• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/if_ppp.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/stddef.h>
47 #include <linux/device.h>
48 #include <linux/mutex.h>
49 #include <net/slhc_vj.h>
50 #include <asm/atomic.h>
51 
52 #define PPP_VERSION	"2.4.2"
53 
54 /*
55  * Network protocols we support.
56  */
57 #define NP_IP	0		/* Internet Protocol V4 */
58 #define NP_IPV6	1		/* Internet Protocol V6 */
59 #define NP_IPX	2		/* IPX protocol */
60 #define NP_AT	3		/* Appletalk protocol */
61 #define NP_MPLS_UC 4		/* MPLS unicast */
62 #define NP_MPLS_MC 5		/* MPLS multicast */
63 #define NUM_NP	6		/* Number of NPs. */
64 
65 #define MPHDRLEN	6	/* multilink protocol header length */
66 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
67 #define MIN_FRAG_SIZE	64
68 
69 /*
70  * An instance of /dev/ppp can be associated with either a ppp
71  * interface unit or a ppp channel.  In both cases, file->private_data
72  * points to one of these.
73  */
74 struct ppp_file {
75 	enum {
76 		INTERFACE=1, CHANNEL
77 	}		kind;
78 	struct sk_buff_head xq;		/* pppd transmit queue */
79 	struct sk_buff_head rq;		/* receive queue for pppd */
80 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
81 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
82 	int		hdrlen;		/* space to leave for headers */
83 	int		index;		/* interface unit / channel number */
84 	int		dead;		/* unit/channel has been shut down */
85 };
86 
87 #define PF_TO_X(pf, X)		container_of(pf, X, file)
88 
89 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
90 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
91 
92 /*
93  * Data structure describing one ppp unit.
94  * A ppp unit corresponds to a ppp network interface device
95  * and represents a multilink bundle.
96  * It can have 0 or more ppp channels connected to it.
97  */
98 struct ppp {
99 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
100 	struct file	*owner;		/* file that owns this unit 48 */
101 	struct list_head channels;	/* list of attached channels 4c */
102 	int		n_channels;	/* how many channels are attached 54 */
103 	spinlock_t	rlock;		/* lock for receive side 58 */
104 	spinlock_t	wlock;		/* lock for transmit side 5c */
105 	int		mru;		/* max receive unit 60 */
106 	unsigned int	flags;		/* control bits 64 */
107 	unsigned int	xstate;		/* transmit state bits 68 */
108 	unsigned int	rstate;		/* receive state bits 6c */
109 	int		debug;		/* debug flags 70 */
110 	struct slcompress *vj;		/* state for VJ header compression */
111 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
112 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
113 	struct compressor *xcomp;	/* transmit packet compressor 8c */
114 	void		*xc_state;	/* its internal state 90 */
115 	struct compressor *rcomp;	/* receive decompressor 94 */
116 	void		*rc_state;	/* its internal state 98 */
117 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
118 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
119 	struct net_device *dev;		/* network interface device a4 */
120 	int		closing;	/* is device closing down? a8 */
121 #ifdef CONFIG_PPP_MULTILINK
122 	int		nxchan;		/* next channel to send something on */
123 	u32		nxseq;		/* next sequence number to send */
124 	int		mrru;		/* MP: max reconst. receive unit */
125 	u32		nextseq;	/* MP: seq no of next packet */
126 	u32		minseq;		/* MP: min of most recent seqnos */
127 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
128 #endif /* CONFIG_PPP_MULTILINK */
129 #ifdef CONFIG_PPP_FILTER
130 	struct sock_filter *pass_filter;	/* filter for packets to pass */
131 	struct sock_filter *active_filter;/* filter for pkts to reset idle */
132 	unsigned pass_len, active_len;
133 #endif /* CONFIG_PPP_FILTER */
134 };
135 
136 /*
137  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
138  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
139  * SC_MUST_COMP
140  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
141  * Bits in xstate: SC_COMP_RUN
142  */
143 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
144 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
145 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
146 
147 /*
148  * Private data structure for each channel.
149  * This includes the data structure used for multilink.
150  */
151 struct channel {
152 	struct ppp_file	file;		/* stuff for read/write/poll */
153 	struct list_head list;		/* link in all/new_channels list */
154 	struct ppp_channel *chan;	/* public channel data structure */
155 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
156 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
157 	struct ppp	*ppp;		/* ppp unit we're connected to */
158 	struct list_head clist;		/* link in list of channels per unit */
159 	rwlock_t	upl;		/* protects `ppp' */
160 #ifdef CONFIG_PPP_MULTILINK
161 	u8		avail;		/* flag used in multilink stuff */
162 	u8		had_frag;	/* >= 1 fragments have been sent */
163 	u32		lastseq;	/* MP: last sequence # received */
164 #endif /* CONFIG_PPP_MULTILINK */
165 };
166 
167 /*
168  * SMP locking issues:
169  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
170  * list and the ppp.n_channels field, you need to take both locks
171  * before you modify them.
172  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
173  * channel.downl.
174  */
175 
176 /*
177  * all_ppp_mutex protects the all_ppp_units mapping.
178  * It also ensures that finding a ppp unit in the all_ppp_units map
179  * and updating its file.refcnt field is atomic.
180  */
181 static DEFINE_MUTEX(all_ppp_mutex);
182 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
183 static DEFINE_IDR(ppp_units_idr);
184 
185 /*
186  * all_channels_lock protects all_channels and last_channel_index,
187  * and the atomicity of find a channel and updating its file.refcnt
188  * field.
189  */
190 static DEFINE_SPINLOCK(all_channels_lock);
191 static LIST_HEAD(all_channels);
192 static LIST_HEAD(new_channels);
193 static int last_channel_index;
194 static atomic_t channel_count = ATOMIC_INIT(0);
195 
196 /* Get the PPP protocol number from a skb */
197 #define PPP_PROTO(skb)	(((skb)->data[0] << 8) + (skb)->data[1])
198 
199 /* We limit the length of ppp->file.rq to this (arbitrary) value */
200 #define PPP_MAX_RQLEN	32
201 
202 /*
203  * Maximum number of multilink fragments queued up.
204  * This has to be large enough to cope with the maximum latency of
205  * the slowest channel relative to the others.  Strictly it should
206  * depend on the number of channels and their characteristics.
207  */
208 #define PPP_MP_MAX_QLEN	128
209 
210 /* Multilink header bits. */
211 #define B	0x80		/* this fragment begins a packet */
212 #define E	0x40		/* this fragment ends a packet */
213 
214 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
215 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
216 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
217 
218 /* Prototypes. */
219 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
220 				unsigned int cmd, unsigned long arg);
221 static void ppp_xmit_process(struct ppp *ppp);
222 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
223 static void ppp_push(struct ppp *ppp);
224 static void ppp_channel_push(struct channel *pch);
225 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
226 			      struct channel *pch);
227 static void ppp_receive_error(struct ppp *ppp);
228 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
229 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
230 					    struct sk_buff *skb);
231 #ifdef CONFIG_PPP_MULTILINK
232 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
233 				struct channel *pch);
234 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
235 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
236 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
237 #endif /* CONFIG_PPP_MULTILINK */
238 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
239 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
240 static void ppp_ccp_closed(struct ppp *ppp);
241 static struct compressor *find_compressor(int type);
242 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
243 static struct ppp *ppp_create_interface(int unit, int *retp);
244 static void init_ppp_file(struct ppp_file *pf, int kind);
245 static void ppp_shutdown_interface(struct ppp *ppp);
246 static void ppp_destroy_interface(struct ppp *ppp);
247 static struct ppp *ppp_find_unit(int unit);
248 static struct channel *ppp_find_channel(int unit);
249 static int ppp_connect_channel(struct channel *pch, int unit);
250 static int ppp_disconnect_channel(struct channel *pch);
251 static void ppp_destroy_channel(struct channel *pch);
252 static int unit_get(struct idr *p, void *ptr);
253 static int unit_set(struct idr *p, void *ptr, int n);
254 static void unit_put(struct idr *p, int n);
255 static void *unit_find(struct idr *p, int n);
256 
257 static struct class *ppp_class;
258 
259 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
proto_to_npindex(int proto)260 static inline int proto_to_npindex(int proto)
261 {
262 	switch (proto) {
263 	case PPP_IP:
264 		return NP_IP;
265 	case PPP_IPV6:
266 		return NP_IPV6;
267 	case PPP_IPX:
268 		return NP_IPX;
269 	case PPP_AT:
270 		return NP_AT;
271 	case PPP_MPLS_UC:
272 		return NP_MPLS_UC;
273 	case PPP_MPLS_MC:
274 		return NP_MPLS_MC;
275 	}
276 	return -EINVAL;
277 }
278 
279 /* Translates an NP index into a PPP protocol number */
280 static const int npindex_to_proto[NUM_NP] = {
281 	PPP_IP,
282 	PPP_IPV6,
283 	PPP_IPX,
284 	PPP_AT,
285 	PPP_MPLS_UC,
286 	PPP_MPLS_MC,
287 };
288 
289 /* Translates an ethertype into an NP index */
ethertype_to_npindex(int ethertype)290 static inline int ethertype_to_npindex(int ethertype)
291 {
292 	switch (ethertype) {
293 	case ETH_P_IP:
294 		return NP_IP;
295 	case ETH_P_IPV6:
296 		return NP_IPV6;
297 	case ETH_P_IPX:
298 		return NP_IPX;
299 	case ETH_P_PPPTALK:
300 	case ETH_P_ATALK:
301 		return NP_AT;
302 	case ETH_P_MPLS_UC:
303 		return NP_MPLS_UC;
304 	case ETH_P_MPLS_MC:
305 		return NP_MPLS_MC;
306 	}
307 	return -1;
308 }
309 
310 /* Translates an NP index into an ethertype */
311 static const int npindex_to_ethertype[NUM_NP] = {
312 	ETH_P_IP,
313 	ETH_P_IPV6,
314 	ETH_P_IPX,
315 	ETH_P_PPPTALK,
316 	ETH_P_MPLS_UC,
317 	ETH_P_MPLS_MC,
318 };
319 
320 /*
321  * Locking shorthand.
322  */
323 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
324 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
325 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
326 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
327 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
328 				     ppp_recv_lock(ppp); } while (0)
329 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
330 				     ppp_xmit_unlock(ppp); } while (0)
331 
332 /*
333  * /dev/ppp device routines.
334  * The /dev/ppp device is used by pppd to control the ppp unit.
335  * It supports the read, write, ioctl and poll functions.
336  * Open instances of /dev/ppp can be in one of three states:
337  * unattached, attached to a ppp unit, or attached to a ppp channel.
338  */
ppp_open(struct inode * inode,struct file * file)339 static int ppp_open(struct inode *inode, struct file *file)
340 {
341 	cycle_kernel_lock();
342 	/*
343 	 * This could (should?) be enforced by the permissions on /dev/ppp.
344 	 */
345 	if (!capable(CAP_NET_ADMIN))
346 		return -EPERM;
347 	return 0;
348 }
349 
ppp_release(struct inode * unused,struct file * file)350 static int ppp_release(struct inode *unused, struct file *file)
351 {
352 	struct ppp_file *pf = file->private_data;
353 	struct ppp *ppp;
354 
355 	if (pf) {
356 		file->private_data = NULL;
357 		if (pf->kind == INTERFACE) {
358 			ppp = PF_TO_PPP(pf);
359 			if (file == ppp->owner)
360 				ppp_shutdown_interface(ppp);
361 		}
362 		if (atomic_dec_and_test(&pf->refcnt)) {
363 			switch (pf->kind) {
364 			case INTERFACE:
365 				ppp_destroy_interface(PF_TO_PPP(pf));
366 				break;
367 			case CHANNEL:
368 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
369 				break;
370 			}
371 		}
372 	}
373 	return 0;
374 }
375 
ppp_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)376 static ssize_t ppp_read(struct file *file, char __user *buf,
377 			size_t count, loff_t *ppos)
378 {
379 	struct ppp_file *pf = file->private_data;
380 	DECLARE_WAITQUEUE(wait, current);
381 	ssize_t ret;
382 	struct sk_buff *skb = NULL;
383 
384 	ret = count;
385 
386 	if (!pf)
387 		return -ENXIO;
388 	add_wait_queue(&pf->rwait, &wait);
389 	for (;;) {
390 		set_current_state(TASK_INTERRUPTIBLE);
391 		skb = skb_dequeue(&pf->rq);
392 		if (skb)
393 			break;
394 		ret = 0;
395 		if (pf->dead)
396 			break;
397 		if (pf->kind == INTERFACE) {
398 			/*
399 			 * Return 0 (EOF) on an interface that has no
400 			 * channels connected, unless it is looping
401 			 * network traffic (demand mode).
402 			 */
403 			struct ppp *ppp = PF_TO_PPP(pf);
404 			if (ppp->n_channels == 0
405 			    && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
406 				break;
407 		}
408 		ret = -EAGAIN;
409 		if (file->f_flags & O_NONBLOCK)
410 			break;
411 		ret = -ERESTARTSYS;
412 		if (signal_pending(current))
413 			break;
414 		schedule();
415 	}
416 	set_current_state(TASK_RUNNING);
417 	remove_wait_queue(&pf->rwait, &wait);
418 
419 	if (!skb)
420 		goto out;
421 
422 	ret = -EOVERFLOW;
423 	if (skb->len > count)
424 		goto outf;
425 	ret = -EFAULT;
426 	if (copy_to_user(buf, skb->data, skb->len))
427 		goto outf;
428 	ret = skb->len;
429 
430  outf:
431 	kfree_skb(skb);
432  out:
433 	return ret;
434 }
435 
ppp_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)436 static ssize_t ppp_write(struct file *file, const char __user *buf,
437 			 size_t count, loff_t *ppos)
438 {
439 	struct ppp_file *pf = file->private_data;
440 	struct sk_buff *skb;
441 	ssize_t ret;
442 
443 	if (!pf)
444 		return -ENXIO;
445 	ret = -ENOMEM;
446 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
447 	if (!skb)
448 		goto out;
449 	skb_reserve(skb, pf->hdrlen);
450 	ret = -EFAULT;
451 	if (copy_from_user(skb_put(skb, count), buf, count)) {
452 		kfree_skb(skb);
453 		goto out;
454 	}
455 
456 	skb_queue_tail(&pf->xq, skb);
457 
458 	switch (pf->kind) {
459 	case INTERFACE:
460 		ppp_xmit_process(PF_TO_PPP(pf));
461 		break;
462 	case CHANNEL:
463 		ppp_channel_push(PF_TO_CHANNEL(pf));
464 		break;
465 	}
466 
467 	ret = count;
468 
469  out:
470 	return ret;
471 }
472 
473 /* No kernel lock - fine */
ppp_poll(struct file * file,poll_table * wait)474 static unsigned int ppp_poll(struct file *file, poll_table *wait)
475 {
476 	struct ppp_file *pf = file->private_data;
477 	unsigned int mask;
478 
479 	if (!pf)
480 		return 0;
481 	poll_wait(file, &pf->rwait, wait);
482 	mask = POLLOUT | POLLWRNORM;
483 	if (skb_peek(&pf->rq))
484 		mask |= POLLIN | POLLRDNORM;
485 	if (pf->dead)
486 		mask |= POLLHUP;
487 	else if (pf->kind == INTERFACE) {
488 		/* see comment in ppp_read */
489 		struct ppp *ppp = PF_TO_PPP(pf);
490 		if (ppp->n_channels == 0
491 		    && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
492 			mask |= POLLIN | POLLRDNORM;
493 	}
494 
495 	return mask;
496 }
497 
498 #ifdef CONFIG_PPP_FILTER
get_filter(void __user * arg,struct sock_filter ** p)499 static int get_filter(void __user *arg, struct sock_filter **p)
500 {
501 	struct sock_fprog uprog;
502 	struct sock_filter *code = NULL;
503 	int len, err;
504 
505 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
506 		return -EFAULT;
507 
508 	if (!uprog.len) {
509 		*p = NULL;
510 		return 0;
511 	}
512 
513 	len = uprog.len * sizeof(struct sock_filter);
514 	code = kmalloc(len, GFP_KERNEL);
515 	if (code == NULL)
516 		return -ENOMEM;
517 
518 	if (copy_from_user(code, uprog.filter, len)) {
519 		kfree(code);
520 		return -EFAULT;
521 	}
522 
523 	err = sk_chk_filter(code, uprog.len);
524 	if (err) {
525 		kfree(code);
526 		return err;
527 	}
528 
529 	*p = code;
530 	return uprog.len;
531 }
532 #endif /* CONFIG_PPP_FILTER */
533 
ppp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)534 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
535 {
536 	struct ppp_file *pf = file->private_data;
537 	struct ppp *ppp;
538 	int err = -EFAULT, val, val2, i;
539 	struct ppp_idle idle;
540 	struct npioctl npi;
541 	int unit, cflags;
542 	struct slcompress *vj;
543 	void __user *argp = (void __user *)arg;
544 	int __user *p = argp;
545 
546 	if (!pf)
547 		return ppp_unattached_ioctl(pf, file, cmd, arg);
548 
549 	if (cmd == PPPIOCDETACH) {
550 		/*
551 		 * We have to be careful here... if the file descriptor
552 		 * has been dup'd, we could have another process in the
553 		 * middle of a poll using the same file *, so we had
554 		 * better not free the interface data structures -
555 		 * instead we fail the ioctl.  Even in this case, we
556 		 * shut down the interface if we are the owner of it.
557 		 * Actually, we should get rid of PPPIOCDETACH, userland
558 		 * (i.e. pppd) could achieve the same effect by closing
559 		 * this fd and reopening /dev/ppp.
560 		 */
561 		err = -EINVAL;
562 		lock_kernel();
563 		if (pf->kind == INTERFACE) {
564 			ppp = PF_TO_PPP(pf);
565 			if (file == ppp->owner)
566 				ppp_shutdown_interface(ppp);
567 		}
568 		if (atomic_long_read(&file->f_count) <= 2) {
569 			ppp_release(NULL, file);
570 			err = 0;
571 		} else
572 			printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%ld\n",
573 			       atomic_long_read(&file->f_count));
574 		unlock_kernel();
575 		return err;
576 	}
577 
578 	if (pf->kind == CHANNEL) {
579 		struct channel *pch;
580 		struct ppp_channel *chan;
581 
582 		lock_kernel();
583 		pch = PF_TO_CHANNEL(pf);
584 
585 		switch (cmd) {
586 		case PPPIOCCONNECT:
587 			if (get_user(unit, p))
588 				break;
589 			err = ppp_connect_channel(pch, unit);
590 			break;
591 
592 		case PPPIOCDISCONN:
593 			err = ppp_disconnect_channel(pch);
594 			break;
595 
596 		default:
597 			down_read(&pch->chan_sem);
598 			chan = pch->chan;
599 			err = -ENOTTY;
600 			if (chan && chan->ops->ioctl)
601 				err = chan->ops->ioctl(chan, cmd, arg);
602 			up_read(&pch->chan_sem);
603 		}
604 		unlock_kernel();
605 		return err;
606 	}
607 
608 	if (pf->kind != INTERFACE) {
609 		/* can't happen */
610 		printk(KERN_ERR "PPP: not interface or channel??\n");
611 		return -EINVAL;
612 	}
613 
614 	lock_kernel();
615 	ppp = PF_TO_PPP(pf);
616 	switch (cmd) {
617 	case PPPIOCSMRU:
618 		if (get_user(val, p))
619 			break;
620 		ppp->mru = val;
621 		err = 0;
622 		break;
623 
624 	case PPPIOCSFLAGS:
625 		if (get_user(val, p))
626 			break;
627 		ppp_lock(ppp);
628 		cflags = ppp->flags & ~val;
629 		ppp->flags = val & SC_FLAG_BITS;
630 		ppp_unlock(ppp);
631 		if (cflags & SC_CCP_OPEN)
632 			ppp_ccp_closed(ppp);
633 		err = 0;
634 		break;
635 
636 	case PPPIOCGFLAGS:
637 		val = ppp->flags | ppp->xstate | ppp->rstate;
638 		if (put_user(val, p))
639 			break;
640 		err = 0;
641 		break;
642 
643 	case PPPIOCSCOMPRESS:
644 		err = ppp_set_compress(ppp, arg);
645 		break;
646 
647 	case PPPIOCGUNIT:
648 		if (put_user(ppp->file.index, p))
649 			break;
650 		err = 0;
651 		break;
652 
653 	case PPPIOCSDEBUG:
654 		if (get_user(val, p))
655 			break;
656 		ppp->debug = val;
657 		err = 0;
658 		break;
659 
660 	case PPPIOCGDEBUG:
661 		if (put_user(ppp->debug, p))
662 			break;
663 		err = 0;
664 		break;
665 
666 	case PPPIOCGIDLE:
667 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
668 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
669 		if (copy_to_user(argp, &idle, sizeof(idle)))
670 			break;
671 		err = 0;
672 		break;
673 
674 	case PPPIOCSMAXCID:
675 		if (get_user(val, p))
676 			break;
677 		val2 = 15;
678 		if ((val >> 16) != 0) {
679 			val2 = val >> 16;
680 			val &= 0xffff;
681 		}
682 		vj = slhc_init(val2+1, val+1);
683 		if (!vj) {
684 			printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
685 			err = -ENOMEM;
686 			break;
687 		}
688 		ppp_lock(ppp);
689 		if (ppp->vj)
690 			slhc_free(ppp->vj);
691 		ppp->vj = vj;
692 		ppp_unlock(ppp);
693 		err = 0;
694 		break;
695 
696 	case PPPIOCGNPMODE:
697 	case PPPIOCSNPMODE:
698 		if (copy_from_user(&npi, argp, sizeof(npi)))
699 			break;
700 		err = proto_to_npindex(npi.protocol);
701 		if (err < 0)
702 			break;
703 		i = err;
704 		if (cmd == PPPIOCGNPMODE) {
705 			err = -EFAULT;
706 			npi.mode = ppp->npmode[i];
707 			if (copy_to_user(argp, &npi, sizeof(npi)))
708 				break;
709 		} else {
710 			ppp->npmode[i] = npi.mode;
711 			/* we may be able to transmit more packets now (??) */
712 			netif_wake_queue(ppp->dev);
713 		}
714 		err = 0;
715 		break;
716 
717 #ifdef CONFIG_PPP_FILTER
718 	case PPPIOCSPASS:
719 	{
720 		struct sock_filter *code;
721 		err = get_filter(argp, &code);
722 		if (err >= 0) {
723 			ppp_lock(ppp);
724 			kfree(ppp->pass_filter);
725 			ppp->pass_filter = code;
726 			ppp->pass_len = err;
727 			ppp_unlock(ppp);
728 			err = 0;
729 		}
730 		break;
731 	}
732 	case PPPIOCSACTIVE:
733 	{
734 		struct sock_filter *code;
735 		err = get_filter(argp, &code);
736 		if (err >= 0) {
737 			ppp_lock(ppp);
738 			kfree(ppp->active_filter);
739 			ppp->active_filter = code;
740 			ppp->active_len = err;
741 			ppp_unlock(ppp);
742 			err = 0;
743 		}
744 		break;
745 	}
746 #endif /* CONFIG_PPP_FILTER */
747 
748 #ifdef CONFIG_PPP_MULTILINK
749 	case PPPIOCSMRRU:
750 		if (get_user(val, p))
751 			break;
752 		ppp_recv_lock(ppp);
753 		ppp->mrru = val;
754 		ppp_recv_unlock(ppp);
755 		err = 0;
756 		break;
757 #endif /* CONFIG_PPP_MULTILINK */
758 
759 	default:
760 		err = -ENOTTY;
761 	}
762 	unlock_kernel();
763 	return err;
764 }
765 
ppp_unattached_ioctl(struct ppp_file * pf,struct file * file,unsigned int cmd,unsigned long arg)766 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
767 				unsigned int cmd, unsigned long arg)
768 {
769 	int unit, err = -EFAULT;
770 	struct ppp *ppp;
771 	struct channel *chan;
772 	int __user *p = (int __user *)arg;
773 
774 	lock_kernel();
775 	switch (cmd) {
776 	case PPPIOCNEWUNIT:
777 		/* Create a new ppp unit */
778 		if (get_user(unit, p))
779 			break;
780 		ppp = ppp_create_interface(unit, &err);
781 		if (!ppp)
782 			break;
783 		file->private_data = &ppp->file;
784 		ppp->owner = file;
785 		err = -EFAULT;
786 		if (put_user(ppp->file.index, p))
787 			break;
788 		err = 0;
789 		break;
790 
791 	case PPPIOCATTACH:
792 		/* Attach to an existing ppp unit */
793 		if (get_user(unit, p))
794 			break;
795 		mutex_lock(&all_ppp_mutex);
796 		err = -ENXIO;
797 		ppp = ppp_find_unit(unit);
798 		if (ppp) {
799 			atomic_inc(&ppp->file.refcnt);
800 			file->private_data = &ppp->file;
801 			err = 0;
802 		}
803 		mutex_unlock(&all_ppp_mutex);
804 		break;
805 
806 	case PPPIOCATTCHAN:
807 		if (get_user(unit, p))
808 			break;
809 		spin_lock_bh(&all_channels_lock);
810 		err = -ENXIO;
811 		chan = ppp_find_channel(unit);
812 		if (chan) {
813 			atomic_inc(&chan->file.refcnt);
814 			file->private_data = &chan->file;
815 			err = 0;
816 		}
817 		spin_unlock_bh(&all_channels_lock);
818 		break;
819 
820 	default:
821 		err = -ENOTTY;
822 	}
823 	unlock_kernel();
824 	return err;
825 }
826 
827 static const struct file_operations ppp_device_fops = {
828 	.owner		= THIS_MODULE,
829 	.read		= ppp_read,
830 	.write		= ppp_write,
831 	.poll		= ppp_poll,
832 	.unlocked_ioctl	= ppp_ioctl,
833 	.open		= ppp_open,
834 	.release	= ppp_release
835 };
836 
837 #define PPP_MAJOR	108
838 
839 /* Called at boot time if ppp is compiled into the kernel,
840    or at module load time (from init_module) if compiled as a module. */
ppp_init(void)841 static int __init ppp_init(void)
842 {
843 	int err;
844 
845 	printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
846 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
847 	if (!err) {
848 		ppp_class = class_create(THIS_MODULE, "ppp");
849 		if (IS_ERR(ppp_class)) {
850 			err = PTR_ERR(ppp_class);
851 			goto out_chrdev;
852 		}
853 		device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL,
854 			      "ppp");
855 	}
856 
857 out:
858 	if (err)
859 		printk(KERN_ERR "failed to register PPP device (%d)\n", err);
860 	return err;
861 
862 out_chrdev:
863 	unregister_chrdev(PPP_MAJOR, "ppp");
864 	goto out;
865 }
866 
867 /*
868  * Network interface unit routines.
869  */
870 static int
ppp_start_xmit(struct sk_buff * skb,struct net_device * dev)871 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
872 {
873 	struct ppp *ppp = netdev_priv(dev);
874 	int npi, proto;
875 	unsigned char *pp;
876 
877 	npi = ethertype_to_npindex(ntohs(skb->protocol));
878 	if (npi < 0)
879 		goto outf;
880 
881 	/* Drop, accept or reject the packet */
882 	switch (ppp->npmode[npi]) {
883 	case NPMODE_PASS:
884 		break;
885 	case NPMODE_QUEUE:
886 		/* it would be nice to have a way to tell the network
887 		   system to queue this one up for later. */
888 		goto outf;
889 	case NPMODE_DROP:
890 	case NPMODE_ERROR:
891 		goto outf;
892 	}
893 
894 	/* Put the 2-byte PPP protocol number on the front,
895 	   making sure there is room for the address and control fields. */
896 	if (skb_cow_head(skb, PPP_HDRLEN))
897 		goto outf;
898 
899 	pp = skb_push(skb, 2);
900 	proto = npindex_to_proto[npi];
901 	pp[0] = proto >> 8;
902 	pp[1] = proto;
903 
904 	netif_stop_queue(dev);
905 	skb_queue_tail(&ppp->file.xq, skb);
906 	ppp_xmit_process(ppp);
907 	return 0;
908 
909  outf:
910 	kfree_skb(skb);
911 	++ppp->dev->stats.tx_dropped;
912 	return 0;
913 }
914 
915 static int
ppp_net_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)916 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
917 {
918 	struct ppp *ppp = netdev_priv(dev);
919 	int err = -EFAULT;
920 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
921 	struct ppp_stats stats;
922 	struct ppp_comp_stats cstats;
923 	char *vers;
924 
925 	switch (cmd) {
926 	case SIOCGPPPSTATS:
927 		ppp_get_stats(ppp, &stats);
928 		if (copy_to_user(addr, &stats, sizeof(stats)))
929 			break;
930 		err = 0;
931 		break;
932 
933 	case SIOCGPPPCSTATS:
934 		memset(&cstats, 0, sizeof(cstats));
935 		if (ppp->xc_state)
936 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
937 		if (ppp->rc_state)
938 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
939 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
940 			break;
941 		err = 0;
942 		break;
943 
944 	case SIOCGPPPVER:
945 		vers = PPP_VERSION;
946 		if (copy_to_user(addr, vers, strlen(vers) + 1))
947 			break;
948 		err = 0;
949 		break;
950 
951 	default:
952 		err = -EINVAL;
953 	}
954 
955 	return err;
956 }
957 
958 static const struct net_device_ops ppp_netdev_ops = {
959 	.ndo_start_xmit = ppp_start_xmit,
960 	.ndo_do_ioctl   = ppp_net_ioctl,
961 };
962 
ppp_setup(struct net_device * dev)963 static void ppp_setup(struct net_device *dev)
964 {
965 	dev->netdev_ops = &ppp_netdev_ops;
966 	dev->hard_header_len = PPP_HDRLEN;
967 	dev->mtu = PPP_MTU;
968 	dev->addr_len = 0;
969 	dev->tx_queue_len = 3;
970 	dev->type = ARPHRD_PPP;
971 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
972 }
973 
974 /*
975  * Transmit-side routines.
976  */
977 
978 /*
979  * Called to do any work queued up on the transmit side
980  * that can now be done.
981  */
982 static void
ppp_xmit_process(struct ppp * ppp)983 ppp_xmit_process(struct ppp *ppp)
984 {
985 	struct sk_buff *skb;
986 
987 	ppp_xmit_lock(ppp);
988 	if (!ppp->closing) {
989 		ppp_push(ppp);
990 		while (!ppp->xmit_pending
991 		       && (skb = skb_dequeue(&ppp->file.xq)))
992 			ppp_send_frame(ppp, skb);
993 		/* If there's no work left to do, tell the core net
994 		   code that we can accept some more. */
995 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
996 			netif_wake_queue(ppp->dev);
997 	}
998 	ppp_xmit_unlock(ppp);
999 }
1000 
1001 static inline struct sk_buff *
pad_compress_skb(struct ppp * ppp,struct sk_buff * skb)1002 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1003 {
1004 	struct sk_buff *new_skb;
1005 	int len;
1006 	int new_skb_size = ppp->dev->mtu +
1007 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1008 	int compressor_skb_size = ppp->dev->mtu +
1009 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1010 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1011 	if (!new_skb) {
1012 		if (net_ratelimit())
1013 			printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1014 		return NULL;
1015 	}
1016 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1017 		skb_reserve(new_skb,
1018 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1019 
1020 	/* compressor still expects A/C bytes in hdr */
1021 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1022 				   new_skb->data, skb->len + 2,
1023 				   compressor_skb_size);
1024 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1025 		kfree_skb(skb);
1026 		skb = new_skb;
1027 		skb_put(skb, len);
1028 		skb_pull(skb, 2);	/* pull off A/C bytes */
1029 	} else if (len == 0) {
1030 		/* didn't compress, or CCP not up yet */
1031 		kfree_skb(new_skb);
1032 		new_skb = skb;
1033 	} else {
1034 		/*
1035 		 * (len < 0)
1036 		 * MPPE requires that we do not send unencrypted
1037 		 * frames.  The compressor will return -1 if we
1038 		 * should drop the frame.  We cannot simply test
1039 		 * the compress_proto because MPPE and MPPC share
1040 		 * the same number.
1041 		 */
1042 		if (net_ratelimit())
1043 			printk(KERN_ERR "ppp: compressor dropped pkt\n");
1044 		kfree_skb(skb);
1045 		kfree_skb(new_skb);
1046 		new_skb = NULL;
1047 	}
1048 	return new_skb;
1049 }
1050 
1051 /*
1052  * Compress and send a frame.
1053  * The caller should have locked the xmit path,
1054  * and xmit_pending should be 0.
1055  */
1056 static void
ppp_send_frame(struct ppp * ppp,struct sk_buff * skb)1057 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1058 {
1059 	int proto = PPP_PROTO(skb);
1060 	struct sk_buff *new_skb;
1061 	int len;
1062 	unsigned char *cp;
1063 
1064 	if (proto < 0x8000) {
1065 #ifdef CONFIG_PPP_FILTER
1066 		/* check if we should pass this packet */
1067 		/* the filter instructions are constructed assuming
1068 		   a four-byte PPP header on each packet */
1069 		*skb_push(skb, 2) = 1;
1070 		if (ppp->pass_filter
1071 		    && sk_run_filter(skb, ppp->pass_filter,
1072 				     ppp->pass_len) == 0) {
1073 			if (ppp->debug & 1)
1074 				printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1075 			kfree_skb(skb);
1076 			return;
1077 		}
1078 		/* if this packet passes the active filter, record the time */
1079 		if (!(ppp->active_filter
1080 		      && sk_run_filter(skb, ppp->active_filter,
1081 				       ppp->active_len) == 0))
1082 			ppp->last_xmit = jiffies;
1083 		skb_pull(skb, 2);
1084 #else
1085 		/* for data packets, record the time */
1086 		ppp->last_xmit = jiffies;
1087 #endif /* CONFIG_PPP_FILTER */
1088 	}
1089 
1090 	++ppp->dev->stats.tx_packets;
1091 	ppp->dev->stats.tx_bytes += skb->len - 2;
1092 
1093 	switch (proto) {
1094 	case PPP_IP:
1095 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1096 			break;
1097 		/* try to do VJ TCP header compression */
1098 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1099 				    GFP_ATOMIC);
1100 		if (!new_skb) {
1101 			printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1102 			goto drop;
1103 		}
1104 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1105 		cp = skb->data + 2;
1106 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1107 				    new_skb->data + 2, &cp,
1108 				    !(ppp->flags & SC_NO_TCP_CCID));
1109 		if (cp == skb->data + 2) {
1110 			/* didn't compress */
1111 			kfree_skb(new_skb);
1112 		} else {
1113 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1114 				proto = PPP_VJC_COMP;
1115 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1116 			} else {
1117 				proto = PPP_VJC_UNCOMP;
1118 				cp[0] = skb->data[2];
1119 			}
1120 			kfree_skb(skb);
1121 			skb = new_skb;
1122 			cp = skb_put(skb, len + 2);
1123 			cp[0] = 0;
1124 			cp[1] = proto;
1125 		}
1126 		break;
1127 
1128 	case PPP_CCP:
1129 		/* peek at outbound CCP frames */
1130 		ppp_ccp_peek(ppp, skb, 0);
1131 		break;
1132 	}
1133 
1134 	/* try to do packet compression */
1135 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state
1136 	    && proto != PPP_LCP && proto != PPP_CCP) {
1137 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1138 			if (net_ratelimit())
1139 				printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n");
1140 			goto drop;
1141 		}
1142 		skb = pad_compress_skb(ppp, skb);
1143 		if (!skb)
1144 			goto drop;
1145 	}
1146 
1147 	/*
1148 	 * If we are waiting for traffic (demand dialling),
1149 	 * queue it up for pppd to receive.
1150 	 */
1151 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1152 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1153 			goto drop;
1154 		skb_queue_tail(&ppp->file.rq, skb);
1155 		wake_up_interruptible(&ppp->file.rwait);
1156 		return;
1157 	}
1158 
1159 	ppp->xmit_pending = skb;
1160 	ppp_push(ppp);
1161 	return;
1162 
1163  drop:
1164 	if (skb)
1165 		kfree_skb(skb);
1166 	++ppp->dev->stats.tx_errors;
1167 }
1168 
1169 /*
1170  * Try to send the frame in xmit_pending.
1171  * The caller should have the xmit path locked.
1172  */
1173 static void
ppp_push(struct ppp * ppp)1174 ppp_push(struct ppp *ppp)
1175 {
1176 	struct list_head *list;
1177 	struct channel *pch;
1178 	struct sk_buff *skb = ppp->xmit_pending;
1179 
1180 	if (!skb)
1181 		return;
1182 
1183 	list = &ppp->channels;
1184 	if (list_empty(list)) {
1185 		/* nowhere to send the packet, just drop it */
1186 		ppp->xmit_pending = NULL;
1187 		kfree_skb(skb);
1188 		return;
1189 	}
1190 
1191 	if ((ppp->flags & SC_MULTILINK) == 0) {
1192 		/* not doing multilink: send it down the first channel */
1193 		list = list->next;
1194 		pch = list_entry(list, struct channel, clist);
1195 
1196 		spin_lock_bh(&pch->downl);
1197 		if (pch->chan) {
1198 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1199 				ppp->xmit_pending = NULL;
1200 		} else {
1201 			/* channel got unregistered */
1202 			kfree_skb(skb);
1203 			ppp->xmit_pending = NULL;
1204 		}
1205 		spin_unlock_bh(&pch->downl);
1206 		return;
1207 	}
1208 
1209 #ifdef CONFIG_PPP_MULTILINK
1210 	/* Multilink: fragment the packet over as many links
1211 	   as can take the packet at the moment. */
1212 	if (!ppp_mp_explode(ppp, skb))
1213 		return;
1214 #endif /* CONFIG_PPP_MULTILINK */
1215 
1216 	ppp->xmit_pending = NULL;
1217 	kfree_skb(skb);
1218 }
1219 
1220 #ifdef CONFIG_PPP_MULTILINK
1221 /*
1222  * Divide a packet to be transmitted into fragments and
1223  * send them out the individual links.
1224  */
ppp_mp_explode(struct ppp * ppp,struct sk_buff * skb)1225 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1226 {
1227 	int len, fragsize;
1228 	int i, bits, hdrlen, mtu;
1229 	int flen;
1230 	int navail, nfree;
1231 	int nbigger;
1232 	unsigned char *p, *q;
1233 	struct list_head *list;
1234 	struct channel *pch;
1235 	struct sk_buff *frag;
1236 	struct ppp_channel *chan;
1237 
1238 	nfree = 0;	/* # channels which have no packet already queued */
1239 	navail = 0;	/* total # of usable channels (not deregistered) */
1240 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1241 	i = 0;
1242 	list_for_each_entry(pch, &ppp->channels, clist) {
1243 		navail += pch->avail = (pch->chan != NULL);
1244 		if (pch->avail) {
1245 			if (skb_queue_empty(&pch->file.xq) ||
1246 			    !pch->had_frag) {
1247 				pch->avail = 2;
1248 				++nfree;
1249 			}
1250 			if (!pch->had_frag && i < ppp->nxchan)
1251 				ppp->nxchan = i;
1252 		}
1253 		++i;
1254 	}
1255 
1256 	/*
1257 	 * Don't start sending this packet unless at least half of
1258 	 * the channels are free.  This gives much better TCP
1259 	 * performance if we have a lot of channels.
1260 	 */
1261 	if (nfree == 0 || nfree < navail / 2)
1262 		return 0;	/* can't take now, leave it in xmit_pending */
1263 
1264 	/* Do protocol field compression (XXX this should be optional) */
1265 	p = skb->data;
1266 	len = skb->len;
1267 	if (*p == 0) {
1268 		++p;
1269 		--len;
1270 	}
1271 
1272 	/*
1273 	 * Decide on fragment size.
1274 	 * We create a fragment for each free channel regardless of
1275 	 * how small they are (i.e. even 0 length) in order to minimize
1276 	 * the time that it will take to detect when a channel drops
1277 	 * a fragment.
1278 	 */
1279 	fragsize = len;
1280 	if (nfree > 1)
1281 		fragsize = DIV_ROUND_UP(fragsize, nfree);
1282 	/* nbigger channels get fragsize bytes, the rest get fragsize-1,
1283 	   except if nbigger==0, then they all get fragsize. */
1284 	nbigger = len % nfree;
1285 
1286 	/* skip to the channel after the one we last used
1287 	   and start at that one */
1288 	list = &ppp->channels;
1289 	for (i = 0; i < ppp->nxchan; ++i) {
1290 		list = list->next;
1291 		if (list == &ppp->channels) {
1292 			i = 0;
1293 			break;
1294 		}
1295 	}
1296 
1297 	/* create a fragment for each channel */
1298 	bits = B;
1299 	while (nfree > 0 || len > 0) {
1300 		list = list->next;
1301 		if (list == &ppp->channels) {
1302 			i = 0;
1303 			continue;
1304 		}
1305 		pch = list_entry(list, struct channel, clist);
1306 		++i;
1307 		if (!pch->avail)
1308 			continue;
1309 
1310 		/*
1311 		 * Skip this channel if it has a fragment pending already and
1312 		 * we haven't given a fragment to all of the free channels.
1313 		 */
1314 		if (pch->avail == 1) {
1315 			if (nfree > 0)
1316 				continue;
1317 		} else {
1318 			--nfree;
1319 			pch->avail = 1;
1320 		}
1321 
1322 		/* check the channel's mtu and whether it is still attached. */
1323 		spin_lock_bh(&pch->downl);
1324 		if (pch->chan == NULL) {
1325 			/* can't use this channel, it's being deregistered */
1326 			spin_unlock_bh(&pch->downl);
1327 			pch->avail = 0;
1328 			if (--navail == 0)
1329 				break;
1330 			continue;
1331 		}
1332 
1333 		/*
1334 		 * Create a fragment for this channel of
1335 		 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes.
1336 		 * If mtu+2-hdrlen < 4, that is a ridiculously small
1337 		 * MTU, so we use mtu = 2 + hdrlen.
1338 		 */
1339 		if (fragsize > len)
1340 			fragsize = len;
1341 		flen = fragsize;
1342 		mtu = pch->chan->mtu + 2 - hdrlen;
1343 		if (mtu < 4)
1344 			mtu = 4;
1345 		if (flen > mtu)
1346 			flen = mtu;
1347 		if (flen == len && nfree == 0)
1348 			bits |= E;
1349 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1350 		if (!frag)
1351 			goto noskb;
1352 		q = skb_put(frag, flen + hdrlen);
1353 
1354 		/* make the MP header */
1355 		q[0] = PPP_MP >> 8;
1356 		q[1] = PPP_MP;
1357 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1358 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1359 			q[3] = ppp->nxseq;
1360 		} else {
1361 			q[2] = bits;
1362 			q[3] = ppp->nxseq >> 16;
1363 			q[4] = ppp->nxseq >> 8;
1364 			q[5] = ppp->nxseq;
1365 		}
1366 
1367 		/*
1368 		 * Copy the data in.
1369 		 * Unfortunately there is a bug in older versions of
1370 		 * the Linux PPP multilink reconstruction code where it
1371 		 * drops 0-length fragments.  Therefore we make sure the
1372 		 * fragment has at least one byte of data.  Any bytes
1373 		 * we add in this situation will end up as padding on the
1374 		 * end of the reconstructed packet.
1375 		 */
1376 		if (flen == 0)
1377 			*skb_put(frag, 1) = 0;
1378 		else
1379 			memcpy(q + hdrlen, p, flen);
1380 
1381 		/* try to send it down the channel */
1382 		chan = pch->chan;
1383 		if (!skb_queue_empty(&pch->file.xq) ||
1384 		    !chan->ops->start_xmit(chan, frag))
1385 			skb_queue_tail(&pch->file.xq, frag);
1386 		pch->had_frag = 1;
1387 		p += flen;
1388 		len -= flen;
1389 		++ppp->nxseq;
1390 		bits = 0;
1391 		spin_unlock_bh(&pch->downl);
1392 
1393 		if (--nbigger == 0 && fragsize > 0)
1394 			--fragsize;
1395 	}
1396 	ppp->nxchan = i;
1397 
1398 	return 1;
1399 
1400  noskb:
1401 	spin_unlock_bh(&pch->downl);
1402 	if (ppp->debug & 1)
1403 		printk(KERN_ERR "PPP: no memory (fragment)\n");
1404 	++ppp->dev->stats.tx_errors;
1405 	++ppp->nxseq;
1406 	return 1;	/* abandon the frame */
1407 }
1408 #endif /* CONFIG_PPP_MULTILINK */
1409 
1410 /*
1411  * Try to send data out on a channel.
1412  */
1413 static void
ppp_channel_push(struct channel * pch)1414 ppp_channel_push(struct channel *pch)
1415 {
1416 	struct sk_buff *skb;
1417 	struct ppp *ppp;
1418 
1419 	spin_lock_bh(&pch->downl);
1420 	if (pch->chan) {
1421 		while (!skb_queue_empty(&pch->file.xq)) {
1422 			skb = skb_dequeue(&pch->file.xq);
1423 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1424 				/* put the packet back and try again later */
1425 				skb_queue_head(&pch->file.xq, skb);
1426 				break;
1427 			}
1428 		}
1429 	} else {
1430 		/* channel got deregistered */
1431 		skb_queue_purge(&pch->file.xq);
1432 	}
1433 	spin_unlock_bh(&pch->downl);
1434 	/* see if there is anything from the attached unit to be sent */
1435 	if (skb_queue_empty(&pch->file.xq)) {
1436 		read_lock_bh(&pch->upl);
1437 		ppp = pch->ppp;
1438 		if (ppp)
1439 			ppp_xmit_process(ppp);
1440 		read_unlock_bh(&pch->upl);
1441 	}
1442 }
1443 
1444 /*
1445  * Receive-side routines.
1446  */
1447 
1448 /* misuse a few fields of the skb for MP reconstruction */
1449 #define sequence	priority
1450 #define BEbits		cb[0]
1451 
1452 static inline void
ppp_do_recv(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1453 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1454 {
1455 	ppp_recv_lock(ppp);
1456 	if (!ppp->closing)
1457 		ppp_receive_frame(ppp, skb, pch);
1458 	else
1459 		kfree_skb(skb);
1460 	ppp_recv_unlock(ppp);
1461 }
1462 
1463 void
ppp_input(struct ppp_channel * chan,struct sk_buff * skb)1464 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1465 {
1466 	struct channel *pch = chan->ppp;
1467 	int proto;
1468 
1469 	if (!pch || skb->len == 0) {
1470 		kfree_skb(skb);
1471 		return;
1472 	}
1473 
1474 	proto = PPP_PROTO(skb);
1475 	read_lock_bh(&pch->upl);
1476 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1477 		/* put it on the channel queue */
1478 		skb_queue_tail(&pch->file.rq, skb);
1479 		/* drop old frames if queue too long */
1480 		while (pch->file.rq.qlen > PPP_MAX_RQLEN
1481 		       && (skb = skb_dequeue(&pch->file.rq)))
1482 			kfree_skb(skb);
1483 		wake_up_interruptible(&pch->file.rwait);
1484 	} else {
1485 		ppp_do_recv(pch->ppp, skb, pch);
1486 	}
1487 	read_unlock_bh(&pch->upl);
1488 }
1489 
1490 /* Put a 0-length skb in the receive queue as an error indication */
1491 void
ppp_input_error(struct ppp_channel * chan,int code)1492 ppp_input_error(struct ppp_channel *chan, int code)
1493 {
1494 	struct channel *pch = chan->ppp;
1495 	struct sk_buff *skb;
1496 
1497 	if (!pch)
1498 		return;
1499 
1500 	read_lock_bh(&pch->upl);
1501 	if (pch->ppp) {
1502 		skb = alloc_skb(0, GFP_ATOMIC);
1503 		if (skb) {
1504 			skb->len = 0;		/* probably unnecessary */
1505 			skb->cb[0] = code;
1506 			ppp_do_recv(pch->ppp, skb, pch);
1507 		}
1508 	}
1509 	read_unlock_bh(&pch->upl);
1510 }
1511 
1512 /*
1513  * We come in here to process a received frame.
1514  * The receive side of the ppp unit is locked.
1515  */
1516 static void
ppp_receive_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1517 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1518 {
1519 	if (pskb_may_pull(skb, 2)) {
1520 #ifdef CONFIG_PPP_MULTILINK
1521 		/* XXX do channel-level decompression here */
1522 		if (PPP_PROTO(skb) == PPP_MP)
1523 			ppp_receive_mp_frame(ppp, skb, pch);
1524 		else
1525 #endif /* CONFIG_PPP_MULTILINK */
1526 			ppp_receive_nonmp_frame(ppp, skb);
1527 		return;
1528 	}
1529 
1530 	if (skb->len > 0)
1531 		/* note: a 0-length skb is used as an error indication */
1532 		++ppp->dev->stats.rx_length_errors;
1533 
1534 	kfree_skb(skb);
1535 	ppp_receive_error(ppp);
1536 }
1537 
1538 static void
ppp_receive_error(struct ppp * ppp)1539 ppp_receive_error(struct ppp *ppp)
1540 {
1541 	++ppp->dev->stats.rx_errors;
1542 	if (ppp->vj)
1543 		slhc_toss(ppp->vj);
1544 }
1545 
1546 static void
ppp_receive_nonmp_frame(struct ppp * ppp,struct sk_buff * skb)1547 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1548 {
1549 	struct sk_buff *ns;
1550 	int proto, len, npi;
1551 
1552 	/*
1553 	 * Decompress the frame, if compressed.
1554 	 * Note that some decompressors need to see uncompressed frames
1555 	 * that come in as well as compressed frames.
1556 	 */
1557 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)
1558 	    && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1559 		skb = ppp_decompress_frame(ppp, skb);
1560 
1561 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1562 		goto err;
1563 
1564 	proto = PPP_PROTO(skb);
1565 	switch (proto) {
1566 	case PPP_VJC_COMP:
1567 		/* decompress VJ compressed packets */
1568 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1569 			goto err;
1570 
1571 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1572 			/* copy to a new sk_buff with more tailroom */
1573 			ns = dev_alloc_skb(skb->len + 128);
1574 			if (!ns) {
1575 				printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1576 				goto err;
1577 			}
1578 			skb_reserve(ns, 2);
1579 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1580 			kfree_skb(skb);
1581 			skb = ns;
1582 		}
1583 		else
1584 			skb->ip_summed = CHECKSUM_NONE;
1585 
1586 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1587 		if (len <= 0) {
1588 			printk(KERN_DEBUG "PPP: VJ decompression error\n");
1589 			goto err;
1590 		}
1591 		len += 2;
1592 		if (len > skb->len)
1593 			skb_put(skb, len - skb->len);
1594 		else if (len < skb->len)
1595 			skb_trim(skb, len);
1596 		proto = PPP_IP;
1597 		break;
1598 
1599 	case PPP_VJC_UNCOMP:
1600 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1601 			goto err;
1602 
1603 		/* Until we fix the decompressor need to make sure
1604 		 * data portion is linear.
1605 		 */
1606 		if (!pskb_may_pull(skb, skb->len))
1607 			goto err;
1608 
1609 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1610 			printk(KERN_ERR "PPP: VJ uncompressed error\n");
1611 			goto err;
1612 		}
1613 		proto = PPP_IP;
1614 		break;
1615 
1616 	case PPP_CCP:
1617 		ppp_ccp_peek(ppp, skb, 1);
1618 		break;
1619 	}
1620 
1621 	++ppp->dev->stats.rx_packets;
1622 	ppp->dev->stats.rx_bytes += skb->len - 2;
1623 
1624 	npi = proto_to_npindex(proto);
1625 	if (npi < 0) {
1626 		/* control or unknown frame - pass it to pppd */
1627 		skb_queue_tail(&ppp->file.rq, skb);
1628 		/* limit queue length by dropping old frames */
1629 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1630 		       && (skb = skb_dequeue(&ppp->file.rq)))
1631 			kfree_skb(skb);
1632 		/* wake up any process polling or blocking on read */
1633 		wake_up_interruptible(&ppp->file.rwait);
1634 
1635 	} else {
1636 		/* network protocol frame - give it to the kernel */
1637 
1638 #ifdef CONFIG_PPP_FILTER
1639 		/* check if the packet passes the pass and active filters */
1640 		/* the filter instructions are constructed assuming
1641 		   a four-byte PPP header on each packet */
1642 		if (ppp->pass_filter || ppp->active_filter) {
1643 			if (skb_cloned(skb) &&
1644 			    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1645 				goto err;
1646 
1647 			*skb_push(skb, 2) = 0;
1648 			if (ppp->pass_filter
1649 			    && sk_run_filter(skb, ppp->pass_filter,
1650 					     ppp->pass_len) == 0) {
1651 				if (ppp->debug & 1)
1652 					printk(KERN_DEBUG "PPP: inbound frame "
1653 					       "not passed\n");
1654 				kfree_skb(skb);
1655 				return;
1656 			}
1657 			if (!(ppp->active_filter
1658 			      && sk_run_filter(skb, ppp->active_filter,
1659 					       ppp->active_len) == 0))
1660 				ppp->last_recv = jiffies;
1661 			__skb_pull(skb, 2);
1662 		} else
1663 #endif /* CONFIG_PPP_FILTER */
1664 			ppp->last_recv = jiffies;
1665 
1666 		if ((ppp->dev->flags & IFF_UP) == 0
1667 		    || ppp->npmode[npi] != NPMODE_PASS) {
1668 			kfree_skb(skb);
1669 		} else {
1670 			/* chop off protocol */
1671 			skb_pull_rcsum(skb, 2);
1672 			skb->dev = ppp->dev;
1673 			skb->protocol = htons(npindex_to_ethertype[npi]);
1674 			skb_reset_mac_header(skb);
1675 			netif_rx(skb);
1676 		}
1677 	}
1678 	return;
1679 
1680  err:
1681 	kfree_skb(skb);
1682 	ppp_receive_error(ppp);
1683 }
1684 
1685 static struct sk_buff *
ppp_decompress_frame(struct ppp * ppp,struct sk_buff * skb)1686 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1687 {
1688 	int proto = PPP_PROTO(skb);
1689 	struct sk_buff *ns;
1690 	int len;
1691 
1692 	/* Until we fix all the decompressor's need to make sure
1693 	 * data portion is linear.
1694 	 */
1695 	if (!pskb_may_pull(skb, skb->len))
1696 		goto err;
1697 
1698 	if (proto == PPP_COMP) {
1699 		int obuff_size;
1700 
1701 		switch(ppp->rcomp->compress_proto) {
1702 		case CI_MPPE:
1703 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1704 			break;
1705 		default:
1706 			obuff_size = ppp->mru + PPP_HDRLEN;
1707 			break;
1708 		}
1709 
1710 		ns = dev_alloc_skb(obuff_size);
1711 		if (!ns) {
1712 			printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1713 			goto err;
1714 		}
1715 		/* the decompressor still expects the A/C bytes in the hdr */
1716 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1717 				skb->len + 2, ns->data, obuff_size);
1718 		if (len < 0) {
1719 			/* Pass the compressed frame to pppd as an
1720 			   error indication. */
1721 			if (len == DECOMP_FATALERROR)
1722 				ppp->rstate |= SC_DC_FERROR;
1723 			kfree_skb(ns);
1724 			goto err;
1725 		}
1726 
1727 		kfree_skb(skb);
1728 		skb = ns;
1729 		skb_put(skb, len);
1730 		skb_pull(skb, 2);	/* pull off the A/C bytes */
1731 
1732 	} else {
1733 		/* Uncompressed frame - pass to decompressor so it
1734 		   can update its dictionary if necessary. */
1735 		if (ppp->rcomp->incomp)
1736 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1737 					   skb->len + 2);
1738 	}
1739 
1740 	return skb;
1741 
1742  err:
1743 	ppp->rstate |= SC_DC_ERROR;
1744 	ppp_receive_error(ppp);
1745 	return skb;
1746 }
1747 
1748 #ifdef CONFIG_PPP_MULTILINK
1749 /*
1750  * Receive a multilink frame.
1751  * We put it on the reconstruction queue and then pull off
1752  * as many completed frames as we can.
1753  */
1754 static void
ppp_receive_mp_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1755 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1756 {
1757 	u32 mask, seq;
1758 	struct channel *ch;
1759 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1760 
1761 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1762 		goto err;		/* no good, throw it away */
1763 
1764 	/* Decode sequence number and begin/end bits */
1765 	if (ppp->flags & SC_MP_SHORTSEQ) {
1766 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1767 		mask = 0xfff;
1768 	} else {
1769 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1770 		mask = 0xffffff;
1771 	}
1772 	skb->BEbits = skb->data[2];
1773 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1774 
1775 	/*
1776 	 * Do protocol ID decompression on the first fragment of each packet.
1777 	 */
1778 	if ((skb->BEbits & B) && (skb->data[0] & 1))
1779 		*skb_push(skb, 1) = 0;
1780 
1781 	/*
1782 	 * Expand sequence number to 32 bits, making it as close
1783 	 * as possible to ppp->minseq.
1784 	 */
1785 	seq |= ppp->minseq & ~mask;
1786 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1787 		seq += mask + 1;
1788 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1789 		seq -= mask + 1;	/* should never happen */
1790 	skb->sequence = seq;
1791 	pch->lastseq = seq;
1792 
1793 	/*
1794 	 * If this packet comes before the next one we were expecting,
1795 	 * drop it.
1796 	 */
1797 	if (seq_before(seq, ppp->nextseq)) {
1798 		kfree_skb(skb);
1799 		++ppp->dev->stats.rx_dropped;
1800 		ppp_receive_error(ppp);
1801 		return;
1802 	}
1803 
1804 	/*
1805 	 * Reevaluate minseq, the minimum over all channels of the
1806 	 * last sequence number received on each channel.  Because of
1807 	 * the increasing sequence number rule, we know that any fragment
1808 	 * before `minseq' which hasn't arrived is never going to arrive.
1809 	 * The list of channels can't change because we have the receive
1810 	 * side of the ppp unit locked.
1811 	 */
1812 	list_for_each_entry(ch, &ppp->channels, clist) {
1813 		if (seq_before(ch->lastseq, seq))
1814 			seq = ch->lastseq;
1815 	}
1816 	if (seq_before(ppp->minseq, seq))
1817 		ppp->minseq = seq;
1818 
1819 	/* Put the fragment on the reconstruction queue */
1820 	ppp_mp_insert(ppp, skb);
1821 
1822 	/* If the queue is getting long, don't wait any longer for packets
1823 	   before the start of the queue. */
1824 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1825 		struct sk_buff *skb = skb_peek(&ppp->mrq);
1826 		if (seq_before(ppp->minseq, skb->sequence))
1827 			ppp->minseq = skb->sequence;
1828 	}
1829 
1830 	/* Pull completed packets off the queue and receive them. */
1831 	while ((skb = ppp_mp_reconstruct(ppp)))
1832 		ppp_receive_nonmp_frame(ppp, skb);
1833 
1834 	return;
1835 
1836  err:
1837 	kfree_skb(skb);
1838 	ppp_receive_error(ppp);
1839 }
1840 
1841 /*
1842  * Insert a fragment on the MP reconstruction queue.
1843  * The queue is ordered by increasing sequence number.
1844  */
1845 static void
ppp_mp_insert(struct ppp * ppp,struct sk_buff * skb)1846 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1847 {
1848 	struct sk_buff *p;
1849 	struct sk_buff_head *list = &ppp->mrq;
1850 	u32 seq = skb->sequence;
1851 
1852 	/* N.B. we don't need to lock the list lock because we have the
1853 	   ppp unit receive-side lock. */
1854 	skb_queue_walk(list, p) {
1855 		if (seq_before(seq, p->sequence))
1856 			break;
1857 	}
1858 	__skb_queue_before(list, p, skb);
1859 }
1860 
1861 /*
1862  * Reconstruct a packet from the MP fragment queue.
1863  * We go through increasing sequence numbers until we find a
1864  * complete packet, or we get to the sequence number for a fragment
1865  * which hasn't arrived but might still do so.
1866  */
1867 static struct sk_buff *
ppp_mp_reconstruct(struct ppp * ppp)1868 ppp_mp_reconstruct(struct ppp *ppp)
1869 {
1870 	u32 seq = ppp->nextseq;
1871 	u32 minseq = ppp->minseq;
1872 	struct sk_buff_head *list = &ppp->mrq;
1873 	struct sk_buff *p, *next;
1874 	struct sk_buff *head, *tail;
1875 	struct sk_buff *skb = NULL;
1876 	int lost = 0, len = 0;
1877 
1878 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
1879 		return NULL;
1880 	head = list->next;
1881 	tail = NULL;
1882 	for (p = head; p != (struct sk_buff *) list; p = next) {
1883 		next = p->next;
1884 		if (seq_before(p->sequence, seq)) {
1885 			/* this can't happen, anyway ignore the skb */
1886 			printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1887 			       p->sequence, seq);
1888 			head = next;
1889 			continue;
1890 		}
1891 		if (p->sequence != seq) {
1892 			/* Fragment `seq' is missing.  If it is after
1893 			   minseq, it might arrive later, so stop here. */
1894 			if (seq_after(seq, minseq))
1895 				break;
1896 			/* Fragment `seq' is lost, keep going. */
1897 			lost = 1;
1898 			seq = seq_before(minseq, p->sequence)?
1899 				minseq + 1: p->sequence;
1900 			next = p;
1901 			continue;
1902 		}
1903 
1904 		/*
1905 		 * At this point we know that all the fragments from
1906 		 * ppp->nextseq to seq are either present or lost.
1907 		 * Also, there are no complete packets in the queue
1908 		 * that have no missing fragments and end before this
1909 		 * fragment.
1910 		 */
1911 
1912 		/* B bit set indicates this fragment starts a packet */
1913 		if (p->BEbits & B) {
1914 			head = p;
1915 			lost = 0;
1916 			len = 0;
1917 		}
1918 
1919 		len += p->len;
1920 
1921 		/* Got a complete packet yet? */
1922 		if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1923 			if (len > ppp->mrru + 2) {
1924 				++ppp->dev->stats.rx_length_errors;
1925 				printk(KERN_DEBUG "PPP: reconstructed packet"
1926 				       " is too long (%d)\n", len);
1927 			} else if (p == head) {
1928 				/* fragment is complete packet - reuse skb */
1929 				tail = p;
1930 				skb = skb_get(p);
1931 				break;
1932 			} else if ((skb = dev_alloc_skb(len)) == NULL) {
1933 				++ppp->dev->stats.rx_missed_errors;
1934 				printk(KERN_DEBUG "PPP: no memory for "
1935 				       "reconstructed packet");
1936 			} else {
1937 				tail = p;
1938 				break;
1939 			}
1940 			ppp->nextseq = seq + 1;
1941 		}
1942 
1943 		/*
1944 		 * If this is the ending fragment of a packet,
1945 		 * and we haven't found a complete valid packet yet,
1946 		 * we can discard up to and including this fragment.
1947 		 */
1948 		if (p->BEbits & E)
1949 			head = next;
1950 
1951 		++seq;
1952 	}
1953 
1954 	/* If we have a complete packet, copy it all into one skb. */
1955 	if (tail != NULL) {
1956 		/* If we have discarded any fragments,
1957 		   signal a receive error. */
1958 		if (head->sequence != ppp->nextseq) {
1959 			if (ppp->debug & 1)
1960 				printk(KERN_DEBUG "  missed pkts %u..%u\n",
1961 				       ppp->nextseq, head->sequence-1);
1962 			++ppp->dev->stats.rx_dropped;
1963 			ppp_receive_error(ppp);
1964 		}
1965 
1966 		if (head != tail)
1967 			/* copy to a single skb */
1968 			for (p = head; p != tail->next; p = p->next)
1969 				skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1970 		ppp->nextseq = tail->sequence + 1;
1971 		head = tail->next;
1972 	}
1973 
1974 	/* Discard all the skbuffs that we have copied the data out of
1975 	   or that we can't use. */
1976 	while ((p = list->next) != head) {
1977 		__skb_unlink(p, list);
1978 		kfree_skb(p);
1979 	}
1980 
1981 	return skb;
1982 }
1983 #endif /* CONFIG_PPP_MULTILINK */
1984 
1985 /*
1986  * Channel interface.
1987  */
1988 
1989 /*
1990  * Create a new, unattached ppp channel.
1991  */
1992 int
ppp_register_channel(struct ppp_channel * chan)1993 ppp_register_channel(struct ppp_channel *chan)
1994 {
1995 	struct channel *pch;
1996 
1997 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
1998 	if (!pch)
1999 		return -ENOMEM;
2000 	pch->ppp = NULL;
2001 	pch->chan = chan;
2002 	chan->ppp = pch;
2003 	init_ppp_file(&pch->file, CHANNEL);
2004 	pch->file.hdrlen = chan->hdrlen;
2005 #ifdef CONFIG_PPP_MULTILINK
2006 	pch->lastseq = -1;
2007 #endif /* CONFIG_PPP_MULTILINK */
2008 	init_rwsem(&pch->chan_sem);
2009 	spin_lock_init(&pch->downl);
2010 	rwlock_init(&pch->upl);
2011 	spin_lock_bh(&all_channels_lock);
2012 	pch->file.index = ++last_channel_index;
2013 	list_add(&pch->list, &new_channels);
2014 	atomic_inc(&channel_count);
2015 	spin_unlock_bh(&all_channels_lock);
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Return the index of a channel.
2021  */
ppp_channel_index(struct ppp_channel * chan)2022 int ppp_channel_index(struct ppp_channel *chan)
2023 {
2024 	struct channel *pch = chan->ppp;
2025 
2026 	if (pch)
2027 		return pch->file.index;
2028 	return -1;
2029 }
2030 
2031 /*
2032  * Return the PPP unit number to which a channel is connected.
2033  */
ppp_unit_number(struct ppp_channel * chan)2034 int ppp_unit_number(struct ppp_channel *chan)
2035 {
2036 	struct channel *pch = chan->ppp;
2037 	int unit = -1;
2038 
2039 	if (pch) {
2040 		read_lock_bh(&pch->upl);
2041 		if (pch->ppp)
2042 			unit = pch->ppp->file.index;
2043 		read_unlock_bh(&pch->upl);
2044 	}
2045 	return unit;
2046 }
2047 
2048 /*
2049  * Disconnect a channel from the generic layer.
2050  * This must be called in process context.
2051  */
2052 void
ppp_unregister_channel(struct ppp_channel * chan)2053 ppp_unregister_channel(struct ppp_channel *chan)
2054 {
2055 	struct channel *pch = chan->ppp;
2056 
2057 	if (!pch)
2058 		return;		/* should never happen */
2059 	chan->ppp = NULL;
2060 
2061 	/*
2062 	 * This ensures that we have returned from any calls into the
2063 	 * the channel's start_xmit or ioctl routine before we proceed.
2064 	 */
2065 	down_write(&pch->chan_sem);
2066 	spin_lock_bh(&pch->downl);
2067 	pch->chan = NULL;
2068 	spin_unlock_bh(&pch->downl);
2069 	up_write(&pch->chan_sem);
2070 	ppp_disconnect_channel(pch);
2071 	spin_lock_bh(&all_channels_lock);
2072 	list_del(&pch->list);
2073 	spin_unlock_bh(&all_channels_lock);
2074 	pch->file.dead = 1;
2075 	wake_up_interruptible(&pch->file.rwait);
2076 	if (atomic_dec_and_test(&pch->file.refcnt))
2077 		ppp_destroy_channel(pch);
2078 }
2079 
2080 /*
2081  * Callback from a channel when it can accept more to transmit.
2082  * This should be called at BH/softirq level, not interrupt level.
2083  */
2084 void
ppp_output_wakeup(struct ppp_channel * chan)2085 ppp_output_wakeup(struct ppp_channel *chan)
2086 {
2087 	struct channel *pch = chan->ppp;
2088 
2089 	if (!pch)
2090 		return;
2091 	ppp_channel_push(pch);
2092 }
2093 
2094 /*
2095  * Compression control.
2096  */
2097 
2098 /* Process the PPPIOCSCOMPRESS ioctl. */
2099 static int
ppp_set_compress(struct ppp * ppp,unsigned long arg)2100 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2101 {
2102 	int err;
2103 	struct compressor *cp, *ocomp;
2104 	struct ppp_option_data data;
2105 	void *state, *ostate;
2106 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2107 
2108 	err = -EFAULT;
2109 	if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2110 	    || (data.length <= CCP_MAX_OPTION_LENGTH
2111 		&& copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2112 		goto out;
2113 	err = -EINVAL;
2114 	if (data.length > CCP_MAX_OPTION_LENGTH
2115 	    || ccp_option[1] < 2 || ccp_option[1] > data.length)
2116 		goto out;
2117 
2118 	cp = try_then_request_module(
2119 		find_compressor(ccp_option[0]),
2120 		"ppp-compress-%d", ccp_option[0]);
2121 	if (!cp)
2122 		goto out;
2123 
2124 	err = -ENOBUFS;
2125 	if (data.transmit) {
2126 		state = cp->comp_alloc(ccp_option, data.length);
2127 		if (state) {
2128 			ppp_xmit_lock(ppp);
2129 			ppp->xstate &= ~SC_COMP_RUN;
2130 			ocomp = ppp->xcomp;
2131 			ostate = ppp->xc_state;
2132 			ppp->xcomp = cp;
2133 			ppp->xc_state = state;
2134 			ppp_xmit_unlock(ppp);
2135 			if (ostate) {
2136 				ocomp->comp_free(ostate);
2137 				module_put(ocomp->owner);
2138 			}
2139 			err = 0;
2140 		} else
2141 			module_put(cp->owner);
2142 
2143 	} else {
2144 		state = cp->decomp_alloc(ccp_option, data.length);
2145 		if (state) {
2146 			ppp_recv_lock(ppp);
2147 			ppp->rstate &= ~SC_DECOMP_RUN;
2148 			ocomp = ppp->rcomp;
2149 			ostate = ppp->rc_state;
2150 			ppp->rcomp = cp;
2151 			ppp->rc_state = state;
2152 			ppp_recv_unlock(ppp);
2153 			if (ostate) {
2154 				ocomp->decomp_free(ostate);
2155 				module_put(ocomp->owner);
2156 			}
2157 			err = 0;
2158 		} else
2159 			module_put(cp->owner);
2160 	}
2161 
2162  out:
2163 	return err;
2164 }
2165 
2166 /*
2167  * Look at a CCP packet and update our state accordingly.
2168  * We assume the caller has the xmit or recv path locked.
2169  */
2170 static void
ppp_ccp_peek(struct ppp * ppp,struct sk_buff * skb,int inbound)2171 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2172 {
2173 	unsigned char *dp;
2174 	int len;
2175 
2176 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2177 		return;	/* no header */
2178 	dp = skb->data + 2;
2179 
2180 	switch (CCP_CODE(dp)) {
2181 	case CCP_CONFREQ:
2182 
2183 		/* A ConfReq starts negotiation of compression
2184 		 * in one direction of transmission,
2185 		 * and hence brings it down...but which way?
2186 		 *
2187 		 * Remember:
2188 		 * A ConfReq indicates what the sender would like to receive
2189 		 */
2190 		if(inbound)
2191 			/* He is proposing what I should send */
2192 			ppp->xstate &= ~SC_COMP_RUN;
2193 		else
2194 			/* I am proposing to what he should send */
2195 			ppp->rstate &= ~SC_DECOMP_RUN;
2196 
2197 		break;
2198 
2199 	case CCP_TERMREQ:
2200 	case CCP_TERMACK:
2201 		/*
2202 		 * CCP is going down, both directions of transmission
2203 		 */
2204 		ppp->rstate &= ~SC_DECOMP_RUN;
2205 		ppp->xstate &= ~SC_COMP_RUN;
2206 		break;
2207 
2208 	case CCP_CONFACK:
2209 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2210 			break;
2211 		len = CCP_LENGTH(dp);
2212 		if (!pskb_may_pull(skb, len + 2))
2213 			return;		/* too short */
2214 		dp += CCP_HDRLEN;
2215 		len -= CCP_HDRLEN;
2216 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2217 			break;
2218 		if (inbound) {
2219 			/* we will start receiving compressed packets */
2220 			if (!ppp->rc_state)
2221 				break;
2222 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2223 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2224 				ppp->rstate |= SC_DECOMP_RUN;
2225 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2226 			}
2227 		} else {
2228 			/* we will soon start sending compressed packets */
2229 			if (!ppp->xc_state)
2230 				break;
2231 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2232 					ppp->file.index, 0, ppp->debug))
2233 				ppp->xstate |= SC_COMP_RUN;
2234 		}
2235 		break;
2236 
2237 	case CCP_RESETACK:
2238 		/* reset the [de]compressor */
2239 		if ((ppp->flags & SC_CCP_UP) == 0)
2240 			break;
2241 		if (inbound) {
2242 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2243 				ppp->rcomp->decomp_reset(ppp->rc_state);
2244 				ppp->rstate &= ~SC_DC_ERROR;
2245 			}
2246 		} else {
2247 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2248 				ppp->xcomp->comp_reset(ppp->xc_state);
2249 		}
2250 		break;
2251 	}
2252 }
2253 
2254 /* Free up compression resources. */
2255 static void
ppp_ccp_closed(struct ppp * ppp)2256 ppp_ccp_closed(struct ppp *ppp)
2257 {
2258 	void *xstate, *rstate;
2259 	struct compressor *xcomp, *rcomp;
2260 
2261 	ppp_lock(ppp);
2262 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2263 	ppp->xstate = 0;
2264 	xcomp = ppp->xcomp;
2265 	xstate = ppp->xc_state;
2266 	ppp->xc_state = NULL;
2267 	ppp->rstate = 0;
2268 	rcomp = ppp->rcomp;
2269 	rstate = ppp->rc_state;
2270 	ppp->rc_state = NULL;
2271 	ppp_unlock(ppp);
2272 
2273 	if (xstate) {
2274 		xcomp->comp_free(xstate);
2275 		module_put(xcomp->owner);
2276 	}
2277 	if (rstate) {
2278 		rcomp->decomp_free(rstate);
2279 		module_put(rcomp->owner);
2280 	}
2281 }
2282 
2283 /* List of compressors. */
2284 static LIST_HEAD(compressor_list);
2285 static DEFINE_SPINLOCK(compressor_list_lock);
2286 
2287 struct compressor_entry {
2288 	struct list_head list;
2289 	struct compressor *comp;
2290 };
2291 
2292 static struct compressor_entry *
find_comp_entry(int proto)2293 find_comp_entry(int proto)
2294 {
2295 	struct compressor_entry *ce;
2296 
2297 	list_for_each_entry(ce, &compressor_list, list) {
2298 		if (ce->comp->compress_proto == proto)
2299 			return ce;
2300 	}
2301 	return NULL;
2302 }
2303 
2304 /* Register a compressor */
2305 int
ppp_register_compressor(struct compressor * cp)2306 ppp_register_compressor(struct compressor *cp)
2307 {
2308 	struct compressor_entry *ce;
2309 	int ret;
2310 	spin_lock(&compressor_list_lock);
2311 	ret = -EEXIST;
2312 	if (find_comp_entry(cp->compress_proto))
2313 		goto out;
2314 	ret = -ENOMEM;
2315 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2316 	if (!ce)
2317 		goto out;
2318 	ret = 0;
2319 	ce->comp = cp;
2320 	list_add(&ce->list, &compressor_list);
2321  out:
2322 	spin_unlock(&compressor_list_lock);
2323 	return ret;
2324 }
2325 
2326 /* Unregister a compressor */
2327 void
ppp_unregister_compressor(struct compressor * cp)2328 ppp_unregister_compressor(struct compressor *cp)
2329 {
2330 	struct compressor_entry *ce;
2331 
2332 	spin_lock(&compressor_list_lock);
2333 	ce = find_comp_entry(cp->compress_proto);
2334 	if (ce && ce->comp == cp) {
2335 		list_del(&ce->list);
2336 		kfree(ce);
2337 	}
2338 	spin_unlock(&compressor_list_lock);
2339 }
2340 
2341 /* Find a compressor. */
2342 static struct compressor *
find_compressor(int type)2343 find_compressor(int type)
2344 {
2345 	struct compressor_entry *ce;
2346 	struct compressor *cp = NULL;
2347 
2348 	spin_lock(&compressor_list_lock);
2349 	ce = find_comp_entry(type);
2350 	if (ce) {
2351 		cp = ce->comp;
2352 		if (!try_module_get(cp->owner))
2353 			cp = NULL;
2354 	}
2355 	spin_unlock(&compressor_list_lock);
2356 	return cp;
2357 }
2358 
2359 /*
2360  * Miscelleneous stuff.
2361  */
2362 
2363 static void
ppp_get_stats(struct ppp * ppp,struct ppp_stats * st)2364 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2365 {
2366 	struct slcompress *vj = ppp->vj;
2367 
2368 	memset(st, 0, sizeof(*st));
2369 	st->p.ppp_ipackets = ppp->dev->stats.rx_packets;
2370 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2371 	st->p.ppp_ibytes = ppp->dev->stats.rx_bytes;
2372 	st->p.ppp_opackets = ppp->dev->stats.tx_packets;
2373 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2374 	st->p.ppp_obytes = ppp->dev->stats.tx_bytes;
2375 	if (!vj)
2376 		return;
2377 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2378 	st->vj.vjs_compressed = vj->sls_o_compressed;
2379 	st->vj.vjs_searches = vj->sls_o_searches;
2380 	st->vj.vjs_misses = vj->sls_o_misses;
2381 	st->vj.vjs_errorin = vj->sls_i_error;
2382 	st->vj.vjs_tossed = vj->sls_i_tossed;
2383 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2384 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2385 }
2386 
2387 /*
2388  * Stuff for handling the lists of ppp units and channels
2389  * and for initialization.
2390  */
2391 
2392 /*
2393  * Create a new ppp interface unit.  Fails if it can't allocate memory
2394  * or if there is already a unit with the requested number.
2395  * unit == -1 means allocate a new number.
2396  */
2397 static struct ppp *
ppp_create_interface(int unit,int * retp)2398 ppp_create_interface(int unit, int *retp)
2399 {
2400 	struct ppp *ppp;
2401 	struct net_device *dev = NULL;
2402 	int ret = -ENOMEM;
2403 	int i;
2404 
2405 	dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2406 	if (!dev)
2407 		goto out1;
2408 
2409 	ppp = netdev_priv(dev);
2410 	ppp->dev = dev;
2411 	ppp->mru = PPP_MRU;
2412 	init_ppp_file(&ppp->file, INTERFACE);
2413 	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2414 	for (i = 0; i < NUM_NP; ++i)
2415 		ppp->npmode[i] = NPMODE_PASS;
2416 	INIT_LIST_HEAD(&ppp->channels);
2417 	spin_lock_init(&ppp->rlock);
2418 	spin_lock_init(&ppp->wlock);
2419 #ifdef CONFIG_PPP_MULTILINK
2420 	ppp->minseq = -1;
2421 	skb_queue_head_init(&ppp->mrq);
2422 #endif /* CONFIG_PPP_MULTILINK */
2423 
2424 	ret = -EEXIST;
2425 	mutex_lock(&all_ppp_mutex);
2426 
2427 	if (unit < 0) {
2428 		unit = unit_get(&ppp_units_idr, ppp);
2429 		if (unit < 0) {
2430 			*retp = unit;
2431 			goto out2;
2432 		}
2433 	} else {
2434 		if (unit_find(&ppp_units_idr, unit))
2435 			goto out2; /* unit already exists */
2436 		/*
2437 		 * if caller need a specified unit number
2438 		 * lets try to satisfy him, otherwise --
2439 		 * he should better ask us for new unit number
2440 		 *
2441 		 * NOTE: yes I know that returning EEXIST it's not
2442 		 * fair but at least pppd will ask us to allocate
2443 		 * new unit in this case so user is happy :)
2444 		 */
2445 		unit = unit_set(&ppp_units_idr, ppp, unit);
2446 		if (unit < 0)
2447 			goto out2;
2448 	}
2449 
2450 	/* Initialize the new ppp unit */
2451 	ppp->file.index = unit;
2452 	sprintf(dev->name, "ppp%d", unit);
2453 
2454 	ret = register_netdev(dev);
2455 	if (ret != 0) {
2456 		unit_put(&ppp_units_idr, unit);
2457 		printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2458 		       dev->name, ret);
2459 		goto out2;
2460 	}
2461 
2462 	atomic_inc(&ppp_unit_count);
2463 	mutex_unlock(&all_ppp_mutex);
2464 
2465 	*retp = 0;
2466 	return ppp;
2467 
2468 out2:
2469 	mutex_unlock(&all_ppp_mutex);
2470 	free_netdev(dev);
2471 out1:
2472 	*retp = ret;
2473 	return NULL;
2474 }
2475 
2476 /*
2477  * Initialize a ppp_file structure.
2478  */
2479 static void
init_ppp_file(struct ppp_file * pf,int kind)2480 init_ppp_file(struct ppp_file *pf, int kind)
2481 {
2482 	pf->kind = kind;
2483 	skb_queue_head_init(&pf->xq);
2484 	skb_queue_head_init(&pf->rq);
2485 	atomic_set(&pf->refcnt, 1);
2486 	init_waitqueue_head(&pf->rwait);
2487 }
2488 
2489 /*
2490  * Take down a ppp interface unit - called when the owning file
2491  * (the one that created the unit) is closed or detached.
2492  */
ppp_shutdown_interface(struct ppp * ppp)2493 static void ppp_shutdown_interface(struct ppp *ppp)
2494 {
2495 	mutex_lock(&all_ppp_mutex);
2496 	/* This will call dev_close() for us. */
2497 	ppp_lock(ppp);
2498 	if (!ppp->closing) {
2499 		ppp->closing = 1;
2500 		ppp_unlock(ppp);
2501 		unregister_netdev(ppp->dev);
2502 	} else
2503 		ppp_unlock(ppp);
2504 
2505 	unit_put(&ppp_units_idr, ppp->file.index);
2506 	ppp->file.dead = 1;
2507 	ppp->owner = NULL;
2508 	wake_up_interruptible(&ppp->file.rwait);
2509 	mutex_unlock(&all_ppp_mutex);
2510 }
2511 
2512 /*
2513  * Free the memory used by a ppp unit.  This is only called once
2514  * there are no channels connected to the unit and no file structs
2515  * that reference the unit.
2516  */
ppp_destroy_interface(struct ppp * ppp)2517 static void ppp_destroy_interface(struct ppp *ppp)
2518 {
2519 	atomic_dec(&ppp_unit_count);
2520 
2521 	if (!ppp->file.dead || ppp->n_channels) {
2522 		/* "can't happen" */
2523 		printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2524 		       "n_channels=%d !\n", ppp, ppp->file.dead,
2525 		       ppp->n_channels);
2526 		return;
2527 	}
2528 
2529 	ppp_ccp_closed(ppp);
2530 	if (ppp->vj) {
2531 		slhc_free(ppp->vj);
2532 		ppp->vj = NULL;
2533 	}
2534 	skb_queue_purge(&ppp->file.xq);
2535 	skb_queue_purge(&ppp->file.rq);
2536 #ifdef CONFIG_PPP_MULTILINK
2537 	skb_queue_purge(&ppp->mrq);
2538 #endif /* CONFIG_PPP_MULTILINK */
2539 #ifdef CONFIG_PPP_FILTER
2540 	kfree(ppp->pass_filter);
2541 	ppp->pass_filter = NULL;
2542 	kfree(ppp->active_filter);
2543 	ppp->active_filter = NULL;
2544 #endif /* CONFIG_PPP_FILTER */
2545 
2546 	if (ppp->xmit_pending)
2547 		kfree_skb(ppp->xmit_pending);
2548 
2549 	free_netdev(ppp->dev);
2550 }
2551 
2552 /*
2553  * Locate an existing ppp unit.
2554  * The caller should have locked the all_ppp_mutex.
2555  */
2556 static struct ppp *
ppp_find_unit(int unit)2557 ppp_find_unit(int unit)
2558 {
2559 	return unit_find(&ppp_units_idr, unit);
2560 }
2561 
2562 /*
2563  * Locate an existing ppp channel.
2564  * The caller should have locked the all_channels_lock.
2565  * First we look in the new_channels list, then in the
2566  * all_channels list.  If found in the new_channels list,
2567  * we move it to the all_channels list.  This is for speed
2568  * when we have a lot of channels in use.
2569  */
2570 static struct channel *
ppp_find_channel(int unit)2571 ppp_find_channel(int unit)
2572 {
2573 	struct channel *pch;
2574 
2575 	list_for_each_entry(pch, &new_channels, list) {
2576 		if (pch->file.index == unit) {
2577 			list_move(&pch->list, &all_channels);
2578 			return pch;
2579 		}
2580 	}
2581 	list_for_each_entry(pch, &all_channels, list) {
2582 		if (pch->file.index == unit)
2583 			return pch;
2584 	}
2585 	return NULL;
2586 }
2587 
2588 /*
2589  * Connect a PPP channel to a PPP interface unit.
2590  */
2591 static int
ppp_connect_channel(struct channel * pch,int unit)2592 ppp_connect_channel(struct channel *pch, int unit)
2593 {
2594 	struct ppp *ppp;
2595 	int ret = -ENXIO;
2596 	int hdrlen;
2597 
2598 	mutex_lock(&all_ppp_mutex);
2599 	ppp = ppp_find_unit(unit);
2600 	if (!ppp)
2601 		goto out;
2602 	write_lock_bh(&pch->upl);
2603 	ret = -EINVAL;
2604 	if (pch->ppp)
2605 		goto outl;
2606 
2607 	ppp_lock(ppp);
2608 	if (pch->file.hdrlen > ppp->file.hdrlen)
2609 		ppp->file.hdrlen = pch->file.hdrlen;
2610 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2611 	if (hdrlen > ppp->dev->hard_header_len)
2612 		ppp->dev->hard_header_len = hdrlen;
2613 	list_add_tail(&pch->clist, &ppp->channels);
2614 	++ppp->n_channels;
2615 	pch->ppp = ppp;
2616 	atomic_inc(&ppp->file.refcnt);
2617 	ppp_unlock(ppp);
2618 	ret = 0;
2619 
2620  outl:
2621 	write_unlock_bh(&pch->upl);
2622  out:
2623 	mutex_unlock(&all_ppp_mutex);
2624 	return ret;
2625 }
2626 
2627 /*
2628  * Disconnect a channel from its ppp unit.
2629  */
2630 static int
ppp_disconnect_channel(struct channel * pch)2631 ppp_disconnect_channel(struct channel *pch)
2632 {
2633 	struct ppp *ppp;
2634 	int err = -EINVAL;
2635 
2636 	write_lock_bh(&pch->upl);
2637 	ppp = pch->ppp;
2638 	pch->ppp = NULL;
2639 	write_unlock_bh(&pch->upl);
2640 	if (ppp) {
2641 		/* remove it from the ppp unit's list */
2642 		ppp_lock(ppp);
2643 		list_del(&pch->clist);
2644 		if (--ppp->n_channels == 0)
2645 			wake_up_interruptible(&ppp->file.rwait);
2646 		ppp_unlock(ppp);
2647 		if (atomic_dec_and_test(&ppp->file.refcnt))
2648 			ppp_destroy_interface(ppp);
2649 		err = 0;
2650 	}
2651 	return err;
2652 }
2653 
2654 /*
2655  * Free up the resources used by a ppp channel.
2656  */
ppp_destroy_channel(struct channel * pch)2657 static void ppp_destroy_channel(struct channel *pch)
2658 {
2659 	atomic_dec(&channel_count);
2660 
2661 	if (!pch->file.dead) {
2662 		/* "can't happen" */
2663 		printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2664 		       pch);
2665 		return;
2666 	}
2667 	skb_queue_purge(&pch->file.xq);
2668 	skb_queue_purge(&pch->file.rq);
2669 	kfree(pch);
2670 }
2671 
ppp_cleanup(void)2672 static void __exit ppp_cleanup(void)
2673 {
2674 	/* should never happen */
2675 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2676 		printk(KERN_ERR "PPP: removing module but units remain!\n");
2677 	unregister_chrdev(PPP_MAJOR, "ppp");
2678 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2679 	class_destroy(ppp_class);
2680 	idr_destroy(&ppp_units_idr);
2681 }
2682 
2683 /*
2684  * Units handling. Caller must protect concurrent access
2685  * by holding all_ppp_mutex
2686  */
2687 
2688 /* associate pointer with specified number */
unit_set(struct idr * p,void * ptr,int n)2689 static int unit_set(struct idr *p, void *ptr, int n)
2690 {
2691 	int unit, err;
2692 
2693 again:
2694 	if (!idr_pre_get(p, GFP_KERNEL)) {
2695 		printk(KERN_ERR "PPP: No free memory for idr\n");
2696 		return -ENOMEM;
2697 	}
2698 
2699 	err = idr_get_new_above(p, ptr, n, &unit);
2700 	if (err == -EAGAIN)
2701 		goto again;
2702 
2703 	if (unit != n) {
2704 		idr_remove(p, unit);
2705 		return -EINVAL;
2706 	}
2707 
2708 	return unit;
2709 }
2710 
2711 /* get new free unit number and associate pointer with it */
unit_get(struct idr * p,void * ptr)2712 static int unit_get(struct idr *p, void *ptr)
2713 {
2714 	int unit, err;
2715 
2716 again:
2717 	if (!idr_pre_get(p, GFP_KERNEL)) {
2718 		printk(KERN_ERR "PPP: No free memory for idr\n");
2719 		return -ENOMEM;
2720 	}
2721 
2722 	err = idr_get_new_above(p, ptr, 0, &unit);
2723 	if (err == -EAGAIN)
2724 		goto again;
2725 
2726 	return unit;
2727 }
2728 
2729 /* put unit number back to a pool */
unit_put(struct idr * p,int n)2730 static void unit_put(struct idr *p, int n)
2731 {
2732 	idr_remove(p, n);
2733 }
2734 
2735 /* get pointer associated with the number */
unit_find(struct idr * p,int n)2736 static void *unit_find(struct idr *p, int n)
2737 {
2738 	return idr_find(p, n);
2739 }
2740 
2741 /* Module/initialization stuff */
2742 
2743 module_init(ppp_init);
2744 module_exit(ppp_cleanup);
2745 
2746 EXPORT_SYMBOL(ppp_register_channel);
2747 EXPORT_SYMBOL(ppp_unregister_channel);
2748 EXPORT_SYMBOL(ppp_channel_index);
2749 EXPORT_SYMBOL(ppp_unit_number);
2750 EXPORT_SYMBOL(ppp_input);
2751 EXPORT_SYMBOL(ppp_input_error);
2752 EXPORT_SYMBOL(ppp_output_wakeup);
2753 EXPORT_SYMBOL(ppp_register_compressor);
2754 EXPORT_SYMBOL(ppp_unregister_compressor);
2755 MODULE_LICENSE("GPL");
2756 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2757 MODULE_ALIAS("/dev/ppp");
2758