);
268 	}
269 	printk("\n");
270 }
271 
cpmac_mdio_read(struct mii_bus * bus,int phy_id,int reg)272 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
273 {
274 	u32 val;
275 
276 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
277 		cpu_relax();
278 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
279 		    MDIO_PHY(phy_id));
280 	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
281 		cpu_relax();
282 	return MDIO_DATA(val);
283 }
284 
cpmac_mdio_write(struct mii_bus * bus,int phy_id,int reg,u16 val)285 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
286 			    int reg, u16 val)
287 {
288 	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
289 		cpu_relax();
290 	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
291 		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
292 	return 0;
293 }
294 
cpmac_mdio_reset(struct mii_bus * bus)295 static int cpmac_mdio_reset(struct mii_bus *bus)
296 {
297 	ar7_device_reset(AR7_RESET_BIT_MDIO);
298 	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
299 		    MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
300 	return 0;
301 }
302 
303 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
304 
305 static struct mii_bus *cpmac_mii;
306 
cpmac_config(struct net_device * dev,struct ifmap * map)307 static int cpmac_config(struct net_device *dev, struct ifmap *map)
308 {
309 	if (dev->flags & IFF_UP)
310 		return -EBUSY;
311 
312 	/* Don't allow changing the I/O address */
313 	if (map->base_addr != dev->base_addr)
314 		return -EOPNOTSUPP;
315 
316 	/* ignore other fields */
317 	return 0;
318 }
319 
cpmac_set_multicast_list(struct net_device * dev)320 static void cpmac_set_multicast_list(struct net_device *dev)
321 {
322 	struct dev_mc_list *iter;
323 	int i;
324 	u8 tmp;
325 	u32 mbp, bit, hash[2] = { 0, };
326 	struct cpmac_priv *priv = netdev_priv(dev);
327 
328 	mbp = cpmac_read(priv->regs, CPMAC_MBP);
329 	if (dev->flags & IFF_PROMISC) {
330 		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
331 			    MBP_RXPROMISC);
332 	} else {
333 		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
334 		if (dev->flags & IFF_ALLMULTI) {
335 			/* enable all multicast mode */
336 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
337 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
338 		} else {
339 			/*
340 			 * cpmac uses some strange mac address hashing
341 			 * (not crc32)
342 			 */
343 			for (i = 0, iter = dev->mc_list; i < dev->mc_count;
344 			     i++, iter = iter->next) {
345 				bit = 0;
346 				tmp = iter->dmi_addr[0];
347 				bit  ^= (tmp >> 2) ^ (tmp << 4);
348 				tmp = iter->dmi_addr[1];
349 				bit  ^= (tmp >> 4) ^ (tmp << 2);
350 				tmp = iter->dmi_addr[2];
351 				bit  ^= (tmp >> 6) ^ tmp;
352 				tmp = iter->dmi_addr[3];
353 				bit  ^= (tmp >> 2) ^ (tmp << 4);
354 				tmp = iter->dmi_addr[4];
355 				bit  ^= (tmp >> 4) ^ (tmp << 2);
356 				tmp = iter->dmi_addr[5];
357 				bit  ^= (tmp >> 6) ^ tmp;
358 				bit &= 0x3f;
359 				hash[bit / 32] |= 1 << (bit % 32);
360 			}
361 
362 			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
363 			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
364 		}
365 	}
366 }
367 
cpmac_rx_one(struct cpmac_priv * priv,struct cpmac_desc * desc)368 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
369 				    struct cpmac_desc *desc)
370 {
371 	struct sk_buff *skb, *result = NULL;
372 
373 	if (unlikely(netif_msg_hw(priv)))
374 		cpmac_dump_desc(priv->dev, desc);
375 	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
376 	if (unlikely(!desc->datalen)) {
377 		if (netif_msg_rx_err(priv) && net_ratelimit())
378 			printk(KERN_WARNING "%s: rx: spurious interrupt\n",
379 			       priv->dev->name);
380 		return NULL;
381 	}
382 
383 	skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE);
384 	if (likely(skb)) {
385 		skb_reserve(skb, 2);
386 		skb_put(desc->skb, desc->datalen);
387 		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
388 		desc->skb->ip_summed = CHECKSUM_NONE;
389 		priv->dev->stats.rx_packets++;
390 		priv->dev->stats.rx_bytes += desc->datalen;
391 		result = desc->skb;
392 		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
393 				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
394 		desc->skb = skb;
395 		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
396 						    CPMAC_SKB_SIZE,
397 						    DMA_FROM_DEVICE);
398 		desc->hw_data = (u32)desc->data_mapping;
399 		if (unlikely(netif_msg_pktdata(priv))) {
400 			printk(KERN_DEBUG "%s: received packet:\n",
401 			       priv->dev->name);
402 			cpmac_dump_skb(priv->dev, result);
403 		}
404 	} else {
405 		if (netif_msg_rx_err(priv) && net_ratelimit())
406 			printk(KERN_WARNING
407 			       "%s: low on skbs, dropping packet\n",
408 			       priv->dev->name);
409 		priv->dev->stats.rx_dropped++;
410 	}
411 
412 	desc->buflen = CPMAC_SKB_SIZE;
413 	desc->dataflags = CPMAC_OWN;
414 
415 	return result;
416 }
417 
cpmac_poll(struct napi_struct * napi,int budget)418 static int cpmac_poll(struct napi_struct *napi, int budget)
419 {
420 	struct sk_buff *skb;
421 	struct cpmac_desc *desc, *restart;
422 	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
423 	int received = 0, processed = 0;
424 
425 	spin_lock(&priv->rx_lock);
426 	if (unlikely(!priv->rx_head)) {
427 		if (netif_msg_rx_err(priv) && net_ratelimit())
428 			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
429 			       priv->dev->name);
430 		spin_unlock(&priv->rx_lock);
431 		netif_rx_complete(napi);
432 		return 0;
433 	}
434 
435 	desc = priv->rx_head;
436 	restart = NULL;
437 	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
438 		processed++;
439 
440 		if ((desc->dataflags & CPMAC_EOQ) != 0) {
441 			/* The last update to eoq->hw_next didn't happen
442 			* soon enough, and the receiver stopped here.
443 			*Remember this descriptor so we can restart
444 			* the receiver after freeing some space.
445 			*/
446 			if (unlikely(restart)) {
447 				if (netif_msg_rx_err(priv))
448 					printk(KERN_ERR "%s: poll found a"
449 						" duplicate EOQ: %p and %p\n",
450 						priv->dev->name, restart, desc);
451 				goto fatal_error;
452 			}
453 
454 			restart = desc->next;
455 		}
456 
457 		skb = cpmac_rx_one(priv, desc);
458 		if (likely(skb)) {
459 			netif_receive_skb(skb);
460 			received++;
461 		}
462 		desc = desc->next;
463 	}
464 
465 	if (desc != priv->rx_head) {
466 		/* We freed some buffers, but not the whole ring,
467 		 * add what we did free to the rx list */
468 		desc->prev->hw_next = (u32)0;
469 		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
470 	}
471 
472 	/* Optimization: If we did not actually process an EOQ (perhaps because
473 	 * of quota limits), check to see if the tail of the queue has EOQ set.
474 	* We should immediately restart in that case so that the receiver can
475 	* restart and run in parallel with more packet processing.
476 	* This lets us handle slightly larger bursts before running
477 	* out of ring space (assuming dev->weight < ring_size) */
478 
479 	if (!restart &&
480 	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
481 		    == CPMAC_EOQ &&
482 	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
483 		/* reset EOQ so the poll loop (above) doesn't try to
484 		* restart this when it eventually gets to this descriptor.
485 		*/
486 		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
487 		restart = priv->rx_head;
488 	}
489 
490 	if (restart) {
491 		priv->dev->stats.rx_errors++;
492 		priv->dev->stats.rx_fifo_errors++;
493 		if (netif_msg_rx_err(priv) && net_ratelimit())
494 			printk(KERN_WARNING "%s: rx dma ring overrun\n",
495 			       priv->dev->name);
496 
497 		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
498 			if (netif_msg_drv(priv))
499 				printk(KERN_ERR "%s: cpmac_poll is trying to "
500 					"restart rx from a descriptor that's "
501 					"not free: %p\n",
502 					priv->dev->name, restart);
503 				goto fatal_error;
504 		}
505 
506 		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
507 	}
508 
509 	priv->rx_head = desc;
510 	spin_unlock(&priv->rx_lock);
511 	if (unlikely(netif_msg_rx_status(priv)))
512 		printk(KERN_DEBUG "%s: poll processed %d packets\n",
513 		       priv->dev->name, received);
514 	if (processed == 0) {
515 		/* we ran out of packets to read,
516 		 * revert to interrupt-driven mode */
517 		netif_rx_complete(napi);
518 		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
519 		return 0;
520 	}
521 
522 	return 1;
523 
524 fatal_error:
525 	/* Something went horribly wrong.
526 	 * Reset hardware to try to recover rather than wedging. */
527 
528 	if (netif_msg_drv(priv)) {
529 		printk(KERN_ERR "%s: cpmac_poll is confused. "
530 				"Resetting hardware\n", priv->dev->name);
531 		cpmac_dump_all_desc(priv->dev);
532 		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
533 			priv->dev->name,
534 			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
535 			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
536 	}
537 
538 	spin_unlock(&priv->rx_lock);
539 	netif_rx_complete(napi);
540 	netif_tx_stop_all_queues(priv->dev);
541 	napi_disable(&priv->napi);
542 
543 	atomic_inc(&priv->reset_pending);
544 	cpmac_hw_stop(priv->dev);
545 	if (!schedule_work(&priv->reset_work))
546 		atomic_dec(&priv->reset_pending);
547 	return 0;
548 
549 }
550 
cpmac_start_xmit(struct sk_buff * skb,struct net_device * dev)551 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
552 {
553 	int queue, len;
554 	struct cpmac_desc *desc;
555 	struct cpmac_priv *priv = netdev_priv(dev);
556 
557 	if (unlikely(atomic_read(&priv->reset_pending)))
558 		return NETDEV_TX_BUSY;
559 
560 	if (unlikely(skb_padto(skb, ETH_ZLEN)))
561 		return NETDEV_TX_OK;
562 
563 	len = max(skb->len, ETH_ZLEN);
564 	queue = skb_get_queue_mapping(skb);
565 	netif_stop_subqueue(dev, queue);
566 
567 	desc = &priv->desc_ring[queue];
568 	if (unlikely(desc->dataflags & CPMAC_OWN)) {
569 		if (netif_msg_tx_err(priv) && net_ratelimit())
570 			printk(KERN_WARNING "%s: tx dma ring full\n",
571 			       dev->name);
572 		return NETDEV_TX_BUSY;
573 	}
574 
575 	spin_lock(&priv->lock);
576 	dev->trans_start = jiffies;
577 	spin_unlock(&priv->lock);
578 	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
579 	desc->skb = skb;
580 	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
581 					    DMA_TO_DEVICE);
582 	desc->hw_data = (u32)desc->data_mapping;
583 	desc->datalen = len;
584 	desc->buflen = len;
585 	if (unlikely(netif_msg_tx_queued(priv)))
586 		printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
587 		       skb->len);
588 	if (unlikely(netif_msg_hw(priv)))
589 		cpmac_dump_desc(dev, desc);
590 	if (unlikely(netif_msg_pktdata(priv)))
591 		cpmac_dump_skb(dev, skb);
592 	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
593 
594 	return NETDEV_TX_OK;
595 }
596 
cpmac_end_xmit(struct net_device * dev,int queue)597 static void cpmac_end_xmit(struct net_device *dev, int queue)
598 {
599 	struct cpmac_desc *desc;
600 	struct cpmac_priv *priv = netdev_priv(dev);
601 
602 	desc = &priv->desc_ring[queue];
603 	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
604 	if (likely(desc->skb)) {
605 		spin_lock(&priv->lock);
606 		dev->stats.tx_packets++;
607 		dev->stats.tx_bytes += desc->skb->len;
608 		spin_unlock(&priv->lock);
609 		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
610 				 DMA_TO_DEVICE);
611 
612 		if (unlikely(netif_msg_tx_done(priv)))
613 			printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
614 			       desc->skb, desc->skb->len);
615 
616 		dev_kfree_skb_irq(desc->skb);
617 		desc->skb = NULL;
618 		if (netif_subqueue_stopped(dev, queue))
619 			netif_wake_subqueue(dev, queue);
620 	} else {
621 		if (netif_msg_tx_err(priv) && net_ratelimit())
622 			printk(KERN_WARNING
623 			       "%s: end_xmit: spurious interrupt\n", dev->name);
624 		if (netif_subqueue_stopped(dev, queue))
625 			netif_wake_subqueue(dev, queue);
626 	}
627 }
628 
cpmac_hw_stop(struct net_device * dev)629 static void cpmac_hw_stop(struct net_device *dev)
630 {
631 	int i;
632 	struct cpmac_priv *priv = netdev_priv(dev);
633 	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
634 
635 	ar7_device_reset(pdata->reset_bit);
636 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
637 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
638 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
639 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
640 	for (i = 0; i < 8; i++) {
641 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
642 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
643 	}
644 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
645 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
646 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
647 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
648 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
649 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
650 }
651 
cpmac_hw_start(struct net_device * dev)652 static void cpmac_hw_start(struct net_device *dev)
653 {
654 	int i;
655 	struct cpmac_priv *priv = netdev_priv(dev);
656 	struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
657 
658 	ar7_device_reset(pdata->reset_bit);
659 	for (i = 0; i < 8; i++) {
660 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
661 		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
662 	}
663 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
664 
665 	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
666 		    MBP_RXMCAST);
667 	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
668 	for (i = 0; i < 8; i++)
669 		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
670 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
671 	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
672 		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
673 		    (dev->dev_addr[3] << 24));
674 	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
675 	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
676 	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
677 	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
678 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
679 	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
680 	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
681 	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
682 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
683 
684 	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
685 		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
686 	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
687 		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
688 	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
689 		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
690 		    MAC_FDX);
691 }
692 
cpmac_clear_rx(struct net_device * dev)693 static void cpmac_clear_rx(struct net_device *dev)
694 {
695 	struct cpmac_priv *priv = netdev_priv(dev);
696 	struct cpmac_desc *desc;
697 	int i;
698 	if (unlikely(!priv->rx_head))
699 		return;
700 	desc = priv->rx_head;
701 	for (i = 0; i < priv->ring_size; i++) {
702 		if ((desc->dataflags & CPMAC_OWN) == 0) {
703 			if (netif_msg_rx_err(priv) && net_ratelimit())
704 				printk(KERN_WARNING "%s: packet dropped\n",
705 				       dev->name);
706 			if (unlikely(netif_msg_hw(priv)))
707 				cpmac_dump_desc(dev, desc);
708 			desc->dataflags = CPMAC_OWN;
709 			dev->stats.rx_dropped++;
710 		}
711 		desc->hw_next = desc->next->mapping;
712 		desc = desc->next;
713 	}
714 	priv->rx_head->prev->hw_next = 0;
715 }
716 
cpmac_clear_tx(struct net_device * dev)717 static void cpmac_clear_tx(struct net_device *dev)
718 {
719 	struct cpmac_priv *priv = netdev_priv(dev);
720 	int i;
721 	if (unlikely(!priv->desc_ring))
722 		return;
723 	for (i = 0; i < CPMAC_QUEUES; i++) {
724 		priv->desc_ring[i].dataflags = 0;
725 		if (priv->desc_ring[i].skb) {
726 			dev_kfree_skb_any(priv->desc_ring[i].skb);
727 			priv->desc_ring[i].skb = NULL;
728 		}
729 	}
730 }
731 
cpmac_hw_error(struct work_struct * work)732 static void cpmac_hw_error(struct work_struct *work)
733 {
734 	int i;
735 	struct cpmac_priv *priv =
736 		container_of(work, struct cpmac_priv, reset_work);
737 
738 	spin_lock(&priv->rx_lock);
739 	cpmac_clear_rx(priv->dev);
740 	spin_unlock(&priv->rx_lock);
741 	cpmac_clear_tx(priv->dev);
742 	cpmac_hw_start(priv->dev);
743 	barrier();
744 	atomic_dec(&priv->reset_pending);
745 
746 	netif_tx_wake_all_queues(priv->dev);
747 	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
748 }
749 
cpmac_check_status(struct net_device * dev)750 static void cpmac_check_status(struct net_device *dev)
751 {
752 	struct cpmac_priv *priv = netdev_priv(dev);
753 
754 	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
755 	int rx_channel = (macstatus >> 8) & 7;
756 	int rx_code = (macstatus >> 12) & 15;
757 	int tx_channel = (macstatus >> 16) & 7;
758 	int tx_code = (macstatus >> 20) & 15;
759 
760 	if (rx_code || tx_code) {
761 		if (netif_msg_drv(priv) && net_ratelimit()) {
762 			/* Can't find any documentation on what these
763 			 *error codes actually are. So just log them and hope..
764 			 */
765 			if (rx_code)
766 				printk(KERN_WARNING "%s: host error %d on rx "
767 				     "channel %d (macstatus %08x), resetting\n",
768 				     dev->name, rx_code, rx_channel, macstatus);
769 			if (tx_code)
770 				printk(KERN_WARNING "%s: host error %d on tx "
771 				     "channel %d (macstatus %08x), resetting\n",
772 				     dev->name, tx_code, tx_channel, macstatus);
773 		}
774 
775 		netif_tx_stop_all_queues(dev);
776 		cpmac_hw_stop(dev);
777 		if (schedule_work(&priv->reset_work))
778 			atomic_inc(&priv->reset_pending);
779 		if (unlikely(netif_msg_hw(priv)))
780 			cpmac_dump_regs(dev);
781 	}
782 	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
783 }
784 
cpmac_irq(int irq,void * dev_id)785 static irqreturn_t cpmac_irq(int irq, void *dev_id)
786 {
787 	struct net_device *dev = dev_id;
788 	struct cpmac_priv *priv;
789 	int queue;
790 	u32 status;
791 
792 	priv = netdev_priv(dev);
793 
794 	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
795 
796 	if (unlikely(netif_msg_intr(priv)))
797 		printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
798 		       status);
799 
800 	if (status & MAC_INT_TX)
801 		cpmac_end_xmit(dev, (status & 7));
802 
803 	if (status & MAC_INT_RX) {
804 		queue = (status >> 8) & 7;
805 		if (netif_rx_schedule_prep(&priv->napi)) {
806 			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
807 			__netif_rx_schedule(&priv->napi);
808 		}
809 	}
810 
811 	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
812 
813 	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
814 		cpmac_check_status(dev);
815 
816 	return IRQ_HANDLED;
817 }
818 
cpmac_tx_timeout(struct net_device * dev)819 static void cpmac_tx_timeout(struct net_device *dev)
820 {
821 	int i;
822 	struct cpmac_priv *priv = netdev_priv(dev);
823 
824 	spin_lock(&priv->lock);
825 	dev->stats.tx_errors++;
826 	spin_unlock(&priv->lock);
827 	if (netif_msg_tx_err(priv) && net_ratelimit())
828 		printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
829 
830 	atomic_inc(&priv->reset_pending);
831 	barrier();
832 	cpmac_clear_tx(dev);
833 	barrier();
834 	atomic_dec(&priv->reset_pending);
835 
836 	netif_tx_wake_all_queues(priv->dev);
837 }
838 
cpmac_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)839 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
840 {
841 	struct cpmac_priv *priv = netdev_priv(dev);
842 	if (!(netif_running(dev)))
843 		return -EINVAL;
844 	if (!priv->phy)
845 		return -EINVAL;
846 	if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
847 	    (cmd == SIOCSMIIREG))
848 		return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
849 
850 	return -EOPNOTSUPP;
851 }
852 
cpmac_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)853 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
854 {
855 	struct cpmac_priv *priv = netdev_priv(dev);
856 
857 	if (priv->phy)
858 		return phy_ethtool_gset(priv->phy, cmd);
859 
860 	return -EINVAL;
861 }
862 
cpmac_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)863 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
864 {
865 	struct cpmac_priv *priv = netdev_priv(dev);
866 
867 	if (!capable(CAP_NET_ADMIN))
868 		return -EPERM;
869 
870 	if (priv->phy)
871 		return phy_ethtool_sset(priv->phy, cmd);
872 
873 	return -EINVAL;
874 }
875 
cpmac_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)876 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
877 {
878 	struct cpmac_priv *priv = netdev_priv(dev);
879 
880 	ring->rx_max_pending = 1024;
881 	ring->rx_mini_max_pending = 1;
882 	ring->rx_jumbo_max_pending = 1;
883 	ring->tx_max_pending = 1;
884 
885 	ring->rx_pending = priv->ring_size;
886 	ring->rx_mini_pending = 1;
887 	ring->rx_jumbo_pending = 1;
888 	ring->tx_pending = 1;
889 }
890 
cpmac_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)891 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
892 {
893 	struct cpmac_priv *priv = netdev_priv(dev);
894 
895 	if (netif_running(dev))
896 		return -EBUSY;
897 	priv->ring_size = ring->rx_pending;
898 	return 0;
899 }
900 
cpmac_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)901 static void cpmac_get_drvinfo(struct net_device *dev,
902 			      struct ethtool_drvinfo *info)
903 {
904 	strcpy(info->driver, "cpmac");
905 	strcpy(info->version, CPMAC_VERSION);
906 	info->fw_version[0] = '\0';
907 	sprintf(info->bus_info, "%s", "cpmac");
908 	info->regdump_len = 0;
909 }
910 
911 static const struct ethtool_ops cpmac_ethtool_ops = {
912 	.get_settings = cpmac_get_settings,
913 	.set_settings = cpmac_set_settings,
914 	.get_drvinfo = cpmac_get_drvinfo,
915 	.get_link = ethtool_op_get_link,
916 	.get_ringparam = cpmac_get_ringparam,
917 	.set_ringparam = cpmac_set_ringparam,
918 };
919 
cpmac_adjust_link(struct net_device * dev)920 static void cpmac_adjust_link(struct net_device *dev)
921 {
922 	struct cpmac_priv *priv = netdev_priv(dev);
923 	int new_state = 0;
924 
925 	spin_lock(&priv->lock);
926 	if (priv->phy->link) {
927 		netif_tx_start_all_queues(dev);
928 		if (priv->phy->duplex != priv->oldduplex) {
929 			new_state = 1;
930 			priv->oldduplex = priv->phy->duplex;
931 		}
932 
933 		if (priv->phy->speed != priv->oldspeed) {
934 			new_state = 1;
935 			priv->oldspeed = priv->phy->speed;
936 		}
937 
938 		if (!priv->oldlink) {
939 			new_state = 1;
940 			priv->oldlink = 1;
941 		}
942 	} else if (priv->oldlink) {
943 		new_state = 1;
944 		priv->oldlink = 0;
945 		priv->oldspeed = 0;
946 		priv->oldduplex = -1;
947 	}
948 
949 	if (new_state && netif_msg_link(priv) && net_ratelimit())
950 		phy_print_status(priv->phy);
951 
952 	spin_unlock(&priv->lock);
953 }
954 
cpmac_open(struct net_device * dev)955 static int cpmac_open(struct net_device *dev)
956 {
957 	int i, size, res;
958 	struct cpmac_priv *priv = netdev_priv(dev);
959 	struct resource *mem;
960 	struct cpmac_desc *desc;
961 	struct sk_buff *skb;
962 
963 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
964 	if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
965 		if (netif_msg_drv(priv))
966 			printk(KERN_ERR "%s: failed to request registers\n",
967 			       dev->name);
968 		res = -ENXIO;
969 		goto fail_reserve;
970 	}
971 
972 	priv->regs = ioremap(mem->start, mem->end - mem->start);
973 	if (!priv->regs) {
974 		if (netif_msg_drv(priv))
975 			printk(KERN_ERR "%s: failed to remap registers\n",
976 			       dev->name);
977 		res = -ENXIO;
978 		goto fail_remap;
979 	}
980 
981 	size = priv->ring_size + CPMAC_QUEUES;
982 	priv->desc_ring = dma_alloc_coherent(&dev->dev,
983 					     sizeof(struct cpmac_desc) * size,
984 					     &priv->dma_ring,
985 					     GFP_KERNEL);
986 	if (!priv->desc_ring) {
987 		res = -ENOMEM;
988 		goto fail_alloc;
989 	}
990 
991 	for (i = 0; i < size; i++)
992 		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
993 
994 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
995 	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
996 		skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
997 		if (unlikely(!skb)) {
998 			res = -ENOMEM;
999 			goto fail_desc;
1000 		}
1001 		skb_reserve(skb, 2);
1002 		desc->skb = skb;
1003 		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1004 						    CPMAC_SKB_SIZE,
1005 						    DMA_FROM_DEVICE);
1006 		desc->hw_data = (u32)desc->data_mapping;
1007 		desc->buflen = CPMAC_SKB_SIZE;
1008 		desc->dataflags = CPMAC_OWN;
1009 		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1010 		desc->next->prev = desc;
1011 		desc->hw_next = (u32)desc->next->mapping;
1012 	}
1013 
1014 	priv->rx_head->prev->hw_next = (u32)0;
1015 
1016 	if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1017 			       dev->name, dev))) {
1018 		if (netif_msg_drv(priv))
1019 			printk(KERN_ERR "%s: failed to obtain irq\n",
1020 			       dev->name);
1021 		goto fail_irq;
1022 	}
1023 
1024 	atomic_set(&priv->reset_pending, 0);
1025 	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1026 	cpmac_hw_start(dev);
1027 
1028 	napi_enable(&priv->napi);
1029 	priv->phy->state = PHY_CHANGELINK;
1030 	phy_start(priv->phy);
1031 
1032 	return 0;
1033 
1034 fail_irq:
1035 fail_desc:
1036 	for (i = 0; i < priv->ring_size; i++) {
1037 		if (priv->rx_head[i].skb) {
1038 			dma_unmap_single(&dev->dev,
1039 					 priv->rx_head[i].data_mapping,
1040 					 CPMAC_SKB_SIZE,
1041 					 DMA_FROM_DEVICE);
1042 			kfree_skb(priv->rx_head[i].skb);
1043 		}
1044 	}
1045 fail_alloc:
1046 	kfree(priv->desc_ring);
1047 	iounmap(priv->regs);
1048 
1049 fail_remap:
1050 	release_mem_region(mem->start, mem->end - mem->start);
1051 
1052 fail_reserve:
1053 	return res;
1054 }
1055 
cpmac_stop(struct net_device * dev)1056 static int cpmac_stop(struct net_device *dev)
1057 {
1058 	int i;
1059 	struct cpmac_priv *priv = netdev_priv(dev);
1060 	struct resource *mem;
1061 
1062 	netif_tx_stop_all_queues(dev);
1063 
1064 	cancel_work_sync(&priv->reset_work);
1065 	napi_disable(&priv->napi);
1066 	phy_stop(priv->phy);
1067 
1068 	cpmac_hw_stop(dev);
1069 
1070 	for (i = 0; i < 8; i++)
1071 		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1072 	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1073 	cpmac_write(priv->regs, CPMAC_MBP, 0);
1074 
1075 	free_irq(dev->irq, dev);
1076 	iounmap(priv->regs);
1077 	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1078 	release_mem_region(mem->start, mem->end - mem->start);
1079 	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1080 	for (i = 0; i < priv->ring_size; i++) {
1081 		if (priv->rx_head[i].skb) {
1082 			dma_unmap_single(&dev->dev,
1083 					 priv->rx_head[i].data_mapping,
1084 					 CPMAC_SKB_SIZE,
1085 					 DMA_FROM_DEVICE);
1086 			kfree_skb(priv->rx_head[i].skb);
1087 		}
1088 	}
1089 
1090 	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1091 			  (CPMAC_QUEUES + priv->ring_size),
1092 			  priv->desc_ring, priv->dma_ring);
1093 	return 0;
1094 }
1095 
1096 static int external_switch;
1097 
cpmac_probe(struct platform_device * pdev)1098 static int __devinit cpmac_probe(struct platform_device *pdev)
1099 {
1100 	int rc, phy_id, i;
1101 	char *mdio_bus_id = "0";
1102 	struct resource *mem;
1103 	struct cpmac_priv *priv;
1104 	struct net_device *dev;
1105 	struct plat_cpmac_data *pdata;
1106 
1107 	pdata = pdev->dev.platform_data;
1108 
1109 	for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1110 		if (!(pdata->phy_mask & (1 << phy_id)))
1111 			continue;
1112 		if (!cpmac_mii->phy_map[phy_id])
1113 			continue;
1114 		break;
1115 	}
1116 
1117 	if (phy_id == PHY_MAX_ADDR) {
1118 		if (external_switch || dumb_switch) {
1119 			mdio_bus_id = 0; /* fixed phys bus */
1120 			phy_id = pdev->id;
1121 		} else {
1122 			dev_err(&pdev->dev, "no PHY present\n");
1123 			return -ENODEV;
1124 		}
1125 	}
1126 
1127 	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1128 
1129 	if (!dev) {
1130 		printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1131 		return -ENOMEM;
1132 	}
1133 
1134 	platform_set_drvdata(pdev, dev);
1135 	priv = netdev_priv(dev);
1136 
1137 	priv->pdev = pdev;
1138 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1139 	if (!mem) {
1140 		rc = -ENODEV;
1141 		goto fail;
1142 	}
1143 
1144 	dev->irq = platform_get_irq_byname(pdev, "irq");
1145 
1146 	dev->open               = cpmac_open;
1147 	dev->stop               = cpmac_stop;
1148 	dev->set_config         = cpmac_config;
1149 	dev->hard_start_xmit    = cpmac_start_xmit;
1150 	dev->do_ioctl           = cpmac_ioctl;
1151 	dev->set_multicast_list = cpmac_set_multicast_list;
1152 	dev->tx_timeout         = cpmac_tx_timeout;
1153 	dev->ethtool_ops        = &cpmac_ethtool_ops;
1154 
1155 	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1156 
1157 	spin_lock_init(&priv->lock);
1158 	spin_lock_init(&priv->rx_lock);
1159 	priv->dev = dev;
1160 	priv->ring_size = 64;
1161 	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1162 	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1163 
1164 	priv->phy = phy_connect(dev, cpmac_mii->phy_map[phy_id]->dev.bus_id,
1165 				&cpmac_adjust_link, 0, PHY_INTERFACE_MODE_MII);
1166 	if (IS_ERR(priv->phy)) {
1167 		if (netif_msg_drv(priv))
1168 			printk(KERN_ERR "%s: Could not attach to PHY\n",
1169 			       dev->name);
1170 		return PTR_ERR(priv->phy);
1171 	}
1172 
1173 	if ((rc = register_netdev(dev))) {
1174 		printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1175 		       dev->name);
1176 		goto fail;
1177 	}
1178 
1179 	if (netif_msg_probe(priv)) {
1180 		printk(KERN_INFO
1181 		       "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1182 		       "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1183 		       priv->phy_name, dev->dev_addr);
1184 	}
1185 	return 0;
1186 
1187 fail:
1188 	free_netdev(dev);
1189 	return rc;
1190 }
1191 
cpmac_remove(struct platform_device * pdev)1192 static int __devexit cpmac_remove(struct platform_device *pdev)
1193 {
1194 	struct net_device *dev = platform_get_drvdata(pdev);
1195 	unregister_netdev(dev);
1196 	free_netdev(dev);
1197 	return 0;
1198 }
1199 
1200 static struct platform_driver cpmac_driver = {
1201 	.driver.name = "cpmac",
1202 	.driver.owner = THIS_MODULE,
1203 	.probe = cpmac_probe,
1204 	.remove = __devexit_p(cpmac_remove),
1205 };
1206 
cpmac_init(void)1207 int __devinit cpmac_init(void)
1208 {
1209 	u32 mask;
1210 	int i, res;
1211 
1212 	cpmac_mii = mdiobus_alloc();
1213 	if (cpmac_mii == NULL)
1214 		return -ENOMEM;
1215 
1216 	cpmac_mii->name = "cpmac-mii";
1217 	cpmac_mii->read = cpmac_mdio_read;
1218 	cpmac_mii->write = cpmac_mdio_write;
1219 	cpmac_mii->reset = cpmac_mdio_reset;
1220 	cpmac_mii->irq = mii_irqs;
1221 
1222 	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1223 
1224 	if (!cpmac_mii->priv) {
1225 		printk(KERN_ERR "Can't ioremap mdio registers\n");
1226 		res = -ENXIO;
1227 		goto fail_alloc;
1228 	}
1229 
1230 #warning FIXME: unhardcode gpio&reset bits
1231 	ar7_gpio_disable(26);
1232 	ar7_gpio_disable(27);
1233 	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1234 	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1235 	ar7_device_reset(AR7_RESET_BIT_EPHY);
1236 
1237 	cpmac_mii->reset(cpmac_mii);
1238 
1239 	for (i = 0; i < 300000; i++)
1240 		if ((mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE)))
1241 			break;
1242 		else
1243 			cpu_relax();
1244 
1245 	mask &= 0x7fffffff;
1246 	if (mask & (mask - 1)) {
1247 		external_switch = 1;
1248 		mask = 0;
1249 	}
1250 
1251 	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1252 	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "0");
1253 
1254 	res = mdiobus_register(cpmac_mii);
1255 	if (res)
1256 		goto fail_mii;
1257 
1258 	res = platform_driver_register(&cpmac_driver);
1259 	if (res)
1260 		goto fail_cpmac;
1261 
1262 	return 0;
1263 
1264 fail_cpmac:
1265 	mdiobus_unregister(cpmac_mii);
1266 
1267 fail_mii:
1268 	iounmap(cpmac_mii->priv);
1269 
1270 fail_alloc:
1271 	mdiobus_free(cpmac_mii);
1272 
1273 	return res;
1274 }
1275 
cpmac_exit(void)1276 void __devexit cpmac_exit(void)
1277 {
1278 	platform_driver_unregister(&cpmac_driver);
1279 	mdiobus_unregister(cpmac_mii);
1280 	mdiobus_free(cpmac_mii);
1281 	iounmap(cpmac_mii->priv);
1282 }
1283 
1284 module_init(cpmac_init);
1285 module_exit(cpmac_exit);
1286