• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7  *
8  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10  *
11  * References:
12  *  o IOC3 ASIC specification 4.51, 1996-04-18
13  *  o IEEE 802.3 specification, 2000 edition
14  *  o DP38840A Specification, National Semiconductor, March 1997
15  *
16  * To do:
17  *
18  *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19  *  o Handle allocation failures in ioc3_init_rings().
20  *  o Use prefetching for large packets.  What is a good lower limit for
21  *    prefetching?
22  *  o We're probably allocating a bit too much memory.
23  *  o Use hardware checksums.
24  *  o Convert to using a IOC3 meta driver.
25  *  o Which PHYs might possibly be attached to the IOC3 in real live,
26  *    which workarounds are required for them?  Do we ever have Lucent's?
27  *  o For the 2.5 branch kill the mii-tool ioctls.
28  */
29 
30 #define IOC3_NAME	"ioc3-eth"
31 #define IOC3_VERSION	"2.6.3-4"
32 
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47 
48 #ifdef CONFIG_SERIAL_8250
49 #include <linux/serial_core.h>
50 #include <linux/serial_8250.h>
51 #include <linux/serial_reg.h>
52 #endif
53 
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/ethtool.h>
57 #include <linux/skbuff.h>
58 #include <net/ip.h>
59 
60 #include <asm/byteorder.h>
61 #include <asm/io.h>
62 #include <asm/pgtable.h>
63 #include <asm/uaccess.h>
64 #include <asm/sn/types.h>
65 #include <asm/sn/ioc3.h>
66 #include <asm/pci/bridge.h>
67 
68 /*
69  * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
70  * value must be a power of two.
71  */
72 #define RX_BUFFS 64
73 
74 #define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
75 #define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
76 
77 /* Private per NIC data of the driver.  */
78 struct ioc3_private {
79 	struct ioc3 *regs;
80 	unsigned long *rxr;		/* pointer to receiver ring */
81 	struct ioc3_etxd *txr;
82 	struct sk_buff *rx_skbs[512];
83 	struct sk_buff *tx_skbs[128];
84 	struct net_device_stats stats;
85 	int rx_ci;			/* RX consumer index */
86 	int rx_pi;			/* RX producer index */
87 	int tx_ci;			/* TX consumer index */
88 	int tx_pi;			/* TX producer index */
89 	int txqlen;
90 	u32 emcr, ehar_h, ehar_l;
91 	spinlock_t ioc3_lock;
92 	struct mii_if_info mii;
93 	unsigned long flags;
94 #define IOC3_FLAG_RX_CHECKSUMS	1
95 
96 	struct pci_dev *pdev;
97 
98 	/* Members used by autonegotiation  */
99 	struct timer_list ioc3_timer;
100 };
101 
priv_netdev(struct ioc3_private * dev)102 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
103 {
104 	return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
105 }
106 
107 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
108 static void ioc3_set_multicast_list(struct net_device *dev);
109 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void ioc3_timeout(struct net_device *dev);
111 static inline unsigned int ioc3_hash(const unsigned char *addr);
112 static inline void ioc3_stop(struct ioc3_private *ip);
113 static void ioc3_init(struct net_device *dev);
114 
115 static const char ioc3_str[] = "IOC3 Ethernet";
116 static const struct ethtool_ops ioc3_ethtool_ops;
117 
118 /* We use this to acquire receive skb's that we can DMA directly into. */
119 
120 #define IOC3_CACHELINE	128UL
121 
aligned_rx_skb_addr(unsigned long addr)122 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
123 {
124 	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
125 }
126 
ioc3_alloc_skb(unsigned long length,unsigned int gfp_mask)127 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
128 	unsigned int gfp_mask)
129 {
130 	struct sk_buff *skb;
131 
132 	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
133 	if (likely(skb)) {
134 		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
135 		if (offset)
136 			skb_reserve(skb, offset);
137 	}
138 
139 	return skb;
140 }
141 
ioc3_map(void * ptr,unsigned long vdev)142 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
143 {
144 #ifdef CONFIG_SGI_IP27
145 	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
146 
147 	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
148 	       ((unsigned long)ptr & TO_PHYS_MASK);
149 #else
150 	return virt_to_bus(ptr);
151 #endif
152 }
153 
154 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
155    1644 while it's actually 1664.  This one was nasty to track down ...  */
156 #define RX_OFFSET		10
157 #define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
158 
159 /* DMA barrier to separate cached and uncached accesses.  */
160 #define BARRIER()							\
161 	__asm__("sync" ::: "memory")
162 
163 
164 #define IOC3_SIZE 0x100000
165 
166 /*
167  * IOC3 is a big endian device
168  *
169  * Unorthodox but makes the users of these macros more readable - the pointer
170  * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
171  * in the environment.
172  */
173 #define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
174 #define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
175 #define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
176 #define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
177 #define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
178 #define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
179 #define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
180 #define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
181 #define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
182 #define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
183 #define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
184 #define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
185 #define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
186 #define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
187 #define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
188 #define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
189 #define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
190 #define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
191 #define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
192 #define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
193 #define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
194 #define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
195 #define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
196 #define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
197 #define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
198 #define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
199 #define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
200 #define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
201 #define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
202 #define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
203 #define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
204 #define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
205 #define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
206 #define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
207 #define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
208 #define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
209 #define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
210 #define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
211 #define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
212 #define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
213 #define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
214 #define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
215 #define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
216 #define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
217 #define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
218 #define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
219 #define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
220 #define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
221 #define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
222 #define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
223 #define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
224 #define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
225 #define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
226 
mcr_pack(u32 pulse,u32 sample)227 static inline u32 mcr_pack(u32 pulse, u32 sample)
228 {
229 	return (pulse << 10) | (sample << 2);
230 }
231 
nic_wait(struct ioc3 * ioc3)232 static int nic_wait(struct ioc3 *ioc3)
233 {
234 	u32 mcr;
235 
236         do {
237                 mcr = ioc3_r_mcr();
238         } while (!(mcr & 2));
239 
240         return mcr & 1;
241 }
242 
nic_reset(struct ioc3 * ioc3)243 static int nic_reset(struct ioc3 *ioc3)
244 {
245         int presence;
246 
247 	ioc3_w_mcr(mcr_pack(500, 65));
248 	presence = nic_wait(ioc3);
249 
250 	ioc3_w_mcr(mcr_pack(0, 500));
251 	nic_wait(ioc3);
252 
253         return presence;
254 }
255 
nic_read_bit(struct ioc3 * ioc3)256 static inline int nic_read_bit(struct ioc3 *ioc3)
257 {
258 	int result;
259 
260 	ioc3_w_mcr(mcr_pack(6, 13));
261 	result = nic_wait(ioc3);
262 	ioc3_w_mcr(mcr_pack(0, 100));
263 	nic_wait(ioc3);
264 
265 	return result;
266 }
267 
nic_write_bit(struct ioc3 * ioc3,int bit)268 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
269 {
270 	if (bit)
271 		ioc3_w_mcr(mcr_pack(6, 110));
272 	else
273 		ioc3_w_mcr(mcr_pack(80, 30));
274 
275 	nic_wait(ioc3);
276 }
277 
278 /*
279  * Read a byte from an iButton device
280  */
nic_read_byte(struct ioc3 * ioc3)281 static u32 nic_read_byte(struct ioc3 *ioc3)
282 {
283 	u32 result = 0;
284 	int i;
285 
286 	for (i = 0; i < 8; i++)
287 		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
288 
289 	return result;
290 }
291 
292 /*
293  * Write a byte to an iButton device
294  */
nic_write_byte(struct ioc3 * ioc3,int byte)295 static void nic_write_byte(struct ioc3 *ioc3, int byte)
296 {
297 	int i, bit;
298 
299 	for (i = 8; i; i--) {
300 		bit = byte & 1;
301 		byte >>= 1;
302 
303 		nic_write_bit(ioc3, bit);
304 	}
305 }
306 
nic_find(struct ioc3 * ioc3,int * last)307 static u64 nic_find(struct ioc3 *ioc3, int *last)
308 {
309 	int a, b, index, disc;
310 	u64 address = 0;
311 
312 	nic_reset(ioc3);
313 	/* Search ROM.  */
314 	nic_write_byte(ioc3, 0xf0);
315 
316 	/* Algorithm from ``Book of iButton Standards''.  */
317 	for (index = 0, disc = 0; index < 64; index++) {
318 		a = nic_read_bit(ioc3);
319 		b = nic_read_bit(ioc3);
320 
321 		if (a && b) {
322 			printk("NIC search failed (not fatal).\n");
323 			*last = 0;
324 			return 0;
325 		}
326 
327 		if (!a && !b) {
328 			if (index == *last) {
329 				address |= 1UL << index;
330 			} else if (index > *last) {
331 				address &= ~(1UL << index);
332 				disc = index;
333 			} else if ((address & (1UL << index)) == 0)
334 				disc = index;
335 			nic_write_bit(ioc3, address & (1UL << index));
336 			continue;
337 		} else {
338 			if (a)
339 				address |= 1UL << index;
340 			else
341 				address &= ~(1UL << index);
342 			nic_write_bit(ioc3, a);
343 			continue;
344 		}
345 	}
346 
347 	*last = disc;
348 
349 	return address;
350 }
351 
nic_init(struct ioc3 * ioc3)352 static int nic_init(struct ioc3 *ioc3)
353 {
354 	const char *unknown = "unknown";
355 	const char *type = unknown;
356 	u8 crc;
357 	u8 serial[6];
358 	int save = 0, i;
359 
360 	while (1) {
361 		u64 reg;
362 		reg = nic_find(ioc3, &save);
363 
364 		switch (reg & 0xff) {
365 		case 0x91:
366 			type = "DS1981U";
367 			break;
368 		default:
369 			if (save == 0) {
370 				/* Let the caller try again.  */
371 				return -1;
372 			}
373 			continue;
374 		}
375 
376 		nic_reset(ioc3);
377 
378 		/* Match ROM.  */
379 		nic_write_byte(ioc3, 0x55);
380 		for (i = 0; i < 8; i++)
381 			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
382 
383 		reg >>= 8; /* Shift out type.  */
384 		for (i = 0; i < 6; i++) {
385 			serial[i] = reg & 0xff;
386 			reg >>= 8;
387 		}
388 		crc = reg & 0xff;
389 		break;
390 	}
391 
392 	printk("Found %s NIC", type);
393 	if (type != unknown)
394 		printk (" registration number %pM, CRC %02x", serial, crc);
395 	printk(".\n");
396 
397 	return 0;
398 }
399 
400 /*
401  * Read the NIC (Number-In-a-Can) device used to store the MAC address on
402  * SN0 / SN00 nodeboards and PCI cards.
403  */
ioc3_get_eaddr_nic(struct ioc3_private * ip)404 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
405 {
406 	struct ioc3 *ioc3 = ip->regs;
407 	u8 nic[14];
408 	int tries = 2; /* There may be some problem with the battery?  */
409 	int i;
410 
411 	ioc3_w_gpcr_s(1 << 21);
412 
413 	while (tries--) {
414 		if (!nic_init(ioc3))
415 			break;
416 		udelay(500);
417 	}
418 
419 	if (tries < 0) {
420 		printk("Failed to read MAC address\n");
421 		return;
422 	}
423 
424 	/* Read Memory.  */
425 	nic_write_byte(ioc3, 0xf0);
426 	nic_write_byte(ioc3, 0x00);
427 	nic_write_byte(ioc3, 0x00);
428 
429 	for (i = 13; i >= 0; i--)
430 		nic[i] = nic_read_byte(ioc3);
431 
432 	for (i = 2; i < 8; i++)
433 		priv_netdev(ip)->dev_addr[i - 2] = nic[i];
434 }
435 
436 /*
437  * Ok, this is hosed by design.  It's necessary to know what machine the
438  * NIC is in in order to know how to read the NIC address.  We also have
439  * to know if it's a PCI card or a NIC in on the node board ...
440  */
ioc3_get_eaddr(struct ioc3_private * ip)441 static void ioc3_get_eaddr(struct ioc3_private *ip)
442 {
443 	ioc3_get_eaddr_nic(ip);
444 
445 	printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
446 }
447 
__ioc3_set_mac_address(struct net_device * dev)448 static void __ioc3_set_mac_address(struct net_device *dev)
449 {
450 	struct ioc3_private *ip = netdev_priv(dev);
451 	struct ioc3 *ioc3 = ip->regs;
452 
453 	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
454 	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
455 	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
456 }
457 
ioc3_set_mac_address(struct net_device * dev,void * addr)458 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
459 {
460 	struct ioc3_private *ip = netdev_priv(dev);
461 	struct sockaddr *sa = addr;
462 
463 	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
464 
465 	spin_lock_irq(&ip->ioc3_lock);
466 	__ioc3_set_mac_address(dev);
467 	spin_unlock_irq(&ip->ioc3_lock);
468 
469 	return 0;
470 }
471 
472 /*
473  * Caller must hold the ioc3_lock ever for MII readers.  This is also
474  * used to protect the transmitter side but it's low contention.
475  */
ioc3_mdio_read(struct net_device * dev,int phy,int reg)476 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
477 {
478 	struct ioc3_private *ip = netdev_priv(dev);
479 	struct ioc3 *ioc3 = ip->regs;
480 
481 	while (ioc3_r_micr() & MICR_BUSY);
482 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
483 	while (ioc3_r_micr() & MICR_BUSY);
484 
485 	return ioc3_r_midr_r() & MIDR_DATA_MASK;
486 }
487 
ioc3_mdio_write(struct net_device * dev,int phy,int reg,int data)488 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
489 {
490 	struct ioc3_private *ip = netdev_priv(dev);
491 	struct ioc3 *ioc3 = ip->regs;
492 
493 	while (ioc3_r_micr() & MICR_BUSY);
494 	ioc3_w_midr_w(data);
495 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
496 	while (ioc3_r_micr() & MICR_BUSY);
497 }
498 
499 static int ioc3_mii_init(struct ioc3_private *ip);
500 
ioc3_get_stats(struct net_device * dev)501 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
502 {
503 	struct ioc3_private *ip = netdev_priv(dev);
504 	struct ioc3 *ioc3 = ip->regs;
505 
506 	ip->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
507 	return &ip->stats;
508 }
509 
ioc3_tcpudp_checksum(struct sk_buff * skb,uint32_t hwsum,int len)510 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
511 {
512 	struct ethhdr *eh = eth_hdr(skb);
513 	uint32_t csum, ehsum;
514 	unsigned int proto;
515 	struct iphdr *ih;
516 	uint16_t *ew;
517 	unsigned char *cp;
518 
519 	/*
520 	 * Did hardware handle the checksum at all?  The cases we can handle
521 	 * are:
522 	 *
523 	 * - TCP and UDP checksums of IPv4 only.
524 	 * - IPv6 would be doable but we keep that for later ...
525 	 * - Only unfragmented packets.  Did somebody already tell you
526 	 *   fragmentation is evil?
527 	 * - don't care about packet size.  Worst case when processing a
528 	 *   malformed packet we'll try to access the packet at ip header +
529 	 *   64 bytes which is still inside the skb.  Even in the unlikely
530 	 *   case where the checksum is right the higher layers will still
531 	 *   drop the packet as appropriate.
532 	 */
533 	if (eh->h_proto != ntohs(ETH_P_IP))
534 		return;
535 
536 	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
537 	if (ih->frag_off & htons(IP_MF | IP_OFFSET))
538 		return;
539 
540 	proto = ih->protocol;
541 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
542 		return;
543 
544 	/* Same as tx - compute csum of pseudo header  */
545 	csum = hwsum +
546 	       (ih->tot_len - (ih->ihl << 2)) +
547 	       htons((uint16_t)ih->protocol) +
548 	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
549 	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
550 
551 	/* Sum up ethernet dest addr, src addr and protocol  */
552 	ew = (uint16_t *) eh;
553 	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
554 
555 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
556 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
557 
558 	csum += 0xffff ^ ehsum;
559 
560 	/* In the next step we also subtract the 1's complement
561 	   checksum of the trailing ethernet CRC.  */
562 	cp = (char *)eh + len;	/* points at trailing CRC */
563 	if (len & 1) {
564 		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
565 		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
566 	} else {
567 		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
568 		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
569 	}
570 
571 	csum = (csum & 0xffff) + (csum >> 16);
572 	csum = (csum & 0xffff) + (csum >> 16);
573 
574 	if (csum == 0xffff)
575 		skb->ip_summed = CHECKSUM_UNNECESSARY;
576 }
577 
ioc3_rx(struct ioc3_private * ip)578 static inline void ioc3_rx(struct ioc3_private *ip)
579 {
580 	struct sk_buff *skb, *new_skb;
581 	struct ioc3 *ioc3 = ip->regs;
582 	int rx_entry, n_entry, len;
583 	struct ioc3_erxbuf *rxb;
584 	unsigned long *rxr;
585 	u32 w0, err;
586 
587 	rxr = (unsigned long *) ip->rxr;		/* Ring base */
588 	rx_entry = ip->rx_ci;				/* RX consume index */
589 	n_entry = ip->rx_pi;
590 
591 	skb = ip->rx_skbs[rx_entry];
592 	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
593 	w0 = be32_to_cpu(rxb->w0);
594 
595 	while (w0 & ERXBUF_V) {
596 		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
597 		if (err & ERXBUF_GOODPKT) {
598 			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
599 			skb_trim(skb, len);
600 			skb->protocol = eth_type_trans(skb, priv_netdev(ip));
601 
602 			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
603 			if (!new_skb) {
604 				/* Ouch, drop packet and just recycle packet
605 				   to keep the ring filled.  */
606 				ip->stats.rx_dropped++;
607 				new_skb = skb;
608 				goto next;
609 			}
610 
611 			if (likely(ip->flags & IOC3_FLAG_RX_CHECKSUMS))
612 				ioc3_tcpudp_checksum(skb,
613 					w0 & ERXBUF_IPCKSUM_MASK, len);
614 
615 			netif_rx(skb);
616 
617 			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
618 
619 			/* Because we reserve afterwards. */
620 			skb_put(new_skb, (1664 + RX_OFFSET));
621 			rxb = (struct ioc3_erxbuf *) new_skb->data;
622 			skb_reserve(new_skb, RX_OFFSET);
623 
624 			ip->stats.rx_packets++;		/* Statistics */
625 			ip->stats.rx_bytes += len;
626 		} else {
627  			/* The frame is invalid and the skb never
628                            reached the network layer so we can just
629                            recycle it.  */
630  			new_skb = skb;
631  			ip->stats.rx_errors++;
632 		}
633 		if (err & ERXBUF_CRCERR)	/* Statistics */
634 			ip->stats.rx_crc_errors++;
635 		if (err & ERXBUF_FRAMERR)
636 			ip->stats.rx_frame_errors++;
637 next:
638 		ip->rx_skbs[n_entry] = new_skb;
639 		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
640 		rxb->w0 = 0;				/* Clear valid flag */
641 		n_entry = (n_entry + 1) & 511;		/* Update erpir */
642 
643 		/* Now go on to the next ring entry.  */
644 		rx_entry = (rx_entry + 1) & 511;
645 		skb = ip->rx_skbs[rx_entry];
646 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
647 		w0 = be32_to_cpu(rxb->w0);
648 	}
649 	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
650 	ip->rx_pi = n_entry;
651 	ip->rx_ci = rx_entry;
652 }
653 
ioc3_tx(struct ioc3_private * ip)654 static inline void ioc3_tx(struct ioc3_private *ip)
655 {
656 	unsigned long packets, bytes;
657 	struct ioc3 *ioc3 = ip->regs;
658 	int tx_entry, o_entry;
659 	struct sk_buff *skb;
660 	u32 etcir;
661 
662 	spin_lock(&ip->ioc3_lock);
663 	etcir = ioc3_r_etcir();
664 
665 	tx_entry = (etcir >> 7) & 127;
666 	o_entry = ip->tx_ci;
667 	packets = 0;
668 	bytes = 0;
669 
670 	while (o_entry != tx_entry) {
671 		packets++;
672 		skb = ip->tx_skbs[o_entry];
673 		bytes += skb->len;
674 		dev_kfree_skb_irq(skb);
675 		ip->tx_skbs[o_entry] = NULL;
676 
677 		o_entry = (o_entry + 1) & 127;		/* Next */
678 
679 		etcir = ioc3_r_etcir();			/* More pkts sent?  */
680 		tx_entry = (etcir >> 7) & 127;
681 	}
682 
683 	ip->stats.tx_packets += packets;
684 	ip->stats.tx_bytes += bytes;
685 	ip->txqlen -= packets;
686 
687 	if (ip->txqlen < 128)
688 		netif_wake_queue(priv_netdev(ip));
689 
690 	ip->tx_ci = o_entry;
691 	spin_unlock(&ip->ioc3_lock);
692 }
693 
694 /*
695  * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
696  * software problems, so we should try to recover
697  * more gracefully if this ever happens.  In theory we might be flooded
698  * with such error interrupts if something really goes wrong, so we might
699  * also consider to take the interface down.
700  */
ioc3_error(struct ioc3_private * ip,u32 eisr)701 static void ioc3_error(struct ioc3_private *ip, u32 eisr)
702 {
703 	struct net_device *dev = priv_netdev(ip);
704 	unsigned char *iface = dev->name;
705 
706 	spin_lock(&ip->ioc3_lock);
707 
708 	if (eisr & EISR_RXOFLO)
709 		printk(KERN_ERR "%s: RX overflow.\n", iface);
710 	if (eisr & EISR_RXBUFOFLO)
711 		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
712 	if (eisr & EISR_RXMEMERR)
713 		printk(KERN_ERR "%s: RX PCI error.\n", iface);
714 	if (eisr & EISR_RXPARERR)
715 		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
716 	if (eisr & EISR_TXBUFUFLO)
717 		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
718 	if (eisr & EISR_TXMEMERR)
719 		printk(KERN_ERR "%s: TX PCI error.\n", iface);
720 
721 	ioc3_stop(ip);
722 	ioc3_init(dev);
723 	ioc3_mii_init(ip);
724 
725 	netif_wake_queue(dev);
726 
727 	spin_unlock(&ip->ioc3_lock);
728 }
729 
730 /* The interrupt handler does all of the Rx thread work and cleans up
731    after the Tx thread.  */
ioc3_interrupt(int irq,void * _dev)732 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
733 {
734 	struct net_device *dev = (struct net_device *)_dev;
735 	struct ioc3_private *ip = netdev_priv(dev);
736 	struct ioc3 *ioc3 = ip->regs;
737 	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
738 	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
739 	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
740 	u32 eisr;
741 
742 	eisr = ioc3_r_eisr() & enabled;
743 
744 	ioc3_w_eisr(eisr);
745 	(void) ioc3_r_eisr();				/* Flush */
746 
747 	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
748 	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
749 		ioc3_error(ip, eisr);
750 	if (eisr & EISR_RXTIMERINT)
751 		ioc3_rx(ip);
752 	if (eisr & EISR_TXEXPLICIT)
753 		ioc3_tx(ip);
754 
755 	return IRQ_HANDLED;
756 }
757 
ioc3_setup_duplex(struct ioc3_private * ip)758 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
759 {
760 	struct ioc3 *ioc3 = ip->regs;
761 
762 	if (ip->mii.full_duplex) {
763 		ioc3_w_etcsr(ETCSR_FD);
764 		ip->emcr |= EMCR_DUPLEX;
765 	} else {
766 		ioc3_w_etcsr(ETCSR_HD);
767 		ip->emcr &= ~EMCR_DUPLEX;
768 	}
769 	ioc3_w_emcr(ip->emcr);
770 }
771 
ioc3_timer(unsigned long data)772 static void ioc3_timer(unsigned long data)
773 {
774 	struct ioc3_private *ip = (struct ioc3_private *) data;
775 
776 	/* Print the link status if it has changed */
777 	mii_check_media(&ip->mii, 1, 0);
778 	ioc3_setup_duplex(ip);
779 
780 	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
781 	add_timer(&ip->ioc3_timer);
782 }
783 
784 /*
785  * Try to find a PHY.  There is no apparent relation between the MII addresses
786  * in the SGI documentation and what we find in reality, so we simply probe
787  * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
788  * onboard IOC3s has the special oddity that probing doesn't seem to find it
789  * yet the interface seems to work fine, so if probing fails we for now will
790  * simply default to PHY 31 instead of bailing out.
791  */
ioc3_mii_init(struct ioc3_private * ip)792 static int ioc3_mii_init(struct ioc3_private *ip)
793 {
794 	struct net_device *dev = priv_netdev(ip);
795 	int i, found = 0, res = 0;
796 	int ioc3_phy_workaround = 1;
797 	u16 word;
798 
799 	for (i = 0; i < 32; i++) {
800 		word = ioc3_mdio_read(dev, i, MII_PHYSID1);
801 
802 		if (word != 0xffff && word != 0x0000) {
803 			found = 1;
804 			break;			/* Found a PHY		*/
805 		}
806 	}
807 
808 	if (!found) {
809 		if (ioc3_phy_workaround)
810 			i = 31;
811 		else {
812 			ip->mii.phy_id = -1;
813 			res = -ENODEV;
814 			goto out;
815 		}
816 	}
817 
818 	ip->mii.phy_id = i;
819 
820 out:
821 	return res;
822 }
823 
ioc3_mii_start(struct ioc3_private * ip)824 static void ioc3_mii_start(struct ioc3_private *ip)
825 {
826 	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
827 	ip->ioc3_timer.data = (unsigned long) ip;
828 	ip->ioc3_timer.function = &ioc3_timer;
829 	add_timer(&ip->ioc3_timer);
830 }
831 
ioc3_clean_rx_ring(struct ioc3_private * ip)832 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
833 {
834 	struct sk_buff *skb;
835 	int i;
836 
837 	for (i = ip->rx_ci; i & 15; i++) {
838 		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
839 		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
840 	}
841 	ip->rx_pi &= 511;
842 	ip->rx_ci &= 511;
843 
844 	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
845 		struct ioc3_erxbuf *rxb;
846 		skb = ip->rx_skbs[i];
847 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
848 		rxb->w0 = 0;
849 	}
850 }
851 
ioc3_clean_tx_ring(struct ioc3_private * ip)852 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
853 {
854 	struct sk_buff *skb;
855 	int i;
856 
857 	for (i=0; i < 128; i++) {
858 		skb = ip->tx_skbs[i];
859 		if (skb) {
860 			ip->tx_skbs[i] = NULL;
861 			dev_kfree_skb_any(skb);
862 		}
863 		ip->txr[i].cmd = 0;
864 	}
865 	ip->tx_pi = 0;
866 	ip->tx_ci = 0;
867 }
868 
ioc3_free_rings(struct ioc3_private * ip)869 static void ioc3_free_rings(struct ioc3_private *ip)
870 {
871 	struct sk_buff *skb;
872 	int rx_entry, n_entry;
873 
874 	if (ip->txr) {
875 		ioc3_clean_tx_ring(ip);
876 		free_pages((unsigned long)ip->txr, 2);
877 		ip->txr = NULL;
878 	}
879 
880 	if (ip->rxr) {
881 		n_entry = ip->rx_ci;
882 		rx_entry = ip->rx_pi;
883 
884 		while (n_entry != rx_entry) {
885 			skb = ip->rx_skbs[n_entry];
886 			if (skb)
887 				dev_kfree_skb_any(skb);
888 
889 			n_entry = (n_entry + 1) & 511;
890 		}
891 		free_page((unsigned long)ip->rxr);
892 		ip->rxr = NULL;
893 	}
894 }
895 
ioc3_alloc_rings(struct net_device * dev)896 static void ioc3_alloc_rings(struct net_device *dev)
897 {
898 	struct ioc3_private *ip = netdev_priv(dev);
899 	struct ioc3_erxbuf *rxb;
900 	unsigned long *rxr;
901 	int i;
902 
903 	if (ip->rxr == NULL) {
904 		/* Allocate and initialize rx ring.  4kb = 512 entries  */
905 		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 		rxr = (unsigned long *) ip->rxr;
907 		if (!rxr)
908 			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
909 
910 		/* Now the rx buffers.  The RX ring may be larger but
911 		   we only allocate 16 buffers for now.  Need to tune
912 		   this for performance and memory later.  */
913 		for (i = 0; i < RX_BUFFS; i++) {
914 			struct sk_buff *skb;
915 
916 			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
917 			if (!skb) {
918 				show_free_areas();
919 				continue;
920 			}
921 
922 			ip->rx_skbs[i] = skb;
923 
924 			/* Because we reserve afterwards. */
925 			skb_put(skb, (1664 + RX_OFFSET));
926 			rxb = (struct ioc3_erxbuf *) skb->data;
927 			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
928 			skb_reserve(skb, RX_OFFSET);
929 		}
930 		ip->rx_ci = 0;
931 		ip->rx_pi = RX_BUFFS;
932 	}
933 
934 	if (ip->txr == NULL) {
935 		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
936 		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
937 		if (!ip->txr)
938 			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
939 		ip->tx_pi = 0;
940 		ip->tx_ci = 0;
941 	}
942 }
943 
ioc3_init_rings(struct net_device * dev)944 static void ioc3_init_rings(struct net_device *dev)
945 {
946 	struct ioc3_private *ip = netdev_priv(dev);
947 	struct ioc3 *ioc3 = ip->regs;
948 	unsigned long ring;
949 
950 	ioc3_free_rings(ip);
951 	ioc3_alloc_rings(dev);
952 
953 	ioc3_clean_rx_ring(ip);
954 	ioc3_clean_tx_ring(ip);
955 
956 	/* Now the rx ring base, consume & produce registers.  */
957 	ring = ioc3_map(ip->rxr, 0);
958 	ioc3_w_erbr_h(ring >> 32);
959 	ioc3_w_erbr_l(ring & 0xffffffff);
960 	ioc3_w_ercir(ip->rx_ci << 3);
961 	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
962 
963 	ring = ioc3_map(ip->txr, 0);
964 
965 	ip->txqlen = 0;					/* nothing queued  */
966 
967 	/* Now the tx ring base, consume & produce registers.  */
968 	ioc3_w_etbr_h(ring >> 32);
969 	ioc3_w_etbr_l(ring & 0xffffffff);
970 	ioc3_w_etpir(ip->tx_pi << 7);
971 	ioc3_w_etcir(ip->tx_ci << 7);
972 	(void) ioc3_r_etcir();				/* Flush */
973 }
974 
ioc3_ssram_disc(struct ioc3_private * ip)975 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
976 {
977 	struct ioc3 *ioc3 = ip->regs;
978 	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
979 	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
980 	unsigned int pattern = 0x5555;
981 
982 	/* Assume the larger size SSRAM and enable parity checking */
983 	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
984 
985 	*ssram0 = pattern;
986 	*ssram1 = ~pattern & IOC3_SSRAM_DM;
987 
988 	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
989 	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
990 		/* set ssram size to 64 KB */
991 		ip->emcr = EMCR_RAMPAR;
992 		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
993 	} else
994 		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
995 }
996 
ioc3_init(struct net_device * dev)997 static void ioc3_init(struct net_device *dev)
998 {
999 	struct ioc3_private *ip = netdev_priv(dev);
1000 	struct ioc3 *ioc3 = ip->regs;
1001 
1002 	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
1003 
1004 	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
1005 	(void) ioc3_r_emcr();			/* Flush WB		*/
1006 	udelay(4);				/* Give it time ...	*/
1007 	ioc3_w_emcr(0);
1008 	(void) ioc3_r_emcr();
1009 
1010 	/* Misc registers  */
1011 #ifdef CONFIG_SGI_IP27
1012 	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1013 #else
1014 	ioc3_w_erbar(0);			/* Let PCI API get it right */
1015 #endif
1016 	(void) ioc3_r_etcdc();			/* Clear on read */
1017 	ioc3_w_ercsr(15);			/* RX low watermark  */
1018 	ioc3_w_ertr(0);				/* Interrupt immediately */
1019 	__ioc3_set_mac_address(dev);
1020 	ioc3_w_ehar_h(ip->ehar_h);
1021 	ioc3_w_ehar_l(ip->ehar_l);
1022 	ioc3_w_ersr(42);			/* XXX should be random */
1023 
1024 	ioc3_init_rings(dev);
1025 
1026 	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1027 	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1028 	ioc3_w_emcr(ip->emcr);
1029 	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030 	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1031 	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1032 	(void) ioc3_r_eier();
1033 }
1034 
ioc3_stop(struct ioc3_private * ip)1035 static inline void ioc3_stop(struct ioc3_private *ip)
1036 {
1037 	struct ioc3 *ioc3 = ip->regs;
1038 
1039 	ioc3_w_emcr(0);				/* Shutup */
1040 	ioc3_w_eier(0);				/* Disable interrupts */
1041 	(void) ioc3_r_eier();			/* Flush */
1042 }
1043 
ioc3_open(struct net_device * dev)1044 static int ioc3_open(struct net_device *dev)
1045 {
1046 	struct ioc3_private *ip = netdev_priv(dev);
1047 
1048 	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049 		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050 
1051 		return -EAGAIN;
1052 	}
1053 
1054 	ip->ehar_h = 0;
1055 	ip->ehar_l = 0;
1056 	ioc3_init(dev);
1057 	ioc3_mii_start(ip);
1058 
1059 	netif_start_queue(dev);
1060 	return 0;
1061 }
1062 
ioc3_close(struct net_device * dev)1063 static int ioc3_close(struct net_device *dev)
1064 {
1065 	struct ioc3_private *ip = netdev_priv(dev);
1066 
1067 	del_timer_sync(&ip->ioc3_timer);
1068 
1069 	netif_stop_queue(dev);
1070 
1071 	ioc3_stop(ip);
1072 	free_irq(dev->irq, dev);
1073 
1074 	ioc3_free_rings(ip);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * MENET cards have four IOC3 chips, which are attached to two sets of
1080  * PCI slot resources each: the primary connections are on slots
1081  * 0..3 and the secondaries are on 4..7
1082  *
1083  * All four ethernets are brought out to connectors; six serial ports
1084  * (a pair from each of the first three IOC3s) are brought out to
1085  * MiniDINs; all other subdevices are left swinging in the wind, leave
1086  * them disabled.
1087  */
1088 
ioc3_adjacent_is_ioc3(struct pci_dev * pdev,int slot)1089 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090 {
1091 	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092 	int ret = 0;
1093 
1094 	if (dev) {
1095 		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1096 			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1097 			ret = 1;
1098 		pci_dev_put(dev);
1099 	}
1100 
1101 	return ret;
1102 }
1103 
ioc3_is_menet(struct pci_dev * pdev)1104 static int ioc3_is_menet(struct pci_dev *pdev)
1105 {
1106 	return pdev->bus->parent == NULL &&
1107 	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1108 	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1109 	       ioc3_adjacent_is_ioc3(pdev, 2);
1110 }
1111 
1112 #ifdef CONFIG_SERIAL_8250
1113 /*
1114  * Note about serial ports and consoles:
1115  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116  * connected to the master node (look in ip27_setup_console() and
1117  * ip27prom_console_write()).
1118  *
1119  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120  * addresses on a partitioned machine. Since we currently use the ioc3
1121  * serial ports, we use dynamic serial port discovery that the serial.c
1122  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124  * than UARTB's, although UARTA on o200s has traditionally been known as
1125  * port 0. So, we just use one serial port from each ioc3 (since the
1126  * serial driver adds addresses to get to higher ports).
1127  *
1128  * The first one to do a register_console becomes the preferred console
1129  * (if there is no kernel command line console= directive). /dev/console
1130  * (ie 5, 1) is then "aliased" into the device number returned by the
1131  * "device" routine referred to in this console structure
1132  * (ip27prom_console_dev).
1133  *
1134  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135  * around ioc3 oddities in this respect.
1136  *
1137  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138  * can be programmed in the SCR register if the DLAB bit is set.
1139  *
1140  * Register to interrupt zero because we share the interrupt with
1141  * the serial driver which we don't properly support yet.
1142  *
1143  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144  * registered.
1145  */
ioc3_8250_register(struct ioc3_uartregs __iomem * uart)1146 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147 {
1148 #define COSMISC_CONSTANT 6
1149 
1150 	struct uart_port port = {
1151 		.irq		= 0,
1152 		.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153 		.iotype		= UPIO_MEM,
1154 		.regshift	= 0,
1155 		.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1156 
1157 		.membase	= (unsigned char __iomem *) uart,
1158 		.mapbase	= (unsigned long) uart,
1159 	};
1160 	unsigned char lcr;
1161 
1162 	lcr = uart->iu_lcr;
1163 	uart->iu_lcr = lcr | UART_LCR_DLAB;
1164 	uart->iu_scr = COSMISC_CONSTANT,
1165 	uart->iu_lcr = lcr;
1166 	uart->iu_lcr;
1167 	serial8250_register_port(&port);
1168 }
1169 
ioc3_serial_probe(struct pci_dev * pdev,struct ioc3 * ioc3)1170 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1171 {
1172 	/*
1173 	 * We need to recognice and treat the fourth MENET serial as it
1174 	 * does not have an SuperIO chip attached to it, therefore attempting
1175 	 * to access it will result in bus errors.  We call something an
1176 	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1177 	 * in it.  This is paranoid but we want to avoid blowing up on a
1178 	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1179 	 * not paranoid enough ...
1180 	 */
1181 	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1182 		return;
1183 
1184 	/*
1185 	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1186 	 * paranoid
1187 	 */
1188 	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1189 	ioc3->gpcr_s;
1190 	ioc3->gppr_6 = 0;
1191 	ioc3->gppr_6;
1192 	ioc3->gppr_7 = 0;
1193 	ioc3->gppr_7;
1194 	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1195 	ioc3->sscr_a;
1196 	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1197 	ioc3->sscr_b;
1198 	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1199 	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1200 			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1201 			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1202 			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1203 	ioc3->sio_iec |= SIO_IR_SA_INT;
1204 	ioc3->sscr_a = 0;
1205 	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1206 			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1207 			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1208 			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1209 	ioc3->sio_iec |= SIO_IR_SB_INT;
1210 	ioc3->sscr_b = 0;
1211 
1212 	ioc3_8250_register(&ioc3->sregs.uarta);
1213 	ioc3_8250_register(&ioc3->sregs.uartb);
1214 }
1215 #endif
1216 
ioc3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1217 static int __devinit ioc3_probe(struct pci_dev *pdev,
1218 	const struct pci_device_id *ent)
1219 {
1220 	unsigned int sw_physid1, sw_physid2;
1221 	struct net_device *dev = NULL;
1222 	struct ioc3_private *ip;
1223 	struct ioc3 *ioc3;
1224 	unsigned long ioc3_base, ioc3_size;
1225 	u32 vendor, model, rev;
1226 	int err, pci_using_dac;
1227 
1228 	/* Configure DMA attributes. */
1229 	err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1230 	if (!err) {
1231 		pci_using_dac = 1;
1232 		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1233 		if (err < 0) {
1234 			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1235 			       "for consistent allocations\n", pci_name(pdev));
1236 			goto out;
1237 		}
1238 	} else {
1239 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1240 		if (err) {
1241 			printk(KERN_ERR "%s: No usable DMA configuration, "
1242 			       "aborting.\n", pci_name(pdev));
1243 			goto out;
1244 		}
1245 		pci_using_dac = 0;
1246 	}
1247 
1248 	if (pci_enable_device(pdev))
1249 		return -ENODEV;
1250 
1251 	dev = alloc_etherdev(sizeof(struct ioc3_private));
1252 	if (!dev) {
1253 		err = -ENOMEM;
1254 		goto out_disable;
1255 	}
1256 
1257 	if (pci_using_dac)
1258 		dev->features |= NETIF_F_HIGHDMA;
1259 
1260 	err = pci_request_regions(pdev, "ioc3");
1261 	if (err)
1262 		goto out_free;
1263 
1264 	SET_NETDEV_DEV(dev, &pdev->dev);
1265 
1266 	ip = netdev_priv(dev);
1267 
1268 	dev->irq = pdev->irq;
1269 
1270 	ioc3_base = pci_resource_start(pdev, 0);
1271 	ioc3_size = pci_resource_len(pdev, 0);
1272 	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1273 	if (!ioc3) {
1274 		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1275 		       pci_name(pdev));
1276 		err = -ENOMEM;
1277 		goto out_res;
1278 	}
1279 	ip->regs = ioc3;
1280 
1281 #ifdef CONFIG_SERIAL_8250
1282 	ioc3_serial_probe(pdev, ioc3);
1283 #endif
1284 
1285 	spin_lock_init(&ip->ioc3_lock);
1286 	init_timer(&ip->ioc3_timer);
1287 
1288 	ioc3_stop(ip);
1289 	ioc3_init(dev);
1290 
1291 	ip->pdev = pdev;
1292 
1293 	ip->mii.phy_id_mask = 0x1f;
1294 	ip->mii.reg_num_mask = 0x1f;
1295 	ip->mii.dev = dev;
1296 	ip->mii.mdio_read = ioc3_mdio_read;
1297 	ip->mii.mdio_write = ioc3_mdio_write;
1298 
1299 	ioc3_mii_init(ip);
1300 
1301 	if (ip->mii.phy_id == -1) {
1302 		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1303 		       pci_name(pdev));
1304 		err = -ENODEV;
1305 		goto out_stop;
1306 	}
1307 
1308 	ioc3_mii_start(ip);
1309 	ioc3_ssram_disc(ip);
1310 	ioc3_get_eaddr(ip);
1311 
1312 	/* The IOC3-specific entries in the device structure. */
1313 	dev->open		= ioc3_open;
1314 	dev->hard_start_xmit	= ioc3_start_xmit;
1315 	dev->tx_timeout		= ioc3_timeout;
1316 	dev->watchdog_timeo	= 5 * HZ;
1317 	dev->stop		= ioc3_close;
1318 	dev->get_stats		= ioc3_get_stats;
1319 	dev->do_ioctl		= ioc3_ioctl;
1320 	dev->set_multicast_list	= ioc3_set_multicast_list;
1321 	dev->set_mac_address	= ioc3_set_mac_address;
1322 	dev->ethtool_ops	= &ioc3_ethtool_ops;
1323 	dev->features		= NETIF_F_IP_CSUM;
1324 
1325 	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1326 	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1327 
1328 	err = register_netdev(dev);
1329 	if (err)
1330 		goto out_stop;
1331 
1332 	mii_check_media(&ip->mii, 1, 1);
1333 	ioc3_setup_duplex(ip);
1334 
1335 	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1336 	model  = (sw_physid2 >> 4) & 0x3f;
1337 	rev    = sw_physid2 & 0xf;
1338 	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1339 	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1340 	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1341 	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1342 
1343 	return 0;
1344 
1345 out_stop:
1346 	ioc3_stop(ip);
1347 	del_timer_sync(&ip->ioc3_timer);
1348 	ioc3_free_rings(ip);
1349 out_res:
1350 	pci_release_regions(pdev);
1351 out_free:
1352 	free_netdev(dev);
1353 out_disable:
1354 	/*
1355 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1356 	 * such a weird device ...
1357 	 */
1358 out:
1359 	return err;
1360 }
1361 
ioc3_remove_one(struct pci_dev * pdev)1362 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1363 {
1364 	struct net_device *dev = pci_get_drvdata(pdev);
1365 	struct ioc3_private *ip = netdev_priv(dev);
1366 	struct ioc3 *ioc3 = ip->regs;
1367 
1368 	unregister_netdev(dev);
1369 	del_timer_sync(&ip->ioc3_timer);
1370 
1371 	iounmap(ioc3);
1372 	pci_release_regions(pdev);
1373 	free_netdev(dev);
1374 	/*
1375 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1376 	 * such a weird device ...
1377 	 */
1378 }
1379 
1380 static struct pci_device_id ioc3_pci_tbl[] = {
1381 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1382 	{ 0 }
1383 };
1384 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1385 
1386 static struct pci_driver ioc3_driver = {
1387 	.name		= "ioc3-eth",
1388 	.id_table	= ioc3_pci_tbl,
1389 	.probe		= ioc3_probe,
1390 	.remove		= __devexit_p(ioc3_remove_one),
1391 };
1392 
ioc3_init_module(void)1393 static int __init ioc3_init_module(void)
1394 {
1395 	return pci_register_driver(&ioc3_driver);
1396 }
1397 
ioc3_cleanup_module(void)1398 static void __exit ioc3_cleanup_module(void)
1399 {
1400 	pci_unregister_driver(&ioc3_driver);
1401 }
1402 
ioc3_start_xmit(struct sk_buff * skb,struct net_device * dev)1403 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1404 {
1405 	unsigned long data;
1406 	struct ioc3_private *ip = netdev_priv(dev);
1407 	struct ioc3 *ioc3 = ip->regs;
1408 	unsigned int len;
1409 	struct ioc3_etxd *desc;
1410 	uint32_t w0 = 0;
1411 	int produce;
1412 
1413 	/*
1414 	 * IOC3 has a fairly simple minded checksumming hardware which simply
1415 	 * adds up the 1's complement checksum for the entire packet and
1416 	 * inserts it at an offset which can be specified in the descriptor
1417 	 * into the transmit packet.  This means we have to compensate for the
1418 	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1419 	 * manually.
1420 	 */
1421 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1422 		const struct iphdr *ih = ip_hdr(skb);
1423 		const int proto = ntohs(ih->protocol);
1424 		unsigned int csoff;
1425 		uint32_t csum, ehsum;
1426 		uint16_t *eh;
1427 
1428 		/* The MAC header.  skb->mac seem the logic approach
1429 		   to find the MAC header - except it's a NULL pointer ...  */
1430 		eh = (uint16_t *) skb->data;
1431 
1432 		/* Sum up dest addr, src addr and protocol  */
1433 		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1434 
1435 		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1436 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1437 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1438 
1439 		/* Skip IP header; it's sum is always zero and was
1440 		   already filled in by ip_output.c */
1441 		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1442 		                          ih->tot_len - (ih->ihl << 2),
1443 		                          proto, 0xffff ^ ehsum);
1444 
1445 		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1446 		csum = (csum & 0xffff) + (csum >> 16);
1447 
1448 		csoff = ETH_HLEN + (ih->ihl << 2);
1449 		if (proto == IPPROTO_UDP) {
1450 			csoff += offsetof(struct udphdr, check);
1451 			udp_hdr(skb)->check = csum;
1452 		}
1453 		if (proto == IPPROTO_TCP) {
1454 			csoff += offsetof(struct tcphdr, check);
1455 			tcp_hdr(skb)->check = csum;
1456 		}
1457 
1458 		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1459 	}
1460 
1461 	spin_lock_irq(&ip->ioc3_lock);
1462 
1463 	data = (unsigned long) skb->data;
1464 	len = skb->len;
1465 
1466 	produce = ip->tx_pi;
1467 	desc = &ip->txr[produce];
1468 
1469 	if (len <= 104) {
1470 		/* Short packet, let's copy it directly into the ring.  */
1471 		skb_copy_from_linear_data(skb, desc->data, skb->len);
1472 		if (len < ETH_ZLEN) {
1473 			/* Very short packet, pad with zeros at the end. */
1474 			memset(desc->data + len, 0, ETH_ZLEN - len);
1475 			len = ETH_ZLEN;
1476 		}
1477 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1478 		desc->bufcnt = cpu_to_be32(len);
1479 	} else if ((data ^ (data + len - 1)) & 0x4000) {
1480 		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1481 		unsigned long s1 = b2 - data;
1482 		unsigned long s2 = data + len - b2;
1483 
1484 		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1485 		                           ETXD_B1V | ETXD_B2V | w0);
1486 		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1487 		                           (s2 << ETXD_B2CNT_SHIFT));
1488 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1489 		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1490 	} else {
1491 		/* Normal sized packet that doesn't cross a page boundary. */
1492 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1493 		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1494 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1495 	}
1496 
1497 	BARRIER();
1498 
1499 	dev->trans_start = jiffies;
1500 	ip->tx_skbs[produce] = skb;			/* Remember skb */
1501 	produce = (produce + 1) & 127;
1502 	ip->tx_pi = produce;
1503 	ioc3_w_etpir(produce << 7);			/* Fire ... */
1504 
1505 	ip->txqlen++;
1506 
1507 	if (ip->txqlen >= 127)
1508 		netif_stop_queue(dev);
1509 
1510 	spin_unlock_irq(&ip->ioc3_lock);
1511 
1512 	return 0;
1513 }
1514 
ioc3_timeout(struct net_device * dev)1515 static void ioc3_timeout(struct net_device *dev)
1516 {
1517 	struct ioc3_private *ip = netdev_priv(dev);
1518 
1519 	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1520 
1521 	spin_lock_irq(&ip->ioc3_lock);
1522 
1523 	ioc3_stop(ip);
1524 	ioc3_init(dev);
1525 	ioc3_mii_init(ip);
1526 	ioc3_mii_start(ip);
1527 
1528 	spin_unlock_irq(&ip->ioc3_lock);
1529 
1530 	netif_wake_queue(dev);
1531 }
1532 
1533 /*
1534  * Given a multicast ethernet address, this routine calculates the
1535  * address's bit index in the logical address filter mask
1536  */
1537 
ioc3_hash(const unsigned char * addr)1538 static inline unsigned int ioc3_hash(const unsigned char *addr)
1539 {
1540 	unsigned int temp = 0;
1541 	u32 crc;
1542 	int bits;
1543 
1544 	crc = ether_crc_le(ETH_ALEN, addr);
1545 
1546 	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1547 	for (bits = 6; --bits >= 0; ) {
1548 		temp <<= 1;
1549 		temp |= (crc & 0x1);
1550 		crc >>= 1;
1551 	}
1552 
1553 	return temp;
1554 }
1555 
ioc3_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1556 static void ioc3_get_drvinfo (struct net_device *dev,
1557 	struct ethtool_drvinfo *info)
1558 {
1559 	struct ioc3_private *ip = netdev_priv(dev);
1560 
1561         strcpy (info->driver, IOC3_NAME);
1562         strcpy (info->version, IOC3_VERSION);
1563         strcpy (info->bus_info, pci_name(ip->pdev));
1564 }
1565 
ioc3_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1566 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1567 {
1568 	struct ioc3_private *ip = netdev_priv(dev);
1569 	int rc;
1570 
1571 	spin_lock_irq(&ip->ioc3_lock);
1572 	rc = mii_ethtool_gset(&ip->mii, cmd);
1573 	spin_unlock_irq(&ip->ioc3_lock);
1574 
1575 	return rc;
1576 }
1577 
ioc3_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1578 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1579 {
1580 	struct ioc3_private *ip = netdev_priv(dev);
1581 	int rc;
1582 
1583 	spin_lock_irq(&ip->ioc3_lock);
1584 	rc = mii_ethtool_sset(&ip->mii, cmd);
1585 	spin_unlock_irq(&ip->ioc3_lock);
1586 
1587 	return rc;
1588 }
1589 
ioc3_nway_reset(struct net_device * dev)1590 static int ioc3_nway_reset(struct net_device *dev)
1591 {
1592 	struct ioc3_private *ip = netdev_priv(dev);
1593 	int rc;
1594 
1595 	spin_lock_irq(&ip->ioc3_lock);
1596 	rc = mii_nway_restart(&ip->mii);
1597 	spin_unlock_irq(&ip->ioc3_lock);
1598 
1599 	return rc;
1600 }
1601 
ioc3_get_link(struct net_device * dev)1602 static u32 ioc3_get_link(struct net_device *dev)
1603 {
1604 	struct ioc3_private *ip = netdev_priv(dev);
1605 	int rc;
1606 
1607 	spin_lock_irq(&ip->ioc3_lock);
1608 	rc = mii_link_ok(&ip->mii);
1609 	spin_unlock_irq(&ip->ioc3_lock);
1610 
1611 	return rc;
1612 }
1613 
ioc3_get_rx_csum(struct net_device * dev)1614 static u32 ioc3_get_rx_csum(struct net_device *dev)
1615 {
1616 	struct ioc3_private *ip = netdev_priv(dev);
1617 
1618 	return ip->flags & IOC3_FLAG_RX_CHECKSUMS;
1619 }
1620 
ioc3_set_rx_csum(struct net_device * dev,u32 data)1621 static int ioc3_set_rx_csum(struct net_device *dev, u32 data)
1622 {
1623 	struct ioc3_private *ip = netdev_priv(dev);
1624 
1625 	spin_lock_bh(&ip->ioc3_lock);
1626 	if (data)
1627 		ip->flags |= IOC3_FLAG_RX_CHECKSUMS;
1628 	else
1629 		ip->flags &= ~IOC3_FLAG_RX_CHECKSUMS;
1630 	spin_unlock_bh(&ip->ioc3_lock);
1631 
1632 	return 0;
1633 }
1634 
1635 static const struct ethtool_ops ioc3_ethtool_ops = {
1636 	.get_drvinfo		= ioc3_get_drvinfo,
1637 	.get_settings		= ioc3_get_settings,
1638 	.set_settings		= ioc3_set_settings,
1639 	.nway_reset		= ioc3_nway_reset,
1640 	.get_link		= ioc3_get_link,
1641 	.get_rx_csum		= ioc3_get_rx_csum,
1642 	.set_rx_csum		= ioc3_set_rx_csum,
1643 	.get_tx_csum		= ethtool_op_get_tx_csum,
1644 	.set_tx_csum		= ethtool_op_set_tx_csum
1645 };
1646 
ioc3_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1647 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1648 {
1649 	struct ioc3_private *ip = netdev_priv(dev);
1650 	int rc;
1651 
1652 	spin_lock_irq(&ip->ioc3_lock);
1653 	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1654 	spin_unlock_irq(&ip->ioc3_lock);
1655 
1656 	return rc;
1657 }
1658 
ioc3_set_multicast_list(struct net_device * dev)1659 static void ioc3_set_multicast_list(struct net_device *dev)
1660 {
1661 	struct dev_mc_list *dmi = dev->mc_list;
1662 	struct ioc3_private *ip = netdev_priv(dev);
1663 	struct ioc3 *ioc3 = ip->regs;
1664 	u64 ehar = 0;
1665 	int i;
1666 
1667 	netif_stop_queue(dev);				/* Lock out others. */
1668 
1669 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1670 		ip->emcr |= EMCR_PROMISC;
1671 		ioc3_w_emcr(ip->emcr);
1672 		(void) ioc3_r_emcr();
1673 	} else {
1674 		ip->emcr &= ~EMCR_PROMISC;
1675 		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1676 		(void) ioc3_r_emcr();
1677 
1678 		if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1679 			/* Too many for hashing to make sense or we want all
1680 			   multicast packets anyway,  so skip computing all the
1681 			   hashes and just accept all packets.  */
1682 			ip->ehar_h = 0xffffffff;
1683 			ip->ehar_l = 0xffffffff;
1684 		} else {
1685 			for (i = 0; i < dev->mc_count; i++) {
1686 				char *addr = dmi->dmi_addr;
1687 				dmi = dmi->next;
1688 
1689 				if (!(*addr & 1))
1690 					continue;
1691 
1692 				ehar |= (1UL << ioc3_hash(addr));
1693 			}
1694 			ip->ehar_h = ehar >> 32;
1695 			ip->ehar_l = ehar & 0xffffffff;
1696 		}
1697 		ioc3_w_ehar_h(ip->ehar_h);
1698 		ioc3_w_ehar_l(ip->ehar_l);
1699 	}
1700 
1701 	netif_wake_queue(dev);			/* Let us get going again. */
1702 }
1703 
1704 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1705 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1706 MODULE_LICENSE("GPL");
1707 
1708 module_init(ioc3_init_module);
1709 module_exit(ioc3_cleanup_module);
1710