1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1996 Paul Mackerras.
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/crc32.h>
17 #include <linux/spinlock.h>
18 #include <linux/bitrev.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
24
25 #include "mace.h"
26
27 static int port_aaui = -1;
28
29 #define N_RX_RING 8
30 #define N_TX_RING 6
31 #define MAX_TX_ACTIVE 1
32 #define NCMDS_TX 1 /* dma commands per element in tx ring */
33 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT HZ /* 1 second */
35
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV 0x0941
38
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR 0x80
41
42 struct mace_data {
43 volatile struct mace __iomem *mace;
44 volatile struct dbdma_regs __iomem *tx_dma;
45 int tx_dma_intr;
46 volatile struct dbdma_regs __iomem *rx_dma;
47 int rx_dma_intr;
48 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
49 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
50 struct sk_buff *rx_bufs[N_RX_RING];
51 int rx_fill;
52 int rx_empty;
53 struct sk_buff *tx_bufs[N_TX_RING];
54 int tx_fill;
55 int tx_empty;
56 unsigned char maccc;
57 unsigned char tx_fullup;
58 unsigned char tx_active;
59 unsigned char tx_bad_runt;
60 struct timer_list tx_timeout;
61 int timeout_active;
62 int port_aaui;
63 int chipid;
64 struct macio_dev *mdev;
65 spinlock_t lock;
66 };
67
68 /*
69 * Number of bytes of private data per MACE: allow enough for
70 * the rx and tx dma commands plus a branch dma command each,
71 * and another 16 bytes to allow us to align the dma command
72 * buffers on a 16 byte boundary.
73 */
74 #define PRIV_BYTES (sizeof(struct mace_data) \
75 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
76
77 static int mace_open(struct net_device *dev);
78 static int mace_close(struct net_device *dev);
79 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
80 static void mace_set_multicast(struct net_device *dev);
81 static void mace_reset(struct net_device *dev);
82 static int mace_set_address(struct net_device *dev, void *addr);
83 static irqreturn_t mace_interrupt(int irq, void *dev_id);
84 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
85 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
86 static void mace_set_timeout(struct net_device *dev);
87 static void mace_tx_timeout(unsigned long data);
88 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
89 static inline void mace_clean_rings(struct mace_data *mp);
90 static void __mace_set_address(struct net_device *dev, void *addr);
91
92 /*
93 * If we can't get a skbuff when we need it, we use this area for DMA.
94 */
95 static unsigned char *dummy_buf;
96
mace_probe(struct macio_dev * mdev,const struct of_device_id * match)97 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
98 {
99 struct device_node *mace = macio_get_of_node(mdev);
100 struct net_device *dev;
101 struct mace_data *mp;
102 const unsigned char *addr;
103 int j, rev, rc = -EBUSY;
104
105 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
106 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
107 mace->full_name);
108 return -ENODEV;
109 }
110
111 addr = of_get_property(mace, "mac-address", NULL);
112 if (addr == NULL) {
113 addr = of_get_property(mace, "local-mac-address", NULL);
114 if (addr == NULL) {
115 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
116 mace->full_name);
117 return -ENODEV;
118 }
119 }
120
121 /*
122 * lazy allocate the driver-wide dummy buffer. (Note that we
123 * never have more than one MACE in the system anyway)
124 */
125 if (dummy_buf == NULL) {
126 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
127 if (dummy_buf == NULL) {
128 printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
129 return -ENOMEM;
130 }
131 }
132
133 if (macio_request_resources(mdev, "mace")) {
134 printk(KERN_ERR "MACE: can't request IO resources !\n");
135 return -EBUSY;
136 }
137
138 dev = alloc_etherdev(PRIV_BYTES);
139 if (!dev) {
140 printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
141 rc = -ENOMEM;
142 goto err_release;
143 }
144 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
145
146 mp = netdev_priv(dev);
147 mp->mdev = mdev;
148 macio_set_drvdata(mdev, dev);
149
150 dev->base_addr = macio_resource_start(mdev, 0);
151 mp->mace = ioremap(dev->base_addr, 0x1000);
152 if (mp->mace == NULL) {
153 printk(KERN_ERR "MACE: can't map IO resources !\n");
154 rc = -ENOMEM;
155 goto err_free;
156 }
157 dev->irq = macio_irq(mdev, 0);
158
159 rev = addr[0] == 0 && addr[1] == 0xA0;
160 for (j = 0; j < 6; ++j) {
161 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
162 }
163 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
164 in_8(&mp->mace->chipid_lo);
165
166
167 mp = netdev_priv(dev);
168 mp->maccc = ENXMT | ENRCV;
169
170 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
171 if (mp->tx_dma == NULL) {
172 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
173 rc = -ENOMEM;
174 goto err_unmap_io;
175 }
176 mp->tx_dma_intr = macio_irq(mdev, 1);
177
178 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
179 if (mp->rx_dma == NULL) {
180 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
181 rc = -ENOMEM;
182 goto err_unmap_tx_dma;
183 }
184 mp->rx_dma_intr = macio_irq(mdev, 2);
185
186 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
187 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
188
189 memset((char *) mp->tx_cmds, 0,
190 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
191 init_timer(&mp->tx_timeout);
192 spin_lock_init(&mp->lock);
193 mp->timeout_active = 0;
194
195 if (port_aaui >= 0)
196 mp->port_aaui = port_aaui;
197 else {
198 /* Apple Network Server uses the AAUI port */
199 if (machine_is_compatible("AAPL,ShinerESB"))
200 mp->port_aaui = 1;
201 else {
202 #ifdef CONFIG_MACE_AAUI_PORT
203 mp->port_aaui = 1;
204 #else
205 mp->port_aaui = 0;
206 #endif
207 }
208 }
209
210 dev->open = mace_open;
211 dev->stop = mace_close;
212 dev->hard_start_xmit = mace_xmit_start;
213 dev->set_multicast_list = mace_set_multicast;
214 dev->set_mac_address = mace_set_address;
215
216 /*
217 * Most of what is below could be moved to mace_open()
218 */
219 mace_reset(dev);
220
221 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
222 if (rc) {
223 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
224 goto err_unmap_rx_dma;
225 }
226 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
227 if (rc) {
228 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
229 goto err_free_irq;
230 }
231 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
232 if (rc) {
233 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
234 goto err_free_tx_irq;
235 }
236
237 rc = register_netdev(dev);
238 if (rc) {
239 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
240 goto err_free_rx_irq;
241 }
242
243 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
244 dev->name, dev->dev_addr,
245 mp->chipid >> 8, mp->chipid & 0xff);
246
247 return 0;
248
249 err_free_rx_irq:
250 free_irq(macio_irq(mdev, 2), dev);
251 err_free_tx_irq:
252 free_irq(macio_irq(mdev, 1), dev);
253 err_free_irq:
254 free_irq(macio_irq(mdev, 0), dev);
255 err_unmap_rx_dma:
256 iounmap(mp->rx_dma);
257 err_unmap_tx_dma:
258 iounmap(mp->tx_dma);
259 err_unmap_io:
260 iounmap(mp->mace);
261 err_free:
262 free_netdev(dev);
263 err_release:
264 macio_release_resources(mdev);
265
266 return rc;
267 }
268
mace_remove(struct macio_dev * mdev)269 static int __devexit mace_remove(struct macio_dev *mdev)
270 {
271 struct net_device *dev = macio_get_drvdata(mdev);
272 struct mace_data *mp;
273
274 BUG_ON(dev == NULL);
275
276 macio_set_drvdata(mdev, NULL);
277
278 mp = netdev_priv(dev);
279
280 unregister_netdev(dev);
281
282 free_irq(dev->irq, dev);
283 free_irq(mp->tx_dma_intr, dev);
284 free_irq(mp->rx_dma_intr, dev);
285
286 iounmap(mp->rx_dma);
287 iounmap(mp->tx_dma);
288 iounmap(mp->mace);
289
290 free_netdev(dev);
291
292 macio_release_resources(mdev);
293
294 return 0;
295 }
296
dbdma_reset(volatile struct dbdma_regs __iomem * dma)297 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
298 {
299 int i;
300
301 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
302
303 /*
304 * Yes this looks peculiar, but apparently it needs to be this
305 * way on some machines.
306 */
307 for (i = 200; i > 0; --i)
308 if (ld_le32(&dma->control) & RUN)
309 udelay(1);
310 }
311
mace_reset(struct net_device * dev)312 static void mace_reset(struct net_device *dev)
313 {
314 struct mace_data *mp = netdev_priv(dev);
315 volatile struct mace __iomem *mb = mp->mace;
316 int i;
317
318 /* soft-reset the chip */
319 i = 200;
320 while (--i) {
321 out_8(&mb->biucc, SWRST);
322 if (in_8(&mb->biucc) & SWRST) {
323 udelay(10);
324 continue;
325 }
326 break;
327 }
328 if (!i) {
329 printk(KERN_ERR "mace: cannot reset chip!\n");
330 return;
331 }
332
333 out_8(&mb->imr, 0xff); /* disable all intrs for now */
334 i = in_8(&mb->ir);
335 out_8(&mb->maccc, 0); /* turn off tx, rx */
336
337 out_8(&mb->biucc, XMTSP_64);
338 out_8(&mb->utr, RTRD);
339 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
340 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
341 out_8(&mb->rcvfc, 0);
342
343 /* load up the hardware address */
344 __mace_set_address(dev, dev->dev_addr);
345
346 /* clear the multicast filter */
347 if (mp->chipid == BROKEN_ADDRCHG_REV)
348 out_8(&mb->iac, LOGADDR);
349 else {
350 out_8(&mb->iac, ADDRCHG | LOGADDR);
351 while ((in_8(&mb->iac) & ADDRCHG) != 0)
352 ;
353 }
354 for (i = 0; i < 8; ++i)
355 out_8(&mb->ladrf, 0);
356
357 /* done changing address */
358 if (mp->chipid != BROKEN_ADDRCHG_REV)
359 out_8(&mb->iac, 0);
360
361 if (mp->port_aaui)
362 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
363 else
364 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
365 }
366
__mace_set_address(struct net_device * dev,void * addr)367 static void __mace_set_address(struct net_device *dev, void *addr)
368 {
369 struct mace_data *mp = netdev_priv(dev);
370 volatile struct mace __iomem *mb = mp->mace;
371 unsigned char *p = addr;
372 int i;
373
374 /* load up the hardware address */
375 if (mp->chipid == BROKEN_ADDRCHG_REV)
376 out_8(&mb->iac, PHYADDR);
377 else {
378 out_8(&mb->iac, ADDRCHG | PHYADDR);
379 while ((in_8(&mb->iac) & ADDRCHG) != 0)
380 ;
381 }
382 for (i = 0; i < 6; ++i)
383 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
384 if (mp->chipid != BROKEN_ADDRCHG_REV)
385 out_8(&mb->iac, 0);
386 }
387
mace_set_address(struct net_device * dev,void * addr)388 static int mace_set_address(struct net_device *dev, void *addr)
389 {
390 struct mace_data *mp = netdev_priv(dev);
391 volatile struct mace __iomem *mb = mp->mace;
392 unsigned long flags;
393
394 spin_lock_irqsave(&mp->lock, flags);
395
396 __mace_set_address(dev, addr);
397
398 /* note: setting ADDRCHG clears ENRCV */
399 out_8(&mb->maccc, mp->maccc);
400
401 spin_unlock_irqrestore(&mp->lock, flags);
402 return 0;
403 }
404
mace_clean_rings(struct mace_data * mp)405 static inline void mace_clean_rings(struct mace_data *mp)
406 {
407 int i;
408
409 /* free some skb's */
410 for (i = 0; i < N_RX_RING; ++i) {
411 if (mp->rx_bufs[i] != NULL) {
412 dev_kfree_skb(mp->rx_bufs[i]);
413 mp->rx_bufs[i] = NULL;
414 }
415 }
416 for (i = mp->tx_empty; i != mp->tx_fill; ) {
417 dev_kfree_skb(mp->tx_bufs[i]);
418 if (++i >= N_TX_RING)
419 i = 0;
420 }
421 }
422
mace_open(struct net_device * dev)423 static int mace_open(struct net_device *dev)
424 {
425 struct mace_data *mp = netdev_priv(dev);
426 volatile struct mace __iomem *mb = mp->mace;
427 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
428 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
429 volatile struct dbdma_cmd *cp;
430 int i;
431 struct sk_buff *skb;
432 unsigned char *data;
433
434 /* reset the chip */
435 mace_reset(dev);
436
437 /* initialize list of sk_buffs for receiving and set up recv dma */
438 mace_clean_rings(mp);
439 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
440 cp = mp->rx_cmds;
441 for (i = 0; i < N_RX_RING - 1; ++i) {
442 skb = dev_alloc_skb(RX_BUFLEN + 2);
443 if (!skb) {
444 data = dummy_buf;
445 } else {
446 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
447 data = skb->data;
448 }
449 mp->rx_bufs[i] = skb;
450 st_le16(&cp->req_count, RX_BUFLEN);
451 st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
452 st_le32(&cp->phy_addr, virt_to_bus(data));
453 cp->xfer_status = 0;
454 ++cp;
455 }
456 mp->rx_bufs[i] = NULL;
457 st_le16(&cp->command, DBDMA_STOP);
458 mp->rx_fill = i;
459 mp->rx_empty = 0;
460
461 /* Put a branch back to the beginning of the receive command list */
462 ++cp;
463 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
464 st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
465
466 /* start rx dma */
467 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
468 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
469 out_le32(&rd->control, (RUN << 16) | RUN);
470
471 /* put a branch at the end of the tx command list */
472 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
473 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
474 st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
475
476 /* reset tx dma */
477 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
478 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
479 mp->tx_fill = 0;
480 mp->tx_empty = 0;
481 mp->tx_fullup = 0;
482 mp->tx_active = 0;
483 mp->tx_bad_runt = 0;
484
485 /* turn it on! */
486 out_8(&mb->maccc, mp->maccc);
487 /* enable all interrupts except receive interrupts */
488 out_8(&mb->imr, RCVINT);
489
490 return 0;
491 }
492
mace_close(struct net_device * dev)493 static int mace_close(struct net_device *dev)
494 {
495 struct mace_data *mp = netdev_priv(dev);
496 volatile struct mace __iomem *mb = mp->mace;
497 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
498 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
499
500 /* disable rx and tx */
501 out_8(&mb->maccc, 0);
502 out_8(&mb->imr, 0xff); /* disable all intrs */
503
504 /* disable rx and tx dma */
505 st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
506 st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
507
508 mace_clean_rings(mp);
509
510 return 0;
511 }
512
mace_set_timeout(struct net_device * dev)513 static inline void mace_set_timeout(struct net_device *dev)
514 {
515 struct mace_data *mp = netdev_priv(dev);
516
517 if (mp->timeout_active)
518 del_timer(&mp->tx_timeout);
519 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
520 mp->tx_timeout.function = mace_tx_timeout;
521 mp->tx_timeout.data = (unsigned long) dev;
522 add_timer(&mp->tx_timeout);
523 mp->timeout_active = 1;
524 }
525
mace_xmit_start(struct sk_buff * skb,struct net_device * dev)526 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
527 {
528 struct mace_data *mp = netdev_priv(dev);
529 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
530 volatile struct dbdma_cmd *cp, *np;
531 unsigned long flags;
532 int fill, next, len;
533
534 /* see if there's a free slot in the tx ring */
535 spin_lock_irqsave(&mp->lock, flags);
536 fill = mp->tx_fill;
537 next = fill + 1;
538 if (next >= N_TX_RING)
539 next = 0;
540 if (next == mp->tx_empty) {
541 netif_stop_queue(dev);
542 mp->tx_fullup = 1;
543 spin_unlock_irqrestore(&mp->lock, flags);
544 return 1; /* can't take it at the moment */
545 }
546 spin_unlock_irqrestore(&mp->lock, flags);
547
548 /* partially fill in the dma command block */
549 len = skb->len;
550 if (len > ETH_FRAME_LEN) {
551 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
552 len = ETH_FRAME_LEN;
553 }
554 mp->tx_bufs[fill] = skb;
555 cp = mp->tx_cmds + NCMDS_TX * fill;
556 st_le16(&cp->req_count, len);
557 st_le32(&cp->phy_addr, virt_to_bus(skb->data));
558
559 np = mp->tx_cmds + NCMDS_TX * next;
560 out_le16(&np->command, DBDMA_STOP);
561
562 /* poke the tx dma channel */
563 spin_lock_irqsave(&mp->lock, flags);
564 mp->tx_fill = next;
565 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
566 out_le16(&cp->xfer_status, 0);
567 out_le16(&cp->command, OUTPUT_LAST);
568 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
569 ++mp->tx_active;
570 mace_set_timeout(dev);
571 }
572 if (++next >= N_TX_RING)
573 next = 0;
574 if (next == mp->tx_empty)
575 netif_stop_queue(dev);
576 spin_unlock_irqrestore(&mp->lock, flags);
577
578 return 0;
579 }
580
mace_set_multicast(struct net_device * dev)581 static void mace_set_multicast(struct net_device *dev)
582 {
583 struct mace_data *mp = netdev_priv(dev);
584 volatile struct mace __iomem *mb = mp->mace;
585 int i, j;
586 u32 crc;
587 unsigned long flags;
588
589 spin_lock_irqsave(&mp->lock, flags);
590 mp->maccc &= ~PROM;
591 if (dev->flags & IFF_PROMISC) {
592 mp->maccc |= PROM;
593 } else {
594 unsigned char multicast_filter[8];
595 struct dev_mc_list *dmi = dev->mc_list;
596
597 if (dev->flags & IFF_ALLMULTI) {
598 for (i = 0; i < 8; i++)
599 multicast_filter[i] = 0xff;
600 } else {
601 for (i = 0; i < 8; i++)
602 multicast_filter[i] = 0;
603 for (i = 0; i < dev->mc_count; i++) {
604 crc = ether_crc_le(6, dmi->dmi_addr);
605 j = crc >> 26; /* bit number in multicast_filter */
606 multicast_filter[j >> 3] |= 1 << (j & 7);
607 dmi = dmi->next;
608 }
609 }
610 #if 0
611 printk("Multicast filter :");
612 for (i = 0; i < 8; i++)
613 printk("%02x ", multicast_filter[i]);
614 printk("\n");
615 #endif
616
617 if (mp->chipid == BROKEN_ADDRCHG_REV)
618 out_8(&mb->iac, LOGADDR);
619 else {
620 out_8(&mb->iac, ADDRCHG | LOGADDR);
621 while ((in_8(&mb->iac) & ADDRCHG) != 0)
622 ;
623 }
624 for (i = 0; i < 8; ++i)
625 out_8(&mb->ladrf, multicast_filter[i]);
626 if (mp->chipid != BROKEN_ADDRCHG_REV)
627 out_8(&mb->iac, 0);
628 }
629 /* reset maccc */
630 out_8(&mb->maccc, mp->maccc);
631 spin_unlock_irqrestore(&mp->lock, flags);
632 }
633
mace_handle_misc_intrs(struct mace_data * mp,int intr,struct net_device * dev)634 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
635 {
636 volatile struct mace __iomem *mb = mp->mace;
637 static int mace_babbles, mace_jabbers;
638
639 if (intr & MPCO)
640 dev->stats.rx_missed_errors += 256;
641 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
642 if (intr & RNTPCO)
643 dev->stats.rx_length_errors += 256;
644 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
645 if (intr & CERR)
646 ++dev->stats.tx_heartbeat_errors;
647 if (intr & BABBLE)
648 if (mace_babbles++ < 4)
649 printk(KERN_DEBUG "mace: babbling transmitter\n");
650 if (intr & JABBER)
651 if (mace_jabbers++ < 4)
652 printk(KERN_DEBUG "mace: jabbering transceiver\n");
653 }
654
mace_interrupt(int irq,void * dev_id)655 static irqreturn_t mace_interrupt(int irq, void *dev_id)
656 {
657 struct net_device *dev = (struct net_device *) dev_id;
658 struct mace_data *mp = netdev_priv(dev);
659 volatile struct mace __iomem *mb = mp->mace;
660 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
661 volatile struct dbdma_cmd *cp;
662 int intr, fs, i, stat, x;
663 int xcount, dstat;
664 unsigned long flags;
665 /* static int mace_last_fs, mace_last_xcount; */
666
667 spin_lock_irqsave(&mp->lock, flags);
668 intr = in_8(&mb->ir); /* read interrupt register */
669 in_8(&mb->xmtrc); /* get retries */
670 mace_handle_misc_intrs(mp, intr, dev);
671
672 i = mp->tx_empty;
673 while (in_8(&mb->pr) & XMTSV) {
674 del_timer(&mp->tx_timeout);
675 mp->timeout_active = 0;
676 /*
677 * Clear any interrupt indication associated with this status
678 * word. This appears to unlatch any error indication from
679 * the DMA controller.
680 */
681 intr = in_8(&mb->ir);
682 if (intr != 0)
683 mace_handle_misc_intrs(mp, intr, dev);
684 if (mp->tx_bad_runt) {
685 fs = in_8(&mb->xmtfs);
686 mp->tx_bad_runt = 0;
687 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
688 continue;
689 }
690 dstat = ld_le32(&td->status);
691 /* stop DMA controller */
692 out_le32(&td->control, RUN << 16);
693 /*
694 * xcount is the number of complete frames which have been
695 * written to the fifo but for which status has not been read.
696 */
697 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
698 if (xcount == 0 || (dstat & DEAD)) {
699 /*
700 * If a packet was aborted before the DMA controller has
701 * finished transferring it, it seems that there are 2 bytes
702 * which are stuck in some buffer somewhere. These will get
703 * transmitted as soon as we read the frame status (which
704 * reenables the transmit data transfer request). Turning
705 * off the DMA controller and/or resetting the MACE doesn't
706 * help. So we disable auto-padding and FCS transmission
707 * so the two bytes will only be a runt packet which should
708 * be ignored by other stations.
709 */
710 out_8(&mb->xmtfc, DXMTFCS);
711 }
712 fs = in_8(&mb->xmtfs);
713 if ((fs & XMTSV) == 0) {
714 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
715 fs, xcount, dstat);
716 mace_reset(dev);
717 /*
718 * XXX mace likes to hang the machine after a xmtfs error.
719 * This is hard to reproduce, reseting *may* help
720 */
721 }
722 cp = mp->tx_cmds + NCMDS_TX * i;
723 stat = ld_le16(&cp->xfer_status);
724 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
725 /*
726 * Check whether there were in fact 2 bytes written to
727 * the transmit FIFO.
728 */
729 udelay(1);
730 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
731 if (x != 0) {
732 /* there were two bytes with an end-of-packet indication */
733 mp->tx_bad_runt = 1;
734 mace_set_timeout(dev);
735 } else {
736 /*
737 * Either there weren't the two bytes buffered up, or they
738 * didn't have an end-of-packet indication.
739 * We flush the transmit FIFO just in case (by setting the
740 * XMTFWU bit with the transmitter disabled).
741 */
742 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
743 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
744 udelay(1);
745 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
746 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
747 }
748 }
749 /* dma should have finished */
750 if (i == mp->tx_fill) {
751 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
752 fs, xcount, dstat);
753 continue;
754 }
755 /* Update stats */
756 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
757 ++dev->stats.tx_errors;
758 if (fs & LCAR)
759 ++dev->stats.tx_carrier_errors;
760 if (fs & (UFLO|LCOL|RTRY))
761 ++dev->stats.tx_aborted_errors;
762 } else {
763 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
764 ++dev->stats.tx_packets;
765 }
766 dev_kfree_skb_irq(mp->tx_bufs[i]);
767 --mp->tx_active;
768 if (++i >= N_TX_RING)
769 i = 0;
770 #if 0
771 mace_last_fs = fs;
772 mace_last_xcount = xcount;
773 #endif
774 }
775
776 if (i != mp->tx_empty) {
777 mp->tx_fullup = 0;
778 netif_wake_queue(dev);
779 }
780 mp->tx_empty = i;
781 i += mp->tx_active;
782 if (i >= N_TX_RING)
783 i -= N_TX_RING;
784 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
785 do {
786 /* set up the next one */
787 cp = mp->tx_cmds + NCMDS_TX * i;
788 out_le16(&cp->xfer_status, 0);
789 out_le16(&cp->command, OUTPUT_LAST);
790 ++mp->tx_active;
791 if (++i >= N_TX_RING)
792 i = 0;
793 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
794 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
795 mace_set_timeout(dev);
796 }
797 spin_unlock_irqrestore(&mp->lock, flags);
798 return IRQ_HANDLED;
799 }
800
mace_tx_timeout(unsigned long data)801 static void mace_tx_timeout(unsigned long data)
802 {
803 struct net_device *dev = (struct net_device *) data;
804 struct mace_data *mp = netdev_priv(dev);
805 volatile struct mace __iomem *mb = mp->mace;
806 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
807 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
808 volatile struct dbdma_cmd *cp;
809 unsigned long flags;
810 int i;
811
812 spin_lock_irqsave(&mp->lock, flags);
813 mp->timeout_active = 0;
814 if (mp->tx_active == 0 && !mp->tx_bad_runt)
815 goto out;
816
817 /* update various counters */
818 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
819
820 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
821
822 /* turn off both tx and rx and reset the chip */
823 out_8(&mb->maccc, 0);
824 printk(KERN_ERR "mace: transmit timeout - resetting\n");
825 dbdma_reset(td);
826 mace_reset(dev);
827
828 /* restart rx dma */
829 cp = bus_to_virt(ld_le32(&rd->cmdptr));
830 dbdma_reset(rd);
831 out_le16(&cp->xfer_status, 0);
832 out_le32(&rd->cmdptr, virt_to_bus(cp));
833 out_le32(&rd->control, (RUN << 16) | RUN);
834
835 /* fix up the transmit side */
836 i = mp->tx_empty;
837 mp->tx_active = 0;
838 ++dev->stats.tx_errors;
839 if (mp->tx_bad_runt) {
840 mp->tx_bad_runt = 0;
841 } else if (i != mp->tx_fill) {
842 dev_kfree_skb(mp->tx_bufs[i]);
843 if (++i >= N_TX_RING)
844 i = 0;
845 mp->tx_empty = i;
846 }
847 mp->tx_fullup = 0;
848 netif_wake_queue(dev);
849 if (i != mp->tx_fill) {
850 cp = mp->tx_cmds + NCMDS_TX * i;
851 out_le16(&cp->xfer_status, 0);
852 out_le16(&cp->command, OUTPUT_LAST);
853 out_le32(&td->cmdptr, virt_to_bus(cp));
854 out_le32(&td->control, (RUN << 16) | RUN);
855 ++mp->tx_active;
856 mace_set_timeout(dev);
857 }
858
859 /* turn it back on */
860 out_8(&mb->imr, RCVINT);
861 out_8(&mb->maccc, mp->maccc);
862
863 out:
864 spin_unlock_irqrestore(&mp->lock, flags);
865 }
866
mace_txdma_intr(int irq,void * dev_id)867 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
868 {
869 return IRQ_HANDLED;
870 }
871
mace_rxdma_intr(int irq,void * dev_id)872 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
873 {
874 struct net_device *dev = (struct net_device *) dev_id;
875 struct mace_data *mp = netdev_priv(dev);
876 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
877 volatile struct dbdma_cmd *cp, *np;
878 int i, nb, stat, next;
879 struct sk_buff *skb;
880 unsigned frame_status;
881 static int mace_lost_status;
882 unsigned char *data;
883 unsigned long flags;
884
885 spin_lock_irqsave(&mp->lock, flags);
886 for (i = mp->rx_empty; i != mp->rx_fill; ) {
887 cp = mp->rx_cmds + i;
888 stat = ld_le16(&cp->xfer_status);
889 if ((stat & ACTIVE) == 0) {
890 next = i + 1;
891 if (next >= N_RX_RING)
892 next = 0;
893 np = mp->rx_cmds + next;
894 if (next != mp->rx_fill
895 && (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
896 printk(KERN_DEBUG "mace: lost a status word\n");
897 ++mace_lost_status;
898 } else
899 break;
900 }
901 nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
902 out_le16(&cp->command, DBDMA_STOP);
903 /* got a packet, have a look at it */
904 skb = mp->rx_bufs[i];
905 if (!skb) {
906 ++dev->stats.rx_dropped;
907 } else if (nb > 8) {
908 data = skb->data;
909 frame_status = (data[nb-3] << 8) + data[nb-4];
910 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
911 ++dev->stats.rx_errors;
912 if (frame_status & RS_OFLO)
913 ++dev->stats.rx_over_errors;
914 if (frame_status & RS_FRAMERR)
915 ++dev->stats.rx_frame_errors;
916 if (frame_status & RS_FCSERR)
917 ++dev->stats.rx_crc_errors;
918 } else {
919 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
920 * FCS on frames with 802.3 headers. This means that Ethernet
921 * frames have 8 extra octets at the end, while 802.3 frames
922 * have only 4. We need to correctly account for this. */
923 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
924 nb -= 4;
925 else /* Ethernet header; mace includes FCS */
926 nb -= 8;
927 skb_put(skb, nb);
928 skb->protocol = eth_type_trans(skb, dev);
929 dev->stats.rx_bytes += skb->len;
930 netif_rx(skb);
931 mp->rx_bufs[i] = NULL;
932 ++dev->stats.rx_packets;
933 }
934 } else {
935 ++dev->stats.rx_errors;
936 ++dev->stats.rx_length_errors;
937 }
938
939 /* advance to next */
940 if (++i >= N_RX_RING)
941 i = 0;
942 }
943 mp->rx_empty = i;
944
945 i = mp->rx_fill;
946 for (;;) {
947 next = i + 1;
948 if (next >= N_RX_RING)
949 next = 0;
950 if (next == mp->rx_empty)
951 break;
952 cp = mp->rx_cmds + i;
953 skb = mp->rx_bufs[i];
954 if (!skb) {
955 skb = dev_alloc_skb(RX_BUFLEN + 2);
956 if (skb) {
957 skb_reserve(skb, 2);
958 mp->rx_bufs[i] = skb;
959 }
960 }
961 st_le16(&cp->req_count, RX_BUFLEN);
962 data = skb? skb->data: dummy_buf;
963 st_le32(&cp->phy_addr, virt_to_bus(data));
964 out_le16(&cp->xfer_status, 0);
965 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
966 #if 0
967 if ((ld_le32(&rd->status) & ACTIVE) != 0) {
968 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
969 while ((in_le32(&rd->status) & ACTIVE) != 0)
970 ;
971 }
972 #endif
973 i = next;
974 }
975 if (i != mp->rx_fill) {
976 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
977 mp->rx_fill = i;
978 }
979 spin_unlock_irqrestore(&mp->lock, flags);
980 return IRQ_HANDLED;
981 }
982
983 static struct of_device_id mace_match[] =
984 {
985 {
986 .name = "mace",
987 },
988 {},
989 };
990 MODULE_DEVICE_TABLE (of, mace_match);
991
992 static struct macio_driver mace_driver =
993 {
994 .name = "mace",
995 .match_table = mace_match,
996 .probe = mace_probe,
997 .remove = mace_remove,
998 };
999
1000
mace_init(void)1001 static int __init mace_init(void)
1002 {
1003 return macio_register_driver(&mace_driver);
1004 }
1005
mace_cleanup(void)1006 static void __exit mace_cleanup(void)
1007 {
1008 macio_unregister_driver(&mace_driver);
1009
1010 kfree(dummy_buf);
1011 dummy_buf = NULL;
1012 }
1013
1014 MODULE_AUTHOR("Paul Mackerras");
1015 MODULE_DESCRIPTION("PowerMac MACE driver.");
1016 module_param(port_aaui, int, 0);
1017 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1018 MODULE_LICENSE("GPL");
1019
1020 module_init(mace_init);
1021 module_exit(mace_cleanup);
1022