• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27  *
28  *
29  * ChangeLog
30  * =========
31  *	20010414	0.1 - created
32  *	20010622	0.2 - basic rx and tx.
33  *	20010711	0.3 - added duplex and link state detection support.
34  *	20010713	0.4 - zero copy, no hangs.
35  *			0.5 - 64 bit dma support (davem will hate me for this)
36  *			    - disable jumbo frames to avoid tx hangs
37  *			    - work around tx deadlocks on my 1.02 card via
38  *			      fiddling with TXCFG
39  *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
40  *	20010816	0.7 - misc cleanups
41  *	20010826	0.8 - fix critical zero copy bugs
42  *			0.9 - internal experiment
43  *	20010827	0.10 - fix ia64 unaligned access.
44  *	20010906	0.11 - accept all packets with checksum errors as
45  *			       otherwise fragments get lost
46  *			     - fix >> 32 bugs
47  *			0.12 - add statistics counters
48  *			     - add allmulti/promisc support
49  *	20011009	0.13 - hotplug support, other smaller pci api cleanups
50  *	20011204	0.13a - optical transceiver support added
51  *				by Michael Clark <michael@metaparadigm.com>
52  *	20011205	0.13b - call register_netdev earlier in initialization
53  *				suppress duplicate link status messages
54  *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  *	20011204 	0.15	get ppc (big endian) working
56  *	20011218	0.16	various cleanups
57  *	20020310	0.17	speedups
58  *	20020610	0.18 -	actually use the pci dma api for highmem
59  *			     -	remove pci latency register fiddling
60  *			0.19 -	better bist support
61  *			     -	add ihr and reset_phy parameters
62  *			     -	gmii bus probing
63  *			     -	fix missed txok introduced during performance
64  *				tuning
65  *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
66  *	20040828	0.21 -	add hardware vlan accleration
67  *				by Neil Horman <nhorman@redhat.com>
68  *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
69  *			     -	removal of dead code from Adrian Bunk
70  *			     -	fix half duplex collision behaviour
71  * Driver Overview
72  * ===============
73  *
74  * This driver was originally written for the National Semiconductor
75  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
76  * this code will turn out to be a) clean, b) correct, and c) fast.
77  * With that in mind, I'm aiming to split the code up as much as
78  * reasonably possible.  At present there are X major sections that
79  * break down into a) packet receive, b) packet transmit, c) link
80  * management, d) initialization and configuration.  Where possible,
81  * these code paths are designed to run in parallel.
82  *
83  * This driver has been tested and found to work with the following
84  * cards (in no particular order):
85  *
86  *	Cameo		SOHO-GA2000T	SOHO-GA2500T
87  *	D-Link		DGE-500T
88  *	PureData	PDP8023Z-TG
89  *	SMC		SMC9452TX	SMC9462TX
90  *	Netgear		GA621
91  *
92  * Special thanks to SMC for providing hardware to test this driver on.
93  *
94  * Reports of success or failure would be greatly appreciated.
95  */
96 //#define dprintk		printk
97 #define dprintk(x...)		do { } while (0)
98 
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/ip.h>	/* for iph */
110 #include <linux/in.h>	/* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/timer.h>
115 #include <linux/if_vlan.h>
116 #include <linux/rtnetlink.h>
117 #include <linux/jiffies.h>
118 
119 #include <asm/io.h>
120 #include <asm/uaccess.h>
121 #include <asm/system.h>
122 
123 #define DRV_NAME "ns83820"
124 
125 /* Global parameters.  See module_param near the bottom. */
126 static int ihr = 2;
127 static int reset_phy = 0;
128 static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
129 
130 /* Dprintk is used for more interesting debug events */
131 #undef Dprintk
132 #define	Dprintk			dprintk
133 
134 /* tunables */
135 #define RX_BUF_SIZE	1500	/* 8192 */
136 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
137 #define NS83820_VLAN_ACCEL_SUPPORT
138 #endif
139 
140 /* Must not exceed ~65000. */
141 #define NR_RX_DESC	64
142 #define NR_TX_DESC	128
143 
144 /* not tunable */
145 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
146 
147 #define MIN_TX_DESC_FREE	8
148 
149 /* register defines */
150 #define CFGCS		0x04
151 
152 #define CR_TXE		0x00000001
153 #define CR_TXD		0x00000002
154 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
155  * The Receive engine skips one descriptor and moves
156  * onto the next one!! */
157 #define CR_RXE		0x00000004
158 #define CR_RXD		0x00000008
159 #define CR_TXR		0x00000010
160 #define CR_RXR		0x00000020
161 #define CR_SWI		0x00000080
162 #define CR_RST		0x00000100
163 
164 #define PTSCR_EEBIST_FAIL       0x00000001
165 #define PTSCR_EEBIST_EN         0x00000002
166 #define PTSCR_EELOAD_EN         0x00000004
167 #define PTSCR_RBIST_FAIL        0x000001b8
168 #define PTSCR_RBIST_DONE        0x00000200
169 #define PTSCR_RBIST_EN          0x00000400
170 #define PTSCR_RBIST_RST         0x00002000
171 
172 #define MEAR_EEDI		0x00000001
173 #define MEAR_EEDO		0x00000002
174 #define MEAR_EECLK		0x00000004
175 #define MEAR_EESEL		0x00000008
176 #define MEAR_MDIO		0x00000010
177 #define MEAR_MDDIR		0x00000020
178 #define MEAR_MDC		0x00000040
179 
180 #define ISR_TXDESC3	0x40000000
181 #define ISR_TXDESC2	0x20000000
182 #define ISR_TXDESC1	0x10000000
183 #define ISR_TXDESC0	0x08000000
184 #define ISR_RXDESC3	0x04000000
185 #define ISR_RXDESC2	0x02000000
186 #define ISR_RXDESC1	0x01000000
187 #define ISR_RXDESC0	0x00800000
188 #define ISR_TXRCMP	0x00400000
189 #define ISR_RXRCMP	0x00200000
190 #define ISR_DPERR	0x00100000
191 #define ISR_SSERR	0x00080000
192 #define ISR_RMABT	0x00040000
193 #define ISR_RTABT	0x00020000
194 #define ISR_RXSOVR	0x00010000
195 #define ISR_HIBINT	0x00008000
196 #define ISR_PHY		0x00004000
197 #define ISR_PME		0x00002000
198 #define ISR_SWI		0x00001000
199 #define ISR_MIB		0x00000800
200 #define ISR_TXURN	0x00000400
201 #define ISR_TXIDLE	0x00000200
202 #define ISR_TXERR	0x00000100
203 #define ISR_TXDESC	0x00000080
204 #define ISR_TXOK	0x00000040
205 #define ISR_RXORN	0x00000020
206 #define ISR_RXIDLE	0x00000010
207 #define ISR_RXEARLY	0x00000008
208 #define ISR_RXERR	0x00000004
209 #define ISR_RXDESC	0x00000002
210 #define ISR_RXOK	0x00000001
211 
212 #define TXCFG_CSI	0x80000000
213 #define TXCFG_HBI	0x40000000
214 #define TXCFG_MLB	0x20000000
215 #define TXCFG_ATP	0x10000000
216 #define TXCFG_ECRETRY	0x00800000
217 #define TXCFG_BRST_DIS	0x00080000
218 #define TXCFG_MXDMA1024	0x00000000
219 #define TXCFG_MXDMA512	0x00700000
220 #define TXCFG_MXDMA256	0x00600000
221 #define TXCFG_MXDMA128	0x00500000
222 #define TXCFG_MXDMA64	0x00400000
223 #define TXCFG_MXDMA32	0x00300000
224 #define TXCFG_MXDMA16	0x00200000
225 #define TXCFG_MXDMA8	0x00100000
226 
227 #define CFG_LNKSTS	0x80000000
228 #define CFG_SPDSTS	0x60000000
229 #define CFG_SPDSTS1	0x40000000
230 #define CFG_SPDSTS0	0x20000000
231 #define CFG_DUPSTS	0x10000000
232 #define CFG_TBI_EN	0x01000000
233 #define CFG_MODE_1000	0x00400000
234 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
235  * Read the Phy response and then configure the MAC accordingly */
236 #define CFG_AUTO_1000	0x00200000
237 #define CFG_PINT_CTL	0x001c0000
238 #define CFG_PINT_DUPSTS	0x00100000
239 #define CFG_PINT_LNKSTS	0x00080000
240 #define CFG_PINT_SPDSTS	0x00040000
241 #define CFG_TMRTEST	0x00020000
242 #define CFG_MRM_DIS	0x00010000
243 #define CFG_MWI_DIS	0x00008000
244 #define CFG_T64ADDR	0x00004000
245 #define CFG_PCI64_DET	0x00002000
246 #define CFG_DATA64_EN	0x00001000
247 #define CFG_M64ADDR	0x00000800
248 #define CFG_PHY_RST	0x00000400
249 #define CFG_PHY_DIS	0x00000200
250 #define CFG_EXTSTS_EN	0x00000100
251 #define CFG_REQALG	0x00000080
252 #define CFG_SB		0x00000040
253 #define CFG_POW		0x00000020
254 #define CFG_EXD		0x00000010
255 #define CFG_PESEL	0x00000008
256 #define CFG_BROM_DIS	0x00000004
257 #define CFG_EXT_125	0x00000002
258 #define CFG_BEM		0x00000001
259 
260 #define EXTSTS_UDPPKT	0x00200000
261 #define EXTSTS_TCPPKT	0x00080000
262 #define EXTSTS_IPPKT	0x00020000
263 #define EXTSTS_VPKT	0x00010000
264 #define EXTSTS_VTG_MASK	0x0000ffff
265 
266 #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
267 
268 #define MIBC_MIBS	0x00000008
269 #define MIBC_ACLR	0x00000004
270 #define MIBC_FRZ	0x00000002
271 #define MIBC_WRN	0x00000001
272 
273 #define PCR_PSEN	(1 << 31)
274 #define PCR_PS_MCAST	(1 << 30)
275 #define PCR_PS_DA	(1 << 29)
276 #define PCR_STHI_8	(3 << 23)
277 #define PCR_STLO_4	(1 << 23)
278 #define PCR_FFHI_8K	(3 << 21)
279 #define PCR_FFLO_4K	(1 << 21)
280 #define PCR_PAUSE_CNT	0xFFFE
281 
282 #define RXCFG_AEP	0x80000000
283 #define RXCFG_ARP	0x40000000
284 #define RXCFG_STRIPCRC	0x20000000
285 #define RXCFG_RX_FD	0x10000000
286 #define RXCFG_ALP	0x08000000
287 #define RXCFG_AIRL	0x04000000
288 #define RXCFG_MXDMA512	0x00700000
289 #define RXCFG_DRTH	0x0000003e
290 #define RXCFG_DRTH0	0x00000002
291 
292 #define RFCR_RFEN	0x80000000
293 #define RFCR_AAB	0x40000000
294 #define RFCR_AAM	0x20000000
295 #define RFCR_AAU	0x10000000
296 #define RFCR_APM	0x08000000
297 #define RFCR_APAT	0x07800000
298 #define RFCR_APAT3	0x04000000
299 #define RFCR_APAT2	0x02000000
300 #define RFCR_APAT1	0x01000000
301 #define RFCR_APAT0	0x00800000
302 #define RFCR_AARP	0x00400000
303 #define RFCR_MHEN	0x00200000
304 #define RFCR_UHEN	0x00100000
305 #define RFCR_ULM	0x00080000
306 
307 #define VRCR_RUDPE	0x00000080
308 #define VRCR_RTCPE	0x00000040
309 #define VRCR_RIPE	0x00000020
310 #define VRCR_IPEN	0x00000010
311 #define VRCR_DUTF	0x00000008
312 #define VRCR_DVTF	0x00000004
313 #define VRCR_VTREN	0x00000002
314 #define VRCR_VTDEN	0x00000001
315 
316 #define VTCR_PPCHK	0x00000008
317 #define VTCR_GCHK	0x00000004
318 #define VTCR_VPPTI	0x00000002
319 #define VTCR_VGTI	0x00000001
320 
321 #define CR		0x00
322 #define CFG		0x04
323 #define MEAR		0x08
324 #define PTSCR		0x0c
325 #define	ISR		0x10
326 #define	IMR		0x14
327 #define	IER		0x18
328 #define	IHR		0x1c
329 #define TXDP		0x20
330 #define TXDP_HI		0x24
331 #define TXCFG		0x28
332 #define GPIOR		0x2c
333 #define RXDP		0x30
334 #define RXDP_HI		0x34
335 #define RXCFG		0x38
336 #define PQCR		0x3c
337 #define WCSR		0x40
338 #define PCR		0x44
339 #define RFCR		0x48
340 #define RFDR		0x4c
341 
342 #define SRR		0x58
343 
344 #define VRCR		0xbc
345 #define VTCR		0xc0
346 #define VDR		0xc4
347 #define CCSR		0xcc
348 
349 #define TBICR		0xe0
350 #define TBISR		0xe4
351 #define TANAR		0xe8
352 #define TANLPAR		0xec
353 #define TANER		0xf0
354 #define TESR		0xf4
355 
356 #define TBICR_MR_AN_ENABLE	0x00001000
357 #define TBICR_MR_RESTART_AN	0x00000200
358 
359 #define TBISR_MR_LINK_STATUS	0x00000020
360 #define TBISR_MR_AN_COMPLETE	0x00000004
361 
362 #define TANAR_PS2 		0x00000100
363 #define TANAR_PS1 		0x00000080
364 #define TANAR_HALF_DUP 		0x00000040
365 #define TANAR_FULL_DUP 		0x00000020
366 
367 #define GPIOR_GP5_OE		0x00000200
368 #define GPIOR_GP4_OE		0x00000100
369 #define GPIOR_GP3_OE		0x00000080
370 #define GPIOR_GP2_OE		0x00000040
371 #define GPIOR_GP1_OE		0x00000020
372 #define GPIOR_GP3_OUT		0x00000004
373 #define GPIOR_GP1_OUT		0x00000001
374 
375 #define LINK_AUTONEGOTIATE	0x01
376 #define LINK_DOWN		0x02
377 #define LINK_UP			0x04
378 
379 #define HW_ADDR_LEN	sizeof(dma_addr_t)
380 #define desc_addr_set(desc, addr)				\
381 	do {							\
382 		((desc)[0] = cpu_to_le32(addr));		\
383 		if (HW_ADDR_LEN == 8)		 		\
384 			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
385 	} while(0)
386 #define desc_addr_get(desc)					\
387 	(le32_to_cpu((desc)[0]) | \
388 	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
389 
390 #define DESC_LINK		0
391 #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
392 #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
393 #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
394 
395 #define CMDSTS_OWN	0x80000000
396 #define CMDSTS_MORE	0x40000000
397 #define CMDSTS_INTR	0x20000000
398 #define CMDSTS_ERR	0x10000000
399 #define CMDSTS_OK	0x08000000
400 #define CMDSTS_RUNT	0x00200000
401 #define CMDSTS_LEN_MASK	0x0000ffff
402 
403 #define CMDSTS_DEST_MASK	0x01800000
404 #define CMDSTS_DEST_SELF	0x00800000
405 #define CMDSTS_DEST_MULTI	0x01000000
406 
407 #define DESC_SIZE	8		/* Should be cache line sized */
408 
409 struct rx_info {
410 	spinlock_t	lock;
411 	int		up;
412 	long		idle;
413 
414 	struct sk_buff	*skbs[NR_RX_DESC];
415 
416 	__le32		*next_rx_desc;
417 	u16		next_rx, next_empty;
418 
419 	__le32		*descs;
420 	dma_addr_t	phy_descs;
421 };
422 
423 
424 struct ns83820 {
425 	struct net_device_stats	stats;
426 	u8			__iomem *base;
427 
428 	struct pci_dev		*pci_dev;
429 	struct net_device	*ndev;
430 
431 #ifdef NS83820_VLAN_ACCEL_SUPPORT
432 	struct vlan_group	*vlgrp;
433 #endif
434 
435 	struct rx_info		rx_info;
436 	struct tasklet_struct	rx_tasklet;
437 
438 	unsigned		ihr;
439 	struct work_struct	tq_refill;
440 
441 	/* protects everything below.  irqsave when using. */
442 	spinlock_t		misc_lock;
443 
444 	u32			CFG_cache;
445 
446 	u32			MEAR_cache;
447 	u32			IMR_cache;
448 
449 	unsigned		linkstate;
450 
451 	spinlock_t	tx_lock;
452 
453 	u16		tx_done_idx;
454 	u16		tx_idx;
455 	volatile u16	tx_free_idx;	/* idx of free desc chain */
456 	u16		tx_intr_idx;
457 
458 	atomic_t	nr_tx_skbs;
459 	struct sk_buff	*tx_skbs[NR_TX_DESC];
460 
461 	char		pad[16] __attribute__((aligned(16)));
462 	__le32		*tx_descs;
463 	dma_addr_t	tx_phy_descs;
464 
465 	struct timer_list	tx_watchdog;
466 };
467 
PRIV(struct net_device * dev)468 static inline struct ns83820 *PRIV(struct net_device *dev)
469 {
470 	return netdev_priv(dev);
471 }
472 
473 #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
474 
kick_rx(struct net_device * ndev)475 static inline void kick_rx(struct net_device *ndev)
476 {
477 	struct ns83820 *dev = PRIV(ndev);
478 	dprintk("kick_rx: maybe kicking\n");
479 	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
480 		dprintk("actually kicking\n");
481 		writel(dev->rx_info.phy_descs +
482 			(4 * DESC_SIZE * dev->rx_info.next_rx),
483 		       dev->base + RXDP);
484 		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
485 			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
486 				ndev->name);
487 		__kick_rx(dev);
488 	}
489 }
490 
491 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
492 #define start_tx_okay(dev)	\
493 	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
494 
495 
496 #ifdef NS83820_VLAN_ACCEL_SUPPORT
ns83820_vlan_rx_register(struct net_device * ndev,struct vlan_group * grp)497 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
498 {
499 	struct ns83820 *dev = PRIV(ndev);
500 
501 	spin_lock_irq(&dev->misc_lock);
502 	spin_lock(&dev->tx_lock);
503 
504 	dev->vlgrp = grp;
505 
506 	spin_unlock(&dev->tx_lock);
507 	spin_unlock_irq(&dev->misc_lock);
508 }
509 #endif
510 
511 /* Packet Receiver
512  *
513  * The hardware supports linked lists of receive descriptors for
514  * which ownership is transfered back and forth by means of an
515  * ownership bit.  While the hardware does support the use of a
516  * ring for receive descriptors, we only make use of a chain in
517  * an attempt to reduce bus traffic under heavy load scenarios.
518  * This will also make bugs a bit more obvious.  The current code
519  * only makes use of a single rx chain; I hope to implement
520  * priority based rx for version 1.0.  Goal: even under overload
521  * conditions, still route realtime traffic with as low jitter as
522  * possible.
523  */
build_rx_desc(struct ns83820 * dev,__le32 * desc,dma_addr_t link,dma_addr_t buf,u32 cmdsts,u32 extsts)524 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
525 {
526 	desc_addr_set(desc + DESC_LINK, link);
527 	desc_addr_set(desc + DESC_BUFPTR, buf);
528 	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
529 	mb();
530 	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
531 }
532 
533 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
ns83820_add_rx_skb(struct ns83820 * dev,struct sk_buff * skb)534 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
535 {
536 	unsigned next_empty;
537 	u32 cmdsts;
538 	__le32 *sg;
539 	dma_addr_t buf;
540 
541 	next_empty = dev->rx_info.next_empty;
542 
543 	/* don't overrun last rx marker */
544 	if (unlikely(nr_rx_empty(dev) <= 2)) {
545 		kfree_skb(skb);
546 		return 1;
547 	}
548 
549 #if 0
550 	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
551 		dev->rx_info.next_empty,
552 		dev->rx_info.nr_used,
553 		dev->rx_info.next_rx
554 		);
555 #endif
556 
557 	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
558 	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
559 	dev->rx_info.skbs[next_empty] = skb;
560 
561 	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
562 	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
563 	buf = pci_map_single(dev->pci_dev, skb->data,
564 			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
565 	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
566 	/* update link of previous rx */
567 	if (likely(next_empty != dev->rx_info.next_rx))
568 		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
569 
570 	return 0;
571 }
572 
rx_refill(struct net_device * ndev,gfp_t gfp)573 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
574 {
575 	struct ns83820 *dev = PRIV(ndev);
576 	unsigned i;
577 	unsigned long flags = 0;
578 
579 	if (unlikely(nr_rx_empty(dev) <= 2))
580 		return 0;
581 
582 	dprintk("rx_refill(%p)\n", ndev);
583 	if (gfp == GFP_ATOMIC)
584 		spin_lock_irqsave(&dev->rx_info.lock, flags);
585 	for (i=0; i<NR_RX_DESC; i++) {
586 		struct sk_buff *skb;
587 		long res;
588 
589 		/* extra 16 bytes for alignment */
590 		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
591 		if (unlikely(!skb))
592 			break;
593 
594 		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
595 		if (gfp != GFP_ATOMIC)
596 			spin_lock_irqsave(&dev->rx_info.lock, flags);
597 		res = ns83820_add_rx_skb(dev, skb);
598 		if (gfp != GFP_ATOMIC)
599 			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
600 		if (res) {
601 			i = 1;
602 			break;
603 		}
604 	}
605 	if (gfp == GFP_ATOMIC)
606 		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
607 
608 	return i ? 0 : -ENOMEM;
609 }
610 
rx_refill_atomic(struct net_device * ndev)611 static void rx_refill_atomic(struct net_device *ndev)
612 {
613 	rx_refill(ndev, GFP_ATOMIC);
614 }
615 
616 /* REFILL */
queue_refill(struct work_struct * work)617 static inline void queue_refill(struct work_struct *work)
618 {
619 	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
620 	struct net_device *ndev = dev->ndev;
621 
622 	rx_refill(ndev, GFP_KERNEL);
623 	if (dev->rx_info.up)
624 		kick_rx(ndev);
625 }
626 
clear_rx_desc(struct ns83820 * dev,unsigned i)627 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
628 {
629 	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
630 }
631 
phy_intr(struct net_device * ndev)632 static void phy_intr(struct net_device *ndev)
633 {
634 	struct ns83820 *dev = PRIV(ndev);
635 	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
636 	u32 cfg, new_cfg;
637 	u32 tbisr, tanar, tanlpar;
638 	int speed, fullduplex, newlinkstate;
639 
640 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
641 
642 	if (dev->CFG_cache & CFG_TBI_EN) {
643 		/* we have an optical transceiver */
644 		tbisr = readl(dev->base + TBISR);
645 		tanar = readl(dev->base + TANAR);
646 		tanlpar = readl(dev->base + TANLPAR);
647 		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
648 			tbisr, tanar, tanlpar);
649 
650 		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
651 		      && (tanar & TANAR_FULL_DUP)) ) {
652 
653 			/* both of us are full duplex */
654 			writel(readl(dev->base + TXCFG)
655 			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
656 			       dev->base + TXCFG);
657 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
658 			       dev->base + RXCFG);
659 			/* Light up full duplex LED */
660 			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
661 			       dev->base + GPIOR);
662 
663 		} else if(((tanlpar & TANAR_HALF_DUP)
664 			   && (tanar & TANAR_HALF_DUP))
665 			|| ((tanlpar & TANAR_FULL_DUP)
666 			    && (tanar & TANAR_HALF_DUP))
667 			|| ((tanlpar & TANAR_HALF_DUP)
668 			    && (tanar & TANAR_FULL_DUP))) {
669 
670 			/* one or both of us are half duplex */
671 			writel((readl(dev->base + TXCFG)
672 				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
673 			       dev->base + TXCFG);
674 			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
675 			       dev->base + RXCFG);
676 			/* Turn off full duplex LED */
677 			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
678 			       dev->base + GPIOR);
679 		}
680 
681 		speed = 4; /* 1000F */
682 
683 	} else {
684 		/* we have a copper transceiver */
685 		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
686 
687 		if (cfg & CFG_SPDSTS1)
688 			new_cfg |= CFG_MODE_1000;
689 		else
690 			new_cfg &= ~CFG_MODE_1000;
691 
692 		speed = ((cfg / CFG_SPDSTS0) & 3);
693 		fullduplex = (cfg & CFG_DUPSTS);
694 
695 		if (fullduplex) {
696 			new_cfg |= CFG_SB;
697 			writel(readl(dev->base + TXCFG)
698 					| TXCFG_CSI | TXCFG_HBI,
699 			       dev->base + TXCFG);
700 			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
701 			       dev->base + RXCFG);
702 		} else {
703 			writel(readl(dev->base + TXCFG)
704 					& ~(TXCFG_CSI | TXCFG_HBI),
705 			       dev->base + TXCFG);
706 			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
707 			       dev->base + RXCFG);
708 		}
709 
710 		if ((cfg & CFG_LNKSTS) &&
711 		    ((new_cfg ^ dev->CFG_cache) != 0)) {
712 			writel(new_cfg, dev->base + CFG);
713 			dev->CFG_cache = new_cfg;
714 		}
715 
716 		dev->CFG_cache &= ~CFG_SPDSTS;
717 		dev->CFG_cache |= cfg & CFG_SPDSTS;
718 	}
719 
720 	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
721 
722 	if (newlinkstate & LINK_UP
723 	    && dev->linkstate != newlinkstate) {
724 		netif_start_queue(ndev);
725 		netif_wake_queue(ndev);
726 		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
727 			ndev->name,
728 			speeds[speed],
729 			fullduplex ? "full" : "half");
730 	} else if (newlinkstate & LINK_DOWN
731 		   && dev->linkstate != newlinkstate) {
732 		netif_stop_queue(ndev);
733 		printk(KERN_INFO "%s: link now down.\n", ndev->name);
734 	}
735 
736 	dev->linkstate = newlinkstate;
737 }
738 
ns83820_setup_rx(struct net_device * ndev)739 static int ns83820_setup_rx(struct net_device *ndev)
740 {
741 	struct ns83820 *dev = PRIV(ndev);
742 	unsigned i;
743 	int ret;
744 
745 	dprintk("ns83820_setup_rx(%p)\n", ndev);
746 
747 	dev->rx_info.idle = 1;
748 	dev->rx_info.next_rx = 0;
749 	dev->rx_info.next_rx_desc = dev->rx_info.descs;
750 	dev->rx_info.next_empty = 0;
751 
752 	for (i=0; i<NR_RX_DESC; i++)
753 		clear_rx_desc(dev, i);
754 
755 	writel(0, dev->base + RXDP_HI);
756 	writel(dev->rx_info.phy_descs, dev->base + RXDP);
757 
758 	ret = rx_refill(ndev, GFP_KERNEL);
759 	if (!ret) {
760 		dprintk("starting receiver\n");
761 		/* prevent the interrupt handler from stomping on us */
762 		spin_lock_irq(&dev->rx_info.lock);
763 
764 		writel(0x0001, dev->base + CCSR);
765 		writel(0, dev->base + RFCR);
766 		writel(0x7fc00000, dev->base + RFCR);
767 		writel(0xffc00000, dev->base + RFCR);
768 
769 		dev->rx_info.up = 1;
770 
771 		phy_intr(ndev);
772 
773 		/* Okay, let it rip */
774 		spin_lock_irq(&dev->misc_lock);
775 		dev->IMR_cache |= ISR_PHY;
776 		dev->IMR_cache |= ISR_RXRCMP;
777 		//dev->IMR_cache |= ISR_RXERR;
778 		//dev->IMR_cache |= ISR_RXOK;
779 		dev->IMR_cache |= ISR_RXORN;
780 		dev->IMR_cache |= ISR_RXSOVR;
781 		dev->IMR_cache |= ISR_RXDESC;
782 		dev->IMR_cache |= ISR_RXIDLE;
783 		dev->IMR_cache |= ISR_TXDESC;
784 		dev->IMR_cache |= ISR_TXIDLE;
785 
786 		writel(dev->IMR_cache, dev->base + IMR);
787 		writel(1, dev->base + IER);
788 		spin_unlock(&dev->misc_lock);
789 
790 		kick_rx(ndev);
791 
792 		spin_unlock_irq(&dev->rx_info.lock);
793 	}
794 	return ret;
795 }
796 
ns83820_cleanup_rx(struct ns83820 * dev)797 static void ns83820_cleanup_rx(struct ns83820 *dev)
798 {
799 	unsigned i;
800 	unsigned long flags;
801 
802 	dprintk("ns83820_cleanup_rx(%p)\n", dev);
803 
804 	/* disable receive interrupts */
805 	spin_lock_irqsave(&dev->misc_lock, flags);
806 	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
807 	writel(dev->IMR_cache, dev->base + IMR);
808 	spin_unlock_irqrestore(&dev->misc_lock, flags);
809 
810 	/* synchronize with the interrupt handler and kill it */
811 	dev->rx_info.up = 0;
812 	synchronize_irq(dev->pci_dev->irq);
813 
814 	/* touch the pci bus... */
815 	readl(dev->base + IMR);
816 
817 	/* assumes the transmitter is already disabled and reset */
818 	writel(0, dev->base + RXDP_HI);
819 	writel(0, dev->base + RXDP);
820 
821 	for (i=0; i<NR_RX_DESC; i++) {
822 		struct sk_buff *skb = dev->rx_info.skbs[i];
823 		dev->rx_info.skbs[i] = NULL;
824 		clear_rx_desc(dev, i);
825 		if (skb)
826 			kfree_skb(skb);
827 	}
828 }
829 
ns83820_rx_kick(struct net_device * ndev)830 static void ns83820_rx_kick(struct net_device *ndev)
831 {
832 	struct ns83820 *dev = PRIV(ndev);
833 	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
834 		if (dev->rx_info.up) {
835 			rx_refill_atomic(ndev);
836 			kick_rx(ndev);
837 		}
838 	}
839 
840 	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
841 		schedule_work(&dev->tq_refill);
842 	else
843 		kick_rx(ndev);
844 	if (dev->rx_info.idle)
845 		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
846 }
847 
848 /* rx_irq
849  *
850  */
rx_irq(struct net_device * ndev)851 static void rx_irq(struct net_device *ndev)
852 {
853 	struct ns83820 *dev = PRIV(ndev);
854 	struct rx_info *info = &dev->rx_info;
855 	unsigned next_rx;
856 	int rx_rc, len;
857 	u32 cmdsts;
858 	__le32 *desc;
859 	unsigned long flags;
860 	int nr = 0;
861 
862 	dprintk("rx_irq(%p)\n", ndev);
863 	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
864 		readl(dev->base + RXDP),
865 		(long)(dev->rx_info.phy_descs),
866 		(int)dev->rx_info.next_rx,
867 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
868 		(int)dev->rx_info.next_empty,
869 		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
870 		);
871 
872 	spin_lock_irqsave(&info->lock, flags);
873 	if (!info->up)
874 		goto out;
875 
876 	dprintk("walking descs\n");
877 	next_rx = info->next_rx;
878 	desc = info->next_rx_desc;
879 	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
880 	       (cmdsts != CMDSTS_OWN)) {
881 		struct sk_buff *skb;
882 		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
883 		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
884 
885 		dprintk("cmdsts: %08x\n", cmdsts);
886 		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
887 		dprintk("extsts: %08x\n", extsts);
888 
889 		skb = info->skbs[next_rx];
890 		info->skbs[next_rx] = NULL;
891 		info->next_rx = (next_rx + 1) % NR_RX_DESC;
892 
893 		mb();
894 		clear_rx_desc(dev, next_rx);
895 
896 		pci_unmap_single(dev->pci_dev, bufptr,
897 				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
898 		len = cmdsts & CMDSTS_LEN_MASK;
899 #ifdef NS83820_VLAN_ACCEL_SUPPORT
900 		/* NH: As was mentioned below, this chip is kinda
901 		 * brain dead about vlan tag stripping.  Frames
902 		 * that are 64 bytes with a vlan header appended
903 		 * like arp frames, or pings, are flagged as Runts
904 		 * when the tag is stripped and hardware.  This
905 		 * also means that the OK bit in the descriptor
906 		 * is cleared when the frame comes in so we have
907 		 * to do a specific length check here to make sure
908 		 * the frame would have been ok, had we not stripped
909 		 * the tag.
910 		 */
911 		if (likely((CMDSTS_OK & cmdsts) ||
912 			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
913 #else
914 		if (likely(CMDSTS_OK & cmdsts)) {
915 #endif
916 			skb_put(skb, len);
917 			if (unlikely(!skb))
918 				goto netdev_mangle_me_harder_failed;
919 			if (cmdsts & CMDSTS_DEST_MULTI)
920 				dev->stats.multicast ++;
921 			dev->stats.rx_packets ++;
922 			dev->stats.rx_bytes += len;
923 			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
924 				skb->ip_summed = CHECKSUM_UNNECESSARY;
925 			} else {
926 				skb->ip_summed = CHECKSUM_NONE;
927 			}
928 			skb->protocol = eth_type_trans(skb, ndev);
929 #ifdef NS83820_VLAN_ACCEL_SUPPORT
930 			if(extsts & EXTSTS_VPKT) {
931 				unsigned short tag;
932 				tag = ntohs(extsts & EXTSTS_VTG_MASK);
933 				rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
934 			} else {
935 				rx_rc = netif_rx(skb);
936 			}
937 #else
938 			rx_rc = netif_rx(skb);
939 #endif
940 			if (NET_RX_DROP == rx_rc) {
941 netdev_mangle_me_harder_failed:
942 				dev->stats.rx_dropped ++;
943 			}
944 		} else {
945 			kfree_skb(skb);
946 		}
947 
948 		nr++;
949 		next_rx = info->next_rx;
950 		desc = info->descs + (DESC_SIZE * next_rx);
951 	}
952 	info->next_rx = next_rx;
953 	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
954 
955 out:
956 	if (0 && !nr) {
957 		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
958 	}
959 
960 	spin_unlock_irqrestore(&info->lock, flags);
961 }
962 
963 static void rx_action(unsigned long _dev)
964 {
965 	struct net_device *ndev = (void *)_dev;
966 	struct ns83820 *dev = PRIV(ndev);
967 	rx_irq(ndev);
968 	writel(ihr, dev->base + IHR);
969 
970 	spin_lock_irq(&dev->misc_lock);
971 	dev->IMR_cache |= ISR_RXDESC;
972 	writel(dev->IMR_cache, dev->base + IMR);
973 	spin_unlock_irq(&dev->misc_lock);
974 
975 	rx_irq(ndev);
976 	ns83820_rx_kick(ndev);
977 }
978 
979 /* Packet Transmit code
980  */
981 static inline void kick_tx(struct ns83820 *dev)
982 {
983 	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
984 		dev, dev->tx_idx, dev->tx_free_idx);
985 	writel(CR_TXE, dev->base + CR);
986 }
987 
988 /* No spinlock needed on the transmit irq path as the interrupt handler is
989  * serialized.
990  */
991 static void do_tx_done(struct net_device *ndev)
992 {
993 	struct ns83820 *dev = PRIV(ndev);
994 	u32 cmdsts, tx_done_idx;
995 	__le32 *desc;
996 
997 	dprintk("do_tx_done(%p)\n", ndev);
998 	tx_done_idx = dev->tx_done_idx;
999 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1000 
1001 	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1002 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1003 	while ((tx_done_idx != dev->tx_free_idx) &&
1004 	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1005 		struct sk_buff *skb;
1006 		unsigned len;
1007 		dma_addr_t addr;
1008 
1009 		if (cmdsts & CMDSTS_ERR)
1010 			dev->stats.tx_errors ++;
1011 		if (cmdsts & CMDSTS_OK)
1012 			dev->stats.tx_packets ++;
1013 		if (cmdsts & CMDSTS_OK)
1014 			dev->stats.tx_bytes += cmdsts & 0xffff;
1015 
1016 		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1017 			tx_done_idx, dev->tx_free_idx, cmdsts);
1018 		skb = dev->tx_skbs[tx_done_idx];
1019 		dev->tx_skbs[tx_done_idx] = NULL;
1020 		dprintk("done(%p)\n", skb);
1021 
1022 		len = cmdsts & CMDSTS_LEN_MASK;
1023 		addr = desc_addr_get(desc + DESC_BUFPTR);
1024 		if (skb) {
1025 			pci_unmap_single(dev->pci_dev,
1026 					addr,
1027 					len,
1028 					PCI_DMA_TODEVICE);
1029 			dev_kfree_skb_irq(skb);
1030 			atomic_dec(&dev->nr_tx_skbs);
1031 		} else
1032 			pci_unmap_page(dev->pci_dev,
1033 					addr,
1034 					len,
1035 					PCI_DMA_TODEVICE);
1036 
1037 		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1038 		dev->tx_done_idx = tx_done_idx;
1039 		desc[DESC_CMDSTS] = cpu_to_le32(0);
1040 		mb();
1041 		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1042 	}
1043 
1044 	/* Allow network stack to resume queueing packets after we've
1045 	 * finished transmitting at least 1/4 of the packets in the queue.
1046 	 */
1047 	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1048 		dprintk("start_queue(%p)\n", ndev);
1049 		netif_start_queue(ndev);
1050 		netif_wake_queue(ndev);
1051 	}
1052 }
1053 
1054 static void ns83820_cleanup_tx(struct ns83820 *dev)
1055 {
1056 	unsigned i;
1057 
1058 	for (i=0; i<NR_TX_DESC; i++) {
1059 		struct sk_buff *skb = dev->tx_skbs[i];
1060 		dev->tx_skbs[i] = NULL;
1061 		if (skb) {
1062 			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1063 			pci_unmap_single(dev->pci_dev,
1064 					desc_addr_get(desc + DESC_BUFPTR),
1065 					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1066 					PCI_DMA_TODEVICE);
1067 			dev_kfree_skb_irq(skb);
1068 			atomic_dec(&dev->nr_tx_skbs);
1069 		}
1070 	}
1071 
1072 	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1073 }
1074 
1075 /* transmit routine.  This code relies on the network layer serializing
1076  * its calls in, but will run happily in parallel with the interrupt
1077  * handler.  This code currently has provisions for fragmenting tx buffers
1078  * while trying to track down a bug in either the zero copy code or
1079  * the tx fifo (hence the MAX_FRAG_LEN).
1080  */
1081 static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1082 {
1083 	struct ns83820 *dev = PRIV(ndev);
1084 	u32 free_idx, cmdsts, extsts;
1085 	int nr_free, nr_frags;
1086 	unsigned tx_done_idx, last_idx;
1087 	dma_addr_t buf;
1088 	unsigned len;
1089 	skb_frag_t *frag;
1090 	int stopped = 0;
1091 	int do_intr = 0;
1092 	volatile __le32 *first_desc;
1093 
1094 	dprintk("ns83820_hard_start_xmit\n");
1095 
1096 	nr_frags =  skb_shinfo(skb)->nr_frags;
1097 again:
1098 	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1099 		netif_stop_queue(ndev);
1100 		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1101 			return 1;
1102 		netif_start_queue(ndev);
1103 	}
1104 
1105 	last_idx = free_idx = dev->tx_free_idx;
1106 	tx_done_idx = dev->tx_done_idx;
1107 	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1108 	nr_free -= 1;
1109 	if (nr_free <= nr_frags) {
1110 		dprintk("stop_queue - not enough(%p)\n", ndev);
1111 		netif_stop_queue(ndev);
1112 
1113 		/* Check again: we may have raced with a tx done irq */
1114 		if (dev->tx_done_idx != tx_done_idx) {
1115 			dprintk("restart queue(%p)\n", ndev);
1116 			netif_start_queue(ndev);
1117 			goto again;
1118 		}
1119 		return 1;
1120 	}
1121 
1122 	if (free_idx == dev->tx_intr_idx) {
1123 		do_intr = 1;
1124 		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1125 	}
1126 
1127 	nr_free -= nr_frags;
1128 	if (nr_free < MIN_TX_DESC_FREE) {
1129 		dprintk("stop_queue - last entry(%p)\n", ndev);
1130 		netif_stop_queue(ndev);
1131 		stopped = 1;
1132 	}
1133 
1134 	frag = skb_shinfo(skb)->frags;
1135 	if (!nr_frags)
1136 		frag = NULL;
1137 	extsts = 0;
1138 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1139 		extsts |= EXTSTS_IPPKT;
1140 		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1141 			extsts |= EXTSTS_TCPPKT;
1142 		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1143 			extsts |= EXTSTS_UDPPKT;
1144 	}
1145 
1146 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1147 	if(vlan_tx_tag_present(skb)) {
1148 		/* fetch the vlan tag info out of the
1149 		 * ancilliary data if the vlan code
1150 		 * is using hw vlan acceleration
1151 		 */
1152 		short tag = vlan_tx_tag_get(skb);
1153 		extsts |= (EXTSTS_VPKT | htons(tag));
1154 	}
1155 #endif
1156 
1157 	len = skb->len;
1158 	if (nr_frags)
1159 		len -= skb->data_len;
1160 	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1161 
1162 	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1163 
1164 	for (;;) {
1165 		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1166 
1167 		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1168 			(unsigned long long)buf);
1169 		last_idx = free_idx;
1170 		free_idx = (free_idx + 1) % NR_TX_DESC;
1171 		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1172 		desc_addr_set(desc + DESC_BUFPTR, buf);
1173 		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1174 
1175 		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1176 		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1177 		cmdsts |= len;
1178 		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1179 
1180 		if (!nr_frags)
1181 			break;
1182 
1183 		buf = pci_map_page(dev->pci_dev, frag->page,
1184 				   frag->page_offset,
1185 				   frag->size, PCI_DMA_TODEVICE);
1186 		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1187 			(long long)buf, (long) page_to_pfn(frag->page),
1188 			frag->page_offset);
1189 		len = frag->size;
1190 		frag++;
1191 		nr_frags--;
1192 	}
1193 	dprintk("done pkt\n");
1194 
1195 	spin_lock_irq(&dev->tx_lock);
1196 	dev->tx_skbs[last_idx] = skb;
1197 	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1198 	dev->tx_free_idx = free_idx;
1199 	atomic_inc(&dev->nr_tx_skbs);
1200 	spin_unlock_irq(&dev->tx_lock);
1201 
1202 	kick_tx(dev);
1203 
1204 	/* Check again: we may have raced with a tx done irq */
1205 	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1206 		netif_start_queue(ndev);
1207 
1208 	/* set the transmit start time to catch transmit timeouts */
1209 	ndev->trans_start = jiffies;
1210 	return 0;
1211 }
1212 
1213 static void ns83820_update_stats(struct ns83820 *dev)
1214 {
1215 	u8 __iomem *base = dev->base;
1216 
1217 	/* the DP83820 will freeze counters, so we need to read all of them */
1218 	dev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1219 	dev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1220 	dev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1221 	dev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1222 	/*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1223 	dev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1224 	dev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1225 	/*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1226 	/*dev->stats.rx_pause_count += */  readl(base + 0x80);
1227 	/*dev->stats.tx_pause_count += */  readl(base + 0x84);
1228 	dev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1229 }
1230 
1231 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1232 {
1233 	struct ns83820 *dev = PRIV(ndev);
1234 
1235 	/* somewhat overkill */
1236 	spin_lock_irq(&dev->misc_lock);
1237 	ns83820_update_stats(dev);
1238 	spin_unlock_irq(&dev->misc_lock);
1239 
1240 	return &dev->stats;
1241 }
1242 
1243 /* Let ethtool retrieve info */
1244 static int ns83820_get_settings(struct net_device *ndev,
1245 				struct ethtool_cmd *cmd)
1246 {
1247 	struct ns83820 *dev = PRIV(ndev);
1248 	u32 cfg, tanar, tbicr;
1249 	int have_optical = 0;
1250 	int fullduplex   = 0;
1251 
1252 	/*
1253 	 * Here's the list of available ethtool commands from other drivers:
1254 	 *	cmd->advertising =
1255 	 *	cmd->speed =
1256 	 *	cmd->duplex =
1257 	 *	cmd->port = 0;
1258 	 *	cmd->phy_address =
1259 	 *	cmd->transceiver = 0;
1260 	 *	cmd->autoneg =
1261 	 *	cmd->maxtxpkt = 0;
1262 	 *	cmd->maxrxpkt = 0;
1263 	 */
1264 
1265 	/* read current configuration */
1266 	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1267 	tanar = readl(dev->base + TANAR);
1268 	tbicr = readl(dev->base + TBICR);
1269 
1270 	if (dev->CFG_cache & CFG_TBI_EN) {
1271 		/* we have an optical interface */
1272 		have_optical = 1;
1273 		fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1274 
1275 	} else {
1276 		/* We have copper */
1277 		fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1278         }
1279 
1280 	cmd->supported = SUPPORTED_Autoneg;
1281 
1282 	/* we have optical interface */
1283 	if (dev->CFG_cache & CFG_TBI_EN) {
1284 		cmd->supported |= SUPPORTED_1000baseT_Half |
1285 					SUPPORTED_1000baseT_Full |
1286 					SUPPORTED_FIBRE;
1287 		cmd->port       = PORT_FIBRE;
1288 	} /* TODO: else copper related  support */
1289 
1290 	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1291 	switch (cfg / CFG_SPDSTS0 & 3) {
1292 	case 2:
1293 		cmd->speed = SPEED_1000;
1294 		break;
1295 	case 1:
1296 		cmd->speed = SPEED_100;
1297 		break;
1298 	default:
1299 		cmd->speed = SPEED_10;
1300 		break;
1301 	}
1302 	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1303 	return 0;
1304 }
1305 
1306 /* Let ethool change settings*/
1307 static int ns83820_set_settings(struct net_device *ndev,
1308 				struct ethtool_cmd *cmd)
1309 {
1310 	struct ns83820 *dev = PRIV(ndev);
1311 	u32 cfg, tanar;
1312 	int have_optical = 0;
1313 	int fullduplex   = 0;
1314 
1315 	/* read current configuration */
1316 	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1317 	tanar = readl(dev->base + TANAR);
1318 
1319 	if (dev->CFG_cache & CFG_TBI_EN) {
1320 		/* we have optical */
1321 		have_optical = 1;
1322 		fullduplex   = (tanar & TANAR_FULL_DUP);
1323 
1324 	} else {
1325 		/* we have copper */
1326 		fullduplex = cfg & CFG_DUPSTS;
1327 	}
1328 
1329 	spin_lock_irq(&dev->misc_lock);
1330 	spin_lock(&dev->tx_lock);
1331 
1332 	/* Set duplex */
1333 	if (cmd->duplex != fullduplex) {
1334 		if (have_optical) {
1335 			/*set full duplex*/
1336 			if (cmd->duplex == DUPLEX_FULL) {
1337 				/* force full duplex */
1338 				writel(readl(dev->base + TXCFG)
1339 					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1340 					dev->base + TXCFG);
1341 				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1342 					dev->base + RXCFG);
1343 				/* Light up full duplex LED */
1344 				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1345 					dev->base + GPIOR);
1346 			} else {
1347 				/*TODO: set half duplex */
1348 			}
1349 
1350 		} else {
1351 			/*we have copper*/
1352 			/* TODO: Set duplex for copper cards */
1353 		}
1354 		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1355 		ndev->name);
1356 	}
1357 
1358 	/* Set autonegotiation */
1359 	if (1) {
1360 		if (cmd->autoneg == AUTONEG_ENABLE) {
1361 			/* restart auto negotiation */
1362 			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1363 				dev->base + TBICR);
1364 			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1365 				dev->linkstate = LINK_AUTONEGOTIATE;
1366 
1367 			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1368 				ndev->name);
1369 		} else {
1370 			/* disable auto negotiation */
1371 			writel(0x00000000, dev->base + TBICR);
1372 		}
1373 
1374 		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1375 				cmd->autoneg ? "ENABLED" : "DISABLED");
1376 	}
1377 
1378 	phy_intr(ndev);
1379 	spin_unlock(&dev->tx_lock);
1380 	spin_unlock_irq(&dev->misc_lock);
1381 
1382 	return 0;
1383 }
1384 /* end ethtool get/set support -df */
1385 
1386 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1387 {
1388 	struct ns83820 *dev = PRIV(ndev);
1389 	strcpy(info->driver, "ns83820");
1390 	strcpy(info->version, VERSION);
1391 	strcpy(info->bus_info, pci_name(dev->pci_dev));
1392 }
1393 
1394 static u32 ns83820_get_link(struct net_device *ndev)
1395 {
1396 	struct ns83820 *dev = PRIV(ndev);
1397 	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1398 	return cfg & CFG_LNKSTS ? 1 : 0;
1399 }
1400 
1401 static const struct ethtool_ops ops = {
1402 	.get_settings    = ns83820_get_settings,
1403 	.set_settings    = ns83820_set_settings,
1404 	.get_drvinfo     = ns83820_get_drvinfo,
1405 	.get_link        = ns83820_get_link
1406 };
1407 
1408 /* this function is called in irq context from the ISR */
1409 static void ns83820_mib_isr(struct ns83820 *dev)
1410 {
1411 	unsigned long flags;
1412 	spin_lock_irqsave(&dev->misc_lock, flags);
1413 	ns83820_update_stats(dev);
1414 	spin_unlock_irqrestore(&dev->misc_lock, flags);
1415 }
1416 
1417 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1418 static irqreturn_t ns83820_irq(int foo, void *data)
1419 {
1420 	struct net_device *ndev = data;
1421 	struct ns83820 *dev = PRIV(ndev);
1422 	u32 isr;
1423 	dprintk("ns83820_irq(%p)\n", ndev);
1424 
1425 	dev->ihr = 0;
1426 
1427 	isr = readl(dev->base + ISR);
1428 	dprintk("irq: %08x\n", isr);
1429 	ns83820_do_isr(ndev, isr);
1430 	return IRQ_HANDLED;
1431 }
1432 
1433 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1434 {
1435 	struct ns83820 *dev = PRIV(ndev);
1436 	unsigned long flags;
1437 
1438 #ifdef DEBUG
1439 	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1440 		Dprintk("odd isr? 0x%08x\n", isr);
1441 #endif
1442 
1443 	if (ISR_RXIDLE & isr) {
1444 		dev->rx_info.idle = 1;
1445 		Dprintk("oh dear, we are idle\n");
1446 		ns83820_rx_kick(ndev);
1447 	}
1448 
1449 	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1450 		prefetch(dev->rx_info.next_rx_desc);
1451 
1452 		spin_lock_irqsave(&dev->misc_lock, flags);
1453 		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1454 		writel(dev->IMR_cache, dev->base + IMR);
1455 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1456 
1457 		tasklet_schedule(&dev->rx_tasklet);
1458 		//rx_irq(ndev);
1459 		//writel(4, dev->base + IHR);
1460 	}
1461 
1462 	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1463 		ns83820_rx_kick(ndev);
1464 
1465 	if (unlikely(ISR_RXSOVR & isr)) {
1466 		//printk("overrun: rxsovr\n");
1467 		dev->stats.rx_fifo_errors ++;
1468 	}
1469 
1470 	if (unlikely(ISR_RXORN & isr)) {
1471 		//printk("overrun: rxorn\n");
1472 		dev->stats.rx_fifo_errors ++;
1473 	}
1474 
1475 	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1476 		writel(CR_RXE, dev->base + CR);
1477 
1478 	if (ISR_TXIDLE & isr) {
1479 		u32 txdp;
1480 		txdp = readl(dev->base + TXDP);
1481 		dprintk("txdp: %08x\n", txdp);
1482 		txdp -= dev->tx_phy_descs;
1483 		dev->tx_idx = txdp / (DESC_SIZE * 4);
1484 		if (dev->tx_idx >= NR_TX_DESC) {
1485 			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1486 			dev->tx_idx = 0;
1487 		}
1488 		/* The may have been a race between a pci originated read
1489 		 * and the descriptor update from the cpu.  Just in case,
1490 		 * kick the transmitter if the hardware thinks it is on a
1491 		 * different descriptor than we are.
1492 		 */
1493 		if (dev->tx_idx != dev->tx_free_idx)
1494 			kick_tx(dev);
1495 	}
1496 
1497 	/* Defer tx ring processing until more than a minimum amount of
1498 	 * work has accumulated
1499 	 */
1500 	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1501 		spin_lock_irqsave(&dev->tx_lock, flags);
1502 		do_tx_done(ndev);
1503 		spin_unlock_irqrestore(&dev->tx_lock, flags);
1504 
1505 		/* Disable TxOk if there are no outstanding tx packets.
1506 		 */
1507 		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1508 		    (dev->IMR_cache & ISR_TXOK)) {
1509 			spin_lock_irqsave(&dev->misc_lock, flags);
1510 			dev->IMR_cache &= ~ISR_TXOK;
1511 			writel(dev->IMR_cache, dev->base + IMR);
1512 			spin_unlock_irqrestore(&dev->misc_lock, flags);
1513 		}
1514 	}
1515 
1516 	/* The TxIdle interrupt can come in before the transmit has
1517 	 * completed.  Normally we reap packets off of the combination
1518 	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1519 	 * occurs on every packet), but when no further irqs of this
1520 	 * nature are expected, we must enable TxOk.
1521 	 */
1522 	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1523 		spin_lock_irqsave(&dev->misc_lock, flags);
1524 		dev->IMR_cache |= ISR_TXOK;
1525 		writel(dev->IMR_cache, dev->base + IMR);
1526 		spin_unlock_irqrestore(&dev->misc_lock, flags);
1527 	}
1528 
1529 	/* MIB interrupt: one of the statistics counters is about to overflow */
1530 	if (unlikely(ISR_MIB & isr))
1531 		ns83820_mib_isr(dev);
1532 
1533 	/* PHY: Link up/down/negotiation state change */
1534 	if (unlikely(ISR_PHY & isr))
1535 		phy_intr(ndev);
1536 
1537 #if 0	/* Still working on the interrupt mitigation strategy */
1538 	if (dev->ihr)
1539 		writel(dev->ihr, dev->base + IHR);
1540 #endif
1541 }
1542 
1543 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1544 {
1545 	Dprintk("resetting chip...\n");
1546 	writel(which, dev->base + CR);
1547 	do {
1548 		schedule();
1549 	} while (readl(dev->base + CR) & which);
1550 	Dprintk("okay!\n");
1551 }
1552 
1553 static int ns83820_stop(struct net_device *ndev)
1554 {
1555 	struct ns83820 *dev = PRIV(ndev);
1556 
1557 	/* FIXME: protect against interrupt handler? */
1558 	del_timer_sync(&dev->tx_watchdog);
1559 
1560 	/* disable interrupts */
1561 	writel(0, dev->base + IMR);
1562 	writel(0, dev->base + IER);
1563 	readl(dev->base + IER);
1564 
1565 	dev->rx_info.up = 0;
1566 	synchronize_irq(dev->pci_dev->irq);
1567 
1568 	ns83820_do_reset(dev, CR_RST);
1569 
1570 	synchronize_irq(dev->pci_dev->irq);
1571 
1572 	spin_lock_irq(&dev->misc_lock);
1573 	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1574 	spin_unlock_irq(&dev->misc_lock);
1575 
1576 	ns83820_cleanup_rx(dev);
1577 	ns83820_cleanup_tx(dev);
1578 
1579 	return 0;
1580 }
1581 
1582 static void ns83820_tx_timeout(struct net_device *ndev)
1583 {
1584 	struct ns83820 *dev = PRIV(ndev);
1585         u32 tx_done_idx;
1586 	__le32 *desc;
1587 	unsigned long flags;
1588 
1589 	spin_lock_irqsave(&dev->tx_lock, flags);
1590 
1591 	tx_done_idx = dev->tx_done_idx;
1592 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1593 
1594 	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1595 		ndev->name,
1596 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1597 
1598 #if defined(DEBUG)
1599 	{
1600 		u32 isr;
1601 		isr = readl(dev->base + ISR);
1602 		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1603 		ns83820_do_isr(ndev, isr);
1604 	}
1605 #endif
1606 
1607 	do_tx_done(ndev);
1608 
1609 	tx_done_idx = dev->tx_done_idx;
1610 	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1611 
1612 	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1613 		ndev->name,
1614 		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1615 
1616 	spin_unlock_irqrestore(&dev->tx_lock, flags);
1617 }
1618 
1619 static void ns83820_tx_watch(unsigned long data)
1620 {
1621 	struct net_device *ndev = (void *)data;
1622 	struct ns83820 *dev = PRIV(ndev);
1623 
1624 #if defined(DEBUG)
1625 	printk("ns83820_tx_watch: %u %u %d\n",
1626 		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1627 		);
1628 #endif
1629 
1630 	if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1631 	    dev->tx_done_idx != dev->tx_free_idx) {
1632 		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1633 			ndev->name,
1634 			dev->tx_done_idx, dev->tx_free_idx,
1635 			atomic_read(&dev->nr_tx_skbs));
1636 		ns83820_tx_timeout(ndev);
1637 	}
1638 
1639 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1640 }
1641 
1642 static int ns83820_open(struct net_device *ndev)
1643 {
1644 	struct ns83820 *dev = PRIV(ndev);
1645 	unsigned i;
1646 	u32 desc;
1647 	int ret;
1648 
1649 	dprintk("ns83820_open\n");
1650 
1651 	writel(0, dev->base + PQCR);
1652 
1653 	ret = ns83820_setup_rx(ndev);
1654 	if (ret)
1655 		goto failed;
1656 
1657 	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1658 	for (i=0; i<NR_TX_DESC; i++) {
1659 		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1660 				= cpu_to_le32(
1661 				  dev->tx_phy_descs
1662 				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1663 	}
1664 
1665 	dev->tx_idx = 0;
1666 	dev->tx_done_idx = 0;
1667 	desc = dev->tx_phy_descs;
1668 	writel(0, dev->base + TXDP_HI);
1669 	writel(desc, dev->base + TXDP);
1670 
1671 	init_timer(&dev->tx_watchdog);
1672 	dev->tx_watchdog.data = (unsigned long)ndev;
1673 	dev->tx_watchdog.function = ns83820_tx_watch;
1674 	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1675 
1676 	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1677 
1678 	return 0;
1679 
1680 failed:
1681 	ns83820_stop(ndev);
1682 	return ret;
1683 }
1684 
1685 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1686 {
1687 	unsigned i;
1688 	for (i=0; i<3; i++) {
1689 		u32 data;
1690 
1691 		/* Read from the perfect match memory: this is loaded by
1692 		 * the chip from the EEPROM via the EELOAD self test.
1693 		 */
1694 		writel(i*2, dev->base + RFCR);
1695 		data = readl(dev->base + RFDR);
1696 
1697 		*mac++ = data;
1698 		*mac++ = data >> 8;
1699 	}
1700 }
1701 
1702 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1703 {
1704 	if (new_mtu > RX_BUF_SIZE)
1705 		return -EINVAL;
1706 	ndev->mtu = new_mtu;
1707 	return 0;
1708 }
1709 
1710 static void ns83820_set_multicast(struct net_device *ndev)
1711 {
1712 	struct ns83820 *dev = PRIV(ndev);
1713 	u8 __iomem *rfcr = dev->base + RFCR;
1714 	u32 and_mask = 0xffffffff;
1715 	u32 or_mask = 0;
1716 	u32 val;
1717 
1718 	if (ndev->flags & IFF_PROMISC)
1719 		or_mask |= RFCR_AAU | RFCR_AAM;
1720 	else
1721 		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1722 
1723 	if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
1724 		or_mask |= RFCR_AAM;
1725 	else
1726 		and_mask &= ~RFCR_AAM;
1727 
1728 	spin_lock_irq(&dev->misc_lock);
1729 	val = (readl(rfcr) & and_mask) | or_mask;
1730 	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1731 	writel(val & ~RFCR_RFEN, rfcr);
1732 	writel(val, rfcr);
1733 	spin_unlock_irq(&dev->misc_lock);
1734 }
1735 
1736 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1737 {
1738 	struct ns83820 *dev = PRIV(ndev);
1739 	int timed_out = 0;
1740 	unsigned long start;
1741 	u32 status;
1742 	int loops = 0;
1743 
1744 	dprintk("%s: start %s\n", ndev->name, name);
1745 
1746 	start = jiffies;
1747 
1748 	writel(enable, dev->base + PTSCR);
1749 	for (;;) {
1750 		loops++;
1751 		status = readl(dev->base + PTSCR);
1752 		if (!(status & enable))
1753 			break;
1754 		if (status & done)
1755 			break;
1756 		if (status & fail)
1757 			break;
1758 		if (time_after_eq(jiffies, start + HZ)) {
1759 			timed_out = 1;
1760 			break;
1761 		}
1762 		schedule_timeout_uninterruptible(1);
1763 	}
1764 
1765 	if (status & fail)
1766 		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1767 			ndev->name, name, status, fail);
1768 	else if (timed_out)
1769 		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1770 			ndev->name, name, status);
1771 
1772 	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1773 }
1774 
1775 #ifdef PHY_CODE_IS_FINISHED
1776 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1777 {
1778 	/* drive MDC low */
1779 	dev->MEAR_cache &= ~MEAR_MDC;
1780 	writel(dev->MEAR_cache, dev->base + MEAR);
1781 	readl(dev->base + MEAR);
1782 
1783 	/* enable output, set bit */
1784 	dev->MEAR_cache |= MEAR_MDDIR;
1785 	if (bit)
1786 		dev->MEAR_cache |= MEAR_MDIO;
1787 	else
1788 		dev->MEAR_cache &= ~MEAR_MDIO;
1789 
1790 	/* set the output bit */
1791 	writel(dev->MEAR_cache, dev->base + MEAR);
1792 	readl(dev->base + MEAR);
1793 
1794 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1795 	udelay(1);
1796 
1797 	/* drive MDC high causing the data bit to be latched */
1798 	dev->MEAR_cache |= MEAR_MDC;
1799 	writel(dev->MEAR_cache, dev->base + MEAR);
1800 	readl(dev->base + MEAR);
1801 
1802 	/* Wait again... */
1803 	udelay(1);
1804 }
1805 
1806 static int ns83820_mii_read_bit(struct ns83820 *dev)
1807 {
1808 	int bit;
1809 
1810 	/* drive MDC low, disable output */
1811 	dev->MEAR_cache &= ~MEAR_MDC;
1812 	dev->MEAR_cache &= ~MEAR_MDDIR;
1813 	writel(dev->MEAR_cache, dev->base + MEAR);
1814 	readl(dev->base + MEAR);
1815 
1816 	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1817 	udelay(1);
1818 
1819 	/* drive MDC high causing the data bit to be latched */
1820 	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1821 	dev->MEAR_cache |= MEAR_MDC;
1822 	writel(dev->MEAR_cache, dev->base + MEAR);
1823 
1824 	/* Wait again... */
1825 	udelay(1);
1826 
1827 	return bit;
1828 }
1829 
1830 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1831 {
1832 	unsigned data = 0;
1833 	int i;
1834 
1835 	/* read some garbage so that we eventually sync up */
1836 	for (i=0; i<64; i++)
1837 		ns83820_mii_read_bit(dev);
1838 
1839 	ns83820_mii_write_bit(dev, 0);	/* start */
1840 	ns83820_mii_write_bit(dev, 1);
1841 	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1842 	ns83820_mii_write_bit(dev, 0);
1843 
1844 	/* write out the phy address: 5 bits, msb first */
1845 	for (i=0; i<5; i++)
1846 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1847 
1848 	/* write out the register address, 5 bits, msb first */
1849 	for (i=0; i<5; i++)
1850 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1851 
1852 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1853 	ns83820_mii_read_bit(dev);
1854 
1855 	/* read in the register data, 16 bits msb first */
1856 	for (i=0; i<16; i++) {
1857 		data <<= 1;
1858 		data |= ns83820_mii_read_bit(dev);
1859 	}
1860 
1861 	return data;
1862 }
1863 
1864 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1865 {
1866 	int i;
1867 
1868 	/* read some garbage so that we eventually sync up */
1869 	for (i=0; i<64; i++)
1870 		ns83820_mii_read_bit(dev);
1871 
1872 	ns83820_mii_write_bit(dev, 0);	/* start */
1873 	ns83820_mii_write_bit(dev, 1);
1874 	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1875 	ns83820_mii_write_bit(dev, 1);
1876 
1877 	/* write out the phy address: 5 bits, msb first */
1878 	for (i=0; i<5; i++)
1879 		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1880 
1881 	/* write out the register address, 5 bits, msb first */
1882 	for (i=0; i<5; i++)
1883 		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1884 
1885 	ns83820_mii_read_bit(dev);	/* turn around cycles */
1886 	ns83820_mii_read_bit(dev);
1887 
1888 	/* read in the register data, 16 bits msb first */
1889 	for (i=0; i<16; i++)
1890 		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1891 
1892 	return data;
1893 }
1894 
1895 static void ns83820_probe_phy(struct net_device *ndev)
1896 {
1897 	struct ns83820 *dev = PRIV(ndev);
1898 	static int first;
1899 	int i;
1900 #define MII_PHYIDR1	0x02
1901 #define MII_PHYIDR2	0x03
1902 
1903 #if 0
1904 	if (!first) {
1905 		unsigned tmp;
1906 		ns83820_mii_read_reg(dev, 1, 0x09);
1907 		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1908 
1909 		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1910 		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1911 		udelay(1300);
1912 		ns83820_mii_read_reg(dev, 1, 0x09);
1913 	}
1914 #endif
1915 	first = 1;
1916 
1917 	for (i=1; i<2; i++) {
1918 		int j;
1919 		unsigned a, b;
1920 		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1921 		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1922 
1923 		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1924 		//	ndev->name, i, a, b);
1925 
1926 		for (j=0; j<0x16; j+=4) {
1927 			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1928 				ndev->name, j,
1929 				ns83820_mii_read_reg(dev, i, 0 + j),
1930 				ns83820_mii_read_reg(dev, i, 1 + j),
1931 				ns83820_mii_read_reg(dev, i, 2 + j),
1932 				ns83820_mii_read_reg(dev, i, 3 + j)
1933 				);
1934 		}
1935 	}
1936 	{
1937 		unsigned a, b;
1938 		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1939 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1940 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1941 		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1942 
1943 		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1944 		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1945 		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1946 		dprintk("version: 0x%04x 0x%04x\n", a, b);
1947 	}
1948 }
1949 #endif
1950 
1951 static const struct net_device_ops netdev_ops = {
1952 	.ndo_open		= ns83820_open,
1953 	.ndo_stop		= ns83820_stop,
1954 	.ndo_start_xmit		= ns83820_hard_start_xmit,
1955 	.ndo_get_stats		= ns83820_get_stats,
1956 	.ndo_change_mtu		= ns83820_change_mtu,
1957 	.ndo_set_multicast_list = ns83820_set_multicast,
1958 	.ndo_validate_addr	= eth_validate_addr,
1959 	.ndo_set_mac_address 	= eth_mac_addr,
1960 	.ndo_tx_timeout		= ns83820_tx_timeout,
1961 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1962 	.ndo_vlan_rx_register	= ns83820_vlan_rx_register,
1963 #endif
1964 };
1965 
1966 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1967 				      const struct pci_device_id *id)
1968 {
1969 	struct net_device *ndev;
1970 	struct ns83820 *dev;
1971 	long addr;
1972 	int err;
1973 	int using_dac = 0;
1974 
1975 	/* See if we can set the dma mask early on; failure is fatal. */
1976 	if (sizeof(dma_addr_t) == 8 &&
1977 	 	!pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
1978 		using_dac = 1;
1979 	} else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
1980 		using_dac = 0;
1981 	} else {
1982 		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1983 		return -ENODEV;
1984 	}
1985 
1986 	ndev = alloc_etherdev(sizeof(struct ns83820));
1987 	dev = PRIV(ndev);
1988 
1989 	err = -ENOMEM;
1990 	if (!dev)
1991 		goto out;
1992 
1993 	dev->ndev = ndev;
1994 
1995 	spin_lock_init(&dev->rx_info.lock);
1996 	spin_lock_init(&dev->tx_lock);
1997 	spin_lock_init(&dev->misc_lock);
1998 	dev->pci_dev = pci_dev;
1999 
2000 	SET_NETDEV_DEV(ndev, &pci_dev->dev);
2001 
2002 	INIT_WORK(&dev->tq_refill, queue_refill);
2003 	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
2004 
2005 	err = pci_enable_device(pci_dev);
2006 	if (err) {
2007 		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
2008 		goto out_free;
2009 	}
2010 
2011 	pci_set_master(pci_dev);
2012 	addr = pci_resource_start(pci_dev, 1);
2013 	dev->base = ioremap_nocache(addr, PAGE_SIZE);
2014 	dev->tx_descs = pci_alloc_consistent(pci_dev,
2015 			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2016 	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2017 			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2018 	err = -ENOMEM;
2019 	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2020 		goto out_disable;
2021 
2022 	dprintk("%p: %08lx  %p: %08lx\n",
2023 		dev->tx_descs, (long)dev->tx_phy_descs,
2024 		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2025 
2026 	/* disable interrupts */
2027 	writel(0, dev->base + IMR);
2028 	writel(0, dev->base + IER);
2029 	readl(dev->base + IER);
2030 
2031 	dev->IMR_cache = 0;
2032 
2033 	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2034 			  DRV_NAME, ndev);
2035 	if (err) {
2036 		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2037 			pci_dev->irq, err);
2038 		goto out_disable;
2039 	}
2040 
2041 	/*
2042 	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2043 	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2044 	 * we should be using driver-specific names for all that stuff.
2045 	 * For now that will do, but we really need to come back and kill
2046 	 * most of the dev_alloc_name() users later.
2047 	 */
2048 	rtnl_lock();
2049 	err = dev_alloc_name(ndev, ndev->name);
2050 	if (err < 0) {
2051 		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2052 		goto out_free_irq;
2053 	}
2054 
2055 	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2056 		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2057 		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2058 
2059 	ndev->netdev_ops = &netdev_ops;
2060 	SET_ETHTOOL_OPS(ndev, &ops);
2061 	ndev->watchdog_timeo = 5 * HZ;
2062 	pci_set_drvdata(pci_dev, ndev);
2063 
2064 	ns83820_do_reset(dev, CR_RST);
2065 
2066 	/* Must reset the ram bist before running it */
2067 	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2068 	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2069 			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2070 	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2071 			 PTSCR_EEBIST_FAIL);
2072 	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2073 
2074 	/* I love config registers */
2075 	dev->CFG_cache = readl(dev->base + CFG);
2076 
2077 	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2078 		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2079 			ndev->name);
2080 		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2081 		if (!(dev->CFG_cache & CFG_DATA64_EN))
2082 			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2083 				ndev->name);
2084 	} else
2085 		dev->CFG_cache &= ~(CFG_DATA64_EN);
2086 
2087 	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2088 			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2089 			   CFG_M64ADDR);
2090 	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2091 			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2092 	dev->CFG_cache |= CFG_REQALG;
2093 	dev->CFG_cache |= CFG_POW;
2094 	dev->CFG_cache |= CFG_TMRTEST;
2095 
2096 	/* When compiled with 64 bit addressing, we must always enable
2097 	 * the 64 bit descriptor format.
2098 	 */
2099 	if (sizeof(dma_addr_t) == 8)
2100 		dev->CFG_cache |= CFG_M64ADDR;
2101 	if (using_dac)
2102 		dev->CFG_cache |= CFG_T64ADDR;
2103 
2104 	/* Big endian mode does not seem to do what the docs suggest */
2105 	dev->CFG_cache &= ~CFG_BEM;
2106 
2107 	/* setup optical transceiver if we have one */
2108 	if (dev->CFG_cache & CFG_TBI_EN) {
2109 		printk(KERN_INFO "%s: enabling optical transceiver\n",
2110 			ndev->name);
2111 		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2112 
2113 		/* setup auto negotiation feature advertisement */
2114 		writel(readl(dev->base + TANAR)
2115 		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2116 		       dev->base + TANAR);
2117 
2118 		/* start auto negotiation */
2119 		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2120 		       dev->base + TBICR);
2121 		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2122 		dev->linkstate = LINK_AUTONEGOTIATE;
2123 
2124 		dev->CFG_cache |= CFG_MODE_1000;
2125 	}
2126 
2127 	writel(dev->CFG_cache, dev->base + CFG);
2128 	dprintk("CFG: %08x\n", dev->CFG_cache);
2129 
2130 	if (reset_phy) {
2131 		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2132 		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2133 		msleep(10);
2134 		writel(dev->CFG_cache, dev->base + CFG);
2135 	}
2136 
2137 #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2138 	 * the PCI layer.  FIXME.
2139 	 */
2140 	if (readl(dev->base + SRR))
2141 		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2142 #endif
2143 
2144 	/* Note!  The DMA burst size interacts with packet
2145 	 * transmission, such that the largest packet that
2146 	 * can be transmitted is 8192 - FLTH - burst size.
2147 	 * If only the transmit fifo was larger...
2148 	 */
2149 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2150 	 * some DELL and COMPAQ SMP systems */
2151 	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2152 		| ((1600 / 32) * 0x100),
2153 		dev->base + TXCFG);
2154 
2155 	/* Flush the interrupt holdoff timer */
2156 	writel(0x000, dev->base + IHR);
2157 	writel(0x100, dev->base + IHR);
2158 	writel(0x000, dev->base + IHR);
2159 
2160 	/* Set Rx to full duplex, don't accept runt, errored, long or length
2161 	 * range errored packets.  Use 512 byte DMA.
2162 	 */
2163 	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2164 	 * some DELL and COMPAQ SMP systems
2165 	 * Turn on ALP, only we are accpeting Jumbo Packets */
2166 	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2167 		| RXCFG_STRIPCRC
2168 		//| RXCFG_ALP
2169 		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2170 
2171 	/* Disable priority queueing */
2172 	writel(0, dev->base + PQCR);
2173 
2174 	/* Enable IP checksum validation and detetion of VLAN headers.
2175 	 * Note: do not set the reject options as at least the 0x102
2176 	 * revision of the chip does not properly accept IP fragments
2177 	 * at least for UDP.
2178 	 */
2179 	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2180 	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2181 	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2182 	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2183 	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2184 	 * it discrards it!.  These guys......
2185 	 * also turn on tag stripping if hardware acceleration is enabled
2186 	 */
2187 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2188 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2189 #else
2190 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2191 #endif
2192 	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2193 
2194 	/* Enable per-packet TCP/UDP/IP checksumming
2195 	 * and per packet vlan tag insertion if
2196 	 * vlan hardware acceleration is enabled
2197 	 */
2198 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2199 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2200 #else
2201 #define VTCR_INIT_VALUE VTCR_PPCHK
2202 #endif
2203 	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2204 
2205 	/* Ramit : Enable async and sync pause frames */
2206 	/* writel(0, dev->base + PCR); */
2207 	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2208 		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2209 		dev->base + PCR);
2210 
2211 	/* Disable Wake On Lan */
2212 	writel(0, dev->base + WCSR);
2213 
2214 	ns83820_getmac(dev, ndev->dev_addr);
2215 
2216 	/* Yes, we support dumb IP checksum on transmit */
2217 	ndev->features |= NETIF_F_SG;
2218 	ndev->features |= NETIF_F_IP_CSUM;
2219 
2220 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2221 	/* We also support hardware vlan acceleration */
2222 	ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2223 #endif
2224 
2225 	if (using_dac) {
2226 		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2227 			ndev->name);
2228 		ndev->features |= NETIF_F_HIGHDMA;
2229 	}
2230 
2231 	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2232 		ndev->name,
2233 		(unsigned)readl(dev->base + SRR) >> 8,
2234 		(unsigned)readl(dev->base + SRR) & 0xff,
2235 		ndev->dev_addr, addr, pci_dev->irq,
2236 		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2237 		);
2238 
2239 #ifdef PHY_CODE_IS_FINISHED
2240 	ns83820_probe_phy(ndev);
2241 #endif
2242 
2243 	err = register_netdevice(ndev);
2244 	if (err) {
2245 		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2246 		goto out_cleanup;
2247 	}
2248 	rtnl_unlock();
2249 
2250 	return 0;
2251 
2252 out_cleanup:
2253 	writel(0, dev->base + IMR);	/* paranoia */
2254 	writel(0, dev->base + IER);
2255 	readl(dev->base + IER);
2256 out_free_irq:
2257 	rtnl_unlock();
2258 	free_irq(pci_dev->irq, ndev);
2259 out_disable:
2260 	if (dev->base)
2261 		iounmap(dev->base);
2262 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2263 	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2264 	pci_disable_device(pci_dev);
2265 out_free:
2266 	free_netdev(ndev);
2267 	pci_set_drvdata(pci_dev, NULL);
2268 out:
2269 	return err;
2270 }
2271 
2272 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2273 {
2274 	struct net_device *ndev = pci_get_drvdata(pci_dev);
2275 	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2276 
2277 	if (!ndev)			/* paranoia */
2278 		return;
2279 
2280 	writel(0, dev->base + IMR);	/* paranoia */
2281 	writel(0, dev->base + IER);
2282 	readl(dev->base + IER);
2283 
2284 	unregister_netdev(ndev);
2285 	free_irq(dev->pci_dev->irq, ndev);
2286 	iounmap(dev->base);
2287 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2288 			dev->tx_descs, dev->tx_phy_descs);
2289 	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2290 			dev->rx_info.descs, dev->rx_info.phy_descs);
2291 	pci_disable_device(dev->pci_dev);
2292 	free_netdev(ndev);
2293 	pci_set_drvdata(pci_dev, NULL);
2294 }
2295 
2296 static struct pci_device_id ns83820_pci_tbl[] = {
2297 	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2298 	{ 0, },
2299 };
2300 
2301 static struct pci_driver driver = {
2302 	.name		= "ns83820",
2303 	.id_table	= ns83820_pci_tbl,
2304 	.probe		= ns83820_init_one,
2305 	.remove		= __devexit_p(ns83820_remove_one),
2306 #if 0	/* FIXME: implement */
2307 	.suspend	= ,
2308 	.resume		= ,
2309 #endif
2310 };
2311 
2312 
2313 static int __init ns83820_init(void)
2314 {
2315 	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2316 	return pci_register_driver(&driver);
2317 }
2318 
2319 static void __exit ns83820_exit(void)
2320 {
2321 	pci_unregister_driver(&driver);
2322 }
2323 
2324 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2325 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2326 MODULE_LICENSE("GPL");
2327 
2328 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2329 
2330 module_param(lnksts, int, 0);
2331 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2332 
2333 module_param(ihr, int, 0);
2334 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2335 
2336 module_param(reset_phy, int, 0);
2337 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2338 
2339 module_init(ns83820_init);
2340 module_exit(ns83820_exit);
2341