• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Alchemy Semi Au1000 IrDA driver
3  *
4  * Copyright 2001 MontaVista Software Inc.
5  * Author: MontaVista Software, Inc.
6  *         	ppopov@mvista.com or source@mvista.com
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20  */
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/interrupt.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 
32 #include <asm/irq.h>
33 #include <asm/io.h>
34 #include <asm/au1000.h>
35 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36 #include <asm/pb1000.h>
37 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38 #include <asm/db1x00.h>
39 #else
40 #error au1k_ir: unsupported board
41 #endif
42 
43 #include <net/irda/irda.h>
44 #include <net/irda/irmod.h>
45 #include <net/irda/wrapper.h>
46 #include <net/irda/irda_device.h>
47 #include "au1000_ircc.h"
48 
49 static int au1k_irda_net_init(struct net_device *);
50 static int au1k_irda_start(struct net_device *);
51 static int au1k_irda_stop(struct net_device *dev);
52 static int au1k_irda_hard_xmit(struct sk_buff *, struct net_device *);
53 static int au1k_irda_rx(struct net_device *);
54 static void au1k_irda_interrupt(int, void *);
55 static void au1k_tx_timeout(struct net_device *);
56 static int au1k_irda_ioctl(struct net_device *, struct ifreq *, int);
57 static int au1k_irda_set_speed(struct net_device *dev, int speed);
58 
59 static void *dma_alloc(size_t, dma_addr_t *);
60 static void dma_free(void *, size_t);
61 
62 static int qos_mtt_bits = 0x07;  /* 1 ms or more */
63 static struct net_device *ir_devs[NUM_IR_IFF];
64 static char version[] __devinitdata =
65     "au1k_ircc:1.2 ppopov@mvista.com\n";
66 
67 #define RUN_AT(x) (jiffies + (x))
68 
69 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
70 static BCSR * const bcsr = (BCSR *)0xAE000000;
71 #endif
72 
73 static DEFINE_SPINLOCK(ir_lock);
74 
75 /*
76  * IrDA peripheral bug. You have to read the register
77  * twice to get the right value.
78  */
read_ir_reg(u32 addr)79 u32 read_ir_reg(u32 addr)
80 {
81 	readl(addr);
82 	return readl(addr);
83 }
84 
85 
86 /*
87  * Buffer allocation/deallocation routines. The buffer descriptor returned
88  * has the virtual and dma address of a buffer suitable for
89  * both, receive and transmit operations.
90  */
GetFreeDB(struct au1k_private * aup)91 static db_dest_t *GetFreeDB(struct au1k_private *aup)
92 {
93 	db_dest_t *pDB;
94 	pDB = aup->pDBfree;
95 
96 	if (pDB) {
97 		aup->pDBfree = pDB->pnext;
98 	}
99 	return pDB;
100 }
101 
ReleaseDB(struct au1k_private * aup,db_dest_t * pDB)102 static void ReleaseDB(struct au1k_private *aup, db_dest_t *pDB)
103 {
104 	db_dest_t *pDBfree = aup->pDBfree;
105 	if (pDBfree)
106 		pDBfree->pnext = pDB;
107 	aup->pDBfree = pDB;
108 }
109 
110 
111 /*
112   DMA memory allocation, derived from pci_alloc_consistent.
113   However, the Au1000 data cache is coherent (when programmed
114   so), therefore we return KSEG0 address, not KSEG1.
115 */
dma_alloc(size_t size,dma_addr_t * dma_handle)116 static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
117 {
118 	void *ret;
119 	int gfp = GFP_ATOMIC | GFP_DMA;
120 
121 	ret = (void *) __get_free_pages(gfp, get_order(size));
122 
123 	if (ret != NULL) {
124 		memset(ret, 0, size);
125 		*dma_handle = virt_to_bus(ret);
126 		ret = (void *)KSEG0ADDR(ret);
127 	}
128 	return ret;
129 }
130 
131 
dma_free(void * vaddr,size_t size)132 static void dma_free(void *vaddr, size_t size)
133 {
134 	vaddr = (void *)KSEG0ADDR(vaddr);
135 	free_pages((unsigned long) vaddr, get_order(size));
136 }
137 
138 
139 static void
setup_hw_rings(struct au1k_private * aup,u32 rx_base,u32 tx_base)140 setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base)
141 {
142 	int i;
143 	for (i=0; i<NUM_IR_DESC; i++) {
144 		aup->rx_ring[i] = (volatile ring_dest_t *)
145 			(rx_base + sizeof(ring_dest_t)*i);
146 	}
147 	for (i=0; i<NUM_IR_DESC; i++) {
148 		aup->tx_ring[i] = (volatile ring_dest_t *)
149 			(tx_base + sizeof(ring_dest_t)*i);
150 	}
151 }
152 
au1k_irda_init(void)153 static int au1k_irda_init(void)
154 {
155 	static unsigned version_printed = 0;
156 	struct au1k_private *aup;
157 	struct net_device *dev;
158 	int err;
159 
160 	if (version_printed++ == 0) printk(version);
161 
162 	dev = alloc_irdadev(sizeof(struct au1k_private));
163 	if (!dev)
164 		return -ENOMEM;
165 
166 	dev->irq = AU1000_IRDA_RX_INT; /* TX has its own interrupt */
167 	err = au1k_irda_net_init(dev);
168 	if (err)
169 		goto out;
170 	err = register_netdev(dev);
171 	if (err)
172 		goto out1;
173 	ir_devs[0] = dev;
174 	printk(KERN_INFO "IrDA: Registered device %s\n", dev->name);
175 	return 0;
176 
177 out1:
178 	aup = netdev_priv(dev);
179 	dma_free((void *)aup->db[0].vaddr,
180 		MAX_BUF_SIZE * 2*NUM_IR_DESC);
181 	dma_free((void *)aup->rx_ring[0],
182 		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
183 	kfree(aup->rx_buff.head);
184 out:
185 	free_netdev(dev);
186 	return err;
187 }
188 
au1k_irda_init_iobuf(iobuff_t * io,int size)189 static int au1k_irda_init_iobuf(iobuff_t *io, int size)
190 {
191 	io->head = kmalloc(size, GFP_KERNEL);
192 	if (io->head != NULL) {
193 		io->truesize = size;
194 		io->in_frame = FALSE;
195 		io->state    = OUTSIDE_FRAME;
196 		io->data     = io->head;
197 	}
198 	return io->head ? 0 : -ENOMEM;
199 }
200 
au1k_irda_net_init(struct net_device * dev)201 static int au1k_irda_net_init(struct net_device *dev)
202 {
203 	struct au1k_private *aup = netdev_priv(dev);
204 	int i, retval = 0, err;
205 	db_dest_t *pDB, *pDBfree;
206 	dma_addr_t temp;
207 
208 	err = au1k_irda_init_iobuf(&aup->rx_buff, 14384);
209 	if (err)
210 		goto out1;
211 
212 	dev->open = au1k_irda_start;
213 	dev->hard_start_xmit = au1k_irda_hard_xmit;
214 	dev->stop = au1k_irda_stop;
215 	dev->do_ioctl = au1k_irda_ioctl;
216 	dev->tx_timeout = au1k_tx_timeout;
217 
218 	irda_init_max_qos_capabilies(&aup->qos);
219 
220 	/* The only value we must override it the baudrate */
221 	aup->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
222 		IR_115200|IR_576000 |(IR_4000000 << 8);
223 
224 	aup->qos.min_turn_time.bits = qos_mtt_bits;
225 	irda_qos_bits_to_value(&aup->qos);
226 
227 	retval = -ENOMEM;
228 
229 	/* Tx ring follows rx ring + 512 bytes */
230 	/* we need a 1k aligned buffer */
231 	aup->rx_ring[0] = (ring_dest_t *)
232 		dma_alloc(2*MAX_NUM_IR_DESC*(sizeof(ring_dest_t)), &temp);
233 	if (!aup->rx_ring[0])
234 		goto out2;
235 
236 	/* allocate the data buffers */
237 	aup->db[0].vaddr =
238 		(void *)dma_alloc(MAX_BUF_SIZE * 2*NUM_IR_DESC, &temp);
239 	if (!aup->db[0].vaddr)
240 		goto out3;
241 
242 	setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512);
243 
244 	pDBfree = NULL;
245 	pDB = aup->db;
246 	for (i=0; i<(2*NUM_IR_DESC); i++) {
247 		pDB->pnext = pDBfree;
248 		pDBfree = pDB;
249 		pDB->vaddr =
250 			(u32 *)((unsigned)aup->db[0].vaddr + MAX_BUF_SIZE*i);
251 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
252 		pDB++;
253 	}
254 	aup->pDBfree = pDBfree;
255 
256 	/* attach a data buffer to each descriptor */
257 	for (i=0; i<NUM_IR_DESC; i++) {
258 		pDB = GetFreeDB(aup);
259 		if (!pDB) goto out;
260 		aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
261 		aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
262 		aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
263 		aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
264 		aup->rx_db_inuse[i] = pDB;
265 	}
266 	for (i=0; i<NUM_IR_DESC; i++) {
267 		pDB = GetFreeDB(aup);
268 		if (!pDB) goto out;
269 		aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff);
270 		aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr>>8) & 0xff);
271 		aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr>>16) & 0xff);
272 		aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr>>24) & 0xff);
273 		aup->tx_ring[i]->count_0 = 0;
274 		aup->tx_ring[i]->count_1 = 0;
275 		aup->tx_ring[i]->flags = 0;
276 		aup->tx_db_inuse[i] = pDB;
277 	}
278 
279 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
280 	/* power on */
281 	bcsr->resets &= ~BCSR_RESETS_IRDA_MODE_MASK;
282 	bcsr->resets |= BCSR_RESETS_IRDA_MODE_FULL;
283 	au_sync();
284 #endif
285 
286 	return 0;
287 
288 out3:
289 	dma_free((void *)aup->rx_ring[0],
290 		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
291 out2:
292 	kfree(aup->rx_buff.head);
293 out1:
294 	printk(KERN_ERR "au1k_init_module failed.  Returns %d\n", retval);
295 	return retval;
296 }
297 
298 
au1k_init(struct net_device * dev)299 static int au1k_init(struct net_device *dev)
300 {
301 	struct au1k_private *aup = netdev_priv(dev);
302 	int i;
303 	u32 control;
304 	u32 ring_address;
305 
306 	/* bring the device out of reset */
307 	control = 0xe; /* coherent, clock enable, one half system clock */
308 
309 #ifndef CONFIG_CPU_LITTLE_ENDIAN
310 	control |= 1;
311 #endif
312 	aup->tx_head = 0;
313 	aup->tx_tail = 0;
314 	aup->rx_head = 0;
315 
316 	for (i=0; i<NUM_IR_DESC; i++) {
317 		aup->rx_ring[i]->flags = AU_OWN;
318 	}
319 
320 	writel(control, IR_INTERFACE_CONFIG);
321 	au_sync_delay(10);
322 
323 	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE); /* disable PHY */
324 	au_sync_delay(1);
325 
326 	writel(MAX_BUF_SIZE, IR_MAX_PKT_LEN);
327 
328 	ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]);
329 	writel(ring_address >> 26, IR_RING_BASE_ADDR_H);
330 	writel((ring_address >> 10) & 0xffff, IR_RING_BASE_ADDR_L);
331 
332 	writel(RING_SIZE_64<<8 | RING_SIZE_64<<12, IR_RING_SIZE);
333 
334 	writel(1<<2 | IR_ONE_PIN, IR_CONFIG_2); /* 48MHz */
335 	writel(0, IR_RING_ADDR_CMPR);
336 
337 	au1k_irda_set_speed(dev, 9600);
338 	return 0;
339 }
340 
au1k_irda_start(struct net_device * dev)341 static int au1k_irda_start(struct net_device *dev)
342 {
343 	int retval;
344 	char hwname[32];
345 	struct au1k_private *aup = netdev_priv(dev);
346 
347 	if ((retval = au1k_init(dev))) {
348 		printk(KERN_ERR "%s: error in au1k_init\n", dev->name);
349 		return retval;
350 	}
351 
352 	if ((retval = request_irq(AU1000_IRDA_TX_INT, &au1k_irda_interrupt,
353 					0, dev->name, dev))) {
354 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
355 				dev->name, dev->irq);
356 		return retval;
357 	}
358 	if ((retval = request_irq(AU1000_IRDA_RX_INT, &au1k_irda_interrupt,
359 					0, dev->name, dev))) {
360 		free_irq(AU1000_IRDA_TX_INT, dev);
361 		printk(KERN_ERR "%s: unable to get IRQ %d\n",
362 				dev->name, dev->irq);
363 		return retval;
364 	}
365 
366 	/* Give self a hardware name */
367 	sprintf(hwname, "Au1000 SIR/FIR");
368 	aup->irlap = irlap_open(dev, &aup->qos, hwname);
369 	netif_start_queue(dev);
370 
371 	writel(read_ir_reg(IR_CONFIG_2) | 1<<8, IR_CONFIG_2); /* int enable */
372 
373 	aup->timer.expires = RUN_AT((3*HZ));
374 	aup->timer.data = (unsigned long)dev;
375 	return 0;
376 }
377 
au1k_irda_stop(struct net_device * dev)378 static int au1k_irda_stop(struct net_device *dev)
379 {
380 	struct au1k_private *aup = netdev_priv(dev);
381 
382 	/* disable interrupts */
383 	writel(read_ir_reg(IR_CONFIG_2) & ~(1<<8), IR_CONFIG_2);
384 	writel(0, IR_CONFIG_1);
385 	writel(0, IR_INTERFACE_CONFIG); /* disable clock */
386 	au_sync();
387 
388 	if (aup->irlap) {
389 		irlap_close(aup->irlap);
390 		aup->irlap = NULL;
391 	}
392 
393 	netif_stop_queue(dev);
394 	del_timer(&aup->timer);
395 
396 	/* disable the interrupt */
397 	free_irq(AU1000_IRDA_TX_INT, dev);
398 	free_irq(AU1000_IRDA_RX_INT, dev);
399 	return 0;
400 }
401 
au1k_irda_exit(void)402 static void __exit au1k_irda_exit(void)
403 {
404 	struct net_device *dev = ir_devs[0];
405 	struct au1k_private *aup = netdev_priv(dev);
406 
407 	unregister_netdev(dev);
408 
409 	dma_free((void *)aup->db[0].vaddr,
410 		MAX_BUF_SIZE * 2*NUM_IR_DESC);
411 	dma_free((void *)aup->rx_ring[0],
412 		2 * MAX_NUM_IR_DESC*(sizeof(ring_dest_t)));
413 	kfree(aup->rx_buff.head);
414 	free_netdev(dev);
415 }
416 
417 
418 static inline void
update_tx_stats(struct net_device * dev,u32 status,u32 pkt_len)419 update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
420 {
421 	struct au1k_private *aup = netdev_priv(dev);
422 	struct net_device_stats *ps = &aup->stats;
423 
424 	ps->tx_packets++;
425 	ps->tx_bytes += pkt_len;
426 
427 	if (status & IR_TX_ERROR) {
428 		ps->tx_errors++;
429 		ps->tx_aborted_errors++;
430 	}
431 }
432 
433 
au1k_tx_ack(struct net_device * dev)434 static void au1k_tx_ack(struct net_device *dev)
435 {
436 	struct au1k_private *aup = netdev_priv(dev);
437 	volatile ring_dest_t *ptxd;
438 
439 	ptxd = aup->tx_ring[aup->tx_tail];
440 	while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) {
441 		update_tx_stats(dev, ptxd->flags,
442 				ptxd->count_1<<8 | ptxd->count_0);
443 		ptxd->count_0 = 0;
444 		ptxd->count_1 = 0;
445 		au_sync();
446 
447 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1);
448 		ptxd = aup->tx_ring[aup->tx_tail];
449 
450 		if (aup->tx_full) {
451 			aup->tx_full = 0;
452 			netif_wake_queue(dev);
453 		}
454 	}
455 
456 	if (aup->tx_tail == aup->tx_head) {
457 		if (aup->newspeed) {
458 			au1k_irda_set_speed(dev, aup->newspeed);
459 			aup->newspeed = 0;
460 		}
461 		else {
462 			writel(read_ir_reg(IR_CONFIG_1) & ~IR_TX_ENABLE,
463 					IR_CONFIG_1);
464 			au_sync();
465 			writel(read_ir_reg(IR_CONFIG_1) | IR_RX_ENABLE,
466 					IR_CONFIG_1);
467 			writel(0, IR_RING_PROMPT);
468 			au_sync();
469 		}
470 	}
471 }
472 
473 
474 /*
475  * Au1000 transmit routine.
476  */
au1k_irda_hard_xmit(struct sk_buff * skb,struct net_device * dev)477 static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
478 {
479 	struct au1k_private *aup = netdev_priv(dev);
480 	int speed = irda_get_next_speed(skb);
481 	volatile ring_dest_t *ptxd;
482 	u32 len;
483 
484 	u32 flags;
485 	db_dest_t *pDB;
486 
487 	if (speed != aup->speed && speed != -1) {
488 		aup->newspeed = speed;
489 	}
490 
491 	if ((skb->len == 0) && (aup->newspeed)) {
492 		if (aup->tx_tail == aup->tx_head) {
493 			au1k_irda_set_speed(dev, speed);
494 			aup->newspeed = 0;
495 		}
496 		dev_kfree_skb(skb);
497 		return 0;
498 	}
499 
500 	ptxd = aup->tx_ring[aup->tx_head];
501 	flags = ptxd->flags;
502 
503 	if (flags & AU_OWN) {
504 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
505 		netif_stop_queue(dev);
506 		aup->tx_full = 1;
507 		return 1;
508 	}
509 	else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) {
510 		printk(KERN_DEBUG "%s: tx_full\n", dev->name);
511 		netif_stop_queue(dev);
512 		aup->tx_full = 1;
513 		return 1;
514 	}
515 
516 	pDB = aup->tx_db_inuse[aup->tx_head];
517 
518 #if 0
519 	if (read_ir_reg(IR_RX_BYTE_CNT) != 0) {
520 		printk("tx warning: rx byte cnt %x\n",
521 				read_ir_reg(IR_RX_BYTE_CNT));
522 	}
523 #endif
524 
525 	if (aup->speed == 4000000) {
526 		/* FIR */
527 		skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
528 		ptxd->count_0 = skb->len & 0xff;
529 		ptxd->count_1 = (skb->len >> 8) & 0xff;
530 
531 	}
532 	else {
533 		/* SIR */
534 		len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE);
535 		ptxd->count_0 = len & 0xff;
536 		ptxd->count_1 = (len >> 8) & 0xff;
537 		ptxd->flags |= IR_DIS_CRC;
538 		au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
539 	}
540 	ptxd->flags |= AU_OWN;
541 	au_sync();
542 
543 	writel(read_ir_reg(IR_CONFIG_1) | IR_TX_ENABLE, IR_CONFIG_1);
544 	writel(0, IR_RING_PROMPT);
545 	au_sync();
546 
547 	dev_kfree_skb(skb);
548 	aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1);
549 	dev->trans_start = jiffies;
550 	return 0;
551 }
552 
553 
554 static inline void
update_rx_stats(struct net_device * dev,u32 status,u32 count)555 update_rx_stats(struct net_device *dev, u32 status, u32 count)
556 {
557 	struct au1k_private *aup = netdev_priv(dev);
558 	struct net_device_stats *ps = &aup->stats;
559 
560 	ps->rx_packets++;
561 
562 	if (status & IR_RX_ERROR) {
563 		ps->rx_errors++;
564 		if (status & (IR_PHY_ERROR|IR_FIFO_OVER))
565 			ps->rx_missed_errors++;
566 		if (status & IR_MAX_LEN)
567 			ps->rx_length_errors++;
568 		if (status & IR_CRC_ERROR)
569 			ps->rx_crc_errors++;
570 	}
571 	else
572 		ps->rx_bytes += count;
573 }
574 
575 /*
576  * Au1000 receive routine.
577  */
au1k_irda_rx(struct net_device * dev)578 static int au1k_irda_rx(struct net_device *dev)
579 {
580 	struct au1k_private *aup = netdev_priv(dev);
581 	struct sk_buff *skb;
582 	volatile ring_dest_t *prxd;
583 	u32 flags, count;
584 	db_dest_t *pDB;
585 
586 	prxd = aup->rx_ring[aup->rx_head];
587 	flags = prxd->flags;
588 
589 	while (!(flags & AU_OWN))  {
590 		pDB = aup->rx_db_inuse[aup->rx_head];
591 		count = prxd->count_1<<8 | prxd->count_0;
592 		if (!(flags & IR_RX_ERROR))  {
593 			/* good frame */
594 			update_rx_stats(dev, flags, count);
595 			skb=alloc_skb(count+1,GFP_ATOMIC);
596 			if (skb == NULL) {
597 				aup->netdev->stats.rx_dropped++;
598 				continue;
599 			}
600 			skb_reserve(skb, 1);
601 			if (aup->speed == 4000000)
602 				skb_put(skb, count);
603 			else
604 				skb_put(skb, count-2);
605 			skb_copy_to_linear_data(skb, pDB->vaddr, count - 2);
606 			skb->dev = dev;
607 			skb_reset_mac_header(skb);
608 			skb->protocol = htons(ETH_P_IRDA);
609 			netif_rx(skb);
610 			prxd->count_0 = 0;
611 			prxd->count_1 = 0;
612 		}
613 		prxd->flags |= AU_OWN;
614 		aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1);
615 		writel(0, IR_RING_PROMPT);
616 		au_sync();
617 
618 		/* next descriptor */
619 		prxd = aup->rx_ring[aup->rx_head];
620 		flags = prxd->flags;
621 
622 	}
623 	return 0;
624 }
625 
626 
au1k_irda_interrupt(int dummy,void * dev_id)627 static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id)
628 {
629 	struct net_device *dev = dev_id;
630 
631 	writel(0, IR_INT_CLEAR); /* ack irda interrupts */
632 
633 	au1k_irda_rx(dev);
634 	au1k_tx_ack(dev);
635 
636 	return IRQ_HANDLED;
637 }
638 
639 
640 /*
641  * The Tx ring has been full longer than the watchdog timeout
642  * value. The transmitter must be hung?
643  */
au1k_tx_timeout(struct net_device * dev)644 static void au1k_tx_timeout(struct net_device *dev)
645 {
646 	u32 speed;
647 	struct au1k_private *aup = netdev_priv(dev);
648 
649 	printk(KERN_ERR "%s: tx timeout\n", dev->name);
650 	speed = aup->speed;
651 	aup->speed = 0;
652 	au1k_irda_set_speed(dev, speed);
653 	aup->tx_full = 0;
654 	netif_wake_queue(dev);
655 }
656 
657 
658 /*
659  * Set the IrDA communications speed.
660  */
661 static int
au1k_irda_set_speed(struct net_device * dev,int speed)662 au1k_irda_set_speed(struct net_device *dev, int speed)
663 {
664 	unsigned long flags;
665 	struct au1k_private *aup = netdev_priv(dev);
666 	u32 control;
667 	int ret = 0, timeout = 10, i;
668 	volatile ring_dest_t *ptxd;
669 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
670 	unsigned long irda_resets;
671 #endif
672 
673 	if (speed == aup->speed)
674 		return ret;
675 
676 	spin_lock_irqsave(&ir_lock, flags);
677 
678 	/* disable PHY first */
679 	writel(read_ir_reg(IR_ENABLE) & ~0x8000, IR_ENABLE);
680 
681 	/* disable RX/TX */
682 	writel(read_ir_reg(IR_CONFIG_1) & ~(IR_RX_ENABLE|IR_TX_ENABLE),
683 			IR_CONFIG_1);
684 	au_sync_delay(1);
685 	while (read_ir_reg(IR_ENABLE) & (IR_RX_STATUS | IR_TX_STATUS)) {
686 		mdelay(1);
687 		if (!timeout--) {
688 			printk(KERN_ERR "%s: rx/tx disable timeout\n",
689 					dev->name);
690 			break;
691 		}
692 	}
693 
694 	/* disable DMA */
695 	writel(read_ir_reg(IR_CONFIG_1) & ~IR_DMA_ENABLE, IR_CONFIG_1);
696 	au_sync_delay(1);
697 
698 	/*
699 	 *  After we disable tx/rx. the index pointers
700  	 * go back to zero.
701 	 */
702 	aup->tx_head = aup->tx_tail = aup->rx_head = 0;
703 	for (i=0; i<NUM_IR_DESC; i++) {
704 		ptxd = aup->tx_ring[i];
705 		ptxd->flags = 0;
706 		ptxd->count_0 = 0;
707 		ptxd->count_1 = 0;
708 	}
709 
710 	for (i=0; i<NUM_IR_DESC; i++) {
711 		ptxd = aup->rx_ring[i];
712 		ptxd->count_0 = 0;
713 		ptxd->count_1 = 0;
714 		ptxd->flags = AU_OWN;
715 	}
716 
717 	if (speed == 4000000) {
718 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
719 		bcsr->resets |= BCSR_RESETS_FIR_SEL;
720 #else /* Pb1000 and Pb1100 */
721 		writel(1<<13, CPLD_AUX1);
722 #endif
723 	}
724 	else {
725 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
726 		bcsr->resets &= ~BCSR_RESETS_FIR_SEL;
727 #else /* Pb1000 and Pb1100 */
728 		writel(readl(CPLD_AUX1) & ~(1<<13), CPLD_AUX1);
729 #endif
730 	}
731 
732 	switch (speed) {
733 	case 9600:
734 		writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
735 		writel(IR_SIR_MODE, IR_CONFIG_1);
736 		break;
737 	case 19200:
738 		writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
739 		writel(IR_SIR_MODE, IR_CONFIG_1);
740 		break;
741 	case 38400:
742 		writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
743 		writel(IR_SIR_MODE, IR_CONFIG_1);
744 		break;
745 	case 57600:
746 		writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG);
747 		writel(IR_SIR_MODE, IR_CONFIG_1);
748 		break;
749 	case 115200:
750 		writel(12<<5, IR_WRITE_PHY_CONFIG);
751 		writel(IR_SIR_MODE, IR_CONFIG_1);
752 		break;
753 	case 4000000:
754 		writel(0xF, IR_WRITE_PHY_CONFIG);
755 		writel(IR_FIR|IR_DMA_ENABLE|IR_RX_ENABLE, IR_CONFIG_1);
756 		break;
757 	default:
758 		printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed);
759 		ret = -EINVAL;
760 		break;
761 	}
762 
763 	aup->speed = speed;
764 	writel(read_ir_reg(IR_ENABLE) | 0x8000, IR_ENABLE);
765 	au_sync();
766 
767 	control = read_ir_reg(IR_ENABLE);
768 	writel(0, IR_RING_PROMPT);
769 	au_sync();
770 
771 	if (control & (1<<14)) {
772 		printk(KERN_ERR "%s: configuration error\n", dev->name);
773 	}
774 	else {
775 		if (control & (1<<11))
776 			printk(KERN_DEBUG "%s Valid SIR config\n", dev->name);
777 		if (control & (1<<12))
778 			printk(KERN_DEBUG "%s Valid MIR config\n", dev->name);
779 		if (control & (1<<13))
780 			printk(KERN_DEBUG "%s Valid FIR config\n", dev->name);
781 		if (control & (1<<10))
782 			printk(KERN_DEBUG "%s TX enabled\n", dev->name);
783 		if (control & (1<<9))
784 			printk(KERN_DEBUG "%s RX enabled\n", dev->name);
785 	}
786 
787 	spin_unlock_irqrestore(&ir_lock, flags);
788 	return ret;
789 }
790 
791 static int
au1k_irda_ioctl(struct net_device * dev,struct ifreq * ifreq,int cmd)792 au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
793 {
794 	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
795 	struct au1k_private *aup = netdev_priv(dev);
796 	int ret = -EOPNOTSUPP;
797 
798 	switch (cmd) {
799 	case SIOCSBANDWIDTH:
800 		if (capable(CAP_NET_ADMIN)) {
801 			/*
802 			 * We are unable to set the speed if the
803 			 * device is not running.
804 			 */
805 			if (aup->open)
806 				ret = au1k_irda_set_speed(dev,
807 						rq->ifr_baudrate);
808 			else {
809 				printk(KERN_ERR "%s ioctl: !netif_running\n",
810 						dev->name);
811 				ret = 0;
812 			}
813 		}
814 		break;
815 
816 	case SIOCSMEDIABUSY:
817 		ret = -EPERM;
818 		if (capable(CAP_NET_ADMIN)) {
819 			irda_device_set_media_busy(dev, TRUE);
820 			ret = 0;
821 		}
822 		break;
823 
824 	case SIOCGRECEIVING:
825 		rq->ifr_receiving = 0;
826 		break;
827 	default:
828 		break;
829 	}
830 	return ret;
831 }
832 
833 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
834 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
835 
836 module_init(au1k_irda_init);
837 module_exit(au1k_irda_exit);
838