• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* isa-skeleton.c: A network driver outline for linux.
2  *
3  *	Written 1993-94 by Donald Becker.
4  *
5  *	Copyright 1993 United States Government as represented by the
6  *	Director, National Security Agency.
7  *
8  *	This software may be used and distributed according to the terms
9  *	of the GNU General Public License, incorporated herein by reference.
10  *
11  *	The author may be reached as becker@scyld.com, or C/O
12  *	Scyld Computing Corporation
13  *	410 Severn Ave., Suite 210
14  *	Annapolis MD 21403
15  *
16  *	This file is an outline for writing a network device driver for the
17  *	the Linux operating system.
18  *
19  *	To write (or understand) a driver, have a look at the "loopback.c" file to
20  *	get a feel of what is going on, and then use the code below as a skeleton
21  *	for the new driver.
22  *
23  */
24 
25 static const char *version =
26 	"isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";
27 
28 /*
29  *  Sources:
30  *	List your sources of programming information to document that
31  *	the driver is your own creation, and give due credit to others
32  *	that contributed to the work. Remember that GNU project code
33  *	cannot use proprietary or trade secret information. Interface
34  *	definitions are generally considered non-copyrightable to the
35  *	extent that the same names and structures must be used to be
36  *	compatible.
37  *
38  *	Finally, keep in mind that the Linux kernel is has an API, not
39  *	ABI. Proprietary object-code-only distributions are not permitted
40  *	under the GPL.
41  */
42 
43 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/types.h>
46 #include <linux/fcntl.h>
47 #include <linux/interrupt.h>
48 #include <linux/ioport.h>
49 #include <linux/in.h>
50 #include <linux/slab.h>
51 #include <linux/string.h>
52 #include <linux/spinlock.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/bitops.h>
59 
60 #include <asm/system.h>
61 #include <asm/io.h>
62 #include <asm/dma.h>
63 
64 /*
65  * The name of the card. Is used for messages and in the requests for
66  * io regions, irqs and dma channels
67  */
68 static const char* cardname = "netcard";
69 
70 /* First, a few definitions that the brave might change. */
71 
72 /* A zero-terminated list of I/O addresses to be probed. */
73 static unsigned int netcard_portlist[] __initdata =
74    { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0};
75 
76 /* use 0 for production, 1 for verification, >2 for debug */
77 #ifndef NET_DEBUG
78 #define NET_DEBUG 2
79 #endif
80 static unsigned int net_debug = NET_DEBUG;
81 
82 /* The number of low I/O ports used by the ethercard. */
83 #define NETCARD_IO_EXTENT	32
84 
85 #define MY_TX_TIMEOUT  ((400*HZ)/1000)
86 
87 /* Information that need to be kept for each board. */
88 struct net_local {
89 	struct net_device_stats stats;
90 	long open_time;			/* Useless example local info. */
91 
92 	/* Tx control lock.  This protects the transmit buffer ring
93 	 * state along with the "tx full" state of the driver.  This
94 	 * means all netif_queue flow control actions are protected
95 	 * by this lock as well.
96 	 */
97 	spinlock_t lock;
98 };
99 
100 /* The station (ethernet) address prefix, used for IDing the board. */
101 #define SA_ADDR0 0x00
102 #define SA_ADDR1 0x42
103 #define SA_ADDR2 0x65
104 
105 /* Index to functions, as function prototypes. */
106 
107 static int	netcard_probe1(struct net_device *dev, int ioaddr);
108 static int	net_open(struct net_device *dev);
109 static int	net_send_packet(struct sk_buff *skb, struct net_device *dev);
110 static irqreturn_t net_interrupt(int irq, void *dev_id);
111 static void	net_rx(struct net_device *dev);
112 static int	net_close(struct net_device *dev);
113 static struct	net_device_stats *net_get_stats(struct net_device *dev);
114 static void	set_multicast_list(struct net_device *dev);
115 static void     net_tx_timeout(struct net_device *dev);
116 
117 
118 /* Example routines you must write ;->. */
119 #define tx_done(dev) 1
120 static void	hardware_send_packet(short ioaddr, char *buf, int length);
121 static void 	chipset_init(struct net_device *dev, int startp);
122 
123 /*
124  * Check for a network adaptor of this type, and return '0' iff one exists.
125  * If dev->base_addr == 0, probe all likely locations.
126  * If dev->base_addr == 1, always return failure.
127  * If dev->base_addr == 2, allocate space for the device and return success
128  * (detachable devices only).
129  */
do_netcard_probe(struct net_device * dev)130 static int __init do_netcard_probe(struct net_device *dev)
131 {
132 	int i;
133 	int base_addr = dev->base_addr;
134 	int irq = dev->irq;
135 
136 	if (base_addr > 0x1ff)    /* Check a single specified location. */
137 		return netcard_probe1(dev, base_addr);
138 	else if (base_addr != 0)  /* Don't probe at all. */
139 		return -ENXIO;
140 
141 	for (i = 0; netcard_portlist[i]; i++) {
142 		int ioaddr = netcard_portlist[i];
143 		if (netcard_probe1(dev, ioaddr) == 0)
144 			return 0;
145 		dev->irq = irq;
146 	}
147 
148 	return -ENODEV;
149 }
150 
cleanup_card(struct net_device * dev)151 static void cleanup_card(struct net_device *dev)
152 {
153 #ifdef jumpered_dma
154 	free_dma(dev->dma);
155 #endif
156 #ifdef jumpered_interrupts
157 	free_irq(dev->irq, dev);
158 #endif
159 	release_region(dev->base_addr, NETCARD_IO_EXTENT);
160 }
161 
162 #ifndef MODULE
netcard_probe(int unit)163 struct net_device * __init netcard_probe(int unit)
164 {
165 	struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
166 	int err;
167 
168 	if (!dev)
169 		return ERR_PTR(-ENOMEM);
170 
171 	sprintf(dev->name, "eth%d", unit);
172 	netdev_boot_setup_check(dev);
173 
174 	err = do_netcard_probe(dev);
175 	if (err)
176 		goto out;
177 	return dev;
178 out:
179 	free_netdev(dev);
180 	return ERR_PTR(err);
181 }
182 #endif
183 
184 /*
185  * This is the real probe routine. Linux has a history of friendly device
186  * probes on the ISA bus. A good device probes avoids doing writes, and
187  * verifies that the correct device exists and functions.
188  */
netcard_probe1(struct net_device * dev,int ioaddr)189 static int __init netcard_probe1(struct net_device *dev, int ioaddr)
190 {
191 	struct net_local *np;
192 	static unsigned version_printed;
193 	int i;
194 	int err = -ENODEV;
195 
196 	/* Grab the region so that no one else tries to probe our ioports. */
197 	if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname))
198 		return -EBUSY;
199 
200 	/*
201 	 * For ethernet adaptors the first three octets of the station address
202 	 * contains the manufacturer's unique code. That might be a good probe
203 	 * method. Ideally you would add additional checks.
204 	 */
205 	if (inb(ioaddr + 0) != SA_ADDR0
206 		||	 inb(ioaddr + 1) != SA_ADDR1
207 		||	 inb(ioaddr + 2) != SA_ADDR2)
208 		goto out;
209 
210 	if (net_debug  &&  version_printed++ == 0)
211 		printk(KERN_DEBUG "%s", version);
212 
213 	printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr);
214 
215 	/* Fill in the 'dev' fields. */
216 	dev->base_addr = ioaddr;
217 
218 	/* Retrieve and print the ethernet address. */
219 	for (i = 0; i < 6; i++)
220 		dev->dev_addr[i] = inb(ioaddr + i);
221 
222 	printk("%pM", dev->dev_addr);
223 
224 	err = -EAGAIN;
225 #ifdef jumpered_interrupts
226 	/*
227 	 * If this board has jumpered interrupts, allocate the interrupt
228 	 * vector now. There is no point in waiting since no other device
229 	 * can use the interrupt, and this marks the irq as busy. Jumpered
230 	 * interrupts are typically not reported by the boards, and we must
231 	 * used autoIRQ to find them.
232 	 */
233 
234 	if (dev->irq == -1)
235 		;	/* Do nothing: a user-level program will set it. */
236 	else if (dev->irq < 2) {	/* "Auto-IRQ" */
237 		unsigned long irq_mask = probe_irq_on();
238 		/* Trigger an interrupt here. */
239 
240 		dev->irq = probe_irq_off(irq_mask);
241 		if (net_debug >= 2)
242 			printk(" autoirq is %d", dev->irq);
243 	} else if (dev->irq == 2)
244 		/*
245 		 * Fixup for users that don't know that IRQ 2 is really
246 		 * IRQ9, or don't know which one to set.
247 		 */
248 		dev->irq = 9;
249 
250 	{
251 		int irqval = request_irq(dev->irq, &net_interrupt, 0, cardname, dev);
252 		if (irqval) {
253 			printk("%s: unable to get IRQ %d (irqval=%d).\n",
254 				   dev->name, dev->irq, irqval);
255 			goto out;
256 		}
257 	}
258 #endif	/* jumpered interrupt */
259 #ifdef jumpered_dma
260 	/*
261 	 * If we use a jumpered DMA channel, that should be probed for and
262 	 * allocated here as well. See lance.c for an example.
263 	 */
264 	if (dev->dma == 0) {
265 		if (request_dma(dev->dma, cardname)) {
266 			printk("DMA %d allocation failed.\n", dev->dma);
267 			goto out1;
268 		} else
269 			printk(", assigned DMA %d.\n", dev->dma);
270 	} else {
271 		short dma_status, new_dma_status;
272 
273 		/* Read the DMA channel status registers. */
274 		dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
275 			(inb(DMA2_STAT_REG) & 0xf0);
276 		/* Trigger a DMA request, perhaps pause a bit. */
277 		outw(0x1234, ioaddr + 8);
278 		/* Re-read the DMA status registers. */
279 		new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
280 			(inb(DMA2_STAT_REG) & 0xf0);
281 		/*
282 		 * Eliminate the old and floating requests,
283 		 * and DMA4 the cascade.
284 		 */
285 		new_dma_status ^= dma_status;
286 		new_dma_status &= ~0x10;
287 		for (i = 7; i > 0; i--)
288 			if (test_bit(i, &new_dma_status)) {
289 				dev->dma = i;
290 				break;
291 			}
292 		if (i <= 0) {
293 			printk("DMA probe failed.\n");
294 			goto out1;
295 		}
296 		if (request_dma(dev->dma, cardname)) {
297 			printk("probed DMA %d allocation failed.\n", dev->dma);
298 			goto out1;
299 		}
300 	}
301 #endif	/* jumpered DMA */
302 
303 	np = netdev_priv(dev);
304 	spin_lock_init(&np->lock);
305 
306 	dev->open		= net_open;
307 	dev->stop		= net_close;
308 	dev->hard_start_xmit	= net_send_packet;
309 	dev->get_stats		= net_get_stats;
310 	dev->set_multicast_list = &set_multicast_list;
311 
312         dev->tx_timeout		= &net_tx_timeout;
313         dev->watchdog_timeo	= MY_TX_TIMEOUT;
314 
315 	err = register_netdev(dev);
316 	if (err)
317 		goto out2;
318 	return 0;
319 out2:
320 #ifdef jumpered_dma
321 	free_dma(dev->dma);
322 #endif
323 out1:
324 #ifdef jumpered_interrupts
325 	free_irq(dev->irq, dev);
326 #endif
327 out:
328 	release_region(base_addr, NETCARD_IO_EXTENT);
329 	return err;
330 }
331 
net_tx_timeout(struct net_device * dev)332 static void net_tx_timeout(struct net_device *dev)
333 {
334 	struct net_local *np = netdev_priv(dev);
335 
336 	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
337 	       tx_done(dev) ? "IRQ conflict" : "network cable problem");
338 
339 	/* Try to restart the adaptor. */
340 	chipset_init(dev, 1);
341 
342 	np->stats.tx_errors++;
343 
344 	/* If we have space available to accept new transmit
345 	 * requests, wake up the queueing layer.  This would
346 	 * be the case if the chipset_init() call above just
347 	 * flushes out the tx queue and empties it.
348 	 *
349 	 * If instead, the tx queue is retained then the
350 	 * netif_wake_queue() call should be placed in the
351 	 * TX completion interrupt handler of the driver instead
352 	 * of here.
353 	 */
354 	if (!tx_full(dev))
355 		netif_wake_queue(dev);
356 }
357 
358 /*
359  * Open/initialize the board. This is called (in the current kernel)
360  * sometime after booting when the 'ifconfig' program is run.
361  *
362  * This routine should set everything up anew at each open, even
363  * registers that "should" only need to be set once at boot, so that
364  * there is non-reboot way to recover if something goes wrong.
365  */
366 static int
net_open(struct net_device * dev)367 net_open(struct net_device *dev)
368 {
369 	struct net_local *np = netdev_priv(dev);
370 	int ioaddr = dev->base_addr;
371 	/*
372 	 * This is used if the interrupt line can turned off (shared).
373 	 * See 3c503.c for an example of selecting the IRQ at config-time.
374 	 */
375 	if (request_irq(dev->irq, &net_interrupt, 0, cardname, dev)) {
376 		return -EAGAIN;
377 	}
378 	/*
379 	 * Always allocate the DMA channel after the IRQ,
380 	 * and clean up on failure.
381 	 */
382 	if (request_dma(dev->dma, cardname)) {
383 		free_irq(dev->irq, dev);
384 		return -EAGAIN;
385 	}
386 
387 	/* Reset the hardware here. Don't forget to set the station address. */
388 	chipset_init(dev, 1);
389 	outb(0x00, ioaddr);
390 	np->open_time = jiffies;
391 
392 	/* We are now ready to accept transmit requeusts from
393 	 * the queueing layer of the networking.
394 	 */
395 	netif_start_queue(dev);
396 
397 	return 0;
398 }
399 
400 /* This will only be invoked if your driver is _not_ in XOFF state.
401  * What this means is that you need not check it, and that this
402  * invariant will hold if you make sure that the netif_*_queue()
403  * calls are done at the proper times.
404  */
net_send_packet(struct sk_buff * skb,struct net_device * dev)405 static int net_send_packet(struct sk_buff *skb, struct net_device *dev)
406 {
407 	struct net_local *np = netdev_priv(dev);
408 	int ioaddr = dev->base_addr;
409 	short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
410 	unsigned char *buf = skb->data;
411 
412 	/* If some error occurs while trying to transmit this
413 	 * packet, you should return '1' from this function.
414 	 * In such a case you _may not_ do anything to the
415 	 * SKB, it is still owned by the network queueing
416 	 * layer when an error is returned.  This means you
417 	 * may not modify any SKB fields, you may not free
418 	 * the SKB, etc.
419 	 */
420 
421 #if TX_RING
422 	/* This is the most common case for modern hardware.
423 	 * The spinlock protects this code from the TX complete
424 	 * hardware interrupt handler.  Queue flow control is
425 	 * thus managed under this lock as well.
426 	 */
427 	spin_lock_irq(&np->lock);
428 
429 	add_to_tx_ring(np, skb, length);
430 	dev->trans_start = jiffies;
431 
432 	/* If we just used up the very last entry in the
433 	 * TX ring on this device, tell the queueing
434 	 * layer to send no more.
435 	 */
436 	if (tx_full(dev))
437 		netif_stop_queue(dev);
438 
439 	/* When the TX completion hw interrupt arrives, this
440 	 * is when the transmit statistics are updated.
441 	 */
442 
443 	spin_unlock_irq(&np->lock);
444 #else
445 	/* This is the case for older hardware which takes
446 	 * a single transmit buffer at a time, and it is
447 	 * just written to the device via PIO.
448 	 *
449 	 * No spin locking is needed since there is no TX complete
450 	 * event.  If by chance your card does have a TX complete
451 	 * hardware IRQ then you may need to utilize np->lock here.
452 	 */
453 	hardware_send_packet(ioaddr, buf, length);
454 	np->stats.tx_bytes += skb->len;
455 
456 	dev->trans_start = jiffies;
457 
458 	/* You might need to clean up and record Tx statistics here. */
459 	if (inw(ioaddr) == /*RU*/81)
460 		np->stats.tx_aborted_errors++;
461 	dev_kfree_skb (skb);
462 #endif
463 
464 	return 0;
465 }
466 
467 #if TX_RING
468 /* This handles TX complete events posted by the device
469  * via interrupts.
470  */
net_tx(struct net_device * dev)471 void net_tx(struct net_device *dev)
472 {
473 	struct net_local *np = netdev_priv(dev);
474 	int entry;
475 
476 	/* This protects us from concurrent execution of
477 	 * our dev->hard_start_xmit function above.
478 	 */
479 	spin_lock(&np->lock);
480 
481 	entry = np->tx_old;
482 	while (tx_entry_is_sent(np, entry)) {
483 		struct sk_buff *skb = np->skbs[entry];
484 
485 		np->stats.tx_bytes += skb->len;
486 		dev_kfree_skb_irq (skb);
487 
488 		entry = next_tx_entry(np, entry);
489 	}
490 	np->tx_old = entry;
491 
492 	/* If we had stopped the queue due to a "tx full"
493 	 * condition, and space has now been made available,
494 	 * wake up the queue.
495 	 */
496 	if (netif_queue_stopped(dev) && ! tx_full(dev))
497 		netif_wake_queue(dev);
498 
499 	spin_unlock(&np->lock);
500 }
501 #endif
502 
503 /*
504  * The typical workload of the driver:
505  * Handle the network interface interrupts.
506  */
net_interrupt(int irq,void * dev_id)507 static irqreturn_t net_interrupt(int irq, void *dev_id)
508 {
509 	struct net_device *dev = dev_id;
510 	struct net_local *np;
511 	int ioaddr, status;
512 	int handled = 0;
513 
514 	ioaddr = dev->base_addr;
515 
516 	np = netdev_priv(dev);
517 	status = inw(ioaddr + 0);
518 
519 	if (status == 0)
520 		goto out;
521 	handled = 1;
522 
523 	if (status & RX_INTR) {
524 		/* Got a packet(s). */
525 		net_rx(dev);
526 	}
527 #if TX_RING
528 	if (status & TX_INTR) {
529 		/* Transmit complete. */
530 		net_tx(dev);
531 		np->stats.tx_packets++;
532 		netif_wake_queue(dev);
533 	}
534 #endif
535 	if (status & COUNTERS_INTR) {
536 		/* Increment the appropriate 'localstats' field. */
537 		np->stats.tx_window_errors++;
538 	}
539 out:
540 	return IRQ_RETVAL(handled);
541 }
542 
543 /* We have a good packet(s), get it/them out of the buffers. */
544 static void
net_rx(struct net_device * dev)545 net_rx(struct net_device *dev)
546 {
547 	struct net_local *lp = netdev_priv(dev);
548 	int ioaddr = dev->base_addr;
549 	int boguscount = 10;
550 
551 	do {
552 		int status = inw(ioaddr);
553 		int pkt_len = inw(ioaddr);
554 
555 		if (pkt_len == 0)		/* Read all the frames? */
556 			break;			/* Done for now */
557 
558 		if (status & 0x40) {	/* There was an error. */
559 			lp->stats.rx_errors++;
560 			if (status & 0x20) lp->stats.rx_frame_errors++;
561 			if (status & 0x10) lp->stats.rx_over_errors++;
562 			if (status & 0x08) lp->stats.rx_crc_errors++;
563 			if (status & 0x04) lp->stats.rx_fifo_errors++;
564 		} else {
565 			/* Malloc up new buffer. */
566 			struct sk_buff *skb;
567 
568 			lp->stats.rx_bytes+=pkt_len;
569 
570 			skb = dev_alloc_skb(pkt_len);
571 			if (skb == NULL) {
572 				printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
573 					   dev->name);
574 				lp->stats.rx_dropped++;
575 				break;
576 			}
577 			skb->dev = dev;
578 
579 			/* 'skb->data' points to the start of sk_buff data area. */
580 			memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start,
581 				   pkt_len);
582 			/* or */
583 			insw(ioaddr, skb->data, (pkt_len + 1) >> 1);
584 
585 			netif_rx(skb);
586 			lp->stats.rx_packets++;
587 			lp->stats.rx_bytes += pkt_len;
588 		}
589 	} while (--boguscount);
590 
591 	return;
592 }
593 
594 /* The inverse routine to net_open(). */
595 static int
net_close(struct net_device * dev)596 net_close(struct net_device *dev)
597 {
598 	struct net_local *lp = netdev_priv(dev);
599 	int ioaddr = dev->base_addr;
600 
601 	lp->open_time = 0;
602 
603 	netif_stop_queue(dev);
604 
605 	/* Flush the Tx and disable Rx here. */
606 
607 	disable_dma(dev->dma);
608 
609 	/* If not IRQ or DMA jumpered, free up the line. */
610 	outw(0x00, ioaddr+0);	/* Release the physical interrupt line. */
611 
612 	free_irq(dev->irq, dev);
613 	free_dma(dev->dma);
614 
615 	/* Update the statistics here. */
616 
617 	return 0;
618 
619 }
620 
621 /*
622  * Get the current statistics.
623  * This may be called with the card open or closed.
624  */
net_get_stats(struct net_device * dev)625 static struct net_device_stats *net_get_stats(struct net_device *dev)
626 {
627 	struct net_local *lp = netdev_priv(dev);
628 	short ioaddr = dev->base_addr;
629 
630 	/* Update the statistics from the device registers. */
631 	lp->stats.rx_missed_errors = inw(ioaddr+1);
632 	return &lp->stats;
633 }
634 
635 /*
636  * Set or clear the multicast filter for this adaptor.
637  * num_addrs == -1	Promiscuous mode, receive all packets
638  * num_addrs == 0	Normal mode, clear multicast list
639  * num_addrs > 0	Multicast mode, receive normal and MC packets,
640  *			and do best-effort filtering.
641  */
642 static void
set_multicast_list(struct net_device * dev)643 set_multicast_list(struct net_device *dev)
644 {
645 	short ioaddr = dev->base_addr;
646 	if (dev->flags&IFF_PROMISC)
647 	{
648 		/* Enable promiscuous mode */
649 		outw(MULTICAST|PROMISC, ioaddr);
650 	}
651 	else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS)
652 	{
653 		/* Disable promiscuous mode, use normal mode. */
654 		hardware_set_filter(NULL);
655 
656 		outw(MULTICAST, ioaddr);
657 	}
658 	else if(dev->mc_count)
659 	{
660 		/* Walk the address list, and load the filter */
661 		hardware_set_filter(dev->mc_list);
662 
663 		outw(MULTICAST, ioaddr);
664 	}
665 	else
666 		outw(0, ioaddr);
667 }
668 
669 #ifdef MODULE
670 
671 static struct net_device *this_device;
672 static int io = 0x300;
673 static int irq;
674 static int dma;
675 static int mem;
676 MODULE_LICENSE("GPL");
677 
init_module(void)678 int init_module(void)
679 {
680 	struct net_device *dev;
681 	int result;
682 
683 	if (io == 0)
684 		printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n",
685 			   cardname);
686 	dev = alloc_etherdev(sizeof(struct net_local));
687 	if (!dev)
688 		return -ENOMEM;
689 
690 	/* Copy the parameters from insmod into the device structure. */
691 	dev->base_addr = io;
692 	dev->irq       = irq;
693 	dev->dma       = dma;
694 	dev->mem_start = mem;
695 	if (do_netcard_probe(dev) == 0) {
696 		this_device = dev;
697 		return 0;
698 	}
699 	free_netdev(dev);
700 	return -ENXIO;
701 }
702 
703 void
cleanup_module(void)704 cleanup_module(void)
705 {
706 	unregister_netdev(this_device);
707 	cleanup_card(this_device);
708 	free_netdev(this_device);
709 }
710 
711 #endif /* MODULE */
712