• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Network device driver for the MACE ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1996 Paul Mackerras.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/crc32.h>
17 #include <linux/spinlock.h>
18 #include <linux/bitrev.h>
19 #include <asm/prom.h>
20 #include <asm/dbdma.h>
21 #include <asm/io.h>
22 #include <asm/pgtable.h>
23 #include <asm/macio.h>
24 
25 #include "mace.h"
26 
27 static int port_aaui = -1;
28 
29 #define N_RX_RING	8
30 #define N_TX_RING	6
31 #define MAX_TX_ACTIVE	1
32 #define NCMDS_TX	1	/* dma commands per element in tx ring */
33 #define RX_BUFLEN	(ETH_FRAME_LEN + 8)
34 #define TX_TIMEOUT	HZ	/* 1 second */
35 
36 /* Chip rev needs workaround on HW & multicast addr change */
37 #define BROKEN_ADDRCHG_REV	0x0941
38 
39 /* Bits in transmit DMA status */
40 #define TX_DMA_ERR	0x80
41 
42 struct mace_data {
43     volatile struct mace __iomem *mace;
44     volatile struct dbdma_regs __iomem *tx_dma;
45     int tx_dma_intr;
46     volatile struct dbdma_regs __iomem *rx_dma;
47     int rx_dma_intr;
48     volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
49     volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
50     struct sk_buff *rx_bufs[N_RX_RING];
51     int rx_fill;
52     int rx_empty;
53     struct sk_buff *tx_bufs[N_TX_RING];
54     int tx_fill;
55     int tx_empty;
56     unsigned char maccc;
57     unsigned char tx_fullup;
58     unsigned char tx_active;
59     unsigned char tx_bad_runt;
60     struct timer_list tx_timeout;
61     int timeout_active;
62     int port_aaui;
63     int chipid;
64     struct macio_dev *mdev;
65     spinlock_t lock;
66 };
67 
68 /*
69  * Number of bytes of private data per MACE: allow enough for
70  * the rx and tx dma commands plus a branch dma command each,
71  * and another 16 bytes to allow us to align the dma command
72  * buffers on a 16 byte boundary.
73  */
74 #define PRIV_BYTES	(sizeof(struct mace_data) \
75 	+ (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
76 
77 static int mace_open(struct net_device *dev);
78 static int mace_close(struct net_device *dev);
79 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
80 static void mace_set_multicast(struct net_device *dev);
81 static void mace_reset(struct net_device *dev);
82 static int mace_set_address(struct net_device *dev, void *addr);
83 static irqreturn_t mace_interrupt(int irq, void *dev_id);
84 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
85 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
86 static void mace_set_timeout(struct net_device *dev);
87 static void mace_tx_timeout(unsigned long data);
88 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
89 static inline void mace_clean_rings(struct mace_data *mp);
90 static void __mace_set_address(struct net_device *dev, void *addr);
91 
92 /*
93  * If we can't get a skbuff when we need it, we use this area for DMA.
94  */
95 static unsigned char *dummy_buf;
96 
mace_probe(struct macio_dev * mdev,const struct of_device_id * match)97 static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
98 {
99 	struct device_node *mace = macio_get_of_node(mdev);
100 	struct net_device *dev;
101 	struct mace_data *mp;
102 	const unsigned char *addr;
103 	int j, rev, rc = -EBUSY;
104 
105 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
106 		printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
107 		       mace->full_name);
108 		return -ENODEV;
109 	}
110 
111 	addr = of_get_property(mace, "mac-address", NULL);
112 	if (addr == NULL) {
113 		addr = of_get_property(mace, "local-mac-address", NULL);
114 		if (addr == NULL) {
115 			printk(KERN_ERR "Can't get mac-address for MACE %s\n",
116 			       mace->full_name);
117 			return -ENODEV;
118 		}
119 	}
120 
121 	/*
122 	 * lazy allocate the driver-wide dummy buffer. (Note that we
123 	 * never have more than one MACE in the system anyway)
124 	 */
125 	if (dummy_buf == NULL) {
126 		dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
127 		if (dummy_buf == NULL) {
128 			printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
129 			return -ENOMEM;
130 		}
131 	}
132 
133 	if (macio_request_resources(mdev, "mace")) {
134 		printk(KERN_ERR "MACE: can't request IO resources !\n");
135 		return -EBUSY;
136 	}
137 
138 	dev = alloc_etherdev(PRIV_BYTES);
139 	if (!dev) {
140 		printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
141 		rc = -ENOMEM;
142 		goto err_release;
143 	}
144 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
145 
146 	mp = netdev_priv(dev);
147 	mp->mdev = mdev;
148 	macio_set_drvdata(mdev, dev);
149 
150 	dev->base_addr = macio_resource_start(mdev, 0);
151 	mp->mace = ioremap(dev->base_addr, 0x1000);
152 	if (mp->mace == NULL) {
153 		printk(KERN_ERR "MACE: can't map IO resources !\n");
154 		rc = -ENOMEM;
155 		goto err_free;
156 	}
157 	dev->irq = macio_irq(mdev, 0);
158 
159 	rev = addr[0] == 0 && addr[1] == 0xA0;
160 	for (j = 0; j < 6; ++j) {
161 		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
162 	}
163 	mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
164 			in_8(&mp->mace->chipid_lo);
165 
166 
167 	mp = netdev_priv(dev);
168 	mp->maccc = ENXMT | ENRCV;
169 
170 	mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
171 	if (mp->tx_dma == NULL) {
172 		printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
173 		rc = -ENOMEM;
174 		goto err_unmap_io;
175 	}
176 	mp->tx_dma_intr = macio_irq(mdev, 1);
177 
178 	mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
179 	if (mp->rx_dma == NULL) {
180 		printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
181 		rc = -ENOMEM;
182 		goto err_unmap_tx_dma;
183 	}
184 	mp->rx_dma_intr = macio_irq(mdev, 2);
185 
186 	mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
187 	mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
188 
189 	memset((char *) mp->tx_cmds, 0,
190 	       (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
191 	init_timer(&mp->tx_timeout);
192 	spin_lock_init(&mp->lock);
193 	mp->timeout_active = 0;
194 
195 	if (port_aaui >= 0)
196 		mp->port_aaui = port_aaui;
197 	else {
198 		/* Apple Network Server uses the AAUI port */
199 		if (machine_is_compatible("AAPL,ShinerESB"))
200 			mp->port_aaui = 1;
201 		else {
202 #ifdef CONFIG_MACE_AAUI_PORT
203 			mp->port_aaui = 1;
204 #else
205 			mp->port_aaui = 0;
206 #endif
207 		}
208 	}
209 
210 	dev->open = mace_open;
211 	dev->stop = mace_close;
212 	dev->hard_start_xmit = mace_xmit_start;
213 	dev->set_multicast_list = mace_set_multicast;
214 	dev->set_mac_address = mace_set_address;
215 
216 	/*
217 	 * Most of what is below could be moved to mace_open()
218 	 */
219 	mace_reset(dev);
220 
221 	rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
222 	if (rc) {
223 		printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
224 		goto err_unmap_rx_dma;
225 	}
226 	rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
227 	if (rc) {
228 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
229 		goto err_free_irq;
230 	}
231 	rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
232 	if (rc) {
233 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
234 		goto err_free_tx_irq;
235 	}
236 
237 	rc = register_netdev(dev);
238 	if (rc) {
239 		printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
240 		goto err_free_rx_irq;
241 	}
242 
243 	printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
244 	       dev->name, dev->dev_addr,
245 	       mp->chipid >> 8, mp->chipid & 0xff);
246 
247 	return 0;
248 
249  err_free_rx_irq:
250 	free_irq(macio_irq(mdev, 2), dev);
251  err_free_tx_irq:
252 	free_irq(macio_irq(mdev, 1), dev);
253  err_free_irq:
254 	free_irq(macio_irq(mdev, 0), dev);
255  err_unmap_rx_dma:
256 	iounmap(mp->rx_dma);
257  err_unmap_tx_dma:
258 	iounmap(mp->tx_dma);
259  err_unmap_io:
260 	iounmap(mp->mace);
261  err_free:
262 	free_netdev(dev);
263  err_release:
264 	macio_release_resources(mdev);
265 
266 	return rc;
267 }
268 
mace_remove(struct macio_dev * mdev)269 static int __devexit mace_remove(struct macio_dev *mdev)
270 {
271 	struct net_device *dev = macio_get_drvdata(mdev);
272 	struct mace_data *mp;
273 
274 	BUG_ON(dev == NULL);
275 
276 	macio_set_drvdata(mdev, NULL);
277 
278 	mp = netdev_priv(dev);
279 
280 	unregister_netdev(dev);
281 
282 	free_irq(dev->irq, dev);
283 	free_irq(mp->tx_dma_intr, dev);
284 	free_irq(mp->rx_dma_intr, dev);
285 
286 	iounmap(mp->rx_dma);
287 	iounmap(mp->tx_dma);
288 	iounmap(mp->mace);
289 
290 	free_netdev(dev);
291 
292 	macio_release_resources(mdev);
293 
294 	return 0;
295 }
296 
dbdma_reset(volatile struct dbdma_regs __iomem * dma)297 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
298 {
299     int i;
300 
301     out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
302 
303     /*
304      * Yes this looks peculiar, but apparently it needs to be this
305      * way on some machines.
306      */
307     for (i = 200; i > 0; --i)
308 	if (ld_le32(&dma->control) & RUN)
309 	    udelay(1);
310 }
311 
mace_reset(struct net_device * dev)312 static void mace_reset(struct net_device *dev)
313 {
314     struct mace_data *mp = netdev_priv(dev);
315     volatile struct mace __iomem *mb = mp->mace;
316     int i;
317 
318     /* soft-reset the chip */
319     i = 200;
320     while (--i) {
321 	out_8(&mb->biucc, SWRST);
322 	if (in_8(&mb->biucc) & SWRST) {
323 	    udelay(10);
324 	    continue;
325 	}
326 	break;
327     }
328     if (!i) {
329 	printk(KERN_ERR "mace: cannot reset chip!\n");
330 	return;
331     }
332 
333     out_8(&mb->imr, 0xff);	/* disable all intrs for now */
334     i = in_8(&mb->ir);
335     out_8(&mb->maccc, 0);	/* turn off tx, rx */
336 
337     out_8(&mb->biucc, XMTSP_64);
338     out_8(&mb->utr, RTRD);
339     out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
340     out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
341     out_8(&mb->rcvfc, 0);
342 
343     /* load up the hardware address */
344     __mace_set_address(dev, dev->dev_addr);
345 
346     /* clear the multicast filter */
347     if (mp->chipid == BROKEN_ADDRCHG_REV)
348 	out_8(&mb->iac, LOGADDR);
349     else {
350 	out_8(&mb->iac, ADDRCHG | LOGADDR);
351 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
352 		;
353     }
354     for (i = 0; i < 8; ++i)
355 	out_8(&mb->ladrf, 0);
356 
357     /* done changing address */
358     if (mp->chipid != BROKEN_ADDRCHG_REV)
359 	out_8(&mb->iac, 0);
360 
361     if (mp->port_aaui)
362     	out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
363     else
364     	out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
365 }
366 
__mace_set_address(struct net_device * dev,void * addr)367 static void __mace_set_address(struct net_device *dev, void *addr)
368 {
369     struct mace_data *mp = netdev_priv(dev);
370     volatile struct mace __iomem *mb = mp->mace;
371     unsigned char *p = addr;
372     int i;
373 
374     /* load up the hardware address */
375     if (mp->chipid == BROKEN_ADDRCHG_REV)
376     	out_8(&mb->iac, PHYADDR);
377     else {
378     	out_8(&mb->iac, ADDRCHG | PHYADDR);
379 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
380 	    ;
381     }
382     for (i = 0; i < 6; ++i)
383 	out_8(&mb->padr, dev->dev_addr[i] = p[i]);
384     if (mp->chipid != BROKEN_ADDRCHG_REV)
385         out_8(&mb->iac, 0);
386 }
387 
mace_set_address(struct net_device * dev,void * addr)388 static int mace_set_address(struct net_device *dev, void *addr)
389 {
390     struct mace_data *mp = netdev_priv(dev);
391     volatile struct mace __iomem *mb = mp->mace;
392     unsigned long flags;
393 
394     spin_lock_irqsave(&mp->lock, flags);
395 
396     __mace_set_address(dev, addr);
397 
398     /* note: setting ADDRCHG clears ENRCV */
399     out_8(&mb->maccc, mp->maccc);
400 
401     spin_unlock_irqrestore(&mp->lock, flags);
402     return 0;
403 }
404 
mace_clean_rings(struct mace_data * mp)405 static inline void mace_clean_rings(struct mace_data *mp)
406 {
407     int i;
408 
409     /* free some skb's */
410     for (i = 0; i < N_RX_RING; ++i) {
411 	if (mp->rx_bufs[i] != NULL) {
412 	    dev_kfree_skb(mp->rx_bufs[i]);
413 	    mp->rx_bufs[i] = NULL;
414 	}
415     }
416     for (i = mp->tx_empty; i != mp->tx_fill; ) {
417 	dev_kfree_skb(mp->tx_bufs[i]);
418 	if (++i >= N_TX_RING)
419 	    i = 0;
420     }
421 }
422 
mace_open(struct net_device * dev)423 static int mace_open(struct net_device *dev)
424 {
425     struct mace_data *mp = netdev_priv(dev);
426     volatile struct mace __iomem *mb = mp->mace;
427     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
428     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
429     volatile struct dbdma_cmd *cp;
430     int i;
431     struct sk_buff *skb;
432     unsigned char *data;
433 
434     /* reset the chip */
435     mace_reset(dev);
436 
437     /* initialize list of sk_buffs for receiving and set up recv dma */
438     mace_clean_rings(mp);
439     memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
440     cp = mp->rx_cmds;
441     for (i = 0; i < N_RX_RING - 1; ++i) {
442 	skb = dev_alloc_skb(RX_BUFLEN + 2);
443 	if (!skb) {
444 	    data = dummy_buf;
445 	} else {
446 	    skb_reserve(skb, 2);	/* so IP header lands on 4-byte bdry */
447 	    data = skb->data;
448 	}
449 	mp->rx_bufs[i] = skb;
450 	st_le16(&cp->req_count, RX_BUFLEN);
451 	st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
452 	st_le32(&cp->phy_addr, virt_to_bus(data));
453 	cp->xfer_status = 0;
454 	++cp;
455     }
456     mp->rx_bufs[i] = NULL;
457     st_le16(&cp->command, DBDMA_STOP);
458     mp->rx_fill = i;
459     mp->rx_empty = 0;
460 
461     /* Put a branch back to the beginning of the receive command list */
462     ++cp;
463     st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
464     st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
465 
466     /* start rx dma */
467     out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
468     out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
469     out_le32(&rd->control, (RUN << 16) | RUN);
470 
471     /* put a branch at the end of the tx command list */
472     cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
473     st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
474     st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
475 
476     /* reset tx dma */
477     out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
478     out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
479     mp->tx_fill = 0;
480     mp->tx_empty = 0;
481     mp->tx_fullup = 0;
482     mp->tx_active = 0;
483     mp->tx_bad_runt = 0;
484 
485     /* turn it on! */
486     out_8(&mb->maccc, mp->maccc);
487     /* enable all interrupts except receive interrupts */
488     out_8(&mb->imr, RCVINT);
489 
490     return 0;
491 }
492 
mace_close(struct net_device * dev)493 static int mace_close(struct net_device *dev)
494 {
495     struct mace_data *mp = netdev_priv(dev);
496     volatile struct mace __iomem *mb = mp->mace;
497     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
498     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
499 
500     /* disable rx and tx */
501     out_8(&mb->maccc, 0);
502     out_8(&mb->imr, 0xff);		/* disable all intrs */
503 
504     /* disable rx and tx dma */
505     st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
506     st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
507 
508     mace_clean_rings(mp);
509 
510     return 0;
511 }
512 
mace_set_timeout(struct net_device * dev)513 static inline void mace_set_timeout(struct net_device *dev)
514 {
515     struct mace_data *mp = netdev_priv(dev);
516 
517     if (mp->timeout_active)
518 	del_timer(&mp->tx_timeout);
519     mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
520     mp->tx_timeout.function = mace_tx_timeout;
521     mp->tx_timeout.data = (unsigned long) dev;
522     add_timer(&mp->tx_timeout);
523     mp->timeout_active = 1;
524 }
525 
mace_xmit_start(struct sk_buff * skb,struct net_device * dev)526 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
527 {
528     struct mace_data *mp = netdev_priv(dev);
529     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
530     volatile struct dbdma_cmd *cp, *np;
531     unsigned long flags;
532     int fill, next, len;
533 
534     /* see if there's a free slot in the tx ring */
535     spin_lock_irqsave(&mp->lock, flags);
536     fill = mp->tx_fill;
537     next = fill + 1;
538     if (next >= N_TX_RING)
539 	next = 0;
540     if (next == mp->tx_empty) {
541 	netif_stop_queue(dev);
542 	mp->tx_fullup = 1;
543 	spin_unlock_irqrestore(&mp->lock, flags);
544 	return 1;		/* can't take it at the moment */
545     }
546     spin_unlock_irqrestore(&mp->lock, flags);
547 
548     /* partially fill in the dma command block */
549     len = skb->len;
550     if (len > ETH_FRAME_LEN) {
551 	printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
552 	len = ETH_FRAME_LEN;
553     }
554     mp->tx_bufs[fill] = skb;
555     cp = mp->tx_cmds + NCMDS_TX * fill;
556     st_le16(&cp->req_count, len);
557     st_le32(&cp->phy_addr, virt_to_bus(skb->data));
558 
559     np = mp->tx_cmds + NCMDS_TX * next;
560     out_le16(&np->command, DBDMA_STOP);
561 
562     /* poke the tx dma channel */
563     spin_lock_irqsave(&mp->lock, flags);
564     mp->tx_fill = next;
565     if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
566 	out_le16(&cp->xfer_status, 0);
567 	out_le16(&cp->command, OUTPUT_LAST);
568 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
569 	++mp->tx_active;
570 	mace_set_timeout(dev);
571     }
572     if (++next >= N_TX_RING)
573 	next = 0;
574     if (next == mp->tx_empty)
575 	netif_stop_queue(dev);
576     spin_unlock_irqrestore(&mp->lock, flags);
577 
578     return 0;
579 }
580 
mace_set_multicast(struct net_device * dev)581 static void mace_set_multicast(struct net_device *dev)
582 {
583     struct mace_data *mp = netdev_priv(dev);
584     volatile struct mace __iomem *mb = mp->mace;
585     int i, j;
586     u32 crc;
587     unsigned long flags;
588 
589     spin_lock_irqsave(&mp->lock, flags);
590     mp->maccc &= ~PROM;
591     if (dev->flags & IFF_PROMISC) {
592 	mp->maccc |= PROM;
593     } else {
594 	unsigned char multicast_filter[8];
595 	struct dev_mc_list *dmi = dev->mc_list;
596 
597 	if (dev->flags & IFF_ALLMULTI) {
598 	    for (i = 0; i < 8; i++)
599 		multicast_filter[i] = 0xff;
600 	} else {
601 	    for (i = 0; i < 8; i++)
602 		multicast_filter[i] = 0;
603 	    for (i = 0; i < dev->mc_count; i++) {
604 	        crc = ether_crc_le(6, dmi->dmi_addr);
605 		j = crc >> 26;	/* bit number in multicast_filter */
606 		multicast_filter[j >> 3] |= 1 << (j & 7);
607 		dmi = dmi->next;
608 	    }
609 	}
610 #if 0
611 	printk("Multicast filter :");
612 	for (i = 0; i < 8; i++)
613 	    printk("%02x ", multicast_filter[i]);
614 	printk("\n");
615 #endif
616 
617 	if (mp->chipid == BROKEN_ADDRCHG_REV)
618 	    out_8(&mb->iac, LOGADDR);
619 	else {
620 	    out_8(&mb->iac, ADDRCHG | LOGADDR);
621 	    while ((in_8(&mb->iac) & ADDRCHG) != 0)
622 		;
623 	}
624 	for (i = 0; i < 8; ++i)
625 	    out_8(&mb->ladrf, multicast_filter[i]);
626 	if (mp->chipid != BROKEN_ADDRCHG_REV)
627 	    out_8(&mb->iac, 0);
628     }
629     /* reset maccc */
630     out_8(&mb->maccc, mp->maccc);
631     spin_unlock_irqrestore(&mp->lock, flags);
632 }
633 
mace_handle_misc_intrs(struct mace_data * mp,int intr,struct net_device * dev)634 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
635 {
636     volatile struct mace __iomem *mb = mp->mace;
637     static int mace_babbles, mace_jabbers;
638 
639     if (intr & MPCO)
640 	dev->stats.rx_missed_errors += 256;
641     dev->stats.rx_missed_errors += in_8(&mb->mpc);   /* reading clears it */
642     if (intr & RNTPCO)
643 	dev->stats.rx_length_errors += 256;
644     dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
645     if (intr & CERR)
646 	++dev->stats.tx_heartbeat_errors;
647     if (intr & BABBLE)
648 	if (mace_babbles++ < 4)
649 	    printk(KERN_DEBUG "mace: babbling transmitter\n");
650     if (intr & JABBER)
651 	if (mace_jabbers++ < 4)
652 	    printk(KERN_DEBUG "mace: jabbering transceiver\n");
653 }
654 
mace_interrupt(int irq,void * dev_id)655 static irqreturn_t mace_interrupt(int irq, void *dev_id)
656 {
657     struct net_device *dev = (struct net_device *) dev_id;
658     struct mace_data *mp = netdev_priv(dev);
659     volatile struct mace __iomem *mb = mp->mace;
660     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
661     volatile struct dbdma_cmd *cp;
662     int intr, fs, i, stat, x;
663     int xcount, dstat;
664     unsigned long flags;
665     /* static int mace_last_fs, mace_last_xcount; */
666 
667     spin_lock_irqsave(&mp->lock, flags);
668     intr = in_8(&mb->ir);		/* read interrupt register */
669     in_8(&mb->xmtrc);			/* get retries */
670     mace_handle_misc_intrs(mp, intr, dev);
671 
672     i = mp->tx_empty;
673     while (in_8(&mb->pr) & XMTSV) {
674 	del_timer(&mp->tx_timeout);
675 	mp->timeout_active = 0;
676 	/*
677 	 * Clear any interrupt indication associated with this status
678 	 * word.  This appears to unlatch any error indication from
679 	 * the DMA controller.
680 	 */
681 	intr = in_8(&mb->ir);
682 	if (intr != 0)
683 	    mace_handle_misc_intrs(mp, intr, dev);
684 	if (mp->tx_bad_runt) {
685 	    fs = in_8(&mb->xmtfs);
686 	    mp->tx_bad_runt = 0;
687 	    out_8(&mb->xmtfc, AUTO_PAD_XMIT);
688 	    continue;
689 	}
690 	dstat = ld_le32(&td->status);
691 	/* stop DMA controller */
692 	out_le32(&td->control, RUN << 16);
693 	/*
694 	 * xcount is the number of complete frames which have been
695 	 * written to the fifo but for which status has not been read.
696 	 */
697 	xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
698 	if (xcount == 0 || (dstat & DEAD)) {
699 	    /*
700 	     * If a packet was aborted before the DMA controller has
701 	     * finished transferring it, it seems that there are 2 bytes
702 	     * which are stuck in some buffer somewhere.  These will get
703 	     * transmitted as soon as we read the frame status (which
704 	     * reenables the transmit data transfer request).  Turning
705 	     * off the DMA controller and/or resetting the MACE doesn't
706 	     * help.  So we disable auto-padding and FCS transmission
707 	     * so the two bytes will only be a runt packet which should
708 	     * be ignored by other stations.
709 	     */
710 	    out_8(&mb->xmtfc, DXMTFCS);
711 	}
712 	fs = in_8(&mb->xmtfs);
713 	if ((fs & XMTSV) == 0) {
714 	    printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
715 		   fs, xcount, dstat);
716 	    mace_reset(dev);
717 		/*
718 		 * XXX mace likes to hang the machine after a xmtfs error.
719 		 * This is hard to reproduce, reseting *may* help
720 		 */
721 	}
722 	cp = mp->tx_cmds + NCMDS_TX * i;
723 	stat = ld_le16(&cp->xfer_status);
724 	if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
725 	    /*
726 	     * Check whether there were in fact 2 bytes written to
727 	     * the transmit FIFO.
728 	     */
729 	    udelay(1);
730 	    x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
731 	    if (x != 0) {
732 		/* there were two bytes with an end-of-packet indication */
733 		mp->tx_bad_runt = 1;
734 		mace_set_timeout(dev);
735 	    } else {
736 		/*
737 		 * Either there weren't the two bytes buffered up, or they
738 		 * didn't have an end-of-packet indication.
739 		 * We flush the transmit FIFO just in case (by setting the
740 		 * XMTFWU bit with the transmitter disabled).
741 		 */
742 		out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
743 		out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
744 		udelay(1);
745 		out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
746 		out_8(&mb->xmtfc, AUTO_PAD_XMIT);
747 	    }
748 	}
749 	/* dma should have finished */
750 	if (i == mp->tx_fill) {
751 	    printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
752 		   fs, xcount, dstat);
753 	    continue;
754 	}
755 	/* Update stats */
756 	if (fs & (UFLO|LCOL|LCAR|RTRY)) {
757 	    ++dev->stats.tx_errors;
758 	    if (fs & LCAR)
759 		++dev->stats.tx_carrier_errors;
760 	    if (fs & (UFLO|LCOL|RTRY))
761 		++dev->stats.tx_aborted_errors;
762 	} else {
763 	    dev->stats.tx_bytes += mp->tx_bufs[i]->len;
764 	    ++dev->stats.tx_packets;
765 	}
766 	dev_kfree_skb_irq(mp->tx_bufs[i]);
767 	--mp->tx_active;
768 	if (++i >= N_TX_RING)
769 	    i = 0;
770 #if 0
771 	mace_last_fs = fs;
772 	mace_last_xcount = xcount;
773 #endif
774     }
775 
776     if (i != mp->tx_empty) {
777 	mp->tx_fullup = 0;
778 	netif_wake_queue(dev);
779     }
780     mp->tx_empty = i;
781     i += mp->tx_active;
782     if (i >= N_TX_RING)
783 	i -= N_TX_RING;
784     if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
785 	do {
786 	    /* set up the next one */
787 	    cp = mp->tx_cmds + NCMDS_TX * i;
788 	    out_le16(&cp->xfer_status, 0);
789 	    out_le16(&cp->command, OUTPUT_LAST);
790 	    ++mp->tx_active;
791 	    if (++i >= N_TX_RING)
792 		i = 0;
793 	} while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
794 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
795 	mace_set_timeout(dev);
796     }
797     spin_unlock_irqrestore(&mp->lock, flags);
798     return IRQ_HANDLED;
799 }
800 
mace_tx_timeout(unsigned long data)801 static void mace_tx_timeout(unsigned long data)
802 {
803     struct net_device *dev = (struct net_device *) data;
804     struct mace_data *mp = netdev_priv(dev);
805     volatile struct mace __iomem *mb = mp->mace;
806     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
807     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
808     volatile struct dbdma_cmd *cp;
809     unsigned long flags;
810     int i;
811 
812     spin_lock_irqsave(&mp->lock, flags);
813     mp->timeout_active = 0;
814     if (mp->tx_active == 0 && !mp->tx_bad_runt)
815 	goto out;
816 
817     /* update various counters */
818     mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
819 
820     cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
821 
822     /* turn off both tx and rx and reset the chip */
823     out_8(&mb->maccc, 0);
824     printk(KERN_ERR "mace: transmit timeout - resetting\n");
825     dbdma_reset(td);
826     mace_reset(dev);
827 
828     /* restart rx dma */
829     cp = bus_to_virt(ld_le32(&rd->cmdptr));
830     dbdma_reset(rd);
831     out_le16(&cp->xfer_status, 0);
832     out_le32(&rd->cmdptr, virt_to_bus(cp));
833     out_le32(&rd->control, (RUN << 16) | RUN);
834 
835     /* fix up the transmit side */
836     i = mp->tx_empty;
837     mp->tx_active = 0;
838     ++dev->stats.tx_errors;
839     if (mp->tx_bad_runt) {
840 	mp->tx_bad_runt = 0;
841     } else if (i != mp->tx_fill) {
842 	dev_kfree_skb(mp->tx_bufs[i]);
843 	if (++i >= N_TX_RING)
844 	    i = 0;
845 	mp->tx_empty = i;
846     }
847     mp->tx_fullup = 0;
848     netif_wake_queue(dev);
849     if (i != mp->tx_fill) {
850 	cp = mp->tx_cmds + NCMDS_TX * i;
851 	out_le16(&cp->xfer_status, 0);
852 	out_le16(&cp->command, OUTPUT_LAST);
853 	out_le32(&td->cmdptr, virt_to_bus(cp));
854 	out_le32(&td->control, (RUN << 16) | RUN);
855 	++mp->tx_active;
856 	mace_set_timeout(dev);
857     }
858 
859     /* turn it back on */
860     out_8(&mb->imr, RCVINT);
861     out_8(&mb->maccc, mp->maccc);
862 
863 out:
864     spin_unlock_irqrestore(&mp->lock, flags);
865 }
866 
mace_txdma_intr(int irq,void * dev_id)867 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
868 {
869 	return IRQ_HANDLED;
870 }
871 
mace_rxdma_intr(int irq,void * dev_id)872 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
873 {
874     struct net_device *dev = (struct net_device *) dev_id;
875     struct mace_data *mp = netdev_priv(dev);
876     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
877     volatile struct dbdma_cmd *cp, *np;
878     int i, nb, stat, next;
879     struct sk_buff *skb;
880     unsigned frame_status;
881     static int mace_lost_status;
882     unsigned char *data;
883     unsigned long flags;
884 
885     spin_lock_irqsave(&mp->lock, flags);
886     for (i = mp->rx_empty; i != mp->rx_fill; ) {
887 	cp = mp->rx_cmds + i;
888 	stat = ld_le16(&cp->xfer_status);
889 	if ((stat & ACTIVE) == 0) {
890 	    next = i + 1;
891 	    if (next >= N_RX_RING)
892 		next = 0;
893 	    np = mp->rx_cmds + next;
894 	    if (next != mp->rx_fill
895 		&& (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
896 		printk(KERN_DEBUG "mace: lost a status word\n");
897 		++mace_lost_status;
898 	    } else
899 		break;
900 	}
901 	nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
902 	out_le16(&cp->command, DBDMA_STOP);
903 	/* got a packet, have a look at it */
904 	skb = mp->rx_bufs[i];
905 	if (!skb) {
906 	    ++dev->stats.rx_dropped;
907 	} else if (nb > 8) {
908 	    data = skb->data;
909 	    frame_status = (data[nb-3] << 8) + data[nb-4];
910 	    if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
911 		++dev->stats.rx_errors;
912 		if (frame_status & RS_OFLO)
913 		    ++dev->stats.rx_over_errors;
914 		if (frame_status & RS_FRAMERR)
915 		    ++dev->stats.rx_frame_errors;
916 		if (frame_status & RS_FCSERR)
917 		    ++dev->stats.rx_crc_errors;
918 	    } else {
919 		/* Mace feature AUTO_STRIP_RCV is on by default, dropping the
920 		 * FCS on frames with 802.3 headers. This means that Ethernet
921 		 * frames have 8 extra octets at the end, while 802.3 frames
922 		 * have only 4. We need to correctly account for this. */
923 		if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
924 		    nb -= 4;
925 		else	/* Ethernet header; mace includes FCS */
926 		    nb -= 8;
927 		skb_put(skb, nb);
928 		skb->protocol = eth_type_trans(skb, dev);
929 		dev->stats.rx_bytes += skb->len;
930 		netif_rx(skb);
931 		mp->rx_bufs[i] = NULL;
932 		++dev->stats.rx_packets;
933 	    }
934 	} else {
935 	    ++dev->stats.rx_errors;
936 	    ++dev->stats.rx_length_errors;
937 	}
938 
939 	/* advance to next */
940 	if (++i >= N_RX_RING)
941 	    i = 0;
942     }
943     mp->rx_empty = i;
944 
945     i = mp->rx_fill;
946     for (;;) {
947 	next = i + 1;
948 	if (next >= N_RX_RING)
949 	    next = 0;
950 	if (next == mp->rx_empty)
951 	    break;
952 	cp = mp->rx_cmds + i;
953 	skb = mp->rx_bufs[i];
954 	if (!skb) {
955 	    skb = dev_alloc_skb(RX_BUFLEN + 2);
956 	    if (skb) {
957 		skb_reserve(skb, 2);
958 		mp->rx_bufs[i] = skb;
959 	    }
960 	}
961 	st_le16(&cp->req_count, RX_BUFLEN);
962 	data = skb? skb->data: dummy_buf;
963 	st_le32(&cp->phy_addr, virt_to_bus(data));
964 	out_le16(&cp->xfer_status, 0);
965 	out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
966 #if 0
967 	if ((ld_le32(&rd->status) & ACTIVE) != 0) {
968 	    out_le32(&rd->control, (PAUSE << 16) | PAUSE);
969 	    while ((in_le32(&rd->status) & ACTIVE) != 0)
970 		;
971 	}
972 #endif
973 	i = next;
974     }
975     if (i != mp->rx_fill) {
976 	out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
977 	mp->rx_fill = i;
978     }
979     spin_unlock_irqrestore(&mp->lock, flags);
980     return IRQ_HANDLED;
981 }
982 
983 static struct of_device_id mace_match[] =
984 {
985 	{
986 	.name 		= "mace",
987 	},
988 	{},
989 };
990 MODULE_DEVICE_TABLE (of, mace_match);
991 
992 static struct macio_driver mace_driver =
993 {
994 	.name 		= "mace",
995 	.match_table	= mace_match,
996 	.probe		= mace_probe,
997 	.remove		= mace_remove,
998 };
999 
1000 
mace_init(void)1001 static int __init mace_init(void)
1002 {
1003 	return macio_register_driver(&mace_driver);
1004 }
1005 
mace_cleanup(void)1006 static void __exit mace_cleanup(void)
1007 {
1008 	macio_unregister_driver(&mace_driver);
1009 
1010 	kfree(dummy_buf);
1011 	dummy_buf = NULL;
1012 }
1013 
1014 MODULE_AUTHOR("Paul Mackerras");
1015 MODULE_DESCRIPTION("PowerMac MACE driver.");
1016 module_param(port_aaui, int, 0);
1017 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1018 MODULE_LICENSE("GPL");
1019 
1020 module_init(mace_init);
1021 module_exit(mace_cleanup);
1022