• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32 
33 #include "e1000_mac.h"
34 
35 #include "igb.h"
36 
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39 
40 /**
41  *  igb_remove_device - Free device specific structure
42  *  @hw: pointer to the HW structure
43  *
44  *  If a device specific structure was allocated, this function will
45  *  free it.
46  **/
igb_remove_device(struct e1000_hw * hw)47 void igb_remove_device(struct e1000_hw *hw)
48 {
49 	/* Freeing the dev_spec member of e1000_hw structure */
50 	kfree(hw->dev_spec);
51 }
52 
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)53 static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
54 {
55 	struct igb_adapter *adapter = hw->back;
56 	u16 cap_offset;
57 
58 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
59 	if (!cap_offset)
60 		return -E1000_ERR_CONFIG;
61 
62 	pci_read_config_word(adapter->pdev, cap_offset + reg, value);
63 
64 	return 0;
65 }
66 
67 /**
68  *  igb_get_bus_info_pcie - Get PCIe bus information
69  *  @hw: pointer to the HW structure
70  *
71  *  Determines and stores the system bus information for a particular
72  *  network interface.  The following bus information is determined and stored:
73  *  bus speed, bus width, type (PCIe), and PCIe function.
74  **/
igb_get_bus_info_pcie(struct e1000_hw * hw)75 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
76 {
77 	struct e1000_bus_info *bus = &hw->bus;
78 	s32 ret_val;
79 	u32 reg;
80 	u16 pcie_link_status;
81 
82 	bus->type = e1000_bus_type_pci_express;
83 	bus->speed = e1000_bus_speed_2500;
84 
85 	ret_val = igb_read_pcie_cap_reg(hw,
86 					  PCIE_LINK_STATUS,
87 					  &pcie_link_status);
88 	if (ret_val)
89 		bus->width = e1000_bus_width_unknown;
90 	else
91 		bus->width = (enum e1000_bus_width)((pcie_link_status &
92 						     PCIE_LINK_WIDTH_MASK) >>
93 						     PCIE_LINK_WIDTH_SHIFT);
94 
95 	reg = rd32(E1000_STATUS);
96 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
97 
98 	return 0;
99 }
100 
101 /**
102  *  igb_clear_vfta - Clear VLAN filter table
103  *  @hw: pointer to the HW structure
104  *
105  *  Clears the register array which contains the VLAN filter table by
106  *  setting all the values to 0.
107  **/
igb_clear_vfta(struct e1000_hw * hw)108 void igb_clear_vfta(struct e1000_hw *hw)
109 {
110 	u32 offset;
111 
112 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
113 		array_wr32(E1000_VFTA, offset, 0);
114 		wrfl();
115 	}
116 }
117 
118 /**
119  *  igb_write_vfta - Write value to VLAN filter table
120  *  @hw: pointer to the HW structure
121  *  @offset: register offset in VLAN filter table
122  *  @value: register value written to VLAN filter table
123  *
124  *  Writes value at the given offset in the register array which stores
125  *  the VLAN filter table.
126  **/
igb_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)127 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
128 {
129 	array_wr32(E1000_VFTA, offset, value);
130 	wrfl();
131 }
132 
133 /**
134  *  igb_check_alt_mac_addr - Check for alternate MAC addr
135  *  @hw: pointer to the HW structure
136  *
137  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
138  *  can be setup by pre-boot software and must be treated like a permanent
139  *  address and must override the actual permanent MAC address.  If an
140  *  alternate MAC address is fopund it is saved in the hw struct and
141  *  prgrammed into RAR0 and the cuntion returns success, otherwise the
142  *  fucntion returns an error.
143  **/
igb_check_alt_mac_addr(struct e1000_hw * hw)144 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
145 {
146 	u32 i;
147 	s32 ret_val = 0;
148 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
149 	u8 alt_mac_addr[ETH_ALEN];
150 
151 	ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
152 				 &nvm_alt_mac_addr_offset);
153 	if (ret_val) {
154 		hw_dbg("NVM Read Error\n");
155 		goto out;
156 	}
157 
158 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
159 		ret_val = -(E1000_NOT_IMPLEMENTED);
160 		goto out;
161 	}
162 
163 	if (hw->bus.func == E1000_FUNC_1)
164 		nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
165 
166 	for (i = 0; i < ETH_ALEN; i += 2) {
167 		offset = nvm_alt_mac_addr_offset + (i >> 1);
168 		ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
169 		if (ret_val) {
170 			hw_dbg("NVM Read Error\n");
171 			goto out;
172 		}
173 
174 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
175 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
176 	}
177 
178 	/* if multicast bit is set, the alternate address will not be used */
179 	if (alt_mac_addr[0] & 0x01) {
180 		ret_val = -(E1000_NOT_IMPLEMENTED);
181 		goto out;
182 	}
183 
184 	for (i = 0; i < ETH_ALEN; i++)
185 		hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
186 
187 	hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
188 
189 out:
190 	return ret_val;
191 }
192 
193 /**
194  *  igb_rar_set - Set receive address register
195  *  @hw: pointer to the HW structure
196  *  @addr: pointer to the receive address
197  *  @index: receive address array register
198  *
199  *  Sets the receive address array register at index to the address passed
200  *  in by addr.
201  **/
igb_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)202 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
203 {
204 	u32 rar_low, rar_high;
205 
206 	/*
207 	 * HW expects these in little endian so we reverse the byte order
208 	 * from network order (big endian) to little endian
209 	 */
210 	rar_low = ((u32) addr[0] |
211 		   ((u32) addr[1] << 8) |
212 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
213 
214 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
215 
216 	if (!hw->mac.disable_av)
217 		rar_high |= E1000_RAH_AV;
218 
219 	wr32(E1000_RAL(index), rar_low);
220 	wr32(E1000_RAH(index), rar_high);
221 }
222 
223 /**
224  *  igb_mta_set - Set multicast filter table address
225  *  @hw: pointer to the HW structure
226  *  @hash_value: determines the MTA register and bit to set
227  *
228  *  The multicast table address is a register array of 32-bit registers.
229  *  The hash_value is used to determine what register the bit is in, the
230  *  current value is read, the new bit is OR'd in and the new value is
231  *  written back into the register.
232  **/
igb_mta_set(struct e1000_hw * hw,u32 hash_value)233 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
234 {
235 	u32 hash_bit, hash_reg, mta;
236 
237 	/*
238 	 * The MTA is a register array of 32-bit registers. It is
239 	 * treated like an array of (32*mta_reg_count) bits.  We want to
240 	 * set bit BitArray[hash_value]. So we figure out what register
241 	 * the bit is in, read it, OR in the new bit, then write
242 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
243 	 * mask to bits 31:5 of the hash value which gives us the
244 	 * register we're modifying.  The hash bit within that register
245 	 * is determined by the lower 5 bits of the hash value.
246 	 */
247 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
248 	hash_bit = hash_value & 0x1F;
249 
250 	mta = array_rd32(E1000_MTA, hash_reg);
251 
252 	mta |= (1 << hash_bit);
253 
254 	array_wr32(E1000_MTA, hash_reg, mta);
255 	wrfl();
256 }
257 
258 /**
259  *  igb_hash_mc_addr - Generate a multicast hash value
260  *  @hw: pointer to the HW structure
261  *  @mc_addr: pointer to a multicast address
262  *
263  *  Generates a multicast address hash value which is used to determine
264  *  the multicast filter table array address and new table value.  See
265  *  igb_mta_set()
266  **/
igb_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)267 u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
268 {
269 	u32 hash_value, hash_mask;
270 	u8 bit_shift = 0;
271 
272 	/* Register count multiplied by bits per register */
273 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
274 
275 	/*
276 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
277 	 * where 0xFF would still fall within the hash mask.
278 	 */
279 	while (hash_mask >> bit_shift != 0xFF)
280 		bit_shift++;
281 
282 	/*
283 	 * The portion of the address that is used for the hash table
284 	 * is determined by the mc_filter_type setting.
285 	 * The algorithm is such that there is a total of 8 bits of shifting.
286 	 * The bit_shift for a mc_filter_type of 0 represents the number of
287 	 * left-shifts where the MSB of mc_addr[5] would still fall within
288 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
289 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
290 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
291 	 * cases are a variation of this algorithm...essentially raising the
292 	 * number of bits to shift mc_addr[5] left, while still keeping the
293 	 * 8-bit shifting total.
294 	 *
295 	 * For example, given the following Destination MAC Address and an
296 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
297 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
298 	 * values resulting from each mc_filter_type...
299 	 * [0] [1] [2] [3] [4] [5]
300 	 * 01  AA  00  12  34  56
301 	 * LSB                 MSB
302 	 *
303 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
304 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
305 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
306 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
307 	 */
308 	switch (hw->mac.mc_filter_type) {
309 	default:
310 	case 0:
311 		break;
312 	case 1:
313 		bit_shift += 1;
314 		break;
315 	case 2:
316 		bit_shift += 2;
317 		break;
318 	case 3:
319 		bit_shift += 4;
320 		break;
321 	}
322 
323 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
324 				  (((u16) mc_addr[5]) << bit_shift)));
325 
326 	return hash_value;
327 }
328 
329 /**
330  *  igb_clear_hw_cntrs_base - Clear base hardware counters
331  *  @hw: pointer to the HW structure
332  *
333  *  Clears the base hardware counters by reading the counter registers.
334  **/
igb_clear_hw_cntrs_base(struct e1000_hw * hw)335 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
336 {
337 	u32 temp;
338 
339 	temp = rd32(E1000_CRCERRS);
340 	temp = rd32(E1000_SYMERRS);
341 	temp = rd32(E1000_MPC);
342 	temp = rd32(E1000_SCC);
343 	temp = rd32(E1000_ECOL);
344 	temp = rd32(E1000_MCC);
345 	temp = rd32(E1000_LATECOL);
346 	temp = rd32(E1000_COLC);
347 	temp = rd32(E1000_DC);
348 	temp = rd32(E1000_SEC);
349 	temp = rd32(E1000_RLEC);
350 	temp = rd32(E1000_XONRXC);
351 	temp = rd32(E1000_XONTXC);
352 	temp = rd32(E1000_XOFFRXC);
353 	temp = rd32(E1000_XOFFTXC);
354 	temp = rd32(E1000_FCRUC);
355 	temp = rd32(E1000_GPRC);
356 	temp = rd32(E1000_BPRC);
357 	temp = rd32(E1000_MPRC);
358 	temp = rd32(E1000_GPTC);
359 	temp = rd32(E1000_GORCL);
360 	temp = rd32(E1000_GORCH);
361 	temp = rd32(E1000_GOTCL);
362 	temp = rd32(E1000_GOTCH);
363 	temp = rd32(E1000_RNBC);
364 	temp = rd32(E1000_RUC);
365 	temp = rd32(E1000_RFC);
366 	temp = rd32(E1000_ROC);
367 	temp = rd32(E1000_RJC);
368 	temp = rd32(E1000_TORL);
369 	temp = rd32(E1000_TORH);
370 	temp = rd32(E1000_TOTL);
371 	temp = rd32(E1000_TOTH);
372 	temp = rd32(E1000_TPR);
373 	temp = rd32(E1000_TPT);
374 	temp = rd32(E1000_MPTC);
375 	temp = rd32(E1000_BPTC);
376 }
377 
378 /**
379  *  igb_check_for_copper_link - Check for link (Copper)
380  *  @hw: pointer to the HW structure
381  *
382  *  Checks to see of the link status of the hardware has changed.  If a
383  *  change in link status has been detected, then we read the PHY registers
384  *  to get the current speed/duplex if link exists.
385  **/
igb_check_for_copper_link(struct e1000_hw * hw)386 s32 igb_check_for_copper_link(struct e1000_hw *hw)
387 {
388 	struct e1000_mac_info *mac = &hw->mac;
389 	s32 ret_val;
390 	bool link;
391 
392 	/*
393 	 * We only want to go out to the PHY registers to see if Auto-Neg
394 	 * has completed and/or if our link status has changed.  The
395 	 * get_link_status flag is set upon receiving a Link Status
396 	 * Change or Rx Sequence Error interrupt.
397 	 */
398 	if (!mac->get_link_status) {
399 		ret_val = 0;
400 		goto out;
401 	}
402 
403 	/*
404 	 * First we want to see if the MII Status Register reports
405 	 * link.  If so, then we want to get the current speed/duplex
406 	 * of the PHY.
407 	 */
408 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
409 	if (ret_val)
410 		goto out;
411 
412 	if (!link)
413 		goto out; /* No link detected */
414 
415 	mac->get_link_status = false;
416 
417 	/*
418 	 * Check if there was DownShift, must be checked
419 	 * immediately after link-up
420 	 */
421 	igb_check_downshift(hw);
422 
423 	/*
424 	 * If we are forcing speed/duplex, then we simply return since
425 	 * we have already determined whether we have link or not.
426 	 */
427 	if (!mac->autoneg) {
428 		ret_val = -E1000_ERR_CONFIG;
429 		goto out;
430 	}
431 
432 	/*
433 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
434 	 * of MAC speed/duplex configuration.  So we only need to
435 	 * configure Collision Distance in the MAC.
436 	 */
437 	igb_config_collision_dist(hw);
438 
439 	/*
440 	 * Configure Flow Control now that Auto-Neg has completed.
441 	 * First, we need to restore the desired flow control
442 	 * settings because we may have had to re-autoneg with a
443 	 * different link partner.
444 	 */
445 	ret_val = igb_config_fc_after_link_up(hw);
446 	if (ret_val)
447 		hw_dbg("Error configuring flow control\n");
448 
449 out:
450 	return ret_val;
451 }
452 
453 /**
454  *  igb_setup_link - Setup flow control and link settings
455  *  @hw: pointer to the HW structure
456  *
457  *  Determines which flow control settings to use, then configures flow
458  *  control.  Calls the appropriate media-specific link configuration
459  *  function.  Assuming the adapter has a valid link partner, a valid link
460  *  should be established.  Assumes the hardware has previously been reset
461  *  and the transmitter and receiver are not enabled.
462  **/
igb_setup_link(struct e1000_hw * hw)463 s32 igb_setup_link(struct e1000_hw *hw)
464 {
465 	s32 ret_val = 0;
466 
467 	/*
468 	 * In the case of the phy reset being blocked, we already have a link.
469 	 * We do not need to set it up again.
470 	 */
471 	if (igb_check_reset_block(hw))
472 		goto out;
473 
474 	ret_val = igb_set_default_fc(hw);
475 	if (ret_val)
476 		goto out;
477 
478 	/*
479 	 * We want to save off the original Flow Control configuration just
480 	 * in case we get disconnected and then reconnected into a different
481 	 * hub or switch with different Flow Control capabilities.
482 	 */
483 	hw->fc.original_type = hw->fc.type;
484 
485 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
486 
487 	/* Call the necessary media_type subroutine to configure the link. */
488 	ret_val = hw->mac.ops.setup_physical_interface(hw);
489 	if (ret_val)
490 		goto out;
491 
492 	/*
493 	 * Initialize the flow control address, type, and PAUSE timer
494 	 * registers to their default values.  This is done even if flow
495 	 * control is disabled, because it does not hurt anything to
496 	 * initialize these registers.
497 	 */
498 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
499 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
500 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
501 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
502 
503 	wr32(E1000_FCTTV, hw->fc.pause_time);
504 
505 	ret_val = igb_set_fc_watermarks(hw);
506 
507 out:
508 	return ret_val;
509 }
510 
511 /**
512  *  igb_config_collision_dist - Configure collision distance
513  *  @hw: pointer to the HW structure
514  *
515  *  Configures the collision distance to the default value and is used
516  *  during link setup. Currently no func pointer exists and all
517  *  implementations are handled in the generic version of this function.
518  **/
igb_config_collision_dist(struct e1000_hw * hw)519 void igb_config_collision_dist(struct e1000_hw *hw)
520 {
521 	u32 tctl;
522 
523 	tctl = rd32(E1000_TCTL);
524 
525 	tctl &= ~E1000_TCTL_COLD;
526 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
527 
528 	wr32(E1000_TCTL, tctl);
529 	wrfl();
530 }
531 
532 /**
533  *  igb_set_fc_watermarks - Set flow control high/low watermarks
534  *  @hw: pointer to the HW structure
535  *
536  *  Sets the flow control high/low threshold (watermark) registers.  If
537  *  flow control XON frame transmission is enabled, then set XON frame
538  *  tansmission as well.
539  **/
igb_set_fc_watermarks(struct e1000_hw * hw)540 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
541 {
542 	s32 ret_val = 0;
543 	u32 fcrtl = 0, fcrth = 0;
544 
545 	/*
546 	 * Set the flow control receive threshold registers.  Normally,
547 	 * these registers will be set to a default threshold that may be
548 	 * adjusted later by the driver's runtime code.  However, if the
549 	 * ability to transmit pause frames is not enabled, then these
550 	 * registers will be set to 0.
551 	 */
552 	if (hw->fc.type & e1000_fc_tx_pause) {
553 		/*
554 		 * We need to set up the Receive Threshold high and low water
555 		 * marks as well as (optionally) enabling the transmission of
556 		 * XON frames.
557 		 */
558 		fcrtl = hw->fc.low_water;
559 		if (hw->fc.send_xon)
560 			fcrtl |= E1000_FCRTL_XONE;
561 
562 		fcrth = hw->fc.high_water;
563 	}
564 	wr32(E1000_FCRTL, fcrtl);
565 	wr32(E1000_FCRTH, fcrth);
566 
567 	return ret_val;
568 }
569 
570 /**
571  *  igb_set_default_fc - Set flow control default values
572  *  @hw: pointer to the HW structure
573  *
574  *  Read the EEPROM for the default values for flow control and store the
575  *  values.
576  **/
igb_set_default_fc(struct e1000_hw * hw)577 static s32 igb_set_default_fc(struct e1000_hw *hw)
578 {
579 	s32 ret_val = 0;
580 	u16 nvm_data;
581 
582 	/*
583 	 * Read and store word 0x0F of the EEPROM. This word contains bits
584 	 * that determine the hardware's default PAUSE (flow control) mode,
585 	 * a bit that determines whether the HW defaults to enabling or
586 	 * disabling auto-negotiation, and the direction of the
587 	 * SW defined pins. If there is no SW over-ride of the flow
588 	 * control setting, then the variable hw->fc will
589 	 * be initialized based on a value in the EEPROM.
590 	 */
591 	ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1,
592 				       &nvm_data);
593 
594 	if (ret_val) {
595 		hw_dbg("NVM Read Error\n");
596 		goto out;
597 	}
598 
599 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
600 		hw->fc.type = e1000_fc_none;
601 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
602 		 NVM_WORD0F_ASM_DIR)
603 		hw->fc.type = e1000_fc_tx_pause;
604 	else
605 		hw->fc.type = e1000_fc_full;
606 
607 out:
608 	return ret_val;
609 }
610 
611 /**
612  *  igb_force_mac_fc - Force the MAC's flow control settings
613  *  @hw: pointer to the HW structure
614  *
615  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
616  *  device control register to reflect the adapter settings.  TFCE and RFCE
617  *  need to be explicitly set by software when a copper PHY is used because
618  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
619  *  also configure these bits when link is forced on a fiber connection.
620  **/
igb_force_mac_fc(struct e1000_hw * hw)621 s32 igb_force_mac_fc(struct e1000_hw *hw)
622 {
623 	u32 ctrl;
624 	s32 ret_val = 0;
625 
626 	ctrl = rd32(E1000_CTRL);
627 
628 	/*
629 	 * Because we didn't get link via the internal auto-negotiation
630 	 * mechanism (we either forced link or we got link via PHY
631 	 * auto-neg), we have to manually enable/disable transmit an
632 	 * receive flow control.
633 	 *
634 	 * The "Case" statement below enables/disable flow control
635 	 * according to the "hw->fc.type" parameter.
636 	 *
637 	 * The possible values of the "fc" parameter are:
638 	 *      0:  Flow control is completely disabled
639 	 *      1:  Rx flow control is enabled (we can receive pause
640 	 *          frames but not send pause frames).
641 	 *      2:  Tx flow control is enabled (we can send pause frames
642 	 *          frames but we do not receive pause frames).
643 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
644 	 *  other:  No other values should be possible at this point.
645 	 */
646 	hw_dbg("hw->fc.type = %u\n", hw->fc.type);
647 
648 	switch (hw->fc.type) {
649 	case e1000_fc_none:
650 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
651 		break;
652 	case e1000_fc_rx_pause:
653 		ctrl &= (~E1000_CTRL_TFCE);
654 		ctrl |= E1000_CTRL_RFCE;
655 		break;
656 	case e1000_fc_tx_pause:
657 		ctrl &= (~E1000_CTRL_RFCE);
658 		ctrl |= E1000_CTRL_TFCE;
659 		break;
660 	case e1000_fc_full:
661 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
662 		break;
663 	default:
664 		hw_dbg("Flow control param set incorrectly\n");
665 		ret_val = -E1000_ERR_CONFIG;
666 		goto out;
667 	}
668 
669 	wr32(E1000_CTRL, ctrl);
670 
671 out:
672 	return ret_val;
673 }
674 
675 /**
676  *  igb_config_fc_after_link_up - Configures flow control after link
677  *  @hw: pointer to the HW structure
678  *
679  *  Checks the status of auto-negotiation after link up to ensure that the
680  *  speed and duplex were not forced.  If the link needed to be forced, then
681  *  flow control needs to be forced also.  If auto-negotiation is enabled
682  *  and did not fail, then we configure flow control based on our link
683  *  partner.
684  **/
igb_config_fc_after_link_up(struct e1000_hw * hw)685 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
686 {
687 	struct e1000_mac_info *mac = &hw->mac;
688 	s32 ret_val = 0;
689 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
690 	u16 speed, duplex;
691 
692 	/*
693 	 * Check for the case where we have fiber media and auto-neg failed
694 	 * so we had to force link.  In this case, we need to force the
695 	 * configuration of the MAC to match the "fc" parameter.
696 	 */
697 	if (mac->autoneg_failed) {
698 		if (hw->phy.media_type == e1000_media_type_fiber ||
699 		    hw->phy.media_type == e1000_media_type_internal_serdes)
700 			ret_val = igb_force_mac_fc(hw);
701 	} else {
702 		if (hw->phy.media_type == e1000_media_type_copper)
703 			ret_val = igb_force_mac_fc(hw);
704 	}
705 
706 	if (ret_val) {
707 		hw_dbg("Error forcing flow control settings\n");
708 		goto out;
709 	}
710 
711 	/*
712 	 * Check for the case where we have copper media and auto-neg is
713 	 * enabled.  In this case, we need to check and see if Auto-Neg
714 	 * has completed, and if so, how the PHY and link partner has
715 	 * flow control configured.
716 	 */
717 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
718 		/*
719 		 * Read the MII Status Register and check to see if AutoNeg
720 		 * has completed.  We read this twice because this reg has
721 		 * some "sticky" (latched) bits.
722 		 */
723 		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
724 						   &mii_status_reg);
725 		if (ret_val)
726 			goto out;
727 		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
728 						   &mii_status_reg);
729 		if (ret_val)
730 			goto out;
731 
732 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
733 			hw_dbg("Copper PHY and Auto Neg "
734 				 "has not completed.\n");
735 			goto out;
736 		}
737 
738 		/*
739 		 * The AutoNeg process has completed, so we now need to
740 		 * read both the Auto Negotiation Advertisement
741 		 * Register (Address 4) and the Auto_Negotiation Base
742 		 * Page Ability Register (Address 5) to determine how
743 		 * flow control was negotiated.
744 		 */
745 		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
746 					    &mii_nway_adv_reg);
747 		if (ret_val)
748 			goto out;
749 		ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY,
750 					    &mii_nway_lp_ability_reg);
751 		if (ret_val)
752 			goto out;
753 
754 		/*
755 		 * Two bits in the Auto Negotiation Advertisement Register
756 		 * (Address 4) and two bits in the Auto Negotiation Base
757 		 * Page Ability Register (Address 5) determine flow control
758 		 * for both the PHY and the link partner.  The following
759 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
760 		 * 1999, describes these PAUSE resolution bits and how flow
761 		 * control is determined based upon these settings.
762 		 * NOTE:  DC = Don't Care
763 		 *
764 		 *   LOCAL DEVICE  |   LINK PARTNER
765 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
766 		 *-------|---------|-------|---------|--------------------
767 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
768 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
769 		 *   0   |    1    |   1   |    0    | e1000_fc_none
770 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
771 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
772 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
773 		 *   1   |    1    |   0   |    0    | e1000_fc_none
774 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
775 		 *
776 		 * Are both PAUSE bits set to 1?  If so, this implies
777 		 * Symmetric Flow Control is enabled at both ends.  The
778 		 * ASM_DIR bits are irrelevant per the spec.
779 		 *
780 		 * For Symmetric Flow Control:
781 		 *
782 		 *   LOCAL DEVICE  |   LINK PARTNER
783 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
784 		 *-------|---------|-------|---------|--------------------
785 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
786 		 *
787 		 */
788 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
789 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
790 			/*
791 			 * Now we need to check if the user selected RX ONLY
792 			 * of pause frames.  In this case, we had to advertise
793 			 * FULL flow control because we could not advertise RX
794 			 * ONLY. Hence, we must now check to see if we need to
795 			 * turn OFF  the TRANSMISSION of PAUSE frames.
796 			 */
797 			if (hw->fc.original_type == e1000_fc_full) {
798 				hw->fc.type = e1000_fc_full;
799 				hw_dbg("Flow Control = FULL.\r\n");
800 			} else {
801 				hw->fc.type = e1000_fc_rx_pause;
802 				hw_dbg("Flow Control = "
803 				       "RX PAUSE frames only.\r\n");
804 			}
805 		}
806 		/*
807 		 * For receiving PAUSE frames ONLY.
808 		 *
809 		 *   LOCAL DEVICE  |   LINK PARTNER
810 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
811 		 *-------|---------|-------|---------|--------------------
812 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
813 		 */
814 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
815 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
816 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
817 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
818 			hw->fc.type = e1000_fc_tx_pause;
819 			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
820 		}
821 		/*
822 		 * For transmitting PAUSE frames ONLY.
823 		 *
824 		 *   LOCAL DEVICE  |   LINK PARTNER
825 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
826 		 *-------|---------|-------|---------|--------------------
827 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
828 		 */
829 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
830 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
831 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
832 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
833 			hw->fc.type = e1000_fc_rx_pause;
834 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
835 		}
836 		/*
837 		 * Per the IEEE spec, at this point flow control should be
838 		 * disabled.  However, we want to consider that we could
839 		 * be connected to a legacy switch that doesn't advertise
840 		 * desired flow control, but can be forced on the link
841 		 * partner.  So if we advertised no flow control, that is
842 		 * what we will resolve to.  If we advertised some kind of
843 		 * receive capability (Rx Pause Only or Full Flow Control)
844 		 * and the link partner advertised none, we will configure
845 		 * ourselves to enable Rx Flow Control only.  We can do
846 		 * this safely for two reasons:  If the link partner really
847 		 * didn't want flow control enabled, and we enable Rx, no
848 		 * harm done since we won't be receiving any PAUSE frames
849 		 * anyway.  If the intent on the link partner was to have
850 		 * flow control enabled, then by us enabling RX only, we
851 		 * can at least receive pause frames and process them.
852 		 * This is a good idea because in most cases, since we are
853 		 * predominantly a server NIC, more times than not we will
854 		 * be asked to delay transmission of packets than asking
855 		 * our link partner to pause transmission of frames.
856 		 */
857 		else if ((hw->fc.original_type == e1000_fc_none ||
858 			  hw->fc.original_type == e1000_fc_tx_pause) ||
859 			 hw->fc.strict_ieee) {
860 			hw->fc.type = e1000_fc_none;
861 			hw_dbg("Flow Control = NONE.\r\n");
862 		} else {
863 			hw->fc.type = e1000_fc_rx_pause;
864 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
865 		}
866 
867 		/*
868 		 * Now we need to do one last check...  If we auto-
869 		 * negotiated to HALF DUPLEX, flow control should not be
870 		 * enabled per IEEE 802.3 spec.
871 		 */
872 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
873 		if (ret_val) {
874 			hw_dbg("Error getting link speed and duplex\n");
875 			goto out;
876 		}
877 
878 		if (duplex == HALF_DUPLEX)
879 			hw->fc.type = e1000_fc_none;
880 
881 		/*
882 		 * Now we call a subroutine to actually force the MAC
883 		 * controller to use the correct flow control settings.
884 		 */
885 		ret_val = igb_force_mac_fc(hw);
886 		if (ret_val) {
887 			hw_dbg("Error forcing flow control settings\n");
888 			goto out;
889 		}
890 	}
891 
892 out:
893 	return ret_val;
894 }
895 
896 /**
897  *  igb_get_speed_and_duplex_copper - Retreive current speed/duplex
898  *  @hw: pointer to the HW structure
899  *  @speed: stores the current speed
900  *  @duplex: stores the current duplex
901  *
902  *  Read the status register for the current speed/duplex and store the current
903  *  speed and duplex for copper connections.
904  **/
igb_get_speed_and_duplex_copper(struct e1000_hw * hw,u16 * speed,u16 * duplex)905 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
906 				      u16 *duplex)
907 {
908 	u32 status;
909 
910 	status = rd32(E1000_STATUS);
911 	if (status & E1000_STATUS_SPEED_1000) {
912 		*speed = SPEED_1000;
913 		hw_dbg("1000 Mbs, ");
914 	} else if (status & E1000_STATUS_SPEED_100) {
915 		*speed = SPEED_100;
916 		hw_dbg("100 Mbs, ");
917 	} else {
918 		*speed = SPEED_10;
919 		hw_dbg("10 Mbs, ");
920 	}
921 
922 	if (status & E1000_STATUS_FD) {
923 		*duplex = FULL_DUPLEX;
924 		hw_dbg("Full Duplex\n");
925 	} else {
926 		*duplex = HALF_DUPLEX;
927 		hw_dbg("Half Duplex\n");
928 	}
929 
930 	return 0;
931 }
932 
933 /**
934  *  igb_get_hw_semaphore - Acquire hardware semaphore
935  *  @hw: pointer to the HW structure
936  *
937  *  Acquire the HW semaphore to access the PHY or NVM
938  **/
igb_get_hw_semaphore(struct e1000_hw * hw)939 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
940 {
941 	u32 swsm;
942 	s32 ret_val = 0;
943 	s32 timeout = hw->nvm.word_size + 1;
944 	s32 i = 0;
945 
946 	/* Get the SW semaphore */
947 	while (i < timeout) {
948 		swsm = rd32(E1000_SWSM);
949 		if (!(swsm & E1000_SWSM_SMBI))
950 			break;
951 
952 		udelay(50);
953 		i++;
954 	}
955 
956 	if (i == timeout) {
957 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
958 		ret_val = -E1000_ERR_NVM;
959 		goto out;
960 	}
961 
962 	/* Get the FW semaphore. */
963 	for (i = 0; i < timeout; i++) {
964 		swsm = rd32(E1000_SWSM);
965 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
966 
967 		/* Semaphore acquired if bit latched */
968 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
969 			break;
970 
971 		udelay(50);
972 	}
973 
974 	if (i == timeout) {
975 		/* Release semaphores */
976 		igb_put_hw_semaphore(hw);
977 		hw_dbg("Driver can't access the NVM\n");
978 		ret_val = -E1000_ERR_NVM;
979 		goto out;
980 	}
981 
982 out:
983 	return ret_val;
984 }
985 
986 /**
987  *  igb_put_hw_semaphore - Release hardware semaphore
988  *  @hw: pointer to the HW structure
989  *
990  *  Release hardware semaphore used to access the PHY or NVM
991  **/
igb_put_hw_semaphore(struct e1000_hw * hw)992 void igb_put_hw_semaphore(struct e1000_hw *hw)
993 {
994 	u32 swsm;
995 
996 	swsm = rd32(E1000_SWSM);
997 
998 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
999 
1000 	wr32(E1000_SWSM, swsm);
1001 }
1002 
1003 /**
1004  *  igb_get_auto_rd_done - Check for auto read completion
1005  *  @hw: pointer to the HW structure
1006  *
1007  *  Check EEPROM for Auto Read done bit.
1008  **/
igb_get_auto_rd_done(struct e1000_hw * hw)1009 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1010 {
1011 	s32 i = 0;
1012 	s32 ret_val = 0;
1013 
1014 
1015 	while (i < AUTO_READ_DONE_TIMEOUT) {
1016 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1017 			break;
1018 		msleep(1);
1019 		i++;
1020 	}
1021 
1022 	if (i == AUTO_READ_DONE_TIMEOUT) {
1023 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1024 		ret_val = -E1000_ERR_RESET;
1025 		goto out;
1026 	}
1027 
1028 out:
1029 	return ret_val;
1030 }
1031 
1032 /**
1033  *  igb_valid_led_default - Verify a valid default LED config
1034  *  @hw: pointer to the HW structure
1035  *  @data: pointer to the NVM (EEPROM)
1036  *
1037  *  Read the EEPROM for the current default LED configuration.  If the
1038  *  LED configuration is not valid, set to a valid LED configuration.
1039  **/
igb_valid_led_default(struct e1000_hw * hw,u16 * data)1040 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1041 {
1042 	s32 ret_val;
1043 
1044 	ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1045 	if (ret_val) {
1046 		hw_dbg("NVM Read Error\n");
1047 		goto out;
1048 	}
1049 
1050 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1051 		*data = ID_LED_DEFAULT;
1052 
1053 out:
1054 	return ret_val;
1055 }
1056 
1057 /**
1058  *  igb_id_led_init -
1059  *  @hw: pointer to the HW structure
1060  *
1061  **/
igb_id_led_init(struct e1000_hw * hw)1062 s32 igb_id_led_init(struct e1000_hw *hw)
1063 {
1064 	struct e1000_mac_info *mac = &hw->mac;
1065 	s32 ret_val;
1066 	const u32 ledctl_mask = 0x000000FF;
1067 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1068 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1069 	u16 data, i, temp;
1070 	const u16 led_mask = 0x0F;
1071 
1072 	ret_val = igb_valid_led_default(hw, &data);
1073 	if (ret_val)
1074 		goto out;
1075 
1076 	mac->ledctl_default = rd32(E1000_LEDCTL);
1077 	mac->ledctl_mode1 = mac->ledctl_default;
1078 	mac->ledctl_mode2 = mac->ledctl_default;
1079 
1080 	for (i = 0; i < 4; i++) {
1081 		temp = (data >> (i << 2)) & led_mask;
1082 		switch (temp) {
1083 		case ID_LED_ON1_DEF2:
1084 		case ID_LED_ON1_ON2:
1085 		case ID_LED_ON1_OFF2:
1086 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1087 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1088 			break;
1089 		case ID_LED_OFF1_DEF2:
1090 		case ID_LED_OFF1_ON2:
1091 		case ID_LED_OFF1_OFF2:
1092 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1093 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1094 			break;
1095 		default:
1096 			/* Do nothing */
1097 			break;
1098 		}
1099 		switch (temp) {
1100 		case ID_LED_DEF1_ON2:
1101 		case ID_LED_ON1_ON2:
1102 		case ID_LED_OFF1_ON2:
1103 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1104 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1105 			break;
1106 		case ID_LED_DEF1_OFF2:
1107 		case ID_LED_ON1_OFF2:
1108 		case ID_LED_OFF1_OFF2:
1109 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1110 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1111 			break;
1112 		default:
1113 			/* Do nothing */
1114 			break;
1115 		}
1116 	}
1117 
1118 out:
1119 	return ret_val;
1120 }
1121 
1122 /**
1123  *  igb_cleanup_led - Set LED config to default operation
1124  *  @hw: pointer to the HW structure
1125  *
1126  *  Remove the current LED configuration and set the LED configuration
1127  *  to the default value, saved from the EEPROM.
1128  **/
igb_cleanup_led(struct e1000_hw * hw)1129 s32 igb_cleanup_led(struct e1000_hw *hw)
1130 {
1131 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1132 	return 0;
1133 }
1134 
1135 /**
1136  *  igb_blink_led - Blink LED
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  Blink the led's which are set to be on.
1140  **/
igb_blink_led(struct e1000_hw * hw)1141 s32 igb_blink_led(struct e1000_hw *hw)
1142 {
1143 	u32 ledctl_blink = 0;
1144 	u32 i;
1145 
1146 	if (hw->phy.media_type == e1000_media_type_fiber) {
1147 		/* always blink LED0 for PCI-E fiber */
1148 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1149 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1150 	} else {
1151 		/*
1152 		 * set the blink bit for each LED that's "on" (0x0E)
1153 		 * in ledctl_mode2
1154 		 */
1155 		ledctl_blink = hw->mac.ledctl_mode2;
1156 		for (i = 0; i < 4; i++)
1157 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1158 			    E1000_LEDCTL_MODE_LED_ON)
1159 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1160 						 (i * 8));
1161 	}
1162 
1163 	wr32(E1000_LEDCTL, ledctl_blink);
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  *  igb_led_off - Turn LED off
1170  *  @hw: pointer to the HW structure
1171  *
1172  *  Turn LED off.
1173  **/
igb_led_off(struct e1000_hw * hw)1174 s32 igb_led_off(struct e1000_hw *hw)
1175 {
1176 	u32 ctrl;
1177 
1178 	switch (hw->phy.media_type) {
1179 	case e1000_media_type_fiber:
1180 		ctrl = rd32(E1000_CTRL);
1181 		ctrl |= E1000_CTRL_SWDPIN0;
1182 		ctrl |= E1000_CTRL_SWDPIO0;
1183 		wr32(E1000_CTRL, ctrl);
1184 		break;
1185 	case e1000_media_type_copper:
1186 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1187 		break;
1188 	default:
1189 		break;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /**
1196  *  igb_disable_pcie_master - Disables PCI-express master access
1197  *  @hw: pointer to the HW structure
1198  *
1199  *  Returns 0 (0) if successful, else returns -10
1200  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1201  *  the master requests to be disabled.
1202  *
1203  *  Disables PCI-Express master access and verifies there are no pending
1204  *  requests.
1205  **/
igb_disable_pcie_master(struct e1000_hw * hw)1206 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1207 {
1208 	u32 ctrl;
1209 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1210 	s32 ret_val = 0;
1211 
1212 	if (hw->bus.type != e1000_bus_type_pci_express)
1213 		goto out;
1214 
1215 	ctrl = rd32(E1000_CTRL);
1216 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1217 	wr32(E1000_CTRL, ctrl);
1218 
1219 	while (timeout) {
1220 		if (!(rd32(E1000_STATUS) &
1221 		      E1000_STATUS_GIO_MASTER_ENABLE))
1222 			break;
1223 		udelay(100);
1224 		timeout--;
1225 	}
1226 
1227 	if (!timeout) {
1228 		hw_dbg("Master requests are pending.\n");
1229 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1230 		goto out;
1231 	}
1232 
1233 out:
1234 	return ret_val;
1235 }
1236 
1237 /**
1238  *  igb_reset_adaptive - Reset Adaptive Interframe Spacing
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Reset the Adaptive Interframe Spacing throttle to default values.
1242  **/
igb_reset_adaptive(struct e1000_hw * hw)1243 void igb_reset_adaptive(struct e1000_hw *hw)
1244 {
1245 	struct e1000_mac_info *mac = &hw->mac;
1246 
1247 	if (!mac->adaptive_ifs) {
1248 		hw_dbg("Not in Adaptive IFS mode!\n");
1249 		goto out;
1250 	}
1251 
1252 	if (!mac->ifs_params_forced) {
1253 		mac->current_ifs_val = 0;
1254 		mac->ifs_min_val = IFS_MIN;
1255 		mac->ifs_max_val = IFS_MAX;
1256 		mac->ifs_step_size = IFS_STEP;
1257 		mac->ifs_ratio = IFS_RATIO;
1258 	}
1259 
1260 	mac->in_ifs_mode = false;
1261 	wr32(E1000_AIT, 0);
1262 out:
1263 	return;
1264 }
1265 
1266 /**
1267  *  igb_update_adaptive - Update Adaptive Interframe Spacing
1268  *  @hw: pointer to the HW structure
1269  *
1270  *  Update the Adaptive Interframe Spacing Throttle value based on the
1271  *  time between transmitted packets and time between collisions.
1272  **/
igb_update_adaptive(struct e1000_hw * hw)1273 void igb_update_adaptive(struct e1000_hw *hw)
1274 {
1275 	struct e1000_mac_info *mac = &hw->mac;
1276 
1277 	if (!mac->adaptive_ifs) {
1278 		hw_dbg("Not in Adaptive IFS mode!\n");
1279 		goto out;
1280 	}
1281 
1282 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1283 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1284 			mac->in_ifs_mode = true;
1285 			if (mac->current_ifs_val < mac->ifs_max_val) {
1286 				if (!mac->current_ifs_val)
1287 					mac->current_ifs_val = mac->ifs_min_val;
1288 				else
1289 					mac->current_ifs_val +=
1290 						mac->ifs_step_size;
1291 				wr32(E1000_AIT,
1292 						mac->current_ifs_val);
1293 			}
1294 		}
1295 	} else {
1296 		if (mac->in_ifs_mode &&
1297 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1298 			mac->current_ifs_val = 0;
1299 			mac->in_ifs_mode = false;
1300 			wr32(E1000_AIT, 0);
1301 		}
1302 	}
1303 out:
1304 	return;
1305 }
1306 
1307 /**
1308  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1309  *  @hw: pointer to the HW structure
1310  *
1311  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1312  *  set, which is forced to MDI mode only.
1313  **/
igb_validate_mdi_setting(struct e1000_hw * hw)1314 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1315 {
1316 	s32 ret_val = 0;
1317 
1318 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1319 		hw_dbg("Invalid MDI setting detected\n");
1320 		hw->phy.mdix = 1;
1321 		ret_val = -E1000_ERR_CONFIG;
1322 		goto out;
1323 	}
1324 
1325 out:
1326 	return ret_val;
1327 }
1328 
1329 /**
1330  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1331  *  @hw: pointer to the HW structure
1332  *  @reg: 32bit register offset such as E1000_SCTL
1333  *  @offset: register offset to write to
1334  *  @data: data to write at register offset
1335  *
1336  *  Writes an address/data control type register.  There are several of these
1337  *  and they all have the format address << 8 | data and bit 31 is polled for
1338  *  completion.
1339  **/
igb_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1340 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1341 			      u32 offset, u8 data)
1342 {
1343 	u32 i, regvalue = 0;
1344 	s32 ret_val = 0;
1345 
1346 	/* Set up the address and data */
1347 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1348 	wr32(reg, regvalue);
1349 
1350 	/* Poll the ready bit to see if the MDI read completed */
1351 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1352 		udelay(5);
1353 		regvalue = rd32(reg);
1354 		if (regvalue & E1000_GEN_CTL_READY)
1355 			break;
1356 	}
1357 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1358 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1359 		ret_val = -E1000_ERR_PHY;
1360 		goto out;
1361 	}
1362 
1363 out:
1364 	return ret_val;
1365 }
1366 
1367 /**
1368  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1369  *  @hw: pointer to the HW structure
1370  *
1371  *  Verifies the hardware needs to allow ARPs to be processed by the host.
1372  **/
igb_enable_mng_pass_thru(struct e1000_hw * hw)1373 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1374 {
1375 	u32 manc;
1376 	u32 fwsm, factps;
1377 	bool ret_val = false;
1378 
1379 	if (!hw->mac.asf_firmware_present)
1380 		goto out;
1381 
1382 	manc = rd32(E1000_MANC);
1383 
1384 	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1385 	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1386 		goto out;
1387 
1388 	if (hw->mac.arc_subsystem_valid) {
1389 		fwsm = rd32(E1000_FWSM);
1390 		factps = rd32(E1000_FACTPS);
1391 
1392 		if (!(factps & E1000_FACTPS_MNGCG) &&
1393 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1394 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1395 			ret_val = true;
1396 			goto out;
1397 		}
1398 	} else {
1399 		if ((manc & E1000_MANC_SMBUS_EN) &&
1400 		    !(manc & E1000_MANC_ASF_EN)) {
1401 			ret_val = true;
1402 			goto out;
1403 		}
1404 	}
1405 
1406 out:
1407 	return ret_val;
1408 }
1409