• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static char version[] __devinitdata =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   KERN_INFO "  originally by Donald Becker <becker@scyld.com>\n"
134   KERN_INFO "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 recieve and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	struct napi_struct napi;
551 	struct net_device_stats stats;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static int start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
650 
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653          struct device_attribute *attr, char *buf); \
654 	 static ssize_t natsemi_set_##_name(struct device *dev, \
655 		struct device_attribute *attr, \
656 	        const char *buf, size_t count); \
657 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
658 
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660          device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662          device_remove_file(&_dev->dev, &dev_attr_##_name)
663 
664 NATSEMI_ATTR(dspcfg_workaround);
665 
natsemi_show_dspcfg_workaround(struct device * dev,struct device_attribute * attr,char * buf)666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 				  	      struct device_attribute *attr,
668 					      char *buf)
669 {
670 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
671 
672 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
673 }
674 
natsemi_set_dspcfg_workaround(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 					     struct device_attribute *attr,
677 					     const char *buf, size_t count)
678 {
679 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 	int new_setting;
681 	unsigned long flags;
682 
683         /* Find out the new setting */
684         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685                 new_setting = 1;
686         else if (!strncmp("off", buf, count - 1)
687                  || !strncmp("0", buf, count - 1))
688 		new_setting = 0;
689 	else
690                  return count;
691 
692 	spin_lock_irqsave(&np->lock, flags);
693 
694 	np->dspcfg_workaround = new_setting;
695 
696 	spin_unlock_irqrestore(&np->lock, flags);
697 
698 	return count;
699 }
700 
ns_ioaddr(struct net_device * dev)701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
702 {
703 	return (void __iomem *) dev->base_addr;
704 }
705 
natsemi_irq_enable(struct net_device * dev)706 static inline void natsemi_irq_enable(struct net_device *dev)
707 {
708 	writel(1, ns_ioaddr(dev) + IntrEnable);
709 	readl(ns_ioaddr(dev) + IntrEnable);
710 }
711 
natsemi_irq_disable(struct net_device * dev)712 static inline void natsemi_irq_disable(struct net_device *dev)
713 {
714 	writel(0, ns_ioaddr(dev) + IntrEnable);
715 	readl(ns_ioaddr(dev) + IntrEnable);
716 }
717 
move_int_phy(struct net_device * dev,int addr)718 static void move_int_phy(struct net_device *dev, int addr)
719 {
720 	struct netdev_private *np = netdev_priv(dev);
721 	void __iomem *ioaddr = ns_ioaddr(dev);
722 	int target = 31;
723 
724 	/*
725 	 * The internal phy is visible on the external mii bus. Therefore we must
726 	 * move it away before we can send commands to an external phy.
727 	 * There are two addresses we must avoid:
728 	 * - the address on the external phy that is used for transmission.
729 	 * - the address that we want to access. User space can access phys
730 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
731 	 *   phy that is used for transmission.
732 	 */
733 
734 	if (target == addr)
735 		target--;
736 	if (target == np->phy_addr_external)
737 		target--;
738 	writew(target, ioaddr + PhyCtrl);
739 	readw(ioaddr + PhyCtrl);
740 	udelay(1);
741 }
742 
natsemi_init_media(struct net_device * dev)743 static void __devinit natsemi_init_media (struct net_device *dev)
744 {
745 	struct netdev_private *np = netdev_priv(dev);
746 	u32 tmp;
747 
748 	if (np->ignore_phy)
749 		netif_carrier_on(dev);
750 	else
751 		netif_carrier_off(dev);
752 
753 	/* get the initial settings from hardware */
754 	tmp            = mdio_read(dev, MII_BMCR);
755 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
756 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
757 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
758 	np->advertising= mdio_read(dev, MII_ADVERTISE);
759 
760 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
761 	 && netif_msg_probe(np)) {
762 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
763 			"10%s %s duplex.\n",
764 			pci_name(np->pci_dev),
765 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
766 			  "enabled, advertise" : "disabled, force",
767 			(np->advertising &
768 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
769 			    "0" : "",
770 			(np->advertising &
771 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
772 			    "full" : "half");
773 	}
774 	if (netif_msg_probe(np))
775 		printk(KERN_INFO
776 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
777 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
778 			np->advertising);
779 
780 }
781 
782 static const struct net_device_ops natsemi_netdev_ops = {
783 	.ndo_open		= netdev_open,
784 	.ndo_stop		= netdev_close,
785 	.ndo_start_xmit		= start_tx,
786 	.ndo_get_stats		= get_stats,
787 	.ndo_set_multicast_list = set_rx_mode,
788 	.ndo_change_mtu		= natsemi_change_mtu,
789 	.ndo_do_ioctl		= netdev_ioctl,
790 	.ndo_tx_timeout 	= ns_tx_timeout,
791 	.ndo_set_mac_address 	= eth_mac_addr,
792 	.ndo_validate_addr	= eth_validate_addr,
793 #ifdef CONFIG_NET_POLL_CONTROLLER
794 	.ndo_poll_controller	= natsemi_poll_controller,
795 #endif
796 };
797 
natsemi_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)798 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
799 	const struct pci_device_id *ent)
800 {
801 	struct net_device *dev;
802 	struct netdev_private *np;
803 	int i, option, irq, chip_idx = ent->driver_data;
804 	static int find_cnt = -1;
805 	resource_size_t iostart;
806 	unsigned long iosize;
807 	void __iomem *ioaddr;
808 	const int pcibar = 1; /* PCI base address register */
809 	int prev_eedata;
810 	u32 tmp;
811 
812 /* when built into the kernel, we only print version if device is found */
813 #ifndef MODULE
814 	static int printed_version;
815 	if (!printed_version++)
816 		printk(version);
817 #endif
818 
819 	i = pci_enable_device(pdev);
820 	if (i) return i;
821 
822 	/* natsemi has a non-standard PM control register
823 	 * in PCI config space.  Some boards apparently need
824 	 * to be brought to D0 in this manner.
825 	 */
826 	pci_read_config_dword(pdev, PCIPM, &tmp);
827 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
828 		/* D0 state, disable PME assertion */
829 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
830 		pci_write_config_dword(pdev, PCIPM, newtmp);
831 	}
832 
833 	find_cnt++;
834 	iostart = pci_resource_start(pdev, pcibar);
835 	iosize = pci_resource_len(pdev, pcibar);
836 	irq = pdev->irq;
837 
838 	pci_set_master(pdev);
839 
840 	dev = alloc_etherdev(sizeof (struct netdev_private));
841 	if (!dev)
842 		return -ENOMEM;
843 	SET_NETDEV_DEV(dev, &pdev->dev);
844 
845 	i = pci_request_regions(pdev, DRV_NAME);
846 	if (i)
847 		goto err_pci_request_regions;
848 
849 	ioaddr = ioremap(iostart, iosize);
850 	if (!ioaddr) {
851 		i = -ENOMEM;
852 		goto err_ioremap;
853 	}
854 
855 	/* Work around the dropped serial bit. */
856 	prev_eedata = eeprom_read(ioaddr, 6);
857 	for (i = 0; i < 3; i++) {
858 		int eedata = eeprom_read(ioaddr, i + 7);
859 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
860 		dev->dev_addr[i*2+1] = eedata >> 7;
861 		prev_eedata = eedata;
862 	}
863 
864 	dev->base_addr = (unsigned long __force) ioaddr;
865 	dev->irq = irq;
866 
867 	np = netdev_priv(dev);
868 	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
869 	np->dev = dev;
870 
871 	np->pci_dev = pdev;
872 	pci_set_drvdata(pdev, dev);
873 	np->iosize = iosize;
874 	spin_lock_init(&np->lock);
875 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
876 	np->hands_off = 0;
877 	np->intr_status = 0;
878 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
879 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
880 		np->ignore_phy = 1;
881 	else
882 		np->ignore_phy = 0;
883 	np->dspcfg_workaround = dspcfg_workaround;
884 
885 	/* Initial port:
886 	 * - If configured to ignore the PHY set up for external.
887 	 * - If the nic was configured to use an external phy and if find_mii
888 	 *   finds a phy: use external port, first phy that replies.
889 	 * - Otherwise: internal port.
890 	 * Note that the phy address for the internal phy doesn't matter:
891 	 * The address would be used to access a phy over the mii bus, but
892 	 * the internal phy is accessed through mapped registers.
893 	 */
894 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
895 		dev->if_port = PORT_MII;
896 	else
897 		dev->if_port = PORT_TP;
898 	/* Reset the chip to erase previous misconfiguration. */
899 	natsemi_reload_eeprom(dev);
900 	natsemi_reset(dev);
901 
902 	if (dev->if_port != PORT_TP) {
903 		np->phy_addr_external = find_mii(dev);
904 		/* If we're ignoring the PHY it doesn't matter if we can't
905 		 * find one. */
906 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
907 			dev->if_port = PORT_TP;
908 			np->phy_addr_external = PHY_ADDR_INTERNAL;
909 		}
910 	} else {
911 		np->phy_addr_external = PHY_ADDR_INTERNAL;
912 	}
913 
914 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
915 	if (dev->mem_start)
916 		option = dev->mem_start;
917 
918 	/* The lower four bits are the media type. */
919 	if (option) {
920 		if (option & 0x200)
921 			np->full_duplex = 1;
922 		if (option & 15)
923 			printk(KERN_INFO
924 				"natsemi %s: ignoring user supplied media type %d",
925 				pci_name(np->pci_dev), option & 15);
926 	}
927 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
928 		np->full_duplex = 1;
929 
930 	dev->netdev_ops = &natsemi_netdev_ops;
931 	dev->watchdog_timeo = TX_TIMEOUT;
932 
933 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
934 
935 	if (mtu)
936 		dev->mtu = mtu;
937 
938 	natsemi_init_media(dev);
939 
940 	/* save the silicon revision for later querying */
941 	np->srr = readl(ioaddr + SiliconRev);
942 	if (netif_msg_hw(np))
943 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
944 				pci_name(np->pci_dev), np->srr);
945 
946 	i = register_netdev(dev);
947 	if (i)
948 		goto err_register_netdev;
949 
950 	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
951 		goto err_create_file;
952 
953 	if (netif_msg_drv(np)) {
954 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
955 		       "(%s), %pM, IRQ %d",
956 		       dev->name, natsemi_pci_info[chip_idx].name,
957 		       (unsigned long long)iostart, pci_name(np->pci_dev),
958 		       dev->dev_addr, irq);
959 		if (dev->if_port == PORT_TP)
960 			printk(", port TP.\n");
961 		else if (np->ignore_phy)
962 			printk(", port MII, ignoring PHY\n");
963 		else
964 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
965 	}
966 	return 0;
967 
968  err_create_file:
969  	unregister_netdev(dev);
970 
971  err_register_netdev:
972 	iounmap(ioaddr);
973 
974  err_ioremap:
975 	pci_release_regions(pdev);
976 	pci_set_drvdata(pdev, NULL);
977 
978  err_pci_request_regions:
979 	free_netdev(dev);
980 	return i;
981 }
982 
983 
984 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
985    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
986 
987 /* Delay between EEPROM clock transitions.
988    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
989    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
990    made udelay() unreliable.
991    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
992    deprecated.
993 */
994 #define eeprom_delay(ee_addr)	readl(ee_addr)
995 
996 #define EE_Write0 (EE_ChipSelect)
997 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
998 
999 /* The EEPROM commands include the alway-set leading bit. */
1000 enum EEPROM_Cmds {
1001 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1002 };
1003 
eeprom_read(void __iomem * addr,int location)1004 static int eeprom_read(void __iomem *addr, int location)
1005 {
1006 	int i;
1007 	int retval = 0;
1008 	void __iomem *ee_addr = addr + EECtrl;
1009 	int read_cmd = location | EE_ReadCmd;
1010 
1011 	writel(EE_Write0, ee_addr);
1012 
1013 	/* Shift the read command bits out. */
1014 	for (i = 10; i >= 0; i--) {
1015 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1016 		writel(dataval, ee_addr);
1017 		eeprom_delay(ee_addr);
1018 		writel(dataval | EE_ShiftClk, ee_addr);
1019 		eeprom_delay(ee_addr);
1020 	}
1021 	writel(EE_ChipSelect, ee_addr);
1022 	eeprom_delay(ee_addr);
1023 
1024 	for (i = 0; i < 16; i++) {
1025 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1026 		eeprom_delay(ee_addr);
1027 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1028 		writel(EE_ChipSelect, ee_addr);
1029 		eeprom_delay(ee_addr);
1030 	}
1031 
1032 	/* Terminate the EEPROM access. */
1033 	writel(EE_Write0, ee_addr);
1034 	writel(0, ee_addr);
1035 	return retval;
1036 }
1037 
1038 /* MII transceiver control section.
1039  * The 83815 series has an internal transceiver, and we present the
1040  * internal management registers as if they were MII connected.
1041  * External Phy registers are referenced through the MII interface.
1042  */
1043 
1044 /* clock transitions >= 20ns (25MHz)
1045  * One readl should be good to PCI @ 100MHz
1046  */
1047 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1048 
mii_getbit(struct net_device * dev)1049 static int mii_getbit (struct net_device *dev)
1050 {
1051 	int data;
1052 	void __iomem *ioaddr = ns_ioaddr(dev);
1053 
1054 	writel(MII_ShiftClk, ioaddr + EECtrl);
1055 	data = readl(ioaddr + EECtrl);
1056 	writel(0, ioaddr + EECtrl);
1057 	mii_delay(ioaddr);
1058 	return (data & MII_Data)? 1 : 0;
1059 }
1060 
mii_send_bits(struct net_device * dev,u32 data,int len)1061 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1062 {
1063 	u32 i;
1064 	void __iomem *ioaddr = ns_ioaddr(dev);
1065 
1066 	for (i = (1 << (len-1)); i; i >>= 1)
1067 	{
1068 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1069 		writel(mdio_val, ioaddr + EECtrl);
1070 		mii_delay(ioaddr);
1071 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1072 		mii_delay(ioaddr);
1073 	}
1074 	writel(0, ioaddr + EECtrl);
1075 	mii_delay(ioaddr);
1076 }
1077 
miiport_read(struct net_device * dev,int phy_id,int reg)1078 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1079 {
1080 	u32 cmd;
1081 	int i;
1082 	u32 retval = 0;
1083 
1084 	/* Ensure sync */
1085 	mii_send_bits (dev, 0xffffffff, 32);
1086 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1087 	/* ST,OP = 0110'b for read operation */
1088 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1089 	mii_send_bits (dev, cmd, 14);
1090 	/* Turnaround */
1091 	if (mii_getbit (dev))
1092 		return 0;
1093 	/* Read data */
1094 	for (i = 0; i < 16; i++) {
1095 		retval <<= 1;
1096 		retval |= mii_getbit (dev);
1097 	}
1098 	/* End cycle */
1099 	mii_getbit (dev);
1100 	return retval;
1101 }
1102 
miiport_write(struct net_device * dev,int phy_id,int reg,u16 data)1103 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1104 {
1105 	u32 cmd;
1106 
1107 	/* Ensure sync */
1108 	mii_send_bits (dev, 0xffffffff, 32);
1109 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1110 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1111 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1112 	mii_send_bits (dev, cmd, 32);
1113 	/* End cycle */
1114 	mii_getbit (dev);
1115 }
1116 
mdio_read(struct net_device * dev,int reg)1117 static int mdio_read(struct net_device *dev, int reg)
1118 {
1119 	struct netdev_private *np = netdev_priv(dev);
1120 	void __iomem *ioaddr = ns_ioaddr(dev);
1121 
1122 	/* The 83815 series has two ports:
1123 	 * - an internal transceiver
1124 	 * - an external mii bus
1125 	 */
1126 	if (dev->if_port == PORT_TP)
1127 		return readw(ioaddr+BasicControl+(reg<<2));
1128 	else
1129 		return miiport_read(dev, np->phy_addr_external, reg);
1130 }
1131 
mdio_write(struct net_device * dev,int reg,u16 data)1132 static void mdio_write(struct net_device *dev, int reg, u16 data)
1133 {
1134 	struct netdev_private *np = netdev_priv(dev);
1135 	void __iomem *ioaddr = ns_ioaddr(dev);
1136 
1137 	/* The 83815 series has an internal transceiver; handle separately */
1138 	if (dev->if_port == PORT_TP)
1139 		writew(data, ioaddr+BasicControl+(reg<<2));
1140 	else
1141 		miiport_write(dev, np->phy_addr_external, reg, data);
1142 }
1143 
init_phy_fixup(struct net_device * dev)1144 static void init_phy_fixup(struct net_device *dev)
1145 {
1146 	struct netdev_private *np = netdev_priv(dev);
1147 	void __iomem *ioaddr = ns_ioaddr(dev);
1148 	int i;
1149 	u32 cfg;
1150 	u16 tmp;
1151 
1152 	/* restore stuff lost when power was out */
1153 	tmp = mdio_read(dev, MII_BMCR);
1154 	if (np->autoneg == AUTONEG_ENABLE) {
1155 		/* renegotiate if something changed */
1156 		if ((tmp & BMCR_ANENABLE) == 0
1157 		 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1158 		{
1159 			/* turn on autonegotiation and force negotiation */
1160 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1161 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1162 		}
1163 	} else {
1164 		/* turn off auto negotiation, set speed and duplexity */
1165 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1166 		if (np->speed == SPEED_100)
1167 			tmp |= BMCR_SPEED100;
1168 		if (np->duplex == DUPLEX_FULL)
1169 			tmp |= BMCR_FULLDPLX;
1170 		/*
1171 		 * Note: there is no good way to inform the link partner
1172 		 * that our capabilities changed. The user has to unplug
1173 		 * and replug the network cable after some changes, e.g.
1174 		 * after switching from 10HD, autoneg off to 100 HD,
1175 		 * autoneg off.
1176 		 */
1177 	}
1178 	mdio_write(dev, MII_BMCR, tmp);
1179 	readl(ioaddr + ChipConfig);
1180 	udelay(1);
1181 
1182 	/* find out what phy this is */
1183 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1184 				+ mdio_read(dev, MII_PHYSID2);
1185 
1186 	/* handle external phys here */
1187 	switch (np->mii) {
1188 	case PHYID_AM79C874:
1189 		/* phy specific configuration for fibre/tp operation */
1190 		tmp = mdio_read(dev, MII_MCTRL);
1191 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1192 		if (dev->if_port == PORT_FIBRE)
1193 			tmp |= MII_FX_SEL;
1194 		else
1195 			tmp |= MII_EN_SCRM;
1196 		mdio_write(dev, MII_MCTRL, tmp);
1197 		break;
1198 	default:
1199 		break;
1200 	}
1201 	cfg = readl(ioaddr + ChipConfig);
1202 	if (cfg & CfgExtPhy)
1203 		return;
1204 
1205 	/* On page 78 of the spec, they recommend some settings for "optimum
1206 	   performance" to be done in sequence.  These settings optimize some
1207 	   of the 100Mbit autodetection circuitry.  They say we only want to
1208 	   do this for rev C of the chip, but engineers at NSC (Bradley
1209 	   Kennedy) recommends always setting them.  If you don't, you get
1210 	   errors on some autonegotiations that make the device unusable.
1211 
1212 	   It seems that the DSP needs a few usec to reinitialize after
1213 	   the start of the phy. Just retry writing these values until they
1214 	   stick.
1215 	*/
1216 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1217 
1218 		int dspcfg;
1219 		writew(1, ioaddr + PGSEL);
1220 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1221 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1222 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1223 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1224 		writew(np->dspcfg, ioaddr + DSPCFG);
1225 		writew(SDCFG_VAL, ioaddr + SDCFG);
1226 		writew(0, ioaddr + PGSEL);
1227 		readl(ioaddr + ChipConfig);
1228 		udelay(10);
1229 
1230 		writew(1, ioaddr + PGSEL);
1231 		dspcfg = readw(ioaddr + DSPCFG);
1232 		writew(0, ioaddr + PGSEL);
1233 		if (np->dspcfg == dspcfg)
1234 			break;
1235 	}
1236 
1237 	if (netif_msg_link(np)) {
1238 		if (i==NATSEMI_HW_TIMEOUT) {
1239 			printk(KERN_INFO
1240 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1241 				dev->name, i*10);
1242 		} else {
1243 			printk(KERN_INFO
1244 				"%s: DSPCFG accepted after %d usec.\n",
1245 				dev->name, i*10);
1246 		}
1247 	}
1248 	/*
1249 	 * Enable PHY Specific event based interrupts.  Link state change
1250 	 * and Auto-Negotiation Completion are among the affected.
1251 	 * Read the intr status to clear it (needed for wake events).
1252 	 */
1253 	readw(ioaddr + MIntrStatus);
1254 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1255 }
1256 
switch_port_external(struct net_device * dev)1257 static int switch_port_external(struct net_device *dev)
1258 {
1259 	struct netdev_private *np = netdev_priv(dev);
1260 	void __iomem *ioaddr = ns_ioaddr(dev);
1261 	u32 cfg;
1262 
1263 	cfg = readl(ioaddr + ChipConfig);
1264 	if (cfg & CfgExtPhy)
1265 		return 0;
1266 
1267 	if (netif_msg_link(np)) {
1268 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1269 				dev->name);
1270 	}
1271 
1272 	/* 1) switch back to external phy */
1273 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1274 	readl(ioaddr + ChipConfig);
1275 	udelay(1);
1276 
1277 	/* 2) reset the external phy: */
1278 	/* resetting the external PHY has been known to cause a hub supplying
1279 	 * power over Ethernet to kill the power.  We don't want to kill
1280 	 * power to this computer, so we avoid resetting the phy.
1281 	 */
1282 
1283 	/* 3) reinit the phy fixup, it got lost during power down. */
1284 	move_int_phy(dev, np->phy_addr_external);
1285 	init_phy_fixup(dev);
1286 
1287 	return 1;
1288 }
1289 
switch_port_internal(struct net_device * dev)1290 static int switch_port_internal(struct net_device *dev)
1291 {
1292 	struct netdev_private *np = netdev_priv(dev);
1293 	void __iomem *ioaddr = ns_ioaddr(dev);
1294 	int i;
1295 	u32 cfg;
1296 	u16 bmcr;
1297 
1298 	cfg = readl(ioaddr + ChipConfig);
1299 	if (!(cfg &CfgExtPhy))
1300 		return 0;
1301 
1302 	if (netif_msg_link(np)) {
1303 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1304 				dev->name);
1305 	}
1306 	/* 1) switch back to internal phy: */
1307 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1308 	writel(cfg, ioaddr + ChipConfig);
1309 	readl(ioaddr + ChipConfig);
1310 	udelay(1);
1311 
1312 	/* 2) reset the internal phy: */
1313 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1314 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1315 	readl(ioaddr + ChipConfig);
1316 	udelay(10);
1317 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1318 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1319 		if (!(bmcr & BMCR_RESET))
1320 			break;
1321 		udelay(10);
1322 	}
1323 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1324 		printk(KERN_INFO
1325 			"%s: phy reset did not complete in %d usec.\n",
1326 			dev->name, i*10);
1327 	}
1328 	/* 3) reinit the phy fixup, it got lost during power down. */
1329 	init_phy_fixup(dev);
1330 
1331 	return 1;
1332 }
1333 
1334 /* Scan for a PHY on the external mii bus.
1335  * There are two tricky points:
1336  * - Do not scan while the internal phy is enabled. The internal phy will
1337  *   crash: e.g. reads from the DSPCFG register will return odd values and
1338  *   the nasty random phy reset code will reset the nic every few seconds.
1339  * - The internal phy must be moved around, an external phy could
1340  *   have the same address as the internal phy.
1341  */
find_mii(struct net_device * dev)1342 static int find_mii(struct net_device *dev)
1343 {
1344 	struct netdev_private *np = netdev_priv(dev);
1345 	int tmp;
1346 	int i;
1347 	int did_switch;
1348 
1349 	/* Switch to external phy */
1350 	did_switch = switch_port_external(dev);
1351 
1352 	/* Scan the possible phy addresses:
1353 	 *
1354 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1355 	 * supported due to lack of test hardware. User space should
1356 	 * handle it through ethtool.
1357 	 */
1358 	for (i = 1; i <= 31; i++) {
1359 		move_int_phy(dev, i);
1360 		tmp = miiport_read(dev, i, MII_BMSR);
1361 		if (tmp != 0xffff && tmp != 0x0000) {
1362 			/* found something! */
1363 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1364 					+ mdio_read(dev, MII_PHYSID2);
1365 	 		if (netif_msg_probe(np)) {
1366 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1367 						pci_name(np->pci_dev), np->mii, i);
1368 			}
1369 			break;
1370 		}
1371 	}
1372 	/* And switch back to internal phy: */
1373 	if (did_switch)
1374 		switch_port_internal(dev);
1375 	return i;
1376 }
1377 
1378 /* CFG bits [13:16] [18:23] */
1379 #define CFG_RESET_SAVE 0xfde000
1380 /* WCSR bits [0:4] [9:10] */
1381 #define WCSR_RESET_SAVE 0x61f
1382 /* RFCR bits [20] [22] [27:31] */
1383 #define RFCR_RESET_SAVE 0xf8500000;
1384 
natsemi_reset(struct net_device * dev)1385 static void natsemi_reset(struct net_device *dev)
1386 {
1387 	int i;
1388 	u32 cfg;
1389 	u32 wcsr;
1390 	u32 rfcr;
1391 	u16 pmatch[3];
1392 	u16 sopass[3];
1393 	struct netdev_private *np = netdev_priv(dev);
1394 	void __iomem *ioaddr = ns_ioaddr(dev);
1395 
1396 	/*
1397 	 * Resetting the chip causes some registers to be lost.
1398 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1399 	 * we save the state that would have been loaded from EEPROM
1400 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1401 	 * whoever calls this will follow up with init_registers() eventually.
1402 	 */
1403 
1404 	/* CFG */
1405 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1406 	/* WCSR */
1407 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1408 	/* RFCR */
1409 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1410 	/* PMATCH */
1411 	for (i = 0; i < 3; i++) {
1412 		writel(i*2, ioaddr + RxFilterAddr);
1413 		pmatch[i] = readw(ioaddr + RxFilterData);
1414 	}
1415 	/* SOPAS */
1416 	for (i = 0; i < 3; i++) {
1417 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1418 		sopass[i] = readw(ioaddr + RxFilterData);
1419 	}
1420 
1421 	/* now whack the chip */
1422 	writel(ChipReset, ioaddr + ChipCmd);
1423 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1424 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1425 			break;
1426 		udelay(5);
1427 	}
1428 	if (i==NATSEMI_HW_TIMEOUT) {
1429 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1430 			dev->name, i*5);
1431 	} else if (netif_msg_hw(np)) {
1432 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1433 			dev->name, i*5);
1434 	}
1435 
1436 	/* restore CFG */
1437 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1438 	/* turn on external phy if it was selected */
1439 	if (dev->if_port == PORT_TP)
1440 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1441 	else
1442 		cfg |= (CfgExtPhy | CfgPhyDis);
1443 	writel(cfg, ioaddr + ChipConfig);
1444 	/* restore WCSR */
1445 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1446 	writel(wcsr, ioaddr + WOLCmd);
1447 	/* read RFCR */
1448 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1449 	/* restore PMATCH */
1450 	for (i = 0; i < 3; i++) {
1451 		writel(i*2, ioaddr + RxFilterAddr);
1452 		writew(pmatch[i], ioaddr + RxFilterData);
1453 	}
1454 	for (i = 0; i < 3; i++) {
1455 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1456 		writew(sopass[i], ioaddr + RxFilterData);
1457 	}
1458 	/* restore RFCR */
1459 	writel(rfcr, ioaddr + RxFilterAddr);
1460 }
1461 
reset_rx(struct net_device * dev)1462 static void reset_rx(struct net_device *dev)
1463 {
1464 	int i;
1465 	struct netdev_private *np = netdev_priv(dev);
1466 	void __iomem *ioaddr = ns_ioaddr(dev);
1467 
1468 	np->intr_status &= ~RxResetDone;
1469 
1470 	writel(RxReset, ioaddr + ChipCmd);
1471 
1472 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1473 		np->intr_status |= readl(ioaddr + IntrStatus);
1474 		if (np->intr_status & RxResetDone)
1475 			break;
1476 		udelay(15);
1477 	}
1478 	if (i==NATSEMI_HW_TIMEOUT) {
1479 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1480 		       dev->name, i*15);
1481 	} else if (netif_msg_hw(np)) {
1482 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1483 		       dev->name, i*15);
1484 	}
1485 }
1486 
natsemi_reload_eeprom(struct net_device * dev)1487 static void natsemi_reload_eeprom(struct net_device *dev)
1488 {
1489 	struct netdev_private *np = netdev_priv(dev);
1490 	void __iomem *ioaddr = ns_ioaddr(dev);
1491 	int i;
1492 
1493 	writel(EepromReload, ioaddr + PCIBusCfg);
1494 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1495 		udelay(50);
1496 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1497 			break;
1498 	}
1499 	if (i==NATSEMI_HW_TIMEOUT) {
1500 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1501 			pci_name(np->pci_dev), i*50);
1502 	} else if (netif_msg_hw(np)) {
1503 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1504 			pci_name(np->pci_dev), i*50);
1505 	}
1506 }
1507 
natsemi_stop_rxtx(struct net_device * dev)1508 static void natsemi_stop_rxtx(struct net_device *dev)
1509 {
1510 	void __iomem * ioaddr = ns_ioaddr(dev);
1511 	struct netdev_private *np = netdev_priv(dev);
1512 	int i;
1513 
1514 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1515 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1516 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1517 			break;
1518 		udelay(5);
1519 	}
1520 	if (i==NATSEMI_HW_TIMEOUT) {
1521 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1522 			dev->name, i*5);
1523 	} else if (netif_msg_hw(np)) {
1524 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1525 			dev->name, i*5);
1526 	}
1527 }
1528 
netdev_open(struct net_device * dev)1529 static int netdev_open(struct net_device *dev)
1530 {
1531 	struct netdev_private *np = netdev_priv(dev);
1532 	void __iomem * ioaddr = ns_ioaddr(dev);
1533 	int i;
1534 
1535 	/* Reset the chip, just in case. */
1536 	natsemi_reset(dev);
1537 
1538 	i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1539 	if (i) return i;
1540 
1541 	if (netif_msg_ifup(np))
1542 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543 			dev->name, dev->irq);
1544 	i = alloc_ring(dev);
1545 	if (i < 0) {
1546 		free_irq(dev->irq, dev);
1547 		return i;
1548 	}
1549 	napi_enable(&np->napi);
1550 
1551 	init_ring(dev);
1552 	spin_lock_irq(&np->lock);
1553 	init_registers(dev);
1554 	/* now set the MAC address according to dev->dev_addr */
1555 	for (i = 0; i < 3; i++) {
1556 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557 
1558 		writel(i*2, ioaddr + RxFilterAddr);
1559 		writew(mac, ioaddr + RxFilterData);
1560 	}
1561 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562 	spin_unlock_irq(&np->lock);
1563 
1564 	netif_start_queue(dev);
1565 
1566 	if (netif_msg_ifup(np))
1567 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568 			dev->name, (int)readl(ioaddr + ChipCmd));
1569 
1570 	/* Set the timer to check for link beat. */
1571 	init_timer(&np->timer);
1572 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573 	np->timer.data = (unsigned long)dev;
1574 	np->timer.function = &netdev_timer; /* timer handler */
1575 	add_timer(&np->timer);
1576 
1577 	return 0;
1578 }
1579 
do_cable_magic(struct net_device * dev)1580 static void do_cable_magic(struct net_device *dev)
1581 {
1582 	struct netdev_private *np = netdev_priv(dev);
1583 	void __iomem *ioaddr = ns_ioaddr(dev);
1584 
1585 	if (dev->if_port != PORT_TP)
1586 		return;
1587 
1588 	if (np->srr >= SRR_DP83816_A5)
1589 		return;
1590 
1591 	/*
1592 	 * 100 MBit links with short cables can trip an issue with the chip.
1593 	 * The problem manifests as lots of CRC errors and/or flickering
1594 	 * activity LED while idle.  This process is based on instructions
1595 	 * from engineers at National.
1596 	 */
1597 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1598 		u16 data;
1599 
1600 		writew(1, ioaddr + PGSEL);
1601 		/*
1602 		 * coefficient visibility should already be enabled via
1603 		 * DSPCFG | 0x1000
1604 		 */
1605 		data = readw(ioaddr + TSTDAT) & 0xff;
1606 		/*
1607 		 * the value must be negative, and within certain values
1608 		 * (these values all come from National)
1609 		 */
1610 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1611 			np = netdev_priv(dev);
1612 
1613 			/* the bug has been triggered - fix the coefficient */
1614 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1615 			/* lock the value */
1616 			data = readw(ioaddr + DSPCFG);
1617 			np->dspcfg = data | DSPCFG_LOCK;
1618 			writew(np->dspcfg, ioaddr + DSPCFG);
1619 		}
1620 		writew(0, ioaddr + PGSEL);
1621 	}
1622 }
1623 
undo_cable_magic(struct net_device * dev)1624 static void undo_cable_magic(struct net_device *dev)
1625 {
1626 	u16 data;
1627 	struct netdev_private *np = netdev_priv(dev);
1628 	void __iomem * ioaddr = ns_ioaddr(dev);
1629 
1630 	if (dev->if_port != PORT_TP)
1631 		return;
1632 
1633 	if (np->srr >= SRR_DP83816_A5)
1634 		return;
1635 
1636 	writew(1, ioaddr + PGSEL);
1637 	/* make sure the lock bit is clear */
1638 	data = readw(ioaddr + DSPCFG);
1639 	np->dspcfg = data & ~DSPCFG_LOCK;
1640 	writew(np->dspcfg, ioaddr + DSPCFG);
1641 	writew(0, ioaddr + PGSEL);
1642 }
1643 
check_link(struct net_device * dev)1644 static void check_link(struct net_device *dev)
1645 {
1646 	struct netdev_private *np = netdev_priv(dev);
1647 	void __iomem * ioaddr = ns_ioaddr(dev);
1648 	int duplex = np->duplex;
1649 	u16 bmsr;
1650 
1651 	/* If we are ignoring the PHY then don't try reading it. */
1652 	if (np->ignore_phy)
1653 		goto propagate_state;
1654 
1655 	/* The link status field is latched: it remains low after a temporary
1656 	 * link failure until it's read. We need the current link status,
1657 	 * thus read twice.
1658 	 */
1659 	mdio_read(dev, MII_BMSR);
1660 	bmsr = mdio_read(dev, MII_BMSR);
1661 
1662 	if (!(bmsr & BMSR_LSTATUS)) {
1663 		if (netif_carrier_ok(dev)) {
1664 			if (netif_msg_link(np))
1665 				printk(KERN_NOTICE "%s: link down.\n",
1666 				       dev->name);
1667 			netif_carrier_off(dev);
1668 			undo_cable_magic(dev);
1669 		}
1670 		return;
1671 	}
1672 	if (!netif_carrier_ok(dev)) {
1673 		if (netif_msg_link(np))
1674 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1675 		netif_carrier_on(dev);
1676 		do_cable_magic(dev);
1677 	}
1678 
1679 	duplex = np->full_duplex;
1680 	if (!duplex) {
1681 		if (bmsr & BMSR_ANEGCOMPLETE) {
1682 			int tmp = mii_nway_result(
1683 				np->advertising & mdio_read(dev, MII_LPA));
1684 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1685 				duplex = 1;
1686 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1687 			duplex = 1;
1688 	}
1689 
1690 propagate_state:
1691 	/* if duplex is set then bit 28 must be set, too */
1692 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1693 		if (netif_msg_link(np))
1694 			printk(KERN_INFO
1695 				"%s: Setting %s-duplex based on negotiated "
1696 				"link capability.\n", dev->name,
1697 				duplex ? "full" : "half");
1698 		if (duplex) {
1699 			np->rx_config |= RxAcceptTx;
1700 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1701 		} else {
1702 			np->rx_config &= ~RxAcceptTx;
1703 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1704 		}
1705 		writel(np->tx_config, ioaddr + TxConfig);
1706 		writel(np->rx_config, ioaddr + RxConfig);
1707 	}
1708 }
1709 
init_registers(struct net_device * dev)1710 static void init_registers(struct net_device *dev)
1711 {
1712 	struct netdev_private *np = netdev_priv(dev);
1713 	void __iomem * ioaddr = ns_ioaddr(dev);
1714 
1715 	init_phy_fixup(dev);
1716 
1717 	/* clear any interrupts that are pending, such as wake events */
1718 	readl(ioaddr + IntrStatus);
1719 
1720 	writel(np->ring_dma, ioaddr + RxRingPtr);
1721 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1722 		ioaddr + TxRingPtr);
1723 
1724 	/* Initialize other registers.
1725 	 * Configure the PCI bus bursts and FIFO thresholds.
1726 	 * Configure for standard, in-spec Ethernet.
1727 	 * Start with half-duplex. check_link will update
1728 	 * to the correct settings.
1729 	 */
1730 
1731 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1732 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1733 	 * MXDMA: 0: up to 256 byte bursts.
1734 	 * 	MXDMA must be <= FLTH
1735 	 * ECRETRY=1
1736 	 * ATP=1
1737 	 */
1738 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1739 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1740 	writel(np->tx_config, ioaddr + TxConfig);
1741 
1742 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1743 	 * MXDMA 0: up to 256 byte bursts
1744 	 */
1745 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1746 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1747 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1748 		np->rx_config |= RxAcceptLong;
1749 
1750 	writel(np->rx_config, ioaddr + RxConfig);
1751 
1752 	/* Disable PME:
1753 	 * The PME bit is initialized from the EEPROM contents.
1754 	 * PCI cards probably have PME disabled, but motherboard
1755 	 * implementations may have PME set to enable WakeOnLan.
1756 	 * With PME set the chip will scan incoming packets but
1757 	 * nothing will be written to memory. */
1758 	np->SavedClkRun = readl(ioaddr + ClkRun);
1759 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1760 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1761 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1762 			dev->name, readl(ioaddr + WOLCmd));
1763 	}
1764 
1765 	check_link(dev);
1766 	__set_rx_mode(dev);
1767 
1768 	/* Enable interrupts by setting the interrupt mask. */
1769 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1770 	natsemi_irq_enable(dev);
1771 
1772 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1773 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1774 }
1775 
1776 /*
1777  * netdev_timer:
1778  * Purpose:
1779  * 1) check for link changes. Usually they are handled by the MII interrupt
1780  *    but it doesn't hurt to check twice.
1781  * 2) check for sudden death of the NIC:
1782  *    It seems that a reference set for this chip went out with incorrect info,
1783  *    and there exist boards that aren't quite right.  An unexpected voltage
1784  *    drop can cause the PHY to get itself in a weird state (basically reset).
1785  *    NOTE: this only seems to affect revC chips.  The user can disable
1786  *    this check via dspcfg_workaround sysfs option.
1787  * 3) check of death of the RX path due to OOM
1788  */
netdev_timer(unsigned long data)1789 static void netdev_timer(unsigned long data)
1790 {
1791 	struct net_device *dev = (struct net_device *)data;
1792 	struct netdev_private *np = netdev_priv(dev);
1793 	void __iomem * ioaddr = ns_ioaddr(dev);
1794 	int next_tick = NATSEMI_TIMER_FREQ;
1795 
1796 	if (netif_msg_timer(np)) {
1797 		/* DO NOT read the IntrStatus register,
1798 		 * a read clears any pending interrupts.
1799 		 */
1800 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1801 			dev->name);
1802 	}
1803 
1804 	if (dev->if_port == PORT_TP) {
1805 		u16 dspcfg;
1806 
1807 		spin_lock_irq(&np->lock);
1808 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1809 		writew(1, ioaddr+PGSEL);
1810 		dspcfg = readw(ioaddr+DSPCFG);
1811 		writew(0, ioaddr+PGSEL);
1812 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1813 			if (!netif_queue_stopped(dev)) {
1814 				spin_unlock_irq(&np->lock);
1815 				if (netif_msg_drv(np))
1816 					printk(KERN_NOTICE "%s: possible phy reset: "
1817 						"re-initializing\n", dev->name);
1818 				disable_irq(dev->irq);
1819 				spin_lock_irq(&np->lock);
1820 				natsemi_stop_rxtx(dev);
1821 				dump_ring(dev);
1822 				reinit_ring(dev);
1823 				init_registers(dev);
1824 				spin_unlock_irq(&np->lock);
1825 				enable_irq(dev->irq);
1826 			} else {
1827 				/* hurry back */
1828 				next_tick = HZ;
1829 				spin_unlock_irq(&np->lock);
1830 			}
1831 		} else {
1832 			/* init_registers() calls check_link() for the above case */
1833 			check_link(dev);
1834 			spin_unlock_irq(&np->lock);
1835 		}
1836 	} else {
1837 		spin_lock_irq(&np->lock);
1838 		check_link(dev);
1839 		spin_unlock_irq(&np->lock);
1840 	}
1841 	if (np->oom) {
1842 		disable_irq(dev->irq);
1843 		np->oom = 0;
1844 		refill_rx(dev);
1845 		enable_irq(dev->irq);
1846 		if (!np->oom) {
1847 			writel(RxOn, ioaddr + ChipCmd);
1848 		} else {
1849 			next_tick = 1;
1850 		}
1851 	}
1852 
1853 	if (next_tick > 1)
1854 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1855 	else
1856 		mod_timer(&np->timer, jiffies + next_tick);
1857 }
1858 
dump_ring(struct net_device * dev)1859 static void dump_ring(struct net_device *dev)
1860 {
1861 	struct netdev_private *np = netdev_priv(dev);
1862 
1863 	if (netif_msg_pktdata(np)) {
1864 		int i;
1865 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1866 		for (i = 0; i < TX_RING_SIZE; i++) {
1867 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1868 				i, np->tx_ring[i].next_desc,
1869 				np->tx_ring[i].cmd_status,
1870 				np->tx_ring[i].addr);
1871 		}
1872 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1873 		for (i = 0; i < RX_RING_SIZE; i++) {
1874 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1875 				i, np->rx_ring[i].next_desc,
1876 				np->rx_ring[i].cmd_status,
1877 				np->rx_ring[i].addr);
1878 		}
1879 	}
1880 }
1881 
ns_tx_timeout(struct net_device * dev)1882 static void ns_tx_timeout(struct net_device *dev)
1883 {
1884 	struct netdev_private *np = netdev_priv(dev);
1885 	void __iomem * ioaddr = ns_ioaddr(dev);
1886 
1887 	disable_irq(dev->irq);
1888 	spin_lock_irq(&np->lock);
1889 	if (!np->hands_off) {
1890 		if (netif_msg_tx_err(np))
1891 			printk(KERN_WARNING
1892 				"%s: Transmit timed out, status %#08x,"
1893 				" resetting...\n",
1894 				dev->name, readl(ioaddr + IntrStatus));
1895 		dump_ring(dev);
1896 
1897 		natsemi_reset(dev);
1898 		reinit_ring(dev);
1899 		init_registers(dev);
1900 	} else {
1901 		printk(KERN_WARNING
1902 			"%s: tx_timeout while in hands_off state?\n",
1903 			dev->name);
1904 	}
1905 	spin_unlock_irq(&np->lock);
1906 	enable_irq(dev->irq);
1907 
1908 	dev->trans_start = jiffies;
1909 	np->stats.tx_errors++;
1910 	netif_wake_queue(dev);
1911 }
1912 
alloc_ring(struct net_device * dev)1913 static int alloc_ring(struct net_device *dev)
1914 {
1915 	struct netdev_private *np = netdev_priv(dev);
1916 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
1917 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1918 		&np->ring_dma);
1919 	if (!np->rx_ring)
1920 		return -ENOMEM;
1921 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922 	return 0;
1923 }
1924 
refill_rx(struct net_device * dev)1925 static void refill_rx(struct net_device *dev)
1926 {
1927 	struct netdev_private *np = netdev_priv(dev);
1928 
1929 	/* Refill the Rx ring buffers. */
1930 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931 		struct sk_buff *skb;
1932 		int entry = np->dirty_rx % RX_RING_SIZE;
1933 		if (np->rx_skbuff[entry] == NULL) {
1934 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935 			skb = dev_alloc_skb(buflen);
1936 			np->rx_skbuff[entry] = skb;
1937 			if (skb == NULL)
1938 				break; /* Better luck next round. */
1939 			skb->dev = dev; /* Mark as being used by this device. */
1940 			np->rx_dma[entry] = pci_map_single(np->pci_dev,
1941 				skb->data, buflen, PCI_DMA_FROMDEVICE);
1942 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1943 		}
1944 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1945 	}
1946 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1947 		if (netif_msg_rx_err(np))
1948 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1949 		np->oom = 1;
1950 	}
1951 }
1952 
set_bufsize(struct net_device * dev)1953 static void set_bufsize(struct net_device *dev)
1954 {
1955 	struct netdev_private *np = netdev_priv(dev);
1956 	if (dev->mtu <= ETH_DATA_LEN)
1957 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1958 	else
1959 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1960 }
1961 
1962 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
init_ring(struct net_device * dev)1963 static void init_ring(struct net_device *dev)
1964 {
1965 	struct netdev_private *np = netdev_priv(dev);
1966 	int i;
1967 
1968 	/* 1) TX ring */
1969 	np->dirty_tx = np->cur_tx = 0;
1970 	for (i = 0; i < TX_RING_SIZE; i++) {
1971 		np->tx_skbuff[i] = NULL;
1972 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1973 			+sizeof(struct netdev_desc)
1974 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1975 		np->tx_ring[i].cmd_status = 0;
1976 	}
1977 
1978 	/* 2) RX ring */
1979 	np->dirty_rx = 0;
1980 	np->cur_rx = RX_RING_SIZE;
1981 	np->oom = 0;
1982 	set_bufsize(dev);
1983 
1984 	np->rx_head_desc = &np->rx_ring[0];
1985 
1986 	/* Please be carefull before changing this loop - at least gcc-2.95.1
1987 	 * miscompiles it otherwise.
1988 	 */
1989 	/* Initialize all Rx descriptors. */
1990 	for (i = 0; i < RX_RING_SIZE; i++) {
1991 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1992 				+sizeof(struct netdev_desc)
1993 				*((i+1)%RX_RING_SIZE));
1994 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1995 		np->rx_skbuff[i] = NULL;
1996 	}
1997 	refill_rx(dev);
1998 	dump_ring(dev);
1999 }
2000 
drain_tx(struct net_device * dev)2001 static void drain_tx(struct net_device *dev)
2002 {
2003 	struct netdev_private *np = netdev_priv(dev);
2004 	int i;
2005 
2006 	for (i = 0; i < TX_RING_SIZE; i++) {
2007 		if (np->tx_skbuff[i]) {
2008 			pci_unmap_single(np->pci_dev,
2009 				np->tx_dma[i], np->tx_skbuff[i]->len,
2010 				PCI_DMA_TODEVICE);
2011 			dev_kfree_skb(np->tx_skbuff[i]);
2012 			np->stats.tx_dropped++;
2013 		}
2014 		np->tx_skbuff[i] = NULL;
2015 	}
2016 }
2017 
drain_rx(struct net_device * dev)2018 static void drain_rx(struct net_device *dev)
2019 {
2020 	struct netdev_private *np = netdev_priv(dev);
2021 	unsigned int buflen = np->rx_buf_sz;
2022 	int i;
2023 
2024 	/* Free all the skbuffs in the Rx queue. */
2025 	for (i = 0; i < RX_RING_SIZE; i++) {
2026 		np->rx_ring[i].cmd_status = 0;
2027 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2028 		if (np->rx_skbuff[i]) {
2029 			pci_unmap_single(np->pci_dev,
2030 				np->rx_dma[i], buflen,
2031 				PCI_DMA_FROMDEVICE);
2032 			dev_kfree_skb(np->rx_skbuff[i]);
2033 		}
2034 		np->rx_skbuff[i] = NULL;
2035 	}
2036 }
2037 
drain_ring(struct net_device * dev)2038 static void drain_ring(struct net_device *dev)
2039 {
2040 	drain_rx(dev);
2041 	drain_tx(dev);
2042 }
2043 
free_ring(struct net_device * dev)2044 static void free_ring(struct net_device *dev)
2045 {
2046 	struct netdev_private *np = netdev_priv(dev);
2047 	pci_free_consistent(np->pci_dev,
2048 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2049 		np->rx_ring, np->ring_dma);
2050 }
2051 
reinit_rx(struct net_device * dev)2052 static void reinit_rx(struct net_device *dev)
2053 {
2054 	struct netdev_private *np = netdev_priv(dev);
2055 	int i;
2056 
2057 	/* RX Ring */
2058 	np->dirty_rx = 0;
2059 	np->cur_rx = RX_RING_SIZE;
2060 	np->rx_head_desc = &np->rx_ring[0];
2061 	/* Initialize all Rx descriptors. */
2062 	for (i = 0; i < RX_RING_SIZE; i++)
2063 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2064 
2065 	refill_rx(dev);
2066 }
2067 
reinit_ring(struct net_device * dev)2068 static void reinit_ring(struct net_device *dev)
2069 {
2070 	struct netdev_private *np = netdev_priv(dev);
2071 	int i;
2072 
2073 	/* drain TX ring */
2074 	drain_tx(dev);
2075 	np->dirty_tx = np->cur_tx = 0;
2076 	for (i=0;i<TX_RING_SIZE;i++)
2077 		np->tx_ring[i].cmd_status = 0;
2078 
2079 	reinit_rx(dev);
2080 }
2081 
start_tx(struct sk_buff * skb,struct net_device * dev)2082 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2083 {
2084 	struct netdev_private *np = netdev_priv(dev);
2085 	void __iomem * ioaddr = ns_ioaddr(dev);
2086 	unsigned entry;
2087 	unsigned long flags;
2088 
2089 	/* Note: Ordering is important here, set the field with the
2090 	   "ownership" bit last, and only then increment cur_tx. */
2091 
2092 	/* Calculate the next Tx descriptor entry. */
2093 	entry = np->cur_tx % TX_RING_SIZE;
2094 
2095 	np->tx_skbuff[entry] = skb;
2096 	np->tx_dma[entry] = pci_map_single(np->pci_dev,
2097 				skb->data,skb->len, PCI_DMA_TODEVICE);
2098 
2099 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2100 
2101 	spin_lock_irqsave(&np->lock, flags);
2102 
2103 	if (!np->hands_off) {
2104 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2105 		/* StrongARM: Explicitly cache flush np->tx_ring and
2106 		 * skb->data,skb->len. */
2107 		wmb();
2108 		np->cur_tx++;
2109 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2110 			netdev_tx_done(dev);
2111 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2112 				netif_stop_queue(dev);
2113 		}
2114 		/* Wake the potentially-idle transmit channel. */
2115 		writel(TxOn, ioaddr + ChipCmd);
2116 	} else {
2117 		dev_kfree_skb_irq(skb);
2118 		np->stats.tx_dropped++;
2119 	}
2120 	spin_unlock_irqrestore(&np->lock, flags);
2121 
2122 	dev->trans_start = jiffies;
2123 
2124 	if (netif_msg_tx_queued(np)) {
2125 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126 			dev->name, np->cur_tx, entry);
2127 	}
2128 	return 0;
2129 }
2130 
netdev_tx_done(struct net_device * dev)2131 static void netdev_tx_done(struct net_device *dev)
2132 {
2133 	struct netdev_private *np = netdev_priv(dev);
2134 
2135 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136 		int entry = np->dirty_tx % TX_RING_SIZE;
2137 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138 			break;
2139 		if (netif_msg_tx_done(np))
2140 			printk(KERN_DEBUG
2141 				"%s: tx frame #%d finished, status %#08x.\n",
2142 					dev->name, np->dirty_tx,
2143 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2144 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145 			np->stats.tx_packets++;
2146 			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147 		} else { /* Various Tx errors */
2148 			int tx_status =
2149 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2150 			if (tx_status & (DescTxAbort|DescTxExcColl))
2151 				np->stats.tx_aborted_errors++;
2152 			if (tx_status & DescTxFIFO)
2153 				np->stats.tx_fifo_errors++;
2154 			if (tx_status & DescTxCarrier)
2155 				np->stats.tx_carrier_errors++;
2156 			if (tx_status & DescTxOOWCol)
2157 				np->stats.tx_window_errors++;
2158 			np->stats.tx_errors++;
2159 		}
2160 		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161 					np->tx_skbuff[entry]->len,
2162 					PCI_DMA_TODEVICE);
2163 		/* Free the original skb. */
2164 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165 		np->tx_skbuff[entry] = NULL;
2166 	}
2167 	if (netif_queue_stopped(dev)
2168 		&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169 		/* The ring is no longer full, wake queue. */
2170 		netif_wake_queue(dev);
2171 	}
2172 }
2173 
2174 /* The interrupt handler doesn't actually handle interrupts itself, it
2175  * schedules a NAPI poll if there is anything to do. */
intr_handler(int irq,void * dev_instance)2176 static irqreturn_t intr_handler(int irq, void *dev_instance)
2177 {
2178 	struct net_device *dev = dev_instance;
2179 	struct netdev_private *np = netdev_priv(dev);
2180 	void __iomem * ioaddr = ns_ioaddr(dev);
2181 
2182 	/* Reading IntrStatus automatically acknowledges so don't do
2183 	 * that while interrupts are disabled, (for example, while a
2184 	 * poll is scheduled).  */
2185 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2186 		return IRQ_NONE;
2187 
2188 	np->intr_status = readl(ioaddr + IntrStatus);
2189 
2190 	if (!np->intr_status)
2191 		return IRQ_NONE;
2192 
2193 	if (netif_msg_intr(np))
2194 		printk(KERN_DEBUG
2195 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2196 		       dev->name, np->intr_status,
2197 		       readl(ioaddr + IntrMask));
2198 
2199 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200 
2201 	if (netif_rx_schedule_prep(&np->napi)) {
2202 		/* Disable interrupts and register for poll */
2203 		natsemi_irq_disable(dev);
2204 		__netif_rx_schedule(&np->napi);
2205 	} else
2206 		printk(KERN_WARNING
2207 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208 		       dev->name, np->intr_status,
2209 		       readl(ioaddr + IntrMask));
2210 
2211 	return IRQ_HANDLED;
2212 }
2213 
2214 /* This is the NAPI poll routine.  As well as the standard RX handling
2215  * it also handles all other interrupts that the chip might raise.
2216  */
natsemi_poll(struct napi_struct * napi,int budget)2217 static int natsemi_poll(struct napi_struct *napi, int budget)
2218 {
2219 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220 	struct net_device *dev = np->dev;
2221 	void __iomem * ioaddr = ns_ioaddr(dev);
2222 	int work_done = 0;
2223 
2224 	do {
2225 		if (netif_msg_intr(np))
2226 			printk(KERN_DEBUG
2227 			       "%s: Poll, status %#08x, mask %#08x.\n",
2228 			       dev->name, np->intr_status,
2229 			       readl(ioaddr + IntrMask));
2230 
2231 		/* netdev_rx() may read IntrStatus again if the RX state
2232 		 * machine falls over so do it first. */
2233 		if (np->intr_status &
2234 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235 		     IntrRxErr | IntrRxOverrun)) {
2236 			netdev_rx(dev, &work_done, budget);
2237 		}
2238 
2239 		if (np->intr_status &
2240 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241 			spin_lock(&np->lock);
2242 			netdev_tx_done(dev);
2243 			spin_unlock(&np->lock);
2244 		}
2245 
2246 		/* Abnormal error summary/uncommon events handlers. */
2247 		if (np->intr_status & IntrAbnormalSummary)
2248 			netdev_error(dev, np->intr_status);
2249 
2250 		if (work_done >= budget)
2251 			return work_done;
2252 
2253 		np->intr_status = readl(ioaddr + IntrStatus);
2254 	} while (np->intr_status);
2255 
2256 	netif_rx_complete(napi);
2257 
2258 	/* Reenable interrupts providing nothing is trying to shut
2259 	 * the chip down. */
2260 	spin_lock(&np->lock);
2261 	if (!np->hands_off)
2262 		natsemi_irq_enable(dev);
2263 	spin_unlock(&np->lock);
2264 
2265 	return work_done;
2266 }
2267 
2268 /* This routine is logically part of the interrupt handler, but separated
2269    for clarity and better register allocation. */
netdev_rx(struct net_device * dev,int * work_done,int work_to_do)2270 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271 {
2272 	struct netdev_private *np = netdev_priv(dev);
2273 	int entry = np->cur_rx % RX_RING_SIZE;
2274 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276 	unsigned int buflen = np->rx_buf_sz;
2277 	void __iomem * ioaddr = ns_ioaddr(dev);
2278 
2279 	/* If the driver owns the next entry it's a new packet. Send it up. */
2280 	while (desc_status < 0) { /* e.g. & DescOwn */
2281 		int pkt_len;
2282 		if (netif_msg_rx_status(np))
2283 			printk(KERN_DEBUG
2284 				"  netdev_rx() entry %d status was %#08x.\n",
2285 				entry, desc_status);
2286 		if (--boguscnt < 0)
2287 			break;
2288 
2289 		if (*work_done >= work_to_do)
2290 			break;
2291 
2292 		(*work_done)++;
2293 
2294 		pkt_len = (desc_status & DescSizeMask) - 4;
2295 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296 			if (desc_status & DescMore) {
2297 				unsigned long flags;
2298 
2299 				if (netif_msg_rx_err(np))
2300 					printk(KERN_WARNING
2301 						"%s: Oversized(?) Ethernet "
2302 						"frame spanned multiple "
2303 						"buffers, entry %#08x "
2304 						"status %#08x.\n", dev->name,
2305 						np->cur_rx, desc_status);
2306 				np->stats.rx_length_errors++;
2307 
2308 				/* The RX state machine has probably
2309 				 * locked up beneath us.  Follow the
2310 				 * reset procedure documented in
2311 				 * AN-1287. */
2312 
2313 				spin_lock_irqsave(&np->lock, flags);
2314 				reset_rx(dev);
2315 				reinit_rx(dev);
2316 				writel(np->ring_dma, ioaddr + RxRingPtr);
2317 				check_link(dev);
2318 				spin_unlock_irqrestore(&np->lock, flags);
2319 
2320 				/* We'll enable RX on exit from this
2321 				 * function. */
2322 				break;
2323 
2324 			} else {
2325 				/* There was an error. */
2326 				np->stats.rx_errors++;
2327 				if (desc_status & (DescRxAbort|DescRxOver))
2328 					np->stats.rx_over_errors++;
2329 				if (desc_status & (DescRxLong|DescRxRunt))
2330 					np->stats.rx_length_errors++;
2331 				if (desc_status & (DescRxInvalid|DescRxAlign))
2332 					np->stats.rx_frame_errors++;
2333 				if (desc_status & DescRxCRC)
2334 					np->stats.rx_crc_errors++;
2335 			}
2336 		} else if (pkt_len > np->rx_buf_sz) {
2337 			/* if this is the tail of a double buffer
2338 			 * packet, we've already counted the error
2339 			 * on the first part.  Ignore the second half.
2340 			 */
2341 		} else {
2342 			struct sk_buff *skb;
2343 			/* Omit CRC size. */
2344 			/* Check if the packet is long enough to accept
2345 			 * without copying to a minimally-sized skbuff. */
2346 			if (pkt_len < rx_copybreak
2347 			    && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348 				/* 16 byte align the IP header */
2349 				skb_reserve(skb, RX_OFFSET);
2350 				pci_dma_sync_single_for_cpu(np->pci_dev,
2351 					np->rx_dma[entry],
2352 					buflen,
2353 					PCI_DMA_FROMDEVICE);
2354 				skb_copy_to_linear_data(skb,
2355 					np->rx_skbuff[entry]->data, pkt_len);
2356 				skb_put(skb, pkt_len);
2357 				pci_dma_sync_single_for_device(np->pci_dev,
2358 					np->rx_dma[entry],
2359 					buflen,
2360 					PCI_DMA_FROMDEVICE);
2361 			} else {
2362 				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363 					buflen, PCI_DMA_FROMDEVICE);
2364 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2365 				np->rx_skbuff[entry] = NULL;
2366 			}
2367 			skb->protocol = eth_type_trans(skb, dev);
2368 			netif_receive_skb(skb);
2369 			np->stats.rx_packets++;
2370 			np->stats.rx_bytes += pkt_len;
2371 		}
2372 		entry = (++np->cur_rx) % RX_RING_SIZE;
2373 		np->rx_head_desc = &np->rx_ring[entry];
2374 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2375 	}
2376 	refill_rx(dev);
2377 
2378 	/* Restart Rx engine if stopped. */
2379 	if (np->oom)
2380 		mod_timer(&np->timer, jiffies + 1);
2381 	else
2382 		writel(RxOn, ioaddr + ChipCmd);
2383 }
2384 
netdev_error(struct net_device * dev,int intr_status)2385 static void netdev_error(struct net_device *dev, int intr_status)
2386 {
2387 	struct netdev_private *np = netdev_priv(dev);
2388 	void __iomem * ioaddr = ns_ioaddr(dev);
2389 
2390 	spin_lock(&np->lock);
2391 	if (intr_status & LinkChange) {
2392 		u16 lpa = mdio_read(dev, MII_LPA);
2393 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2394 		 && netif_msg_link(np)) {
2395 			printk(KERN_INFO
2396 				"%s: Autonegotiation advertising"
2397 				" %#04x  partner %#04x.\n", dev->name,
2398 				np->advertising, lpa);
2399 		}
2400 
2401 		/* read MII int status to clear the flag */
2402 		readw(ioaddr + MIntrStatus);
2403 		check_link(dev);
2404 	}
2405 	if (intr_status & StatsMax) {
2406 		__get_stats(dev);
2407 	}
2408 	if (intr_status & IntrTxUnderrun) {
2409 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2410 			np->tx_config += TX_DRTH_VAL_INC;
2411 			if (netif_msg_tx_err(np))
2412 				printk(KERN_NOTICE
2413 					"%s: increased tx threshold, txcfg %#08x.\n",
2414 					dev->name, np->tx_config);
2415 		} else {
2416 			if (netif_msg_tx_err(np))
2417 				printk(KERN_NOTICE
2418 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2419 					dev->name, np->tx_config);
2420 		}
2421 		writel(np->tx_config, ioaddr + TxConfig);
2422 	}
2423 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2424 		int wol_status = readl(ioaddr + WOLCmd);
2425 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2426 			dev->name, wol_status);
2427 	}
2428 	if (intr_status & RxStatusFIFOOver) {
2429 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2430 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2431 				dev->name);
2432 		}
2433 		np->stats.rx_fifo_errors++;
2434 		np->stats.rx_errors++;
2435 	}
2436 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2437 	if (intr_status & IntrPCIErr) {
2438 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2439 			intr_status & IntrPCIErr);
2440 		np->stats.tx_fifo_errors++;
2441 		np->stats.tx_errors++;
2442 		np->stats.rx_fifo_errors++;
2443 		np->stats.rx_errors++;
2444 	}
2445 	spin_unlock(&np->lock);
2446 }
2447 
__get_stats(struct net_device * dev)2448 static void __get_stats(struct net_device *dev)
2449 {
2450 	void __iomem * ioaddr = ns_ioaddr(dev);
2451 	struct netdev_private *np = netdev_priv(dev);
2452 
2453 	/* The chip only need report frame silently dropped. */
2454 	np->stats.rx_crc_errors	+= readl(ioaddr + RxCRCErrs);
2455 	np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456 }
2457 
get_stats(struct net_device * dev)2458 static struct net_device_stats *get_stats(struct net_device *dev)
2459 {
2460 	struct netdev_private *np = netdev_priv(dev);
2461 
2462 	/* The chip only need report frame silently dropped. */
2463 	spin_lock_irq(&np->lock);
2464 	if (netif_running(dev) && !np->hands_off)
2465 		__get_stats(dev);
2466 	spin_unlock_irq(&np->lock);
2467 
2468 	return &np->stats;
2469 }
2470 
2471 #ifdef CONFIG_NET_POLL_CONTROLLER
natsemi_poll_controller(struct net_device * dev)2472 static void natsemi_poll_controller(struct net_device *dev)
2473 {
2474 	disable_irq(dev->irq);
2475 	intr_handler(dev->irq, dev);
2476 	enable_irq(dev->irq);
2477 }
2478 #endif
2479 
2480 #define HASH_TABLE	0x200
__set_rx_mode(struct net_device * dev)2481 static void __set_rx_mode(struct net_device *dev)
2482 {
2483 	void __iomem * ioaddr = ns_ioaddr(dev);
2484 	struct netdev_private *np = netdev_priv(dev);
2485 	u8 mc_filter[64]; /* Multicast hash filter */
2486 	u32 rx_mode;
2487 
2488 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489 		rx_mode = RxFilterEnable | AcceptBroadcast
2490 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491 	} else if ((dev->mc_count > multicast_filter_limit)
2492 	  || (dev->flags & IFF_ALLMULTI)) {
2493 		rx_mode = RxFilterEnable | AcceptBroadcast
2494 			| AcceptAllMulticast | AcceptMyPhys;
2495 	} else {
2496 		struct dev_mc_list *mclist;
2497 		int i;
2498 		memset(mc_filter, 0, sizeof(mc_filter));
2499 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2500 			 i++, mclist = mclist->next) {
2501 			int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2502 			mc_filter[b/8] |= (1 << (b & 0x07));
2503 		}
2504 		rx_mode = RxFilterEnable | AcceptBroadcast
2505 			| AcceptMulticast | AcceptMyPhys;
2506 		for (i = 0; i < 64; i += 2) {
2507 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509 			       ioaddr + RxFilterData);
2510 		}
2511 	}
2512 	writel(rx_mode, ioaddr + RxFilterAddr);
2513 	np->cur_rx_mode = rx_mode;
2514 }
2515 
natsemi_change_mtu(struct net_device * dev,int new_mtu)2516 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517 {
2518 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519 		return -EINVAL;
2520 
2521 	dev->mtu = new_mtu;
2522 
2523 	/* synchronized against open : rtnl_lock() held by caller */
2524 	if (netif_running(dev)) {
2525 		struct netdev_private *np = netdev_priv(dev);
2526 		void __iomem * ioaddr = ns_ioaddr(dev);
2527 
2528 		disable_irq(dev->irq);
2529 		spin_lock(&np->lock);
2530 		/* stop engines */
2531 		natsemi_stop_rxtx(dev);
2532 		/* drain rx queue */
2533 		drain_rx(dev);
2534 		/* change buffers */
2535 		set_bufsize(dev);
2536 		reinit_rx(dev);
2537 		writel(np->ring_dma, ioaddr + RxRingPtr);
2538 		/* restart engines */
2539 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2540 		spin_unlock(&np->lock);
2541 		enable_irq(dev->irq);
2542 	}
2543 	return 0;
2544 }
2545 
set_rx_mode(struct net_device * dev)2546 static void set_rx_mode(struct net_device *dev)
2547 {
2548 	struct netdev_private *np = netdev_priv(dev);
2549 	spin_lock_irq(&np->lock);
2550 	if (!np->hands_off)
2551 		__set_rx_mode(dev);
2552 	spin_unlock_irq(&np->lock);
2553 }
2554 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2555 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556 {
2557 	struct netdev_private *np = netdev_priv(dev);
2558 	strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2559 	strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2560 	strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2561 }
2562 
get_regs_len(struct net_device * dev)2563 static int get_regs_len(struct net_device *dev)
2564 {
2565 	return NATSEMI_REGS_SIZE;
2566 }
2567 
get_eeprom_len(struct net_device * dev)2568 static int get_eeprom_len(struct net_device *dev)
2569 {
2570 	struct netdev_private *np = netdev_priv(dev);
2571 	return np->eeprom_size;
2572 }
2573 
get_settings(struct net_device * dev,struct ethtool_cmd * ecmd)2574 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575 {
2576 	struct netdev_private *np = netdev_priv(dev);
2577 	spin_lock_irq(&np->lock);
2578 	netdev_get_ecmd(dev, ecmd);
2579 	spin_unlock_irq(&np->lock);
2580 	return 0;
2581 }
2582 
set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)2583 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584 {
2585 	struct netdev_private *np = netdev_priv(dev);
2586 	int res;
2587 	spin_lock_irq(&np->lock);
2588 	res = netdev_set_ecmd(dev, ecmd);
2589 	spin_unlock_irq(&np->lock);
2590 	return res;
2591 }
2592 
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2593 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594 {
2595 	struct netdev_private *np = netdev_priv(dev);
2596 	spin_lock_irq(&np->lock);
2597 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598 	netdev_get_sopass(dev, wol->sopass);
2599 	spin_unlock_irq(&np->lock);
2600 }
2601 
set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2602 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603 {
2604 	struct netdev_private *np = netdev_priv(dev);
2605 	int res;
2606 	spin_lock_irq(&np->lock);
2607 	netdev_set_wol(dev, wol->wolopts);
2608 	res = netdev_set_sopass(dev, wol->sopass);
2609 	spin_unlock_irq(&np->lock);
2610 	return res;
2611 }
2612 
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)2613 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614 {
2615 	struct netdev_private *np = netdev_priv(dev);
2616 	regs->version = NATSEMI_REGS_VER;
2617 	spin_lock_irq(&np->lock);
2618 	netdev_get_regs(dev, buf);
2619 	spin_unlock_irq(&np->lock);
2620 }
2621 
get_msglevel(struct net_device * dev)2622 static u32 get_msglevel(struct net_device *dev)
2623 {
2624 	struct netdev_private *np = netdev_priv(dev);
2625 	return np->msg_enable;
2626 }
2627 
set_msglevel(struct net_device * dev,u32 val)2628 static void set_msglevel(struct net_device *dev, u32 val)
2629 {
2630 	struct netdev_private *np = netdev_priv(dev);
2631 	np->msg_enable = val;
2632 }
2633 
nway_reset(struct net_device * dev)2634 static int nway_reset(struct net_device *dev)
2635 {
2636 	int tmp;
2637 	int r = -EINVAL;
2638 	/* if autoneg is off, it's an error */
2639 	tmp = mdio_read(dev, MII_BMCR);
2640 	if (tmp & BMCR_ANENABLE) {
2641 		tmp |= (BMCR_ANRESTART);
2642 		mdio_write(dev, MII_BMCR, tmp);
2643 		r = 0;
2644 	}
2645 	return r;
2646 }
2647 
get_link(struct net_device * dev)2648 static u32 get_link(struct net_device *dev)
2649 {
2650 	/* LSTATUS is latched low until a read - so read twice */
2651 	mdio_read(dev, MII_BMSR);
2652 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653 }
2654 
get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2655 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656 {
2657 	struct netdev_private *np = netdev_priv(dev);
2658 	u8 *eebuf;
2659 	int res;
2660 
2661 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662 	if (!eebuf)
2663 		return -ENOMEM;
2664 
2665 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666 	spin_lock_irq(&np->lock);
2667 	res = netdev_get_eeprom(dev, eebuf);
2668 	spin_unlock_irq(&np->lock);
2669 	if (!res)
2670 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671 	kfree(eebuf);
2672 	return res;
2673 }
2674 
2675 static const struct ethtool_ops ethtool_ops = {
2676 	.get_drvinfo = get_drvinfo,
2677 	.get_regs_len = get_regs_len,
2678 	.get_eeprom_len = get_eeprom_len,
2679 	.get_settings = get_settings,
2680 	.set_settings = set_settings,
2681 	.get_wol = get_wol,
2682 	.set_wol = set_wol,
2683 	.get_regs = get_regs,
2684 	.get_msglevel = get_msglevel,
2685 	.set_msglevel = set_msglevel,
2686 	.nway_reset = nway_reset,
2687 	.get_link = get_link,
2688 	.get_eeprom = get_eeprom,
2689 };
2690 
netdev_set_wol(struct net_device * dev,u32 newval)2691 static int netdev_set_wol(struct net_device *dev, u32 newval)
2692 {
2693 	struct netdev_private *np = netdev_priv(dev);
2694 	void __iomem * ioaddr = ns_ioaddr(dev);
2695 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696 
2697 	/* translate to bitmasks this chip understands */
2698 	if (newval & WAKE_PHY)
2699 		data |= WakePhy;
2700 	if (newval & WAKE_UCAST)
2701 		data |= WakeUnicast;
2702 	if (newval & WAKE_MCAST)
2703 		data |= WakeMulticast;
2704 	if (newval & WAKE_BCAST)
2705 		data |= WakeBroadcast;
2706 	if (newval & WAKE_ARP)
2707 		data |= WakeArp;
2708 	if (newval & WAKE_MAGIC)
2709 		data |= WakeMagic;
2710 	if (np->srr >= SRR_DP83815_D) {
2711 		if (newval & WAKE_MAGICSECURE) {
2712 			data |= WakeMagicSecure;
2713 		}
2714 	}
2715 
2716 	writel(data, ioaddr + WOLCmd);
2717 
2718 	return 0;
2719 }
2720 
netdev_get_wol(struct net_device * dev,u32 * supported,u32 * cur)2721 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722 {
2723 	struct netdev_private *np = netdev_priv(dev);
2724 	void __iomem * ioaddr = ns_ioaddr(dev);
2725 	u32 regval = readl(ioaddr + WOLCmd);
2726 
2727 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728 			| WAKE_ARP | WAKE_MAGIC);
2729 
2730 	if (np->srr >= SRR_DP83815_D) {
2731 		/* SOPASS works on revD and higher */
2732 		*supported |= WAKE_MAGICSECURE;
2733 	}
2734 	*cur = 0;
2735 
2736 	/* translate from chip bitmasks */
2737 	if (regval & WakePhy)
2738 		*cur |= WAKE_PHY;
2739 	if (regval & WakeUnicast)
2740 		*cur |= WAKE_UCAST;
2741 	if (regval & WakeMulticast)
2742 		*cur |= WAKE_MCAST;
2743 	if (regval & WakeBroadcast)
2744 		*cur |= WAKE_BCAST;
2745 	if (regval & WakeArp)
2746 		*cur |= WAKE_ARP;
2747 	if (regval & WakeMagic)
2748 		*cur |= WAKE_MAGIC;
2749 	if (regval & WakeMagicSecure) {
2750 		/* this can be on in revC, but it's broken */
2751 		*cur |= WAKE_MAGICSECURE;
2752 	}
2753 
2754 	return 0;
2755 }
2756 
netdev_set_sopass(struct net_device * dev,u8 * newval)2757 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758 {
2759 	struct netdev_private *np = netdev_priv(dev);
2760 	void __iomem * ioaddr = ns_ioaddr(dev);
2761 	u16 *sval = (u16 *)newval;
2762 	u32 addr;
2763 
2764 	if (np->srr < SRR_DP83815_D) {
2765 		return 0;
2766 	}
2767 
2768 	/* enable writing to these registers by disabling the RX filter */
2769 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770 	addr &= ~RxFilterEnable;
2771 	writel(addr, ioaddr + RxFilterAddr);
2772 
2773 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2775 	writew(sval[0], ioaddr + RxFilterData);
2776 
2777 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2778 	writew(sval[1], ioaddr + RxFilterData);
2779 
2780 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2781 	writew(sval[2], ioaddr + RxFilterData);
2782 
2783 	/* re-enable the RX filter */
2784 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785 
2786 	return 0;
2787 }
2788 
netdev_get_sopass(struct net_device * dev,u8 * data)2789 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790 {
2791 	struct netdev_private *np = netdev_priv(dev);
2792 	void __iomem * ioaddr = ns_ioaddr(dev);
2793 	u16 *sval = (u16 *)data;
2794 	u32 addr;
2795 
2796 	if (np->srr < SRR_DP83815_D) {
2797 		sval[0] = sval[1] = sval[2] = 0;
2798 		return 0;
2799 	}
2800 
2801 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803 
2804 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2805 	sval[0] = readw(ioaddr + RxFilterData);
2806 
2807 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2808 	sval[1] = readw(ioaddr + RxFilterData);
2809 
2810 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2811 	sval[2] = readw(ioaddr + RxFilterData);
2812 
2813 	writel(addr, ioaddr + RxFilterAddr);
2814 
2815 	return 0;
2816 }
2817 
netdev_get_ecmd(struct net_device * dev,struct ethtool_cmd * ecmd)2818 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819 {
2820 	struct netdev_private *np = netdev_priv(dev);
2821 	u32 tmp;
2822 
2823 	ecmd->port        = dev->if_port;
2824 	ecmd->speed       = np->speed;
2825 	ecmd->duplex      = np->duplex;
2826 	ecmd->autoneg     = np->autoneg;
2827 	ecmd->advertising = 0;
2828 	if (np->advertising & ADVERTISE_10HALF)
2829 		ecmd->advertising |= ADVERTISED_10baseT_Half;
2830 	if (np->advertising & ADVERTISE_10FULL)
2831 		ecmd->advertising |= ADVERTISED_10baseT_Full;
2832 	if (np->advertising & ADVERTISE_100HALF)
2833 		ecmd->advertising |= ADVERTISED_100baseT_Half;
2834 	if (np->advertising & ADVERTISE_100FULL)
2835 		ecmd->advertising |= ADVERTISED_100baseT_Full;
2836 	ecmd->supported   = (SUPPORTED_Autoneg |
2837 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840 	ecmd->phy_address = np->phy_addr_external;
2841 	/*
2842 	 * We intentionally report the phy address of the external
2843 	 * phy, even if the internal phy is used. This is necessary
2844 	 * to work around a deficiency of the ethtool interface:
2845 	 * It's only possible to query the settings of the active
2846 	 * port. Therefore
2847 	 * # ethtool -s ethX port mii
2848 	 * actually sends an ioctl to switch to port mii with the
2849 	 * settings that are used for the current active port.
2850 	 * If we would report a different phy address in this
2851 	 * command, then
2852 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853 	 * would unintentionally change the phy address.
2854 	 *
2855 	 * Fortunately the phy address doesn't matter with the
2856 	 * internal phy...
2857 	 */
2858 
2859 	/* set information based on active port type */
2860 	switch (ecmd->port) {
2861 	default:
2862 	case PORT_TP:
2863 		ecmd->advertising |= ADVERTISED_TP;
2864 		ecmd->transceiver = XCVR_INTERNAL;
2865 		break;
2866 	case PORT_MII:
2867 		ecmd->advertising |= ADVERTISED_MII;
2868 		ecmd->transceiver = XCVR_EXTERNAL;
2869 		break;
2870 	case PORT_FIBRE:
2871 		ecmd->advertising |= ADVERTISED_FIBRE;
2872 		ecmd->transceiver = XCVR_EXTERNAL;
2873 		break;
2874 	}
2875 
2876 	/* if autonegotiation is on, try to return the active speed/duplex */
2877 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2878 		ecmd->advertising |= ADVERTISED_Autoneg;
2879 		tmp = mii_nway_result(
2880 			np->advertising & mdio_read(dev, MII_LPA));
2881 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882 			ecmd->speed  = SPEED_100;
2883 		else
2884 			ecmd->speed  = SPEED_10;
2885 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886 			ecmd->duplex = DUPLEX_FULL;
2887 		else
2888 			ecmd->duplex = DUPLEX_HALF;
2889 	}
2890 
2891 	/* ignore maxtxpkt, maxrxpkt for now */
2892 
2893 	return 0;
2894 }
2895 
netdev_set_ecmd(struct net_device * dev,struct ethtool_cmd * ecmd)2896 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897 {
2898 	struct netdev_private *np = netdev_priv(dev);
2899 
2900 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901 		return -EINVAL;
2902 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903 		return -EINVAL;
2904 	if (ecmd->autoneg == AUTONEG_ENABLE) {
2905 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906 					  ADVERTISED_10baseT_Full |
2907 					  ADVERTISED_100baseT_Half |
2908 					  ADVERTISED_100baseT_Full)) == 0) {
2909 			return -EINVAL;
2910 		}
2911 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912 		if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2913 			return -EINVAL;
2914 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2915 			return -EINVAL;
2916 	} else {
2917 		return -EINVAL;
2918 	}
2919 
2920 	/*
2921 	 * If we're ignoring the PHY then autoneg and the internal
2922 	 * transciever are really not going to work so don't let the
2923 	 * user select them.
2924 	 */
2925 	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2926 			       ecmd->port == PORT_TP))
2927 		return -EINVAL;
2928 
2929 	/*
2930 	 * maxtxpkt, maxrxpkt: ignored for now.
2931 	 *
2932 	 * transceiver:
2933 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2934 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2935 	 * selects based on ecmd->port.
2936 	 *
2937 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2938 	 * phys that are connected to the mii bus. It's used to apply fibre
2939 	 * specific updates.
2940 	 */
2941 
2942 	/* WHEW! now lets bang some bits */
2943 
2944 	/* save the parms */
2945 	dev->if_port          = ecmd->port;
2946 	np->autoneg           = ecmd->autoneg;
2947 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2948 	if (np->autoneg == AUTONEG_ENABLE) {
2949 		/* advertise only what has been requested */
2950 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2951 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
2952 			np->advertising |= ADVERTISE_10HALF;
2953 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
2954 			np->advertising |= ADVERTISE_10FULL;
2955 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
2956 			np->advertising |= ADVERTISE_100HALF;
2957 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
2958 			np->advertising |= ADVERTISE_100FULL;
2959 	} else {
2960 		np->speed  = ecmd->speed;
2961 		np->duplex = ecmd->duplex;
2962 		/* user overriding the initial full duplex parm? */
2963 		if (np->duplex == DUPLEX_HALF)
2964 			np->full_duplex = 0;
2965 	}
2966 
2967 	/* get the right phy enabled */
2968 	if (ecmd->port == PORT_TP)
2969 		switch_port_internal(dev);
2970 	else
2971 		switch_port_external(dev);
2972 
2973 	/* set parms and see how this affected our link status */
2974 	init_phy_fixup(dev);
2975 	check_link(dev);
2976 	return 0;
2977 }
2978 
netdev_get_regs(struct net_device * dev,u8 * buf)2979 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2980 {
2981 	int i;
2982 	int j;
2983 	u32 rfcr;
2984 	u32 *rbuf = (u32 *)buf;
2985 	void __iomem * ioaddr = ns_ioaddr(dev);
2986 
2987 	/* read non-mii page 0 of registers */
2988 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2989 		rbuf[i] = readl(ioaddr + i*4);
2990 	}
2991 
2992 	/* read current mii registers */
2993 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2994 		rbuf[i] = mdio_read(dev, i & 0x1f);
2995 
2996 	/* read only the 'magic' registers from page 1 */
2997 	writew(1, ioaddr + PGSEL);
2998 	rbuf[i++] = readw(ioaddr + PMDCSR);
2999 	rbuf[i++] = readw(ioaddr + TSTDAT);
3000 	rbuf[i++] = readw(ioaddr + DSPCFG);
3001 	rbuf[i++] = readw(ioaddr + SDCFG);
3002 	writew(0, ioaddr + PGSEL);
3003 
3004 	/* read RFCR indexed registers */
3005 	rfcr = readl(ioaddr + RxFilterAddr);
3006 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3007 		writel(j*2, ioaddr + RxFilterAddr);
3008 		rbuf[i++] = readw(ioaddr + RxFilterData);
3009 	}
3010 	writel(rfcr, ioaddr + RxFilterAddr);
3011 
3012 	/* the interrupt status is clear-on-read - see if we missed any */
3013 	if (rbuf[4] & rbuf[5]) {
3014 		printk(KERN_WARNING
3015 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3016 			dev->name, rbuf[4] & rbuf[5]);
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3023 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3024 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3025 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3026 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3027 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3028 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3029 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3030 
netdev_get_eeprom(struct net_device * dev,u8 * buf)3031 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3032 {
3033 	int i;
3034 	u16 *ebuf = (u16 *)buf;
3035 	void __iomem * ioaddr = ns_ioaddr(dev);
3036 	struct netdev_private *np = netdev_priv(dev);
3037 
3038 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3039 	for (i = 0; i < np->eeprom_size/2; i++) {
3040 		ebuf[i] = eeprom_read(ioaddr, i);
3041 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3042 		 * reads it back "sanely". So we swap it back here in order to
3043 		 * present it to userland as it is stored. */
3044 		ebuf[i] = SWAP_BITS(ebuf[i]);
3045 	}
3046 	return 0;
3047 }
3048 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3049 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050 {
3051 	struct mii_ioctl_data *data = if_mii(rq);
3052 	struct netdev_private *np = netdev_priv(dev);
3053 
3054 	switch(cmd) {
3055 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3056 	case SIOCDEVPRIVATE:		/* for binary compat, remove in 2.5 */
3057 		data->phy_id = np->phy_addr_external;
3058 		/* Fall Through */
3059 
3060 	case SIOCGMIIREG:		/* Read MII PHY register. */
3061 	case SIOCDEVPRIVATE+1:		/* for binary compat, remove in 2.5 */
3062 		/* The phy_id is not enough to uniquely identify
3063 		 * the intended target. Therefore the command is sent to
3064 		 * the given mii on the current port.
3065 		 */
3066 		if (dev->if_port == PORT_TP) {
3067 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3068 				data->val_out = mdio_read(dev,
3069 							data->reg_num & 0x1f);
3070 			else
3071 				data->val_out = 0;
3072 		} else {
3073 			move_int_phy(dev, data->phy_id & 0x1f);
3074 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3075 							data->reg_num & 0x1f);
3076 		}
3077 		return 0;
3078 
3079 	case SIOCSMIIREG:		/* Write MII PHY register. */
3080 	case SIOCDEVPRIVATE+2:		/* for binary compat, remove in 2.5 */
3081 		if (!capable(CAP_NET_ADMIN))
3082 			return -EPERM;
3083 		if (dev->if_port == PORT_TP) {
3084 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3085  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3086 					np->advertising = data->val_in;
3087 				mdio_write(dev, data->reg_num & 0x1f,
3088 							data->val_in);
3089 			}
3090 		} else {
3091 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3092  				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3093 					np->advertising = data->val_in;
3094 			}
3095 			move_int_phy(dev, data->phy_id & 0x1f);
3096 			miiport_write(dev, data->phy_id & 0x1f,
3097 						data->reg_num & 0x1f,
3098 						data->val_in);
3099 		}
3100 		return 0;
3101 	default:
3102 		return -EOPNOTSUPP;
3103 	}
3104 }
3105 
enable_wol_mode(struct net_device * dev,int enable_intr)3106 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3107 {
3108 	void __iomem * ioaddr = ns_ioaddr(dev);
3109 	struct netdev_private *np = netdev_priv(dev);
3110 
3111 	if (netif_msg_wol(np))
3112 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3113 			dev->name);
3114 
3115 	/* For WOL we must restart the rx process in silent mode.
3116 	 * Write NULL to the RxRingPtr. Only possible if
3117 	 * rx process is stopped
3118 	 */
3119 	writel(0, ioaddr + RxRingPtr);
3120 
3121 	/* read WoL status to clear */
3122 	readl(ioaddr + WOLCmd);
3123 
3124 	/* PME on, clear status */
3125 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3126 
3127 	/* and restart the rx process */
3128 	writel(RxOn, ioaddr + ChipCmd);
3129 
3130 	if (enable_intr) {
3131 		/* enable the WOL interrupt.
3132 		 * Could be used to send a netlink message.
3133 		 */
3134 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3135 		natsemi_irq_enable(dev);
3136 	}
3137 }
3138 
netdev_close(struct net_device * dev)3139 static int netdev_close(struct net_device *dev)
3140 {
3141 	void __iomem * ioaddr = ns_ioaddr(dev);
3142 	struct netdev_private *np = netdev_priv(dev);
3143 
3144 	if (netif_msg_ifdown(np))
3145 		printk(KERN_DEBUG
3146 			"%s: Shutting down ethercard, status was %#04x.\n",
3147 			dev->name, (int)readl(ioaddr + ChipCmd));
3148 	if (netif_msg_pktdata(np))
3149 		printk(KERN_DEBUG
3150 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3151 			dev->name, np->cur_tx, np->dirty_tx,
3152 			np->cur_rx, np->dirty_rx);
3153 
3154 	napi_disable(&np->napi);
3155 
3156 	/*
3157 	 * FIXME: what if someone tries to close a device
3158 	 * that is suspended?
3159 	 * Should we reenable the nic to switch to
3160 	 * the final WOL settings?
3161 	 */
3162 
3163 	del_timer_sync(&np->timer);
3164 	disable_irq(dev->irq);
3165 	spin_lock_irq(&np->lock);
3166 	natsemi_irq_disable(dev);
3167 	np->hands_off = 1;
3168 	spin_unlock_irq(&np->lock);
3169 	enable_irq(dev->irq);
3170 
3171 	free_irq(dev->irq, dev);
3172 
3173 	/* Interrupt disabled, interrupt handler released,
3174 	 * queue stopped, timer deleted, rtnl_lock held
3175 	 * All async codepaths that access the driver are disabled.
3176 	 */
3177 	spin_lock_irq(&np->lock);
3178 	np->hands_off = 0;
3179 	readl(ioaddr + IntrMask);
3180 	readw(ioaddr + MIntrStatus);
3181 
3182 	/* Freeze Stats */
3183 	writel(StatsFreeze, ioaddr + StatsCtrl);
3184 
3185 	/* Stop the chip's Tx and Rx processes. */
3186 	natsemi_stop_rxtx(dev);
3187 
3188 	__get_stats(dev);
3189 	spin_unlock_irq(&np->lock);
3190 
3191 	/* clear the carrier last - an interrupt could reenable it otherwise */
3192 	netif_carrier_off(dev);
3193 	netif_stop_queue(dev);
3194 
3195 	dump_ring(dev);
3196 	drain_ring(dev);
3197 	free_ring(dev);
3198 
3199 	{
3200 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3201 		if (wol) {
3202 			/* restart the NIC in WOL mode.
3203 			 * The nic must be stopped for this.
3204 			 */
3205 			enable_wol_mode(dev, 0);
3206 		} else {
3207 			/* Restore PME enable bit unmolested */
3208 			writel(np->SavedClkRun, ioaddr + ClkRun);
3209 		}
3210 	}
3211 	return 0;
3212 }
3213 
3214 
natsemi_remove1(struct pci_dev * pdev)3215 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3216 {
3217 	struct net_device *dev = pci_get_drvdata(pdev);
3218 	void __iomem * ioaddr = ns_ioaddr(dev);
3219 
3220 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3221 	unregister_netdev (dev);
3222 	pci_release_regions (pdev);
3223 	iounmap(ioaddr);
3224 	free_netdev (dev);
3225 	pci_set_drvdata(pdev, NULL);
3226 }
3227 
3228 #ifdef CONFIG_PM
3229 
3230 /*
3231  * The ns83815 chip doesn't have explicit RxStop bits.
3232  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3233  * of the nic, thus this function must be very careful:
3234  *
3235  * suspend/resume synchronization:
3236  * entry points:
3237  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3238  *   start_tx, ns_tx_timeout
3239  *
3240  * No function accesses the hardware without checking np->hands_off.
3241  *	the check occurs under spin_lock_irq(&np->lock);
3242  * exceptions:
3243  *	* netdev_ioctl: noncritical access.
3244  *	* netdev_open: cannot happen due to the device_detach
3245  *	* netdev_close: doesn't hurt.
3246  *	* netdev_timer: timer stopped by natsemi_suspend.
3247  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3248  *		disable_irq() to enforce synchronization.
3249  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3250  *              sets hands_off, disables interrupts and then waits with
3251  *              napi_disable().
3252  *
3253  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3254  */
3255 
natsemi_suspend(struct pci_dev * pdev,pm_message_t state)3256 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3257 {
3258 	struct net_device *dev = pci_get_drvdata (pdev);
3259 	struct netdev_private *np = netdev_priv(dev);
3260 	void __iomem * ioaddr = ns_ioaddr(dev);
3261 
3262 	rtnl_lock();
3263 	if (netif_running (dev)) {
3264 		del_timer_sync(&np->timer);
3265 
3266 		disable_irq(dev->irq);
3267 		spin_lock_irq(&np->lock);
3268 
3269 		natsemi_irq_disable(dev);
3270 		np->hands_off = 1;
3271 		natsemi_stop_rxtx(dev);
3272 		netif_stop_queue(dev);
3273 
3274 		spin_unlock_irq(&np->lock);
3275 		enable_irq(dev->irq);
3276 
3277 		napi_disable(&np->napi);
3278 
3279 		/* Update the error counts. */
3280 		__get_stats(dev);
3281 
3282 		/* pci_power_off(pdev, -1); */
3283 		drain_ring(dev);
3284 		{
3285 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3286 			/* Restore PME enable bit */
3287 			if (wol) {
3288 				/* restart the NIC in WOL mode.
3289 				 * The nic must be stopped for this.
3290 				 * FIXME: use the WOL interrupt
3291 				 */
3292 				enable_wol_mode(dev, 0);
3293 			} else {
3294 				/* Restore PME enable bit unmolested */
3295 				writel(np->SavedClkRun, ioaddr + ClkRun);
3296 			}
3297 		}
3298 	}
3299 	netif_device_detach(dev);
3300 	rtnl_unlock();
3301 	return 0;
3302 }
3303 
3304 
natsemi_resume(struct pci_dev * pdev)3305 static int natsemi_resume (struct pci_dev *pdev)
3306 {
3307 	struct net_device *dev = pci_get_drvdata (pdev);
3308 	struct netdev_private *np = netdev_priv(dev);
3309 	int ret = 0;
3310 
3311 	rtnl_lock();
3312 	if (netif_device_present(dev))
3313 		goto out;
3314 	if (netif_running(dev)) {
3315 		BUG_ON(!np->hands_off);
3316 		ret = pci_enable_device(pdev);
3317 		if (ret < 0) {
3318 			dev_err(&pdev->dev,
3319 				"pci_enable_device() failed: %d\n", ret);
3320 			goto out;
3321 		}
3322 	/*	pci_power_on(pdev); */
3323 
3324 		napi_enable(&np->napi);
3325 
3326 		natsemi_reset(dev);
3327 		init_ring(dev);
3328 		disable_irq(dev->irq);
3329 		spin_lock_irq(&np->lock);
3330 		np->hands_off = 0;
3331 		init_registers(dev);
3332 		netif_device_attach(dev);
3333 		spin_unlock_irq(&np->lock);
3334 		enable_irq(dev->irq);
3335 
3336 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3337 	}
3338 	netif_device_attach(dev);
3339 out:
3340 	rtnl_unlock();
3341 	return ret;
3342 }
3343 
3344 #endif /* CONFIG_PM */
3345 
3346 static struct pci_driver natsemi_driver = {
3347 	.name		= DRV_NAME,
3348 	.id_table	= natsemi_pci_tbl,
3349 	.probe		= natsemi_probe1,
3350 	.remove		= __devexit_p(natsemi_remove1),
3351 #ifdef CONFIG_PM
3352 	.suspend	= natsemi_suspend,
3353 	.resume		= natsemi_resume,
3354 #endif
3355 };
3356 
natsemi_init_mod(void)3357 static int __init natsemi_init_mod (void)
3358 {
3359 /* when a module, this is printed whether or not devices are found in probe */
3360 #ifdef MODULE
3361 	printk(version);
3362 #endif
3363 
3364 	return pci_register_driver(&natsemi_driver);
3365 }
3366 
natsemi_exit_mod(void)3367 static void __exit natsemi_exit_mod (void)
3368 {
3369 	pci_unregister_driver (&natsemi_driver);
3370 }
3371 
3372 module_init(natsemi_init_mod);
3373 module_exit(natsemi_exit_mod);
3374 
3375