• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27 
28 #include <asm/div64.h>
29 
30 #define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33 	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34 	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35 	 IPG_AC_AUTO_INIT)
36 
37 #define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
40 
41 #define ipg_r32(reg)		ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)		ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)		ioread8(ioaddr + (reg))
44 
45 enum {
46 	netdev_io_size = 128
47 };
48 
49 #include "ipg.h"
50 #define DRV_NAME	"ipg"
51 
52 MODULE_AUTHOR("IC Plus Corp. 2003");
53 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
54 MODULE_LICENSE("GPL");
55 
56 /*
57  * Defaults
58  */
59 #define IPG_MAX_RXFRAME_SIZE	0x0600
60 #define IPG_RXFRAG_SIZE		0x0600
61 #define IPG_RXSUPPORT_SIZE	0x0600
62 #define IPG_IS_JUMBO		false
63 
64 /*
65  * Variable record -- index by leading revision/length
66  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
67  */
68 static unsigned short DefaultPhyParam[] = {
69 	/* 11/12/03 IP1000A v1-3 rev=0x40 */
70 	/*--------------------------------------------------------------------------
71 	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
72 				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
73 				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
74 	  --------------------------------------------------------------------------*/
75 	/* 12/17/03 IP1000A v1-4 rev=0x40 */
76 	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
77 	    0x0000,
78 	30, 0x005e, 9, 0x0700,
79 	/* 01/09/04 IP1000A v1-5 rev=0x41 */
80 	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
81 	    0x0000,
82 	30, 0x005e, 9, 0x0700,
83 	0x0000
84 };
85 
86 static const char *ipg_brand_name[] = {
87 	"IC PLUS IP1000 1000/100/10 based NIC",
88 	"Sundance Technology ST2021 based NIC",
89 	"Tamarack Microelectronics TC9020/9021 based NIC",
90 	"Tamarack Microelectronics TC9020/9021 based NIC",
91 	"D-Link NIC",
92 	"D-Link NIC IP1000A"
93 };
94 
95 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
96 	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
97 	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
98 	{ PCI_VDEVICE(SUNDANCE,	0x1021), 2 },
99 	{ PCI_VDEVICE(DLINK,	0x9021), 3 },
100 	{ PCI_VDEVICE(DLINK,	0x4000), 4 },
101 	{ PCI_VDEVICE(DLINK,	0x4020), 5 },
102 	{ 0, }
103 };
104 
105 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
106 
ipg_ioaddr(struct net_device * dev)107 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
108 {
109 	struct ipg_nic_private *sp = netdev_priv(dev);
110 	return sp->ioaddr;
111 }
112 
113 #ifdef IPG_DEBUG
ipg_dump_rfdlist(struct net_device * dev)114 static void ipg_dump_rfdlist(struct net_device *dev)
115 {
116 	struct ipg_nic_private *sp = netdev_priv(dev);
117 	void __iomem *ioaddr = sp->ioaddr;
118 	unsigned int i;
119 	u32 offset;
120 
121 	IPG_DEBUG_MSG("_dump_rfdlist\n");
122 
123 	printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
124 	printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
125 	printk(KERN_INFO "RFDList start address = %16.16lx\n",
126 	       (unsigned long) sp->rxd_map);
127 	printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
128 	       ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
129 
130 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
131 		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
132 		printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
133 		       offset, (unsigned long) sp->rxd[i].next_desc);
134 		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
135 		printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
136 		       offset, (unsigned long) sp->rxd[i].rfs);
137 		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
138 		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
139 		       offset, (unsigned long) sp->rxd[i].frag_info);
140 	}
141 }
142 
ipg_dump_tfdlist(struct net_device * dev)143 static void ipg_dump_tfdlist(struct net_device *dev)
144 {
145 	struct ipg_nic_private *sp = netdev_priv(dev);
146 	void __iomem *ioaddr = sp->ioaddr;
147 	unsigned int i;
148 	u32 offset;
149 
150 	IPG_DEBUG_MSG("_dump_tfdlist\n");
151 
152 	printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
153 	printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
154 	printk(KERN_INFO "TFDList start address = %16.16lx\n",
155 	       (unsigned long) sp->txd_map);
156 	printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
157 	       ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
158 
159 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
160 		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
161 		printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
162 		       offset, (unsigned long) sp->txd[i].next_desc);
163 
164 		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
165 		printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
166 		       offset, (unsigned long) sp->txd[i].tfc);
167 		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
168 		printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
169 		       offset, (unsigned long) sp->txd[i].frag_info);
170 	}
171 }
172 #endif
173 
ipg_write_phy_ctl(void __iomem * ioaddr,u8 data)174 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
175 {
176 	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
177 	ndelay(IPG_PC_PHYCTRLWAIT_NS);
178 }
179 
ipg_drive_phy_ctl_low_high(void __iomem * ioaddr,u8 data)180 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
181 {
182 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
183 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
184 }
185 
send_three_state(void __iomem * ioaddr,u8 phyctrlpolarity)186 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
187 {
188 	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
189 
190 	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
191 }
192 
send_end(void __iomem * ioaddr,u8 phyctrlpolarity)193 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
194 {
195 	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
196 		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
197 }
198 
read_phy_bit(void __iomem * ioaddr,u8 phyctrlpolarity)199 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
200 {
201 	u16 bit_data;
202 
203 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
204 
205 	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
206 
207 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
208 
209 	return bit_data;
210 }
211 
212 /*
213  * Read a register from the Physical Layer device located
214  * on the IPG NIC, using the IPG PHYCTRL register.
215  */
mdio_read(struct net_device * dev,int phy_id,int phy_reg)216 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
217 {
218 	void __iomem *ioaddr = ipg_ioaddr(dev);
219 	/*
220 	 * The GMII mangement frame structure for a read is as follows:
221 	 *
222 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
223 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
224 	 *
225 	 * <32 1s> = 32 consecutive logic 1 values
226 	 * A = bit of Physical Layer device address (MSB first)
227 	 * R = bit of register address (MSB first)
228 	 * z = High impedance state
229 	 * D = bit of read data (MSB first)
230 	 *
231 	 * Transmission order is 'Preamble' field first, bits transmitted
232 	 * left to right (first to last).
233 	 */
234 	struct {
235 		u32 field;
236 		unsigned int len;
237 	} p[] = {
238 		{ GMII_PREAMBLE,	32 },	/* Preamble */
239 		{ GMII_ST,		2  },	/* ST */
240 		{ GMII_READ,		2  },	/* OP */
241 		{ phy_id,		5  },	/* PHYAD */
242 		{ phy_reg,		5  },	/* REGAD */
243 		{ 0x0000,		2  },	/* TA */
244 		{ 0x0000,		16 },	/* DATA */
245 		{ 0x0000,		1  }	/* IDLE */
246 	};
247 	unsigned int i, j;
248 	u8 polarity, data;
249 
250 	polarity  = ipg_r8(PHY_CTRL);
251 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
252 
253 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
254 	for (j = 0; j < 5; j++) {
255 		for (i = 0; i < p[j].len; i++) {
256 			/* For each variable length field, the MSB must be
257 			 * transmitted first. Rotate through the field bits,
258 			 * starting with the MSB, and move each bit into the
259 			 * the 1st (2^1) bit position (this is the bit position
260 			 * corresponding to the MgmtData bit of the PhyCtrl
261 			 * register for the IPG).
262 			 *
263 			 * Example: ST = 01;
264 			 *
265 			 *          First write a '0' to bit 1 of the PhyCtrl
266 			 *          register, then write a '1' to bit 1 of the
267 			 *          PhyCtrl register.
268 			 *
269 			 * To do this, right shift the MSB of ST by the value:
270 			 * [field length - 1 - #ST bits already written]
271 			 * then left shift this result by 1.
272 			 */
273 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
274 			data &= IPG_PC_MGMTDATA;
275 			data |= polarity | IPG_PC_MGMTDIR;
276 
277 			ipg_drive_phy_ctl_low_high(ioaddr, data);
278 		}
279 	}
280 
281 	send_three_state(ioaddr, polarity);
282 
283 	read_phy_bit(ioaddr, polarity);
284 
285 	/*
286 	 * For a read cycle, the bits for the next two fields (TA and
287 	 * DATA) are driven by the PHY (the IPG reads these bits).
288 	 */
289 	for (i = 0; i < p[6].len; i++) {
290 		p[6].field |=
291 		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
292 	}
293 
294 	send_three_state(ioaddr, polarity);
295 	send_three_state(ioaddr, polarity);
296 	send_three_state(ioaddr, polarity);
297 	send_end(ioaddr, polarity);
298 
299 	/* Return the value of the DATA field. */
300 	return p[6].field;
301 }
302 
303 /*
304  * Write to a register from the Physical Layer device located
305  * on the IPG NIC, using the IPG PHYCTRL register.
306  */
mdio_write(struct net_device * dev,int phy_id,int phy_reg,int val)307 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
308 {
309 	void __iomem *ioaddr = ipg_ioaddr(dev);
310 	/*
311 	 * The GMII mangement frame structure for a read is as follows:
312 	 *
313 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
314 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
315 	 *
316 	 * <32 1s> = 32 consecutive logic 1 values
317 	 * A = bit of Physical Layer device address (MSB first)
318 	 * R = bit of register address (MSB first)
319 	 * z = High impedance state
320 	 * D = bit of write data (MSB first)
321 	 *
322 	 * Transmission order is 'Preamble' field first, bits transmitted
323 	 * left to right (first to last).
324 	 */
325 	struct {
326 		u32 field;
327 		unsigned int len;
328 	} p[] = {
329 		{ GMII_PREAMBLE,	32 },	/* Preamble */
330 		{ GMII_ST,		2  },	/* ST */
331 		{ GMII_WRITE,		2  },	/* OP */
332 		{ phy_id,		5  },	/* PHYAD */
333 		{ phy_reg,		5  },	/* REGAD */
334 		{ 0x0002,		2  },	/* TA */
335 		{ val & 0xffff,		16 },	/* DATA */
336 		{ 0x0000,		1  }	/* IDLE */
337 	};
338 	unsigned int i, j;
339 	u8 polarity, data;
340 
341 	polarity  = ipg_r8(PHY_CTRL);
342 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
343 
344 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
345 	for (j = 0; j < 7; j++) {
346 		for (i = 0; i < p[j].len; i++) {
347 			/* For each variable length field, the MSB must be
348 			 * transmitted first. Rotate through the field bits,
349 			 * starting with the MSB, and move each bit into the
350 			 * the 1st (2^1) bit position (this is the bit position
351 			 * corresponding to the MgmtData bit of the PhyCtrl
352 			 * register for the IPG).
353 			 *
354 			 * Example: ST = 01;
355 			 *
356 			 *          First write a '0' to bit 1 of the PhyCtrl
357 			 *          register, then write a '1' to bit 1 of the
358 			 *          PhyCtrl register.
359 			 *
360 			 * To do this, right shift the MSB of ST by the value:
361 			 * [field length - 1 - #ST bits already written]
362 			 * then left shift this result by 1.
363 			 */
364 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
365 			data &= IPG_PC_MGMTDATA;
366 			data |= polarity | IPG_PC_MGMTDIR;
367 
368 			ipg_drive_phy_ctl_low_high(ioaddr, data);
369 		}
370 	}
371 
372 	/* The last cycle is a tri-state, so read from the PHY. */
373 	for (j = 7; j < 8; j++) {
374 		for (i = 0; i < p[j].len; i++) {
375 			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
376 
377 			p[j].field |= ((ipg_r8(PHY_CTRL) &
378 				IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
379 
380 			ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
381 		}
382 	}
383 }
384 
ipg_set_led_mode(struct net_device * dev)385 static void ipg_set_led_mode(struct net_device *dev)
386 {
387 	struct ipg_nic_private *sp = netdev_priv(dev);
388 	void __iomem *ioaddr = sp->ioaddr;
389 	u32 mode;
390 
391 	mode = ipg_r32(ASIC_CTRL);
392 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
393 
394 	if ((sp->led_mode & 0x03) > 1)
395 		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
396 
397 	if ((sp->led_mode & 0x01) == 1)
398 		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
399 
400 	if ((sp->led_mode & 0x08) == 8)
401 		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
402 
403 	ipg_w32(mode, ASIC_CTRL);
404 }
405 
ipg_set_phy_set(struct net_device * dev)406 static void ipg_set_phy_set(struct net_device *dev)
407 {
408 	struct ipg_nic_private *sp = netdev_priv(dev);
409 	void __iomem *ioaddr = sp->ioaddr;
410 	int physet;
411 
412 	physet = ipg_r8(PHY_SET);
413 	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
414 	physet |= ((sp->led_mode & 0x70) >> 4);
415 	ipg_w8(physet, PHY_SET);
416 }
417 
ipg_reset(struct net_device * dev,u32 resetflags)418 static int ipg_reset(struct net_device *dev, u32 resetflags)
419 {
420 	/* Assert functional resets via the IPG AsicCtrl
421 	 * register as specified by the 'resetflags' input
422 	 * parameter.
423 	 */
424 	void __iomem *ioaddr = ipg_ioaddr(dev);
425 	unsigned int timeout_count = 0;
426 
427 	IPG_DEBUG_MSG("_reset\n");
428 
429 	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
430 
431 	/* Delay added to account for problem with 10Mbps reset. */
432 	mdelay(IPG_AC_RESETWAIT);
433 
434 	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
435 		mdelay(IPG_AC_RESETWAIT);
436 		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
437 			return -ETIME;
438 	}
439 	/* Set LED Mode in Asic Control */
440 	ipg_set_led_mode(dev);
441 
442 	/* Set PHYSet Register Value */
443 	ipg_set_phy_set(dev);
444 	return 0;
445 }
446 
447 /* Find the GMII PHY address. */
ipg_find_phyaddr(struct net_device * dev)448 static int ipg_find_phyaddr(struct net_device *dev)
449 {
450 	unsigned int phyaddr, i;
451 
452 	for (i = 0; i < 32; i++) {
453 		u32 status;
454 
455 		/* Search for the correct PHY address among 32 possible. */
456 		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
457 
458 		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
459 		   GMII_PHY_ID1
460 		 */
461 
462 		status = mdio_read(dev, phyaddr, MII_BMSR);
463 
464 		if ((status != 0xFFFF) && (status != 0))
465 			return phyaddr;
466 	}
467 
468 	return 0x1f;
469 }
470 
471 /*
472  * Configure IPG based on result of IEEE 802.3 PHY
473  * auto-negotiation.
474  */
ipg_config_autoneg(struct net_device * dev)475 static int ipg_config_autoneg(struct net_device *dev)
476 {
477 	struct ipg_nic_private *sp = netdev_priv(dev);
478 	void __iomem *ioaddr = sp->ioaddr;
479 	unsigned int txflowcontrol;
480 	unsigned int rxflowcontrol;
481 	unsigned int fullduplex;
482 	u32 mac_ctrl_val;
483 	u32 asicctrl;
484 	u8 phyctrl;
485 
486 	IPG_DEBUG_MSG("_config_autoneg\n");
487 
488 	asicctrl = ipg_r32(ASIC_CTRL);
489 	phyctrl = ipg_r8(PHY_CTRL);
490 	mac_ctrl_val = ipg_r32(MAC_CTRL);
491 
492 	/* Set flags for use in resolving auto-negotation, assuming
493 	 * non-1000Mbps, half duplex, no flow control.
494 	 */
495 	fullduplex = 0;
496 	txflowcontrol = 0;
497 	rxflowcontrol = 0;
498 
499 	/* To accomodate a problem in 10Mbps operation,
500 	 * set a global flag if PHY running in 10Mbps mode.
501 	 */
502 	sp->tenmbpsmode = 0;
503 
504 	printk(KERN_INFO "%s: Link speed = ", dev->name);
505 
506 	/* Determine actual speed of operation. */
507 	switch (phyctrl & IPG_PC_LINK_SPEED) {
508 	case IPG_PC_LINK_SPEED_10MBPS:
509 		printk("10Mbps.\n");
510 		printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
511 		       dev->name);
512 		sp->tenmbpsmode = 1;
513 		break;
514 	case IPG_PC_LINK_SPEED_100MBPS:
515 		printk("100Mbps.\n");
516 		break;
517 	case IPG_PC_LINK_SPEED_1000MBPS:
518 		printk("1000Mbps.\n");
519 		break;
520 	default:
521 		printk("undefined!\n");
522 		return 0;
523 	}
524 
525 	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
526 		fullduplex = 1;
527 		txflowcontrol = 1;
528 		rxflowcontrol = 1;
529 	}
530 
531 	/* Configure full duplex, and flow control. */
532 	if (fullduplex == 1) {
533 		/* Configure IPG for full duplex operation. */
534 		printk(KERN_INFO "%s: setting full duplex, ", dev->name);
535 
536 		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537 
538 		if (txflowcontrol == 1) {
539 			printk("TX flow control");
540 			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 		} else {
542 			printk("no TX flow control");
543 			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544 		}
545 
546 		if (rxflowcontrol == 1) {
547 			printk(", RX flow control.");
548 			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 		} else {
550 			printk(", no RX flow control.");
551 			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552 		}
553 
554 		printk("\n");
555 	} else {
556 		/* Configure IPG for half duplex operation. */
557 		printk(KERN_INFO "%s: setting half duplex, "
558 		       "no TX flow control, no RX flow control.\n", dev->name);
559 
560 		mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
561 			~IPG_MC_TX_FLOW_CONTROL_ENABLE &
562 			~IPG_MC_RX_FLOW_CONTROL_ENABLE;
563 	}
564 	ipg_w32(mac_ctrl_val, MAC_CTRL);
565 	return 0;
566 }
567 
568 /* Determine and configure multicast operation and set
569  * receive mode for IPG.
570  */
ipg_nic_set_multicast_list(struct net_device * dev)571 static void ipg_nic_set_multicast_list(struct net_device *dev)
572 {
573 	void __iomem *ioaddr = ipg_ioaddr(dev);
574 	struct dev_mc_list *mc_list_ptr;
575 	unsigned int hashindex;
576 	u32 hashtable[2];
577 	u8 receivemode;
578 
579 	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
580 
581 	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
582 
583 	if (dev->flags & IFF_PROMISC) {
584 		/* NIC to be configured in promiscuous mode. */
585 		receivemode = IPG_RM_RECEIVEALLFRAMES;
586 	} else if ((dev->flags & IFF_ALLMULTI) ||
587 		   ((dev->flags & IFF_MULTICAST) &&
588 		    (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
589 		/* NIC to be configured to receive all multicast
590 		 * frames. */
591 		receivemode |= IPG_RM_RECEIVEMULTICAST;
592 	} else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
593 		/* NIC to be configured to receive selected
594 		 * multicast addresses. */
595 		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
596 	}
597 
598 	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
599 	 * The IPG applies a cyclic-redundancy-check (the same CRC
600 	 * used to calculate the frame data FCS) to the destination
601 	 * address all incoming multicast frames whose destination
602 	 * address has the multicast bit set. The least significant
603 	 * 6 bits of the CRC result are used as an addressing index
604 	 * into the hash table. If the value of the bit addressed by
605 	 * this index is a 1, the frame is passed to the host system.
606 	 */
607 
608 	/* Clear hashtable. */
609 	hashtable[0] = 0x00000000;
610 	hashtable[1] = 0x00000000;
611 
612 	/* Cycle through all multicast addresses to filter. */
613 	for (mc_list_ptr = dev->mc_list;
614 	     mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
615 		/* Calculate CRC result for each multicast address. */
616 		hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
617 				     ETH_ALEN);
618 
619 		/* Use only the least significant 6 bits. */
620 		hashindex = hashindex & 0x3F;
621 
622 		/* Within "hashtable", set bit number "hashindex"
623 		 * to a logic 1.
624 		 */
625 		set_bit(hashindex, (void *)hashtable);
626 	}
627 
628 	/* Write the value of the hashtable, to the 4, 16 bit
629 	 * HASHTABLE IPG registers.
630 	 */
631 	ipg_w32(hashtable[0], HASHTABLE_0);
632 	ipg_w32(hashtable[1], HASHTABLE_1);
633 
634 	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635 
636 	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638 
ipg_io_config(struct net_device * dev)639 static int ipg_io_config(struct net_device *dev)
640 {
641 	struct ipg_nic_private *sp = netdev_priv(dev);
642 	void __iomem *ioaddr = ipg_ioaddr(dev);
643 	u32 origmacctrl;
644 	u32 restoremacctrl;
645 
646 	IPG_DEBUG_MSG("_io_config\n");
647 
648 	origmacctrl = ipg_r32(MAC_CTRL);
649 
650 	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651 
652 	/* Based on compilation option, determine if FCS is to be
653 	 * stripped on receive frames by IPG.
654 	 */
655 	if (!IPG_STRIP_FCS_ON_RX)
656 		restoremacctrl |= IPG_MC_RCV_FCS;
657 
658 	/* Determine if transmitter and/or receiver are
659 	 * enabled so we may restore MACCTRL correctly.
660 	 */
661 	if (origmacctrl & IPG_MC_TX_ENABLED)
662 		restoremacctrl |= IPG_MC_TX_ENABLE;
663 
664 	if (origmacctrl & IPG_MC_RX_ENABLED)
665 		restoremacctrl |= IPG_MC_RX_ENABLE;
666 
667 	/* Transmitter and receiver must be disabled before setting
668 	 * IFSSelect.
669 	 */
670 	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671 		IPG_MC_RSVD_MASK, MAC_CTRL);
672 
673 	/* Now that transmitter and receiver are disabled, write
674 	 * to IFSSelect.
675 	 */
676 	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677 
678 	/* Set RECEIVEMODE register. */
679 	ipg_nic_set_multicast_list(dev);
680 
681 	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682 
683 	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684 	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685 	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686 	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687 	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688 	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689 	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690 		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691 		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692 		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693 	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694 	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695 
696 	/* IPG multi-frag frame bug workaround.
697 	 * Per silicon revision B3 eratta.
698 	 */
699 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700 
701 	/* IPG TX poll now bug workaround.
702 	 * Per silicon revision B3 eratta.
703 	 */
704 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705 
706 	/* IPG RX poll now bug workaround.
707 	 * Per silicon revision B3 eratta.
708 	 */
709 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710 
711 	/* Now restore MACCTRL to original setting. */
712 	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713 
714 	/* Disable unused RMON statistics. */
715 	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716 
717 	/* Disable unused MIB statistics. */
718 	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719 		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720 		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721 		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722 		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723 		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724 
725 	return 0;
726 }
727 
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
ipg_get_rxbuff(struct net_device * dev,int entry)732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734 	struct ipg_nic_private *sp = netdev_priv(dev);
735 	struct ipg_rx *rxfd = sp->rxd + entry;
736 	struct sk_buff *skb;
737 	u64 rxfragsize;
738 
739 	IPG_DEBUG_MSG("_get_rxbuff\n");
740 
741 	skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN);
742 	if (!skb) {
743 		sp->rx_buff[entry] = NULL;
744 		return -ENOMEM;
745 	}
746 
747 	/* Adjust the data start location within the buffer to
748 	 * align IP address field to a 16 byte boundary.
749 	 */
750 	skb_reserve(skb, NET_IP_ALIGN);
751 
752 	/* Associate the receive buffer with the IPG NIC. */
753 	skb->dev = dev;
754 
755 	/* Save the address of the sk_buff structure. */
756 	sp->rx_buff[entry] = skb;
757 
758 	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
759 		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
760 
761 	/* Set the RFD fragment length. */
762 	rxfragsize = sp->rxfrag_size;
763 	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
764 
765 	return 0;
766 }
767 
init_rfdlist(struct net_device * dev)768 static int init_rfdlist(struct net_device *dev)
769 {
770 	struct ipg_nic_private *sp = netdev_priv(dev);
771 	void __iomem *ioaddr = sp->ioaddr;
772 	unsigned int i;
773 
774 	IPG_DEBUG_MSG("_init_rfdlist\n");
775 
776 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
777 		struct ipg_rx *rxfd = sp->rxd + i;
778 
779 		if (sp->rx_buff[i]) {
780 			pci_unmap_single(sp->pdev,
781 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
782 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
783 			dev_kfree_skb_irq(sp->rx_buff[i]);
784 			sp->rx_buff[i] = NULL;
785 		}
786 
787 		/* Clear out the RFS field. */
788 		rxfd->rfs = 0x0000000000000000;
789 
790 		if (ipg_get_rxbuff(dev, i) < 0) {
791 			/*
792 			 * A receive buffer was not ready, break the
793 			 * RFD list here.
794 			 */
795 			IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
796 
797 			/* Just in case we cannot allocate a single RFD.
798 			 * Should not occur.
799 			 */
800 			if (i == 0) {
801 				printk(KERN_ERR "%s: No memory available"
802 					" for RFD list.\n", dev->name);
803 				return -ENOMEM;
804 			}
805 		}
806 
807 		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
808 			sizeof(struct ipg_rx)*(i + 1));
809 	}
810 	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
811 
812 	sp->rx_current = 0;
813 	sp->rx_dirty = 0;
814 
815 	/* Write the location of the RFDList to the IPG. */
816 	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
817 	ipg_w32(0x00000000, RFD_LIST_PTR_1);
818 
819 	return 0;
820 }
821 
init_tfdlist(struct net_device * dev)822 static void init_tfdlist(struct net_device *dev)
823 {
824 	struct ipg_nic_private *sp = netdev_priv(dev);
825 	void __iomem *ioaddr = sp->ioaddr;
826 	unsigned int i;
827 
828 	IPG_DEBUG_MSG("_init_tfdlist\n");
829 
830 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
831 		struct ipg_tx *txfd = sp->txd + i;
832 
833 		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
834 
835 		if (sp->tx_buff[i]) {
836 			dev_kfree_skb_irq(sp->tx_buff[i]);
837 			sp->tx_buff[i] = NULL;
838 		}
839 
840 		txfd->next_desc = cpu_to_le64(sp->txd_map +
841 			sizeof(struct ipg_tx)*(i + 1));
842 	}
843 	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
844 
845 	sp->tx_current = 0;
846 	sp->tx_dirty = 0;
847 
848 	/* Write the location of the TFDList to the IPG. */
849 	IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
850 		       (u32) sp->txd_map);
851 	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
852 	ipg_w32(0x00000000, TFD_LIST_PTR_1);
853 
854 	sp->reset_current_tfd = 1;
855 }
856 
857 /*
858  * Free all transmit buffers which have already been transfered
859  * via DMA to the IPG.
860  */
ipg_nic_txfree(struct net_device * dev)861 static void ipg_nic_txfree(struct net_device *dev)
862 {
863 	struct ipg_nic_private *sp = netdev_priv(dev);
864 	unsigned int released, pending, dirty;
865 
866 	IPG_DEBUG_MSG("_nic_txfree\n");
867 
868 	pending = sp->tx_current - sp->tx_dirty;
869 	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
870 
871 	for (released = 0; released < pending; released++) {
872 		struct sk_buff *skb = sp->tx_buff[dirty];
873 		struct ipg_tx *txfd = sp->txd + dirty;
874 
875 		IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
876 
877 		/* Look at each TFD's TFC field beginning
878 		 * at the last freed TFD up to the current TFD.
879 		 * If the TFDDone bit is set, free the associated
880 		 * buffer.
881 		 */
882 		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
883                         break;
884 
885 		/* Free the transmit buffer. */
886 		if (skb) {
887 			pci_unmap_single(sp->pdev,
888 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
889 				skb->len, PCI_DMA_TODEVICE);
890 
891 			dev_kfree_skb_irq(skb);
892 
893 			sp->tx_buff[dirty] = NULL;
894 		}
895 		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
896 	}
897 
898 	sp->tx_dirty += released;
899 
900 	if (netif_queue_stopped(dev) &&
901 	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
902 		netif_wake_queue(dev);
903 	}
904 }
905 
ipg_tx_timeout(struct net_device * dev)906 static void ipg_tx_timeout(struct net_device *dev)
907 {
908 	struct ipg_nic_private *sp = netdev_priv(dev);
909 	void __iomem *ioaddr = sp->ioaddr;
910 
911 	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
912 		  IPG_AC_FIFO);
913 
914 	spin_lock_irq(&sp->lock);
915 
916 	/* Re-configure after DMA reset. */
917 	if (ipg_io_config(dev) < 0) {
918 		printk(KERN_INFO "%s: Error during re-configuration.\n",
919 		       dev->name);
920 	}
921 
922 	init_tfdlist(dev);
923 
924 	spin_unlock_irq(&sp->lock);
925 
926 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
927 		MAC_CTRL);
928 }
929 
930 /*
931  * For TxComplete interrupts, free all transmit
932  * buffers which have already been transfered via DMA
933  * to the IPG.
934  */
ipg_nic_txcleanup(struct net_device * dev)935 static void ipg_nic_txcleanup(struct net_device *dev)
936 {
937 	struct ipg_nic_private *sp = netdev_priv(dev);
938 	void __iomem *ioaddr = sp->ioaddr;
939 	unsigned int i;
940 
941 	IPG_DEBUG_MSG("_nic_txcleanup\n");
942 
943 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
944 		/* Reading the TXSTATUS register clears the
945 		 * TX_COMPLETE interrupt.
946 		 */
947 		u32 txstatusdword = ipg_r32(TX_STATUS);
948 
949 		IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
950 
951 		/* Check for Transmit errors. Error bits only valid if
952 		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
953 		 */
954 		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
955 			break;
956 
957 		/* If in 10Mbps mode, indicate transmit is ready. */
958 		if (sp->tenmbpsmode) {
959 			netif_wake_queue(dev);
960 		}
961 
962 		/* Transmit error, increment stat counters. */
963 		if (txstatusdword & IPG_TS_TX_ERROR) {
964 			IPG_DEBUG_MSG("Transmit error.\n");
965 			sp->stats.tx_errors++;
966 		}
967 
968 		/* Late collision, re-enable transmitter. */
969 		if (txstatusdword & IPG_TS_LATE_COLLISION) {
970 			IPG_DEBUG_MSG("Late collision on transmit.\n");
971 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
972 				IPG_MC_RSVD_MASK, MAC_CTRL);
973 		}
974 
975 		/* Maximum collisions, re-enable transmitter. */
976 		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
977 			IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
978 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
979 				IPG_MC_RSVD_MASK, MAC_CTRL);
980 		}
981 
982 		/* Transmit underrun, reset and re-enable
983 		 * transmitter.
984 		 */
985 		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
986 			IPG_DEBUG_MSG("Transmitter underrun.\n");
987 			sp->stats.tx_fifo_errors++;
988 			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
989 				  IPG_AC_NETWORK | IPG_AC_FIFO);
990 
991 			/* Re-configure after DMA reset. */
992 			if (ipg_io_config(dev) < 0) {
993 				printk(KERN_INFO
994 				       "%s: Error during re-configuration.\n",
995 				       dev->name);
996 			}
997 			init_tfdlist(dev);
998 
999 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
1000 				IPG_MC_RSVD_MASK, MAC_CTRL);
1001 		}
1002 	}
1003 
1004 	ipg_nic_txfree(dev);
1005 }
1006 
1007 /* Provides statistical information about the IPG NIC. */
ipg_nic_get_stats(struct net_device * dev)1008 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1009 {
1010 	struct ipg_nic_private *sp = netdev_priv(dev);
1011 	void __iomem *ioaddr = sp->ioaddr;
1012 	u16 temp1;
1013 	u16 temp2;
1014 
1015 	IPG_DEBUG_MSG("_nic_get_stats\n");
1016 
1017 	/* Check to see if the NIC has been initialized via nic_open,
1018 	 * before trying to read statistic registers.
1019 	 */
1020 	if (!test_bit(__LINK_STATE_START, &dev->state))
1021 		return &sp->stats;
1022 
1023 	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1024 	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1025 	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1026 	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1027 	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1028 	sp->stats.rx_errors += temp1;
1029 	sp->stats.rx_missed_errors += temp1;
1030 	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1031 		ipg_r32(IPG_LATECOLLISIONS);
1032 	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1033 	sp->stats.collisions += temp1;
1034 	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1035 	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1036 		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1037 	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1038 
1039 	/* detailed tx_errors */
1040 	sp->stats.tx_carrier_errors += temp2;
1041 
1042 	/* detailed rx_errors */
1043 	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1044 		ipg_r16(IPG_FRAMETOOLONGERRRORS);
1045 	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1046 
1047 	/* Unutilized IPG statistic registers. */
1048 	ipg_r32(IPG_MCSTFRAMESRCVDOK);
1049 
1050 	return &sp->stats;
1051 }
1052 
1053 /* Restore used receive buffers. */
ipg_nic_rxrestore(struct net_device * dev)1054 static int ipg_nic_rxrestore(struct net_device *dev)
1055 {
1056 	struct ipg_nic_private *sp = netdev_priv(dev);
1057 	const unsigned int curr = sp->rx_current;
1058 	unsigned int dirty = sp->rx_dirty;
1059 
1060 	IPG_DEBUG_MSG("_nic_rxrestore\n");
1061 
1062 	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1063 		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1064 
1065 		/* rx_copybreak may poke hole here and there. */
1066 		if (sp->rx_buff[entry])
1067 			continue;
1068 
1069 		/* Generate a new receive buffer to replace the
1070 		 * current buffer (which will be released by the
1071 		 * Linux system).
1072 		 */
1073 		if (ipg_get_rxbuff(dev, entry) < 0) {
1074 			IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1075 
1076 			break;
1077 		}
1078 
1079 		/* Reset the RFS field. */
1080 		sp->rxd[entry].rfs = 0x0000000000000000;
1081 	}
1082 	sp->rx_dirty = dirty;
1083 
1084 	return 0;
1085 }
1086 
1087 /* use jumboindex and jumbosize to control jumbo frame status
1088  * initial status is jumboindex=-1 and jumbosize=0
1089  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1090  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1091  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1092  *               previous receiving and need to continue dumping the current one
1093  */
1094 enum {
1095 	NORMAL_PACKET,
1096 	ERROR_PACKET
1097 };
1098 
1099 enum {
1100 	FRAME_NO_START_NO_END	= 0,
1101 	FRAME_WITH_START		= 1,
1102 	FRAME_WITH_END		= 10,
1103 	FRAME_WITH_START_WITH_END = 11
1104 };
1105 
ipg_nic_rx_free_skb(struct net_device * dev)1106 static void ipg_nic_rx_free_skb(struct net_device *dev)
1107 {
1108 	struct ipg_nic_private *sp = netdev_priv(dev);
1109 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1110 
1111 	if (sp->rx_buff[entry]) {
1112 		struct ipg_rx *rxfd = sp->rxd + entry;
1113 
1114 		pci_unmap_single(sp->pdev,
1115 			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1116 			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1117 		dev_kfree_skb_irq(sp->rx_buff[entry]);
1118 		sp->rx_buff[entry] = NULL;
1119 	}
1120 }
1121 
ipg_nic_rx_check_frame_type(struct net_device * dev)1122 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1123 {
1124 	struct ipg_nic_private *sp = netdev_priv(dev);
1125 	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1126 	int type = FRAME_NO_START_NO_END;
1127 
1128 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1129 		type += FRAME_WITH_START;
1130 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1131 		type += FRAME_WITH_END;
1132 	return type;
1133 }
1134 
ipg_nic_rx_check_error(struct net_device * dev)1135 static int ipg_nic_rx_check_error(struct net_device *dev)
1136 {
1137 	struct ipg_nic_private *sp = netdev_priv(dev);
1138 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1139 	struct ipg_rx *rxfd = sp->rxd + entry;
1140 
1141 	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1142 	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1143 	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1144 	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1145 		IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1146 			      (unsigned long) rxfd->rfs);
1147 
1148 		/* Increment general receive error statistic. */
1149 		sp->stats.rx_errors++;
1150 
1151 		/* Increment detailed receive error statistics. */
1152 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1153 			IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1154 
1155 			sp->stats.rx_fifo_errors++;
1156 		}
1157 
1158 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1159 			IPG_DEBUG_MSG("RX runt occured.\n");
1160 			sp->stats.rx_length_errors++;
1161 		}
1162 
1163 		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1164 		 * error count handled by a IPG statistic register.
1165 		 */
1166 
1167 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1168 			IPG_DEBUG_MSG("RX alignment error occured.\n");
1169 			sp->stats.rx_frame_errors++;
1170 		}
1171 
1172 		/* Do nothing for IPG_RFS_RXFCSERROR, error count
1173 		 * handled by a IPG statistic register.
1174 		 */
1175 
1176 		/* Free the memory associated with the RX
1177 		 * buffer since it is erroneous and we will
1178 		 * not pass it to higher layer processes.
1179 		 */
1180 		if (sp->rx_buff[entry]) {
1181 			pci_unmap_single(sp->pdev,
1182 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1183 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184 
1185 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1186 			sp->rx_buff[entry] = NULL;
1187 		}
1188 		return ERROR_PACKET;
1189 	}
1190 	return NORMAL_PACKET;
1191 }
1192 
ipg_nic_rx_with_start_and_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1193 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1194 					  struct ipg_nic_private *sp,
1195 					  struct ipg_rx *rxfd, unsigned entry)
1196 {
1197 	struct ipg_jumbo *jumbo = &sp->jumbo;
1198 	struct sk_buff *skb;
1199 	int framelen;
1200 
1201 	if (jumbo->found_start) {
1202 		dev_kfree_skb_irq(jumbo->skb);
1203 		jumbo->found_start = 0;
1204 		jumbo->current_size = 0;
1205 		jumbo->skb = NULL;
1206 	}
1207 
1208 	/* 1: found error, 0 no error */
1209 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1210 		return;
1211 
1212 	skb = sp->rx_buff[entry];
1213 	if (!skb)
1214 		return;
1215 
1216 	/* accept this frame and send to upper layer */
1217 	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1218 	if (framelen > sp->rxfrag_size)
1219 		framelen = sp->rxfrag_size;
1220 
1221 	skb_put(skb, framelen);
1222 	skb->protocol = eth_type_trans(skb, dev);
1223 	skb->ip_summed = CHECKSUM_NONE;
1224 	netif_rx(skb);
1225 	sp->rx_buff[entry] = NULL;
1226 }
1227 
ipg_nic_rx_with_start(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1228 static void ipg_nic_rx_with_start(struct net_device *dev,
1229 				  struct ipg_nic_private *sp,
1230 				  struct ipg_rx *rxfd, unsigned entry)
1231 {
1232 	struct ipg_jumbo *jumbo = &sp->jumbo;
1233 	struct pci_dev *pdev = sp->pdev;
1234 	struct sk_buff *skb;
1235 
1236 	/* 1: found error, 0 no error */
1237 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1238 		return;
1239 
1240 	/* accept this frame and send to upper layer */
1241 	skb = sp->rx_buff[entry];
1242 	if (!skb)
1243 		return;
1244 
1245 	if (jumbo->found_start)
1246 		dev_kfree_skb_irq(jumbo->skb);
1247 
1248 	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1249 			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1250 
1251 	skb_put(skb, sp->rxfrag_size);
1252 
1253 	jumbo->found_start = 1;
1254 	jumbo->current_size = sp->rxfrag_size;
1255 	jumbo->skb = skb;
1256 
1257 	sp->rx_buff[entry] = NULL;
1258 }
1259 
ipg_nic_rx_with_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1260 static void ipg_nic_rx_with_end(struct net_device *dev,
1261 				struct ipg_nic_private *sp,
1262 				struct ipg_rx *rxfd, unsigned entry)
1263 {
1264 	struct ipg_jumbo *jumbo = &sp->jumbo;
1265 
1266 	/* 1: found error, 0 no error */
1267 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1268 		struct sk_buff *skb = sp->rx_buff[entry];
1269 
1270 		if (!skb)
1271 			return;
1272 
1273 		if (jumbo->found_start) {
1274 			int framelen, endframelen;
1275 
1276 			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1277 
1278 			endframelen = framelen - jumbo->current_size;
1279 			if (framelen > sp->rxsupport_size)
1280 				dev_kfree_skb_irq(jumbo->skb);
1281 			else {
1282 				memcpy(skb_put(jumbo->skb, endframelen),
1283 				       skb->data, endframelen);
1284 
1285 				jumbo->skb->protocol =
1286 				    eth_type_trans(jumbo->skb, dev);
1287 
1288 				jumbo->skb->ip_summed = CHECKSUM_NONE;
1289 				netif_rx(jumbo->skb);
1290 			}
1291 		}
1292 
1293 		jumbo->found_start = 0;
1294 		jumbo->current_size = 0;
1295 		jumbo->skb = NULL;
1296 
1297 		ipg_nic_rx_free_skb(dev);
1298 	} else {
1299 		dev_kfree_skb_irq(jumbo->skb);
1300 		jumbo->found_start = 0;
1301 		jumbo->current_size = 0;
1302 		jumbo->skb = NULL;
1303 	}
1304 }
1305 
ipg_nic_rx_no_start_no_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1306 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1307 				       struct ipg_nic_private *sp,
1308 				       struct ipg_rx *rxfd, unsigned entry)
1309 {
1310 	struct ipg_jumbo *jumbo = &sp->jumbo;
1311 
1312 	/* 1: found error, 0 no error */
1313 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1314 		struct sk_buff *skb = sp->rx_buff[entry];
1315 
1316 		if (skb) {
1317 			if (jumbo->found_start) {
1318 				jumbo->current_size += sp->rxfrag_size;
1319 				if (jumbo->current_size <= sp->rxsupport_size) {
1320 					memcpy(skb_put(jumbo->skb,
1321 						       sp->rxfrag_size),
1322 					       skb->data, sp->rxfrag_size);
1323 				}
1324 			}
1325 			ipg_nic_rx_free_skb(dev);
1326 		}
1327 	} else {
1328 		dev_kfree_skb_irq(jumbo->skb);
1329 		jumbo->found_start = 0;
1330 		jumbo->current_size = 0;
1331 		jumbo->skb = NULL;
1332 	}
1333 }
1334 
ipg_nic_rx_jumbo(struct net_device * dev)1335 static int ipg_nic_rx_jumbo(struct net_device *dev)
1336 {
1337 	struct ipg_nic_private *sp = netdev_priv(dev);
1338 	unsigned int curr = sp->rx_current;
1339 	void __iomem *ioaddr = sp->ioaddr;
1340 	unsigned int i;
1341 
1342 	IPG_DEBUG_MSG("_nic_rx\n");
1343 
1344 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1345 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1346 		struct ipg_rx *rxfd = sp->rxd + entry;
1347 
1348 		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1349 			break;
1350 
1351 		switch (ipg_nic_rx_check_frame_type(dev)) {
1352 		case FRAME_WITH_START_WITH_END:
1353 			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1354 			break;
1355 		case FRAME_WITH_START:
1356 			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1357 			break;
1358 		case FRAME_WITH_END:
1359 			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1360 			break;
1361 		case FRAME_NO_START_NO_END:
1362 			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1363 			break;
1364 		}
1365 	}
1366 
1367 	sp->rx_current = curr;
1368 
1369 	if (i == IPG_MAXRFDPROCESS_COUNT) {
1370 		/* There are more RFDs to process, however the
1371 		 * allocated amount of RFD processing time has
1372 		 * expired. Assert Interrupt Requested to make
1373 		 * sure we come back to process the remaining RFDs.
1374 		 */
1375 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1376 	}
1377 
1378 	ipg_nic_rxrestore(dev);
1379 
1380 	return 0;
1381 }
1382 
ipg_nic_rx(struct net_device * dev)1383 static int ipg_nic_rx(struct net_device *dev)
1384 {
1385 	/* Transfer received Ethernet frames to higher network layers. */
1386 	struct ipg_nic_private *sp = netdev_priv(dev);
1387 	unsigned int curr = sp->rx_current;
1388 	void __iomem *ioaddr = sp->ioaddr;
1389 	struct ipg_rx *rxfd;
1390 	unsigned int i;
1391 
1392 	IPG_DEBUG_MSG("_nic_rx\n");
1393 
1394 #define __RFS_MASK \
1395 	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1396 
1397 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1398 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1399 		struct sk_buff *skb = sp->rx_buff[entry];
1400 		unsigned int framelen;
1401 
1402 		rxfd = sp->rxd + entry;
1403 
1404 		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1405 			break;
1406 
1407 		/* Get received frame length. */
1408 		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1409 
1410 		/* Check for jumbo frame arrival with too small
1411 		 * RXFRAG_SIZE.
1412 		 */
1413 		if (framelen > sp->rxfrag_size) {
1414 			IPG_DEBUG_MSG
1415 			    ("RFS FrameLen > allocated fragment size.\n");
1416 
1417 			framelen = sp->rxfrag_size;
1418 		}
1419 
1420 		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1421 		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1422 			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1423 			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1424 
1425 			IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1426 				      (unsigned long int) rxfd->rfs);
1427 
1428 			/* Increment general receive error statistic. */
1429 			sp->stats.rx_errors++;
1430 
1431 			/* Increment detailed receive error statistics. */
1432 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1433 				IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1434 				sp->stats.rx_fifo_errors++;
1435 			}
1436 
1437 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1438 				IPG_DEBUG_MSG("RX runt occured.\n");
1439 				sp->stats.rx_length_errors++;
1440 			}
1441 
1442 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1443 			/* Do nothing, error count handled by a IPG
1444 			 * statistic register.
1445 			 */
1446 
1447 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1448 				IPG_DEBUG_MSG("RX alignment error occured.\n");
1449 				sp->stats.rx_frame_errors++;
1450 			}
1451 
1452 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1453 			/* Do nothing, error count handled by a IPG
1454 			 * statistic register.
1455 			 */
1456 
1457 			/* Free the memory associated with the RX
1458 			 * buffer since it is erroneous and we will
1459 			 * not pass it to higher layer processes.
1460 			 */
1461 			if (skb) {
1462 				__le64 info = rxfd->frag_info;
1463 
1464 				pci_unmap_single(sp->pdev,
1465 					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1466 					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1467 
1468 				dev_kfree_skb_irq(skb);
1469 			}
1470 		} else {
1471 
1472 			/* Adjust the new buffer length to accomodate the size
1473 			 * of the received frame.
1474 			 */
1475 			skb_put(skb, framelen);
1476 
1477 			/* Set the buffer's protocol field to Ethernet. */
1478 			skb->protocol = eth_type_trans(skb, dev);
1479 
1480 			/* The IPG encountered an error with (or
1481 			 * there were no) IP/TCP/UDP checksums.
1482 			 * This may or may not indicate an invalid
1483 			 * IP/TCP/UDP frame was received. Let the
1484 			 * upper layer decide.
1485 			 */
1486 			skb->ip_summed = CHECKSUM_NONE;
1487 
1488 			/* Hand off frame for higher layer processing.
1489 			 * The function netif_rx() releases the sk_buff
1490 			 * when processing completes.
1491 			 */
1492 			netif_rx(skb);
1493 		}
1494 
1495 		/* Assure RX buffer is not reused by IPG. */
1496 		sp->rx_buff[entry] = NULL;
1497 	}
1498 
1499 	/*
1500 	 * If there are more RFDs to proces and the allocated amount of RFD
1501 	 * processing time has expired, assert Interrupt Requested to make
1502 	 * sure we come back to process the remaining RFDs.
1503 	 */
1504 	if (i == IPG_MAXRFDPROCESS_COUNT)
1505 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1506 
1507 #ifdef IPG_DEBUG
1508 	/* Check if the RFD list contained no receive frame data. */
1509 	if (!i)
1510 		sp->EmptyRFDListCount++;
1511 #endif
1512 	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1513 	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1514 		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1515 		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1516 
1517 		rxfd = sp->rxd + entry;
1518 
1519 		IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1520 
1521 		/* An unexpected event, additional code needed to handle
1522 		 * properly. So for the time being, just disregard the
1523 		 * frame.
1524 		 */
1525 
1526 		/* Free the memory associated with the RX
1527 		 * buffer since it is erroneous and we will
1528 		 * not pass it to higher layer processes.
1529 		 */
1530 		if (sp->rx_buff[entry]) {
1531 			pci_unmap_single(sp->pdev,
1532 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1533 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1534 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1535 		}
1536 
1537 		/* Assure RX buffer is not reused by IPG. */
1538 		sp->rx_buff[entry] = NULL;
1539 	}
1540 
1541 	sp->rx_current = curr;
1542 
1543 	/* Check to see if there are a minimum number of used
1544 	 * RFDs before restoring any (should improve performance.)
1545 	 */
1546 	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1547 		ipg_nic_rxrestore(dev);
1548 
1549 	return 0;
1550 }
1551 
ipg_reset_after_host_error(struct work_struct * work)1552 static void ipg_reset_after_host_error(struct work_struct *work)
1553 {
1554 	struct ipg_nic_private *sp =
1555 		container_of(work, struct ipg_nic_private, task.work);
1556 	struct net_device *dev = sp->dev;
1557 
1558 	IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1559 
1560 	/*
1561 	 * Acknowledge HostError interrupt by resetting
1562 	 * IPG DMA and HOST.
1563 	 */
1564 	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1565 
1566 	init_rfdlist(dev);
1567 	init_tfdlist(dev);
1568 
1569 	if (ipg_io_config(dev) < 0) {
1570 		printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1571 		       dev->name);
1572 		schedule_delayed_work(&sp->task, HZ);
1573 	}
1574 }
1575 
ipg_interrupt_handler(int irq,void * dev_inst)1576 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1577 {
1578 	struct net_device *dev = dev_inst;
1579 	struct ipg_nic_private *sp = netdev_priv(dev);
1580 	void __iomem *ioaddr = sp->ioaddr;
1581 	unsigned int handled = 0;
1582 	u16 status;
1583 
1584 	IPG_DEBUG_MSG("_interrupt_handler\n");
1585 
1586 	if (sp->is_jumbo)
1587 		ipg_nic_rxrestore(dev);
1588 
1589 	spin_lock(&sp->lock);
1590 
1591 	/* Get interrupt source information, and acknowledge
1592 	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1593 	 * IntRequested, MacControlFrame, LinkEvent) interrupts
1594 	 * if issued. Also, all IPG interrupts are disabled by
1595 	 * reading IntStatusAck.
1596 	 */
1597 	status = ipg_r16(INT_STATUS_ACK);
1598 
1599 	IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1600 
1601 	/* Shared IRQ of remove event. */
1602 	if (!(status & IPG_IS_RSVD_MASK))
1603 		goto out_enable;
1604 
1605 	handled = 1;
1606 
1607 	if (unlikely(!netif_running(dev)))
1608 		goto out_unlock;
1609 
1610 	/* If RFDListEnd interrupt, restore all used RFDs. */
1611 	if (status & IPG_IS_RFD_LIST_END) {
1612 		IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1613 
1614 		/* The RFD list end indicates an RFD was encountered
1615 		 * with a 0 NextPtr, or with an RFDDone bit set to 1
1616 		 * (indicating the RFD is not read for use by the
1617 		 * IPG.) Try to restore all RFDs.
1618 		 */
1619 		ipg_nic_rxrestore(dev);
1620 
1621 #ifdef IPG_DEBUG
1622 		/* Increment the RFDlistendCount counter. */
1623 		sp->RFDlistendCount++;
1624 #endif
1625 	}
1626 
1627 	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1628 	 * IntRequested interrupt, process received frames. */
1629 	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1630 	    (status & IPG_IS_RFD_LIST_END) ||
1631 	    (status & IPG_IS_RX_DMA_COMPLETE) ||
1632 	    (status & IPG_IS_INT_REQUESTED)) {
1633 #ifdef IPG_DEBUG
1634 		/* Increment the RFD list checked counter if interrupted
1635 		 * only to check the RFD list. */
1636 		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1637 				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1638 			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1639 				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1640 				IPG_IS_UPDATE_STATS)))
1641 			sp->RFDListCheckedCount++;
1642 #endif
1643 
1644 		if (sp->is_jumbo)
1645 			ipg_nic_rx_jumbo(dev);
1646 		else
1647 			ipg_nic_rx(dev);
1648 	}
1649 
1650 	/* If TxDMAComplete interrupt, free used TFDs. */
1651 	if (status & IPG_IS_TX_DMA_COMPLETE)
1652 		ipg_nic_txfree(dev);
1653 
1654 	/* TxComplete interrupts indicate one of numerous actions.
1655 	 * Determine what action to take based on TXSTATUS register.
1656 	 */
1657 	if (status & IPG_IS_TX_COMPLETE)
1658 		ipg_nic_txcleanup(dev);
1659 
1660 	/* If UpdateStats interrupt, update Linux Ethernet statistics */
1661 	if (status & IPG_IS_UPDATE_STATS)
1662 		ipg_nic_get_stats(dev);
1663 
1664 	/* If HostError interrupt, reset IPG. */
1665 	if (status & IPG_IS_HOST_ERROR) {
1666 		IPG_DDEBUG_MSG("HostError Interrupt\n");
1667 
1668 		schedule_delayed_work(&sp->task, 0);
1669 	}
1670 
1671 	/* If LinkEvent interrupt, resolve autonegotiation. */
1672 	if (status & IPG_IS_LINK_EVENT) {
1673 		if (ipg_config_autoneg(dev) < 0)
1674 			printk(KERN_INFO "%s: Auto-negotiation error.\n",
1675 			       dev->name);
1676 	}
1677 
1678 	/* If MACCtrlFrame interrupt, do nothing. */
1679 	if (status & IPG_IS_MAC_CTRL_FRAME)
1680 		IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1681 
1682 	/* If RxComplete interrupt, do nothing. */
1683 	if (status & IPG_IS_RX_COMPLETE)
1684 		IPG_DEBUG_MSG("RxComplete interrupt.\n");
1685 
1686 	/* If RxEarly interrupt, do nothing. */
1687 	if (status & IPG_IS_RX_EARLY)
1688 		IPG_DEBUG_MSG("RxEarly interrupt.\n");
1689 
1690 out_enable:
1691 	/* Re-enable IPG interrupts. */
1692 	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1693 		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1694 		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1695 out_unlock:
1696 	spin_unlock(&sp->lock);
1697 
1698 	return IRQ_RETVAL(handled);
1699 }
1700 
ipg_rx_clear(struct ipg_nic_private * sp)1701 static void ipg_rx_clear(struct ipg_nic_private *sp)
1702 {
1703 	unsigned int i;
1704 
1705 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1706 		if (sp->rx_buff[i]) {
1707 			struct ipg_rx *rxfd = sp->rxd + i;
1708 
1709 			dev_kfree_skb_irq(sp->rx_buff[i]);
1710 			sp->rx_buff[i] = NULL;
1711 			pci_unmap_single(sp->pdev,
1712 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1713 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1714 		}
1715 	}
1716 }
1717 
ipg_tx_clear(struct ipg_nic_private * sp)1718 static void ipg_tx_clear(struct ipg_nic_private *sp)
1719 {
1720 	unsigned int i;
1721 
1722 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1723 		if (sp->tx_buff[i]) {
1724 			struct ipg_tx *txfd = sp->txd + i;
1725 
1726 			pci_unmap_single(sp->pdev,
1727 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1728 				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1729 
1730 			dev_kfree_skb_irq(sp->tx_buff[i]);
1731 
1732 			sp->tx_buff[i] = NULL;
1733 		}
1734 	}
1735 }
1736 
ipg_nic_open(struct net_device * dev)1737 static int ipg_nic_open(struct net_device *dev)
1738 {
1739 	struct ipg_nic_private *sp = netdev_priv(dev);
1740 	void __iomem *ioaddr = sp->ioaddr;
1741 	struct pci_dev *pdev = sp->pdev;
1742 	int rc;
1743 
1744 	IPG_DEBUG_MSG("_nic_open\n");
1745 
1746 	sp->rx_buf_sz = sp->rxsupport_size;
1747 
1748 	/* Check for interrupt line conflicts, and request interrupt
1749 	 * line for IPG.
1750 	 *
1751 	 * IMPORTANT: Disable IPG interrupts prior to registering
1752 	 *            IRQ.
1753 	 */
1754 	ipg_w16(0x0000, INT_ENABLE);
1755 
1756 	/* Register the interrupt line to be used by the IPG within
1757 	 * the Linux system.
1758 	 */
1759 	rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1760 			 dev->name, dev);
1761 	if (rc < 0) {
1762 		printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1763 		       dev->name);
1764 		goto out;
1765 	}
1766 
1767 	dev->irq = pdev->irq;
1768 
1769 	rc = -ENOMEM;
1770 
1771 	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1772 				     &sp->rxd_map, GFP_KERNEL);
1773 	if (!sp->rxd)
1774 		goto err_free_irq_0;
1775 
1776 	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1777 				     &sp->txd_map, GFP_KERNEL);
1778 	if (!sp->txd)
1779 		goto err_free_rx_1;
1780 
1781 	rc = init_rfdlist(dev);
1782 	if (rc < 0) {
1783 		printk(KERN_INFO "%s: Error during configuration.\n",
1784 		       dev->name);
1785 		goto err_free_tx_2;
1786 	}
1787 
1788 	init_tfdlist(dev);
1789 
1790 	rc = ipg_io_config(dev);
1791 	if (rc < 0) {
1792 		printk(KERN_INFO "%s: Error during configuration.\n",
1793 		       dev->name);
1794 		goto err_release_tfdlist_3;
1795 	}
1796 
1797 	/* Resolve autonegotiation. */
1798 	if (ipg_config_autoneg(dev) < 0)
1799 		printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1800 
1801 	/* initialize JUMBO Frame control variable */
1802 	sp->jumbo.found_start = 0;
1803 	sp->jumbo.current_size = 0;
1804 	sp->jumbo.skb = NULL;
1805 
1806 	/* Enable transmit and receive operation of the IPG. */
1807 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1808 		 IPG_MC_RSVD_MASK, MAC_CTRL);
1809 
1810 	netif_start_queue(dev);
1811 out:
1812 	return rc;
1813 
1814 err_release_tfdlist_3:
1815 	ipg_tx_clear(sp);
1816 	ipg_rx_clear(sp);
1817 err_free_tx_2:
1818 	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1819 err_free_rx_1:
1820 	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1821 err_free_irq_0:
1822 	free_irq(pdev->irq, dev);
1823 	goto out;
1824 }
1825 
ipg_nic_stop(struct net_device * dev)1826 static int ipg_nic_stop(struct net_device *dev)
1827 {
1828 	struct ipg_nic_private *sp = netdev_priv(dev);
1829 	void __iomem *ioaddr = sp->ioaddr;
1830 	struct pci_dev *pdev = sp->pdev;
1831 
1832 	IPG_DEBUG_MSG("_nic_stop\n");
1833 
1834 	netif_stop_queue(dev);
1835 
1836 	IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1837 	IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1838 	IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1839 	IPG_DUMPTFDLIST(dev);
1840 
1841 	do {
1842 		(void) ipg_r16(INT_STATUS_ACK);
1843 
1844 		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1845 
1846 		synchronize_irq(pdev->irq);
1847 	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1848 
1849 	ipg_rx_clear(sp);
1850 
1851 	ipg_tx_clear(sp);
1852 
1853 	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1854 	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1855 
1856 	free_irq(pdev->irq, dev);
1857 
1858 	return 0;
1859 }
1860 
ipg_nic_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)1861 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1862 {
1863 	struct ipg_nic_private *sp = netdev_priv(dev);
1864 	void __iomem *ioaddr = sp->ioaddr;
1865 	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1866 	unsigned long flags;
1867 	struct ipg_tx *txfd;
1868 
1869 	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1870 
1871 	/* If in 10Mbps mode, stop the transmit queue so
1872 	 * no more transmit frames are accepted.
1873 	 */
1874 	if (sp->tenmbpsmode)
1875 		netif_stop_queue(dev);
1876 
1877 	if (sp->reset_current_tfd) {
1878 		sp->reset_current_tfd = 0;
1879 		entry = 0;
1880 	}
1881 
1882 	txfd = sp->txd + entry;
1883 
1884 	sp->tx_buff[entry] = skb;
1885 
1886 	/* Clear all TFC fields, except TFDDONE. */
1887 	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1888 
1889 	/* Specify the TFC field within the TFD. */
1890 	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1891 		(IPG_TFC_FRAMEID & sp->tx_current) |
1892 		(IPG_TFC_FRAGCOUNT & (1 << 24)));
1893 	/*
1894 	 * 16--17 (WordAlign) <- 3 (disable),
1895 	 * 0--15 (FrameId) <- sp->tx_current,
1896 	 * 24--27 (FragCount) <- 1
1897 	 */
1898 
1899 	/* Request TxComplete interrupts at an interval defined
1900 	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1901 	 * Request TxComplete interrupt for every frame
1902 	 * if in 10Mbps mode to accomodate problem with 10Mbps
1903 	 * processing.
1904 	 */
1905 	if (sp->tenmbpsmode)
1906 		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1907 	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1908 	/* Based on compilation option, determine if FCS is to be
1909 	 * appended to transmit frame by IPG.
1910 	 */
1911 	if (!(IPG_APPEND_FCS_ON_TX))
1912 		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1913 
1914 	/* Based on compilation option, determine if IP, TCP and/or
1915 	 * UDP checksums are to be added to transmit frame by IPG.
1916 	 */
1917 	if (IPG_ADD_IPCHECKSUM_ON_TX)
1918 		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1919 
1920 	if (IPG_ADD_TCPCHECKSUM_ON_TX)
1921 		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1922 
1923 	if (IPG_ADD_UDPCHECKSUM_ON_TX)
1924 		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1925 
1926 	/* Based on compilation option, determine if VLAN tag info is to be
1927 	 * inserted into transmit frame by IPG.
1928 	 */
1929 	if (IPG_INSERT_MANUAL_VLAN_TAG) {
1930 		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1931 			((u64) IPG_MANUAL_VLAN_VID << 32) |
1932 			((u64) IPG_MANUAL_VLAN_CFI << 44) |
1933 			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1934 	}
1935 
1936 	/* The fragment start location within system memory is defined
1937 	 * by the sk_buff structure's data field. The physical address
1938 	 * of this location within the system's virtual memory space
1939 	 * is determined using the IPG_HOST2BUS_MAP function.
1940 	 */
1941 	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1942 		skb->len, PCI_DMA_TODEVICE));
1943 
1944 	/* The length of the fragment within system memory is defined by
1945 	 * the sk_buff structure's len field.
1946 	 */
1947 	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1948 		((u64) (skb->len & 0xffff) << 48));
1949 
1950 	/* Clear the TFDDone bit last to indicate the TFD is ready
1951 	 * for transfer to the IPG.
1952 	 */
1953 	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1954 
1955 	spin_lock_irqsave(&sp->lock, flags);
1956 
1957 	sp->tx_current++;
1958 
1959 	mmiowb();
1960 
1961 	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1962 
1963 	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1964 		netif_stop_queue(dev);
1965 
1966 	spin_unlock_irqrestore(&sp->lock, flags);
1967 
1968 	return NETDEV_TX_OK;
1969 }
1970 
ipg_set_phy_default_param(unsigned char rev,struct net_device * dev,int phy_address)1971 static void ipg_set_phy_default_param(unsigned char rev,
1972 				      struct net_device *dev, int phy_address)
1973 {
1974 	unsigned short length;
1975 	unsigned char revision;
1976 	unsigned short *phy_param;
1977 	unsigned short address, value;
1978 
1979 	phy_param = &DefaultPhyParam[0];
1980 	length = *phy_param & 0x00FF;
1981 	revision = (unsigned char)((*phy_param) >> 8);
1982 	phy_param++;
1983 	while (length != 0) {
1984 		if (rev == revision) {
1985 			while (length > 1) {
1986 				address = *phy_param;
1987 				value = *(phy_param + 1);
1988 				phy_param += 2;
1989 				mdio_write(dev, phy_address, address, value);
1990 				length -= 4;
1991 			}
1992 			break;
1993 		} else {
1994 			phy_param += length / 2;
1995 			length = *phy_param & 0x00FF;
1996 			revision = (unsigned char)((*phy_param) >> 8);
1997 			phy_param++;
1998 		}
1999 	}
2000 }
2001 
read_eeprom(struct net_device * dev,int eep_addr)2002 static int read_eeprom(struct net_device *dev, int eep_addr)
2003 {
2004 	void __iomem *ioaddr = ipg_ioaddr(dev);
2005 	unsigned int i;
2006 	int ret = 0;
2007 	u16 value;
2008 
2009 	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2010 	ipg_w16(value, EEPROM_CTRL);
2011 
2012 	for (i = 0; i < 1000; i++) {
2013 		u16 data;
2014 
2015 		mdelay(10);
2016 		data = ipg_r16(EEPROM_CTRL);
2017 		if (!(data & IPG_EC_EEPROM_BUSY)) {
2018 			ret = ipg_r16(EEPROM_DATA);
2019 			break;
2020 		}
2021 	}
2022 	return ret;
2023 }
2024 
ipg_init_mii(struct net_device * dev)2025 static void ipg_init_mii(struct net_device *dev)
2026 {
2027 	struct ipg_nic_private *sp = netdev_priv(dev);
2028 	struct mii_if_info *mii_if = &sp->mii_if;
2029 	int phyaddr;
2030 
2031 	mii_if->dev          = dev;
2032 	mii_if->mdio_read    = mdio_read;
2033 	mii_if->mdio_write   = mdio_write;
2034 	mii_if->phy_id_mask  = 0x1f;
2035 	mii_if->reg_num_mask = 0x1f;
2036 
2037 	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2038 
2039 	if (phyaddr != 0x1f) {
2040 		u16 mii_phyctrl, mii_1000cr;
2041 		u8 revisionid = 0;
2042 
2043 		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2044 		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2045 			GMII_PHY_1000BASETCONTROL_PreferMaster;
2046 		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2047 
2048 		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2049 
2050 		/* Set default phyparam */
2051 		pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2052 		ipg_set_phy_default_param(revisionid, dev, phyaddr);
2053 
2054 		/* Reset PHY */
2055 		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2056 		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2057 
2058 	}
2059 }
2060 
ipg_hw_init(struct net_device * dev)2061 static int ipg_hw_init(struct net_device *dev)
2062 {
2063 	struct ipg_nic_private *sp = netdev_priv(dev);
2064 	void __iomem *ioaddr = sp->ioaddr;
2065 	unsigned int i;
2066 	int rc;
2067 
2068 	/* Read/Write and Reset EEPROM Value */
2069 	/* Read LED Mode Configuration from EEPROM */
2070 	sp->led_mode = read_eeprom(dev, 6);
2071 
2072 	/* Reset all functions within the IPG. Do not assert
2073 	 * RST_OUT as not compatible with some PHYs.
2074 	 */
2075 	rc = ipg_reset(dev, IPG_RESET_MASK);
2076 	if (rc < 0)
2077 		goto out;
2078 
2079 	ipg_init_mii(dev);
2080 
2081 	/* Read MAC Address from EEPROM */
2082 	for (i = 0; i < 3; i++)
2083 		sp->station_addr[i] = read_eeprom(dev, 16 + i);
2084 
2085 	for (i = 0; i < 3; i++)
2086 		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2087 
2088 	/* Set station address in ethernet_device structure. */
2089 	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2090 	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2091 	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2092 	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2093 	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2094 	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2095 out:
2096 	return rc;
2097 }
2098 
ipg_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2099 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2100 {
2101 	struct ipg_nic_private *sp = netdev_priv(dev);
2102 	int rc;
2103 
2104 	mutex_lock(&sp->mii_mutex);
2105 	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2106 	mutex_unlock(&sp->mii_mutex);
2107 
2108 	return rc;
2109 }
2110 
ipg_nic_change_mtu(struct net_device * dev,int new_mtu)2111 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2112 {
2113 	struct ipg_nic_private *sp = netdev_priv(dev);
2114 	int err;
2115 
2116 	/* Function to accomodate changes to Maximum Transfer Unit
2117 	 * (or MTU) of IPG NIC. Cannot use default function since
2118 	 * the default will not allow for MTU > 1500 bytes.
2119 	 */
2120 
2121 	IPG_DEBUG_MSG("_nic_change_mtu\n");
2122 
2123 	/*
2124 	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2125 	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2126 	 */
2127 	if (new_mtu < 68 || new_mtu > 10240)
2128 		return -EINVAL;
2129 
2130 	err = ipg_nic_stop(dev);
2131 	if (err)
2132 		return err;
2133 
2134 	dev->mtu = new_mtu;
2135 
2136 	sp->max_rxframe_size = new_mtu;
2137 
2138 	sp->rxfrag_size = new_mtu;
2139 	if (sp->rxfrag_size > 4088)
2140 		sp->rxfrag_size = 4088;
2141 
2142 	sp->rxsupport_size = sp->max_rxframe_size;
2143 
2144 	if (new_mtu > 0x0600)
2145 		sp->is_jumbo = true;
2146 	else
2147 		sp->is_jumbo = false;
2148 
2149 	return ipg_nic_open(dev);
2150 }
2151 
ipg_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2152 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2153 {
2154 	struct ipg_nic_private *sp = netdev_priv(dev);
2155 	int rc;
2156 
2157 	mutex_lock(&sp->mii_mutex);
2158 	rc = mii_ethtool_gset(&sp->mii_if, cmd);
2159 	mutex_unlock(&sp->mii_mutex);
2160 
2161 	return rc;
2162 }
2163 
ipg_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2164 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2165 {
2166 	struct ipg_nic_private *sp = netdev_priv(dev);
2167 	int rc;
2168 
2169 	mutex_lock(&sp->mii_mutex);
2170 	rc = mii_ethtool_sset(&sp->mii_if, cmd);
2171 	mutex_unlock(&sp->mii_mutex);
2172 
2173 	return rc;
2174 }
2175 
ipg_nway_reset(struct net_device * dev)2176 static int ipg_nway_reset(struct net_device *dev)
2177 {
2178 	struct ipg_nic_private *sp = netdev_priv(dev);
2179 	int rc;
2180 
2181 	mutex_lock(&sp->mii_mutex);
2182 	rc = mii_nway_restart(&sp->mii_if);
2183 	mutex_unlock(&sp->mii_mutex);
2184 
2185 	return rc;
2186 }
2187 
2188 static struct ethtool_ops ipg_ethtool_ops = {
2189 	.get_settings = ipg_get_settings,
2190 	.set_settings = ipg_set_settings,
2191 	.nway_reset   = ipg_nway_reset,
2192 };
2193 
ipg_remove(struct pci_dev * pdev)2194 static void __devexit ipg_remove(struct pci_dev *pdev)
2195 {
2196 	struct net_device *dev = pci_get_drvdata(pdev);
2197 	struct ipg_nic_private *sp = netdev_priv(dev);
2198 
2199 	IPG_DEBUG_MSG("_remove\n");
2200 
2201 	/* Un-register Ethernet device. */
2202 	unregister_netdev(dev);
2203 
2204 	pci_iounmap(pdev, sp->ioaddr);
2205 
2206 	pci_release_regions(pdev);
2207 
2208 	free_netdev(dev);
2209 	pci_disable_device(pdev);
2210 	pci_set_drvdata(pdev, NULL);
2211 }
2212 
2213 static const struct net_device_ops ipg_netdev_ops = {
2214 	.ndo_open		= ipg_nic_open,
2215 	.ndo_stop		= ipg_nic_stop,
2216 	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
2217 	.ndo_get_stats		= ipg_nic_get_stats,
2218 	.ndo_set_multicast_list = ipg_nic_set_multicast_list,
2219 	.ndo_do_ioctl		= ipg_ioctl,
2220 	.ndo_tx_timeout 	= ipg_tx_timeout,
2221 	.ndo_change_mtu 	= ipg_nic_change_mtu,
2222 	.ndo_set_mac_address	= eth_mac_addr,
2223 	.ndo_validate_addr	= eth_validate_addr,
2224 };
2225 
ipg_probe(struct pci_dev * pdev,const struct pci_device_id * id)2226 static int __devinit ipg_probe(struct pci_dev *pdev,
2227 			       const struct pci_device_id *id)
2228 {
2229 	unsigned int i = id->driver_data;
2230 	struct ipg_nic_private *sp;
2231 	struct net_device *dev;
2232 	void __iomem *ioaddr;
2233 	int rc;
2234 
2235 	rc = pci_enable_device(pdev);
2236 	if (rc < 0)
2237 		goto out;
2238 
2239 	printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2240 
2241 	pci_set_master(pdev);
2242 
2243 	rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2244 	if (rc < 0) {
2245 		rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2246 		if (rc < 0) {
2247 			printk(KERN_ERR "%s: DMA config failed.\n",
2248 			       pci_name(pdev));
2249 			goto err_disable_0;
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * Initialize net device.
2255 	 */
2256 	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2257 	if (!dev) {
2258 		printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2259 		rc = -ENOMEM;
2260 		goto err_disable_0;
2261 	}
2262 
2263 	sp = netdev_priv(dev);
2264 	spin_lock_init(&sp->lock);
2265 	mutex_init(&sp->mii_mutex);
2266 
2267 	sp->is_jumbo = IPG_IS_JUMBO;
2268 	sp->rxfrag_size = IPG_RXFRAG_SIZE;
2269 	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2270 	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2271 
2272 	/* Declare IPG NIC functions for Ethernet device methods.
2273 	 */
2274 	dev->netdev_ops = &ipg_netdev_ops;
2275 	SET_NETDEV_DEV(dev, &pdev->dev);
2276 	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2277 
2278 	rc = pci_request_regions(pdev, DRV_NAME);
2279 	if (rc)
2280 		goto err_free_dev_1;
2281 
2282 	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2283 	if (!ioaddr) {
2284 		printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2285 		rc = -EIO;
2286 		goto err_release_regions_2;
2287 	}
2288 
2289 	/* Save the pointer to the PCI device information. */
2290 	sp->ioaddr = ioaddr;
2291 	sp->pdev = pdev;
2292 	sp->dev = dev;
2293 
2294 	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2295 
2296 	pci_set_drvdata(pdev, dev);
2297 
2298 	rc = ipg_hw_init(dev);
2299 	if (rc < 0)
2300 		goto err_unmap_3;
2301 
2302 	rc = register_netdev(dev);
2303 	if (rc < 0)
2304 		goto err_unmap_3;
2305 
2306 	printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2307 out:
2308 	return rc;
2309 
2310 err_unmap_3:
2311 	pci_iounmap(pdev, ioaddr);
2312 err_release_regions_2:
2313 	pci_release_regions(pdev);
2314 err_free_dev_1:
2315 	free_netdev(dev);
2316 err_disable_0:
2317 	pci_disable_device(pdev);
2318 	goto out;
2319 }
2320 
2321 static struct pci_driver ipg_pci_driver = {
2322 	.name		= IPG_DRIVER_NAME,
2323 	.id_table	= ipg_pci_tbl,
2324 	.probe		= ipg_probe,
2325 	.remove		= __devexit_p(ipg_remove),
2326 };
2327 
ipg_init_module(void)2328 static int __init ipg_init_module(void)
2329 {
2330 	return pci_register_driver(&ipg_pci_driver);
2331 }
2332 
ipg_exit_module(void)2333 static void __exit ipg_exit_module(void)
2334 {
2335 	pci_unregister_driver(&ipg_pci_driver);
2336 }
2337 
2338 module_init(ipg_init_module);
2339 module_exit(ipg_exit_module);
2340