• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43 
44 #include "qlge.h"
45 
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48 
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53 
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |	*/
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65 
66 static int debug = 0x00007fff;	/* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76 
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79 	/* required last entry */
80 	{0,}
81 };
82 
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84 
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
ql_sem_trylock(struct ql_adapter * qdev,u32 sem_mask)89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91 	u32 sem_bits = 0;
92 
93 	switch (sem_mask) {
94 	case SEM_XGMAC0_MASK:
95 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 		break;
97 	case SEM_XGMAC1_MASK:
98 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 		break;
100 	case SEM_ICB_MASK:
101 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 		break;
103 	case SEM_MAC_ADDR_MASK:
104 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 		break;
106 	case SEM_FLASH_MASK:
107 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 		break;
109 	case SEM_PROBE_MASK:
110 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 		break;
112 	case SEM_RT_IDX_MASK:
113 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 		break;
115 	case SEM_PROC_REG_MASK:
116 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 		break;
118 	default:
119 		QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 		return -EINVAL;
121 	}
122 
123 	ql_write32(qdev, SEM, sem_bits | sem_mask);
124 	return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126 
ql_sem_spinlock(struct ql_adapter * qdev,u32 sem_mask)127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129 	unsigned int wait_count = 30;
130 	do {
131 		if (!ql_sem_trylock(qdev, sem_mask))
132 			return 0;
133 		udelay(100);
134 	} while (--wait_count);
135 	return -ETIMEDOUT;
136 }
137 
ql_sem_unlock(struct ql_adapter * qdev,u32 sem_mask)138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140 	ql_write32(qdev, SEM, sem_mask);
141 	ql_read32(qdev, SEM);	/* flush */
142 }
143 
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
ql_wait_reg_rdy(struct ql_adapter * qdev,u32 reg,u32 bit,u32 err_bit)149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151 	u32 temp;
152 	int count = UDELAY_COUNT;
153 
154 	while (count) {
155 		temp = ql_read32(qdev, reg);
156 
157 		/* check for errors */
158 		if (temp & err_bit) {
159 			QPRINTK(qdev, PROBE, ALERT,
160 				"register 0x%.08x access error, value = 0x%.08x!.\n",
161 				reg, temp);
162 			return -EIO;
163 		} else if (temp & bit)
164 			return 0;
165 		udelay(UDELAY_DELAY);
166 		count--;
167 	}
168 	QPRINTK(qdev, PROBE, ALERT,
169 		"Timed out waiting for reg %x to come ready.\n", reg);
170 	return -ETIMEDOUT;
171 }
172 
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
ql_wait_cfg(struct ql_adapter * qdev,u32 bit)176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178 	int count = UDELAY_COUNT;
179 	u32 temp;
180 
181 	while (count) {
182 		temp = ql_read32(qdev, CFG);
183 		if (temp & CFG_LE)
184 			return -EIO;
185 		if (!(temp & bit))
186 			return 0;
187 		udelay(UDELAY_DELAY);
188 		count--;
189 	}
190 	return -ETIMEDOUT;
191 }
192 
193 
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
ql_write_cfg(struct ql_adapter * qdev,void * ptr,int size,u32 bit,u16 q_id)197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 		 u16 q_id)
199 {
200 	u64 map;
201 	int status = 0;
202 	int direction;
203 	u32 mask;
204 	u32 value;
205 
206 	direction =
207 	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 	    PCI_DMA_FROMDEVICE;
209 
210 	map = pci_map_single(qdev->pdev, ptr, size, direction);
211 	if (pci_dma_mapping_error(qdev->pdev, map)) {
212 		QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 		return -ENOMEM;
214 	}
215 
216 	status = ql_wait_cfg(qdev, bit);
217 	if (status) {
218 		QPRINTK(qdev, IFUP, ERR,
219 			"Timed out waiting for CFG to come ready.\n");
220 		goto exit;
221 	}
222 
223 	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224 	if (status)
225 		goto exit;
226 	ql_write32(qdev, ICB_L, (u32) map);
227 	ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
229 
230 	mask = CFG_Q_MASK | (bit << 16);
231 	value = bit | (q_id << CFG_Q_SHIFT);
232 	ql_write32(qdev, CFG, (mask | value));
233 
234 	/*
235 	 * Wait for the bit to clear after signaling hw.
236 	 */
237 	status = ql_wait_cfg(qdev, bit);
238 exit:
239 	pci_unmap_single(qdev->pdev, map, size, direction);
240 	return status;
241 }
242 
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
ql_get_mac_addr_reg(struct ql_adapter * qdev,u32 type,u16 index,u32 * value)244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245 			u32 *value)
246 {
247 	u32 offset = 0;
248 	int status;
249 
250 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251 	if (status)
252 		return status;
253 	switch (type) {
254 	case MAC_ADDR_TYPE_MULTI_MAC:
255 	case MAC_ADDR_TYPE_CAM_MAC:
256 		{
257 			status =
258 			    ql_wait_reg_rdy(qdev,
259 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260 			if (status)
261 				goto exit;
262 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265 			status =
266 			    ql_wait_reg_rdy(qdev,
267 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268 			if (status)
269 				goto exit;
270 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
271 			status =
272 			    ql_wait_reg_rdy(qdev,
273 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274 			if (status)
275 				goto exit;
276 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279 			status =
280 			    ql_wait_reg_rdy(qdev,
281 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282 			if (status)
283 				goto exit;
284 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 			if (type == MAC_ADDR_TYPE_CAM_MAC) {
286 				status =
287 				    ql_wait_reg_rdy(qdev,
288 					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 				if (status)
290 					goto exit;
291 				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 				status =
295 				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296 						    MAC_ADDR_MR, 0);
297 				if (status)
298 					goto exit;
299 				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 			}
301 			break;
302 		}
303 	case MAC_ADDR_TYPE_VLAN:
304 	case MAC_ADDR_TYPE_MULTI_FLTR:
305 	default:
306 		QPRINTK(qdev, IFUP, CRIT,
307 			"Address type %d not yet supported.\n", type);
308 		status = -EPERM;
309 	}
310 exit:
311 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312 	return status;
313 }
314 
315 /* Set up a MAC, multicast or VLAN address for the
316  * inbound frame matching.
317  */
ql_set_mac_addr_reg(struct ql_adapter * qdev,u8 * addr,u32 type,u16 index)318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319 			       u16 index)
320 {
321 	u32 offset = 0;
322 	int status = 0;
323 
324 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325 	if (status)
326 		return status;
327 	switch (type) {
328 	case MAC_ADDR_TYPE_MULTI_MAC:
329 	case MAC_ADDR_TYPE_CAM_MAC:
330 		{
331 			u32 cam_output;
332 			u32 upper = (addr[0] << 8) | addr[1];
333 			u32 lower =
334 			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335 			    (addr[5]);
336 
337 			QPRINTK(qdev, IFUP, INFO,
338 				"Adding %s address %pM"
339 				" at index %d in the CAM.\n",
340 				((type ==
341 				  MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342 				 "UNICAST"), addr, index);
343 
344 			status =
345 			    ql_wait_reg_rdy(qdev,
346 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347 			if (status)
348 				goto exit;
349 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
351 				   type);	/* type */
352 			ql_write32(qdev, MAC_ADDR_DATA, lower);
353 			status =
354 			    ql_wait_reg_rdy(qdev,
355 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356 			if (status)
357 				goto exit;
358 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
360 				   type);	/* type */
361 			ql_write32(qdev, MAC_ADDR_DATA, upper);
362 			status =
363 			    ql_wait_reg_rdy(qdev,
364 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365 			if (status)
366 				goto exit;
367 			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
368 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
369 				   type);	/* type */
370 			/* This field should also include the queue id
371 			   and possibly the function id.  Right now we hardcode
372 			   the route field to NIC core.
373 			 */
374 			if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 				cam_output = (CAM_OUT_ROUTE_NIC |
376 					      (qdev->
377 					       func << CAM_OUT_FUNC_SHIFT) |
378 					      (qdev->
379 					       rss_ring_first_cq_id <<
380 					       CAM_OUT_CQ_ID_SHIFT));
381 				if (qdev->vlgrp)
382 					cam_output |= CAM_OUT_RV;
383 				/* route to NIC core */
384 				ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385 			}
386 			break;
387 		}
388 	case MAC_ADDR_TYPE_VLAN:
389 		{
390 			u32 enable_bit = *((u32 *) &addr[0]);
391 			/* For VLAN, the addr actually holds a bit that
392 			 * either enables or disables the vlan id we are
393 			 * addressing. It's either MAC_ADDR_E on or off.
394 			 * That's bit-27 we're talking about.
395 			 */
396 			QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 				(enable_bit ? "Adding" : "Removing"),
398 				index, (enable_bit ? "to" : "from"));
399 
400 			status =
401 			    ql_wait_reg_rdy(qdev,
402 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
403 			if (status)
404 				goto exit;
405 			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
406 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
407 				   type |	/* type */
408 				   enable_bit);	/* enable/disable */
409 			break;
410 		}
411 	case MAC_ADDR_TYPE_MULTI_FLTR:
412 	default:
413 		QPRINTK(qdev, IFUP, CRIT,
414 			"Address type %d not yet supported.\n", type);
415 		status = -EPERM;
416 	}
417 exit:
418 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419 	return status;
420 }
421 
422 /* Get a specific frame routing value from the CAM.
423  * Used for debug and reg dump.
424  */
ql_get_routing_reg(struct ql_adapter * qdev,u32 index,u32 * value)425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426 {
427 	int status = 0;
428 
429 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430 	if (status)
431 		goto exit;
432 
433 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
434 	if (status)
435 		goto exit;
436 
437 	ql_write32(qdev, RT_IDX,
438 		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
440 	if (status)
441 		goto exit;
442 	*value = ql_read32(qdev, RT_DATA);
443 exit:
444 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445 	return status;
446 }
447 
448 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
449  * to route different frame types to various inbound queues.  We send broadcast/
450  * multicast/error frames to the default queue for slow handling,
451  * and CAM hit/RSS frames to the fast handling queues.
452  */
ql_set_routing_reg(struct ql_adapter * qdev,u32 index,u32 mask,int enable)453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454 			      int enable)
455 {
456 	int status;
457 	u32 value = 0;
458 
459 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460 	if (status)
461 		return status;
462 
463 	QPRINTK(qdev, IFUP, DEBUG,
464 		"%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 		(enable ? "Adding" : "Removing"),
466 		((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 		((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468 		((index ==
469 		  RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 		((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 		((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 		((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 		((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 		((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 		((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 		((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 		((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 		((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 		((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 		((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 		((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 		((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 		(enable ? "to" : "from"));
484 
485 	switch (mask) {
486 	case RT_IDX_CAM_HIT:
487 		{
488 			value = RT_IDX_DST_CAM_Q |	/* dest */
489 			    RT_IDX_TYPE_NICQ |	/* type */
490 			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 			break;
492 		}
493 	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
494 		{
495 			value = RT_IDX_DST_DFLT_Q |	/* dest */
496 			    RT_IDX_TYPE_NICQ |	/* type */
497 			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 			break;
499 		}
500 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
501 		{
502 			value = RT_IDX_DST_DFLT_Q |	/* dest */
503 			    RT_IDX_TYPE_NICQ |	/* type */
504 			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 			break;
506 		}
507 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
508 		{
509 			value = RT_IDX_DST_DFLT_Q |	/* dest */
510 			    RT_IDX_TYPE_NICQ |	/* type */
511 			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 			break;
513 		}
514 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
515 		{
516 			value = RT_IDX_DST_CAM_Q |	/* dest */
517 			    RT_IDX_TYPE_NICQ |	/* type */
518 			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 			break;
520 		}
521 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
522 		{
523 			value = RT_IDX_DST_CAM_Q |	/* dest */
524 			    RT_IDX_TYPE_NICQ |	/* type */
525 			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526 			break;
527 		}
528 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
529 		{
530 			value = RT_IDX_DST_RSS |	/* dest */
531 			    RT_IDX_TYPE_NICQ |	/* type */
532 			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533 			break;
534 		}
535 	case 0:		/* Clear the E-bit on an entry. */
536 		{
537 			value = RT_IDX_DST_DFLT_Q |	/* dest */
538 			    RT_IDX_TYPE_NICQ |	/* type */
539 			    (index << RT_IDX_IDX_SHIFT);/* index */
540 			break;
541 		}
542 	default:
543 		QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544 			mask);
545 		status = -EPERM;
546 		goto exit;
547 	}
548 
549 	if (value) {
550 		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551 		if (status)
552 			goto exit;
553 		value |= (enable ? RT_IDX_E : 0);
554 		ql_write32(qdev, RT_IDX, value);
555 		ql_write32(qdev, RT_DATA, enable ? mask : 0);
556 	}
557 exit:
558 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559 	return status;
560 }
561 
ql_enable_interrupts(struct ql_adapter * qdev)562 static void ql_enable_interrupts(struct ql_adapter *qdev)
563 {
564 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565 }
566 
ql_disable_interrupts(struct ql_adapter * qdev)567 static void ql_disable_interrupts(struct ql_adapter *qdev)
568 {
569 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570 }
571 
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573  * Otherwise, we may have multiple outstanding workers and don't want to
574  * enable until the last one finishes. In this case, the irq_cnt gets
575  * incremented everytime we queue a worker and decremented everytime
576  * a worker finishes.  Once it hits zero we enable the interrupt.
577  */
ql_enable_completion_interrupt(struct ql_adapter * qdev,u32 intr)578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
579 {
580 	u32 var = 0;
581 	unsigned long hw_flags = 0;
582 	struct intr_context *ctx = qdev->intr_context + intr;
583 
584 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 		/* Always enable if we're MSIX multi interrupts and
586 		 * it's not the default (zeroeth) interrupt.
587 		 */
588 		ql_write32(qdev, INTR_EN,
589 			   ctx->intr_en_mask);
590 		var = ql_read32(qdev, STS);
591 		return var;
592 	}
593 
594 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 	if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 		ql_write32(qdev, INTR_EN,
597 			   ctx->intr_en_mask);
598 		var = ql_read32(qdev, STS);
599 	}
600 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601 	return var;
602 }
603 
ql_disable_completion_interrupt(struct ql_adapter * qdev,u32 intr)604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605 {
606 	u32 var = 0;
607 	unsigned long hw_flags;
608 	struct intr_context *ctx;
609 
610 	/* HW disables for us if we're MSIX multi interrupts and
611 	 * it's not the default (zeroeth) interrupt.
612 	 */
613 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614 		return 0;
615 
616 	ctx = qdev->intr_context + intr;
617 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 	if (!atomic_read(&ctx->irq_cnt)) {
619 		ql_write32(qdev, INTR_EN,
620 		ctx->intr_dis_mask);
621 		var = ql_read32(qdev, STS);
622 	}
623 	atomic_inc(&ctx->irq_cnt);
624 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
625 	return var;
626 }
627 
ql_enable_all_completion_interrupts(struct ql_adapter * qdev)628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629 {
630 	int i;
631 	for (i = 0; i < qdev->intr_count; i++) {
632 		/* The enable call does a atomic_dec_and_test
633 		 * and enables only if the result is zero.
634 		 * So we precharge it here.
635 		 */
636 		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637 			i == 0))
638 			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639 		ql_enable_completion_interrupt(qdev, i);
640 	}
641 
642 }
643 
ql_read_flash_word(struct ql_adapter * qdev,int offset,__le32 * data)644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
645 {
646 	int status = 0;
647 	/* wait for reg to come ready */
648 	status = ql_wait_reg_rdy(qdev,
649 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650 	if (status)
651 		goto exit;
652 	/* set up for reg read */
653 	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 	/* wait for reg to come ready */
655 	status = ql_wait_reg_rdy(qdev,
656 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657 	if (status)
658 		goto exit;
659 	 /* This data is stored on flash as an array of
660 	 * __le32.  Since ql_read32() returns cpu endian
661 	 * we need to swap it back.
662 	 */
663 	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
664 exit:
665 	return status;
666 }
667 
ql_get_flash_params(struct ql_adapter * qdev)668 static int ql_get_flash_params(struct ql_adapter *qdev)
669 {
670 	int i;
671 	int status;
672 	__le32 *p = (__le32 *)&qdev->flash;
673 	u32 offset = 0;
674 
675 	/* Second function's parameters follow the first
676 	 * function's.
677 	 */
678 	if (qdev->func)
679 		offset = sizeof(qdev->flash) / sizeof(u32);
680 
681 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682 		return -ETIMEDOUT;
683 
684 	for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685 		status = ql_read_flash_word(qdev, i+offset, p);
686 		if (status) {
687 			QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688 			goto exit;
689 		}
690 
691 	}
692 exit:
693 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
694 	return status;
695 }
696 
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698  * register pair.  Each read/write requires us to wait for the ready
699  * bit before reading/writing the data.
700  */
ql_write_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 data)701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702 {
703 	int status;
704 	/* wait for reg to come ready */
705 	status = ql_wait_reg_rdy(qdev,
706 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707 	if (status)
708 		return status;
709 	/* write the data to the data reg */
710 	ql_write32(qdev, XGMAC_DATA, data);
711 	/* trigger the write */
712 	ql_write32(qdev, XGMAC_ADDR, reg);
713 	return status;
714 }
715 
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717  * register pair.  Each read/write requires us to wait for the ready
718  * bit before reading/writing the data.
719  */
ql_read_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 * data)720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721 {
722 	int status = 0;
723 	/* wait for reg to come ready */
724 	status = ql_wait_reg_rdy(qdev,
725 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726 	if (status)
727 		goto exit;
728 	/* set up for reg read */
729 	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730 	/* wait for reg to come ready */
731 	status = ql_wait_reg_rdy(qdev,
732 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733 	if (status)
734 		goto exit;
735 	/* get the data */
736 	*data = ql_read32(qdev, XGMAC_DATA);
737 exit:
738 	return status;
739 }
740 
741 /* This is used for reading the 64-bit statistics regs. */
ql_read_xgmac_reg64(struct ql_adapter * qdev,u32 reg,u64 * data)742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743 {
744 	int status = 0;
745 	u32 hi = 0;
746 	u32 lo = 0;
747 
748 	status = ql_read_xgmac_reg(qdev, reg, &lo);
749 	if (status)
750 		goto exit;
751 
752 	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753 	if (status)
754 		goto exit;
755 
756 	*data = (u64) lo | ((u64) hi << 32);
757 
758 exit:
759 	return status;
760 }
761 
762 /* Take the MAC Core out of reset.
763  * Enable statistics counting.
764  * Take the transmitter/receiver out of reset.
765  * This functionality may be done in the MPI firmware at a
766  * later date.
767  */
ql_port_initialize(struct ql_adapter * qdev)768 static int ql_port_initialize(struct ql_adapter *qdev)
769 {
770 	int status = 0;
771 	u32 data;
772 
773 	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774 		/* Another function has the semaphore, so
775 		 * wait for the port init bit to come ready.
776 		 */
777 		QPRINTK(qdev, LINK, INFO,
778 			"Another function has the semaphore, so wait for the port init bit to come ready.\n");
779 		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780 		if (status) {
781 			QPRINTK(qdev, LINK, CRIT,
782 				"Port initialize timed out.\n");
783 		}
784 		return status;
785 	}
786 
787 	QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788 	/* Set the core reset. */
789 	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790 	if (status)
791 		goto end;
792 	data |= GLOBAL_CFG_RESET;
793 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794 	if (status)
795 		goto end;
796 
797 	/* Clear the core reset and turn on jumbo for receiver. */
798 	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
799 	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
800 	data |= GLOBAL_CFG_TX_STAT_EN;
801 	data |= GLOBAL_CFG_RX_STAT_EN;
802 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803 	if (status)
804 		goto end;
805 
806 	/* Enable transmitter, and clear it's reset. */
807 	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808 	if (status)
809 		goto end;
810 	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
811 	data |= TX_CFG_EN;	/* Enable the transmitter. */
812 	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813 	if (status)
814 		goto end;
815 
816 	/* Enable receiver and clear it's reset. */
817 	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818 	if (status)
819 		goto end;
820 	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
821 	data |= RX_CFG_EN;	/* Enable the receiver. */
822 	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823 	if (status)
824 		goto end;
825 
826 	/* Turn on jumbo. */
827 	status =
828 	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829 	if (status)
830 		goto end;
831 	status =
832 	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833 	if (status)
834 		goto end;
835 
836 	/* Signal to the world that the port is enabled.        */
837 	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838 end:
839 	ql_sem_unlock(qdev, qdev->xg_sem_mask);
840 	return status;
841 }
842 
843 /* Get the next large buffer. */
ql_get_curr_lbuf(struct rx_ring * rx_ring)844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
845 {
846 	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847 	rx_ring->lbq_curr_idx++;
848 	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849 		rx_ring->lbq_curr_idx = 0;
850 	rx_ring->lbq_free_cnt++;
851 	return lbq_desc;
852 }
853 
854 /* Get the next small buffer. */
ql_get_curr_sbuf(struct rx_ring * rx_ring)855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
856 {
857 	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858 	rx_ring->sbq_curr_idx++;
859 	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860 		rx_ring->sbq_curr_idx = 0;
861 	rx_ring->sbq_free_cnt++;
862 	return sbq_desc;
863 }
864 
865 /* Update an rx ring index. */
ql_update_cq(struct rx_ring * rx_ring)866 static void ql_update_cq(struct rx_ring *rx_ring)
867 {
868 	rx_ring->cnsmr_idx++;
869 	rx_ring->curr_entry++;
870 	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871 		rx_ring->cnsmr_idx = 0;
872 		rx_ring->curr_entry = rx_ring->cq_base;
873 	}
874 }
875 
ql_write_cq_idx(struct rx_ring * rx_ring)876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
877 {
878 	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879 }
880 
881 /* Process (refill) a large buffer queue. */
ql_update_lbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883 {
884 	int clean_idx = rx_ring->lbq_clean_idx;
885 	struct bq_desc *lbq_desc;
886 	u64 map;
887 	int i;
888 
889 	while (rx_ring->lbq_free_cnt > 16) {
890 		for (i = 0; i < 16; i++) {
891 			QPRINTK(qdev, RX_STATUS, DEBUG,
892 				"lbq: try cleaning clean_idx = %d.\n",
893 				clean_idx);
894 			lbq_desc = &rx_ring->lbq[clean_idx];
895 			if (lbq_desc->p.lbq_page == NULL) {
896 				QPRINTK(qdev, RX_STATUS, DEBUG,
897 					"lbq: getting new page for index %d.\n",
898 					lbq_desc->index);
899 				lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900 				if (lbq_desc->p.lbq_page == NULL) {
901 					rx_ring->lbq_clean_idx = clean_idx;
902 					QPRINTK(qdev, RX_STATUS, ERR,
903 						"Couldn't get a page.\n");
904 					return;
905 				}
906 				map = pci_map_page(qdev->pdev,
907 						   lbq_desc->p.lbq_page,
908 						   0, PAGE_SIZE,
909 						   PCI_DMA_FROMDEVICE);
910 				if (pci_dma_mapping_error(qdev->pdev, map)) {
911 					rx_ring->lbq_clean_idx = clean_idx;
912 					put_page(lbq_desc->p.lbq_page);
913 					lbq_desc->p.lbq_page = NULL;
914 					QPRINTK(qdev, RX_STATUS, ERR,
915 						"PCI mapping failed.\n");
916 					return;
917 				}
918 				pci_unmap_addr_set(lbq_desc, mapaddr, map);
919 				pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
920 				*lbq_desc->addr = cpu_to_le64(map);
921 			}
922 			clean_idx++;
923 			if (clean_idx == rx_ring->lbq_len)
924 				clean_idx = 0;
925 		}
926 
927 		rx_ring->lbq_clean_idx = clean_idx;
928 		rx_ring->lbq_prod_idx += 16;
929 		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
930 			rx_ring->lbq_prod_idx = 0;
931 		QPRINTK(qdev, RX_STATUS, DEBUG,
932 			"lbq: updating prod idx = %d.\n",
933 			rx_ring->lbq_prod_idx);
934 		ql_write_db_reg(rx_ring->lbq_prod_idx,
935 				rx_ring->lbq_prod_idx_db_reg);
936 		rx_ring->lbq_free_cnt -= 16;
937 	}
938 }
939 
940 /* Process (refill) a small buffer queue. */
ql_update_sbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)941 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
942 {
943 	int clean_idx = rx_ring->sbq_clean_idx;
944 	struct bq_desc *sbq_desc;
945 	u64 map;
946 	int i;
947 
948 	while (rx_ring->sbq_free_cnt > 16) {
949 		for (i = 0; i < 16; i++) {
950 			sbq_desc = &rx_ring->sbq[clean_idx];
951 			QPRINTK(qdev, RX_STATUS, DEBUG,
952 				"sbq: try cleaning clean_idx = %d.\n",
953 				clean_idx);
954 			if (sbq_desc->p.skb == NULL) {
955 				QPRINTK(qdev, RX_STATUS, DEBUG,
956 					"sbq: getting new skb for index %d.\n",
957 					sbq_desc->index);
958 				sbq_desc->p.skb =
959 				    netdev_alloc_skb(qdev->ndev,
960 						     rx_ring->sbq_buf_size);
961 				if (sbq_desc->p.skb == NULL) {
962 					QPRINTK(qdev, PROBE, ERR,
963 						"Couldn't get an skb.\n");
964 					rx_ring->sbq_clean_idx = clean_idx;
965 					return;
966 				}
967 				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
968 				map = pci_map_single(qdev->pdev,
969 						     sbq_desc->p.skb->data,
970 						     rx_ring->sbq_buf_size /
971 						     2, PCI_DMA_FROMDEVICE);
972 				if (pci_dma_mapping_error(qdev->pdev, map)) {
973 					QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
974 					rx_ring->sbq_clean_idx = clean_idx;
975 					dev_kfree_skb_any(sbq_desc->p.skb);
976 					sbq_desc->p.skb = NULL;
977 					return;
978 				}
979 				pci_unmap_addr_set(sbq_desc, mapaddr, map);
980 				pci_unmap_len_set(sbq_desc, maplen,
981 						  rx_ring->sbq_buf_size / 2);
982 				*sbq_desc->addr = cpu_to_le64(map);
983 			}
984 
985 			clean_idx++;
986 			if (clean_idx == rx_ring->sbq_len)
987 				clean_idx = 0;
988 		}
989 		rx_ring->sbq_clean_idx = clean_idx;
990 		rx_ring->sbq_prod_idx += 16;
991 		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
992 			rx_ring->sbq_prod_idx = 0;
993 		QPRINTK(qdev, RX_STATUS, DEBUG,
994 			"sbq: updating prod idx = %d.\n",
995 			rx_ring->sbq_prod_idx);
996 		ql_write_db_reg(rx_ring->sbq_prod_idx,
997 				rx_ring->sbq_prod_idx_db_reg);
998 
999 		rx_ring->sbq_free_cnt -= 16;
1000 	}
1001 }
1002 
ql_update_buffer_queues(struct ql_adapter * qdev,struct rx_ring * rx_ring)1003 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1004 				    struct rx_ring *rx_ring)
1005 {
1006 	ql_update_sbq(qdev, rx_ring);
1007 	ql_update_lbq(qdev, rx_ring);
1008 }
1009 
1010 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1011  * fails at some stage, or from the interrupt when a tx completes.
1012  */
ql_unmap_send(struct ql_adapter * qdev,struct tx_ring_desc * tx_ring_desc,int mapped)1013 static void ql_unmap_send(struct ql_adapter *qdev,
1014 			  struct tx_ring_desc *tx_ring_desc, int mapped)
1015 {
1016 	int i;
1017 	for (i = 0; i < mapped; i++) {
1018 		if (i == 0 || (i == 7 && mapped > 7)) {
1019 			/*
1020 			 * Unmap the skb->data area, or the
1021 			 * external sglist (AKA the Outbound
1022 			 * Address List (OAL)).
1023 			 * If its the zeroeth element, then it's
1024 			 * the skb->data area.  If it's the 7th
1025 			 * element and there is more than 6 frags,
1026 			 * then its an OAL.
1027 			 */
1028 			if (i == 7) {
1029 				QPRINTK(qdev, TX_DONE, DEBUG,
1030 					"unmapping OAL area.\n");
1031 			}
1032 			pci_unmap_single(qdev->pdev,
1033 					 pci_unmap_addr(&tx_ring_desc->map[i],
1034 							mapaddr),
1035 					 pci_unmap_len(&tx_ring_desc->map[i],
1036 						       maplen),
1037 					 PCI_DMA_TODEVICE);
1038 		} else {
1039 			QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1040 				i);
1041 			pci_unmap_page(qdev->pdev,
1042 				       pci_unmap_addr(&tx_ring_desc->map[i],
1043 						      mapaddr),
1044 				       pci_unmap_len(&tx_ring_desc->map[i],
1045 						     maplen), PCI_DMA_TODEVICE);
1046 		}
1047 	}
1048 
1049 }
1050 
1051 /* Map the buffers for this transmit.  This will return
1052  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1053  */
ql_map_send(struct ql_adapter * qdev,struct ob_mac_iocb_req * mac_iocb_ptr,struct sk_buff * skb,struct tx_ring_desc * tx_ring_desc)1054 static int ql_map_send(struct ql_adapter *qdev,
1055 		       struct ob_mac_iocb_req *mac_iocb_ptr,
1056 		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1057 {
1058 	int len = skb_headlen(skb);
1059 	dma_addr_t map;
1060 	int frag_idx, err, map_idx = 0;
1061 	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1062 	int frag_cnt = skb_shinfo(skb)->nr_frags;
1063 
1064 	if (frag_cnt) {
1065 		QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1066 	}
1067 	/*
1068 	 * Map the skb buffer first.
1069 	 */
1070 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1071 
1072 	err = pci_dma_mapping_error(qdev->pdev, map);
1073 	if (err) {
1074 		QPRINTK(qdev, TX_QUEUED, ERR,
1075 			"PCI mapping failed with error: %d\n", err);
1076 
1077 		return NETDEV_TX_BUSY;
1078 	}
1079 
1080 	tbd->len = cpu_to_le32(len);
1081 	tbd->addr = cpu_to_le64(map);
1082 	pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1083 	pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1084 	map_idx++;
1085 
1086 	/*
1087 	 * This loop fills the remainder of the 8 address descriptors
1088 	 * in the IOCB.  If there are more than 7 fragments, then the
1089 	 * eighth address desc will point to an external list (OAL).
1090 	 * When this happens, the remainder of the frags will be stored
1091 	 * in this list.
1092 	 */
1093 	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1094 		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1095 		tbd++;
1096 		if (frag_idx == 6 && frag_cnt > 7) {
1097 			/* Let's tack on an sglist.
1098 			 * Our control block will now
1099 			 * look like this:
1100 			 * iocb->seg[0] = skb->data
1101 			 * iocb->seg[1] = frag[0]
1102 			 * iocb->seg[2] = frag[1]
1103 			 * iocb->seg[3] = frag[2]
1104 			 * iocb->seg[4] = frag[3]
1105 			 * iocb->seg[5] = frag[4]
1106 			 * iocb->seg[6] = frag[5]
1107 			 * iocb->seg[7] = ptr to OAL (external sglist)
1108 			 * oal->seg[0] = frag[6]
1109 			 * oal->seg[1] = frag[7]
1110 			 * oal->seg[2] = frag[8]
1111 			 * oal->seg[3] = frag[9]
1112 			 * oal->seg[4] = frag[10]
1113 			 *      etc...
1114 			 */
1115 			/* Tack on the OAL in the eighth segment of IOCB. */
1116 			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1117 					     sizeof(struct oal),
1118 					     PCI_DMA_TODEVICE);
1119 			err = pci_dma_mapping_error(qdev->pdev, map);
1120 			if (err) {
1121 				QPRINTK(qdev, TX_QUEUED, ERR,
1122 					"PCI mapping outbound address list with error: %d\n",
1123 					err);
1124 				goto map_error;
1125 			}
1126 
1127 			tbd->addr = cpu_to_le64(map);
1128 			/*
1129 			 * The length is the number of fragments
1130 			 * that remain to be mapped times the length
1131 			 * of our sglist (OAL).
1132 			 */
1133 			tbd->len =
1134 			    cpu_to_le32((sizeof(struct tx_buf_desc) *
1135 					 (frag_cnt - frag_idx)) | TX_DESC_C);
1136 			pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1137 					   map);
1138 			pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1139 					  sizeof(struct oal));
1140 			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1141 			map_idx++;
1142 		}
1143 
1144 		map =
1145 		    pci_map_page(qdev->pdev, frag->page,
1146 				 frag->page_offset, frag->size,
1147 				 PCI_DMA_TODEVICE);
1148 
1149 		err = pci_dma_mapping_error(qdev->pdev, map);
1150 		if (err) {
1151 			QPRINTK(qdev, TX_QUEUED, ERR,
1152 				"PCI mapping frags failed with error: %d.\n",
1153 				err);
1154 			goto map_error;
1155 		}
1156 
1157 		tbd->addr = cpu_to_le64(map);
1158 		tbd->len = cpu_to_le32(frag->size);
1159 		pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1160 		pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1161 				  frag->size);
1162 
1163 	}
1164 	/* Save the number of segments we've mapped. */
1165 	tx_ring_desc->map_cnt = map_idx;
1166 	/* Terminate the last segment. */
1167 	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1168 	return NETDEV_TX_OK;
1169 
1170 map_error:
1171 	/*
1172 	 * If the first frag mapping failed, then i will be zero.
1173 	 * This causes the unmap of the skb->data area.  Otherwise
1174 	 * we pass in the number of frags that mapped successfully
1175 	 * so they can be umapped.
1176 	 */
1177 	ql_unmap_send(qdev, tx_ring_desc, map_idx);
1178 	return NETDEV_TX_BUSY;
1179 }
1180 
ql_realign_skb(struct sk_buff * skb,int len)1181 static void ql_realign_skb(struct sk_buff *skb, int len)
1182 {
1183 	void *temp_addr = skb->data;
1184 
1185 	/* Undo the skb_reserve(skb,32) we did before
1186 	 * giving to hardware, and realign data on
1187 	 * a 2-byte boundary.
1188 	 */
1189 	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1190 	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1191 	skb_copy_to_linear_data(skb, temp_addr,
1192 		(unsigned int)len);
1193 }
1194 
1195 /*
1196  * This function builds an skb for the given inbound
1197  * completion.  It will be rewritten for readability in the near
1198  * future, but for not it works well.
1199  */
ql_build_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1200 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1201 				       struct rx_ring *rx_ring,
1202 				       struct ib_mac_iocb_rsp *ib_mac_rsp)
1203 {
1204 	struct bq_desc *lbq_desc;
1205 	struct bq_desc *sbq_desc;
1206 	struct sk_buff *skb = NULL;
1207 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1208        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1209 
1210 	/*
1211 	 * Handle the header buffer if present.
1212 	 */
1213 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1214 	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1215 		QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1216 		/*
1217 		 * Headers fit nicely into a small buffer.
1218 		 */
1219 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1220 		pci_unmap_single(qdev->pdev,
1221 				pci_unmap_addr(sbq_desc, mapaddr),
1222 				pci_unmap_len(sbq_desc, maplen),
1223 				PCI_DMA_FROMDEVICE);
1224 		skb = sbq_desc->p.skb;
1225 		ql_realign_skb(skb, hdr_len);
1226 		skb_put(skb, hdr_len);
1227 		sbq_desc->p.skb = NULL;
1228 	}
1229 
1230 	/*
1231 	 * Handle the data buffer(s).
1232 	 */
1233 	if (unlikely(!length)) {	/* Is there data too? */
1234 		QPRINTK(qdev, RX_STATUS, DEBUG,
1235 			"No Data buffer in this packet.\n");
1236 		return skb;
1237 	}
1238 
1239 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1240 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1241 			QPRINTK(qdev, RX_STATUS, DEBUG,
1242 				"Headers in small, data of %d bytes in small, combine them.\n", length);
1243 			/*
1244 			 * Data is less than small buffer size so it's
1245 			 * stuffed in a small buffer.
1246 			 * For this case we append the data
1247 			 * from the "data" small buffer to the "header" small
1248 			 * buffer.
1249 			 */
1250 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1251 			pci_dma_sync_single_for_cpu(qdev->pdev,
1252 						    pci_unmap_addr
1253 						    (sbq_desc, mapaddr),
1254 						    pci_unmap_len
1255 						    (sbq_desc, maplen),
1256 						    PCI_DMA_FROMDEVICE);
1257 			memcpy(skb_put(skb, length),
1258 			       sbq_desc->p.skb->data, length);
1259 			pci_dma_sync_single_for_device(qdev->pdev,
1260 						       pci_unmap_addr
1261 						       (sbq_desc,
1262 							mapaddr),
1263 						       pci_unmap_len
1264 						       (sbq_desc,
1265 							maplen),
1266 						       PCI_DMA_FROMDEVICE);
1267 		} else {
1268 			QPRINTK(qdev, RX_STATUS, DEBUG,
1269 				"%d bytes in a single small buffer.\n", length);
1270 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1271 			skb = sbq_desc->p.skb;
1272 			ql_realign_skb(skb, length);
1273 			skb_put(skb, length);
1274 			pci_unmap_single(qdev->pdev,
1275 					 pci_unmap_addr(sbq_desc,
1276 							mapaddr),
1277 					 pci_unmap_len(sbq_desc,
1278 						       maplen),
1279 					 PCI_DMA_FROMDEVICE);
1280 			sbq_desc->p.skb = NULL;
1281 		}
1282 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1283 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1284 			QPRINTK(qdev, RX_STATUS, DEBUG,
1285 				"Header in small, %d bytes in large. Chain large to small!\n", length);
1286 			/*
1287 			 * The data is in a single large buffer.  We
1288 			 * chain it to the header buffer's skb and let
1289 			 * it rip.
1290 			 */
1291 			lbq_desc = ql_get_curr_lbuf(rx_ring);
1292 			pci_unmap_page(qdev->pdev,
1293 				       pci_unmap_addr(lbq_desc,
1294 						      mapaddr),
1295 				       pci_unmap_len(lbq_desc, maplen),
1296 				       PCI_DMA_FROMDEVICE);
1297 			QPRINTK(qdev, RX_STATUS, DEBUG,
1298 				"Chaining page to skb.\n");
1299 			skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1300 					   0, length);
1301 			skb->len += length;
1302 			skb->data_len += length;
1303 			skb->truesize += length;
1304 			lbq_desc->p.lbq_page = NULL;
1305 		} else {
1306 			/*
1307 			 * The headers and data are in a single large buffer. We
1308 			 * copy it to a new skb and let it go. This can happen with
1309 			 * jumbo mtu on a non-TCP/UDP frame.
1310 			 */
1311 			lbq_desc = ql_get_curr_lbuf(rx_ring);
1312 			skb = netdev_alloc_skb(qdev->ndev, length);
1313 			if (skb == NULL) {
1314 				QPRINTK(qdev, PROBE, DEBUG,
1315 					"No skb available, drop the packet.\n");
1316 				return NULL;
1317 			}
1318 			pci_unmap_page(qdev->pdev,
1319 				       pci_unmap_addr(lbq_desc,
1320 						      mapaddr),
1321 				       pci_unmap_len(lbq_desc, maplen),
1322 				       PCI_DMA_FROMDEVICE);
1323 			skb_reserve(skb, NET_IP_ALIGN);
1324 			QPRINTK(qdev, RX_STATUS, DEBUG,
1325 				"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1326 			skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1327 					   0, length);
1328 			skb->len += length;
1329 			skb->data_len += length;
1330 			skb->truesize += length;
1331 			length -= length;
1332 			lbq_desc->p.lbq_page = NULL;
1333 			__pskb_pull_tail(skb,
1334 				(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1335 				VLAN_ETH_HLEN : ETH_HLEN);
1336 		}
1337 	} else {
1338 		/*
1339 		 * The data is in a chain of large buffers
1340 		 * pointed to by a small buffer.  We loop
1341 		 * thru and chain them to the our small header
1342 		 * buffer's skb.
1343 		 * frags:  There are 18 max frags and our small
1344 		 *         buffer will hold 32 of them. The thing is,
1345 		 *         we'll use 3 max for our 9000 byte jumbo
1346 		 *         frames.  If the MTU goes up we could
1347 		 *          eventually be in trouble.
1348 		 */
1349 		int size, offset, i = 0;
1350 		__le64 *bq, bq_array[8];
1351 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1352 		pci_unmap_single(qdev->pdev,
1353 				 pci_unmap_addr(sbq_desc, mapaddr),
1354 				 pci_unmap_len(sbq_desc, maplen),
1355 				 PCI_DMA_FROMDEVICE);
1356 		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1357 			/*
1358 			 * This is an non TCP/UDP IP frame, so
1359 			 * the headers aren't split into a small
1360 			 * buffer.  We have to use the small buffer
1361 			 * that contains our sg list as our skb to
1362 			 * send upstairs. Copy the sg list here to
1363 			 * a local buffer and use it to find the
1364 			 * pages to chain.
1365 			 */
1366 			QPRINTK(qdev, RX_STATUS, DEBUG,
1367 				"%d bytes of headers & data in chain of large.\n", length);
1368 			skb = sbq_desc->p.skb;
1369 			bq = &bq_array[0];
1370 			memcpy(bq, skb->data, sizeof(bq_array));
1371 			sbq_desc->p.skb = NULL;
1372 			skb_reserve(skb, NET_IP_ALIGN);
1373 		} else {
1374 			QPRINTK(qdev, RX_STATUS, DEBUG,
1375 				"Headers in small, %d bytes of data in chain of large.\n", length);
1376 			bq = (__le64 *)sbq_desc->p.skb->data;
1377 		}
1378 		while (length > 0) {
1379 			lbq_desc = ql_get_curr_lbuf(rx_ring);
1380 			pci_unmap_page(qdev->pdev,
1381 				       pci_unmap_addr(lbq_desc,
1382 						      mapaddr),
1383 				       pci_unmap_len(lbq_desc,
1384 						     maplen),
1385 				       PCI_DMA_FROMDEVICE);
1386 			size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1387 			offset = 0;
1388 
1389 			QPRINTK(qdev, RX_STATUS, DEBUG,
1390 				"Adding page %d to skb for %d bytes.\n",
1391 				i, size);
1392 			skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1393 					   offset, size);
1394 			skb->len += size;
1395 			skb->data_len += size;
1396 			skb->truesize += size;
1397 			length -= size;
1398 			lbq_desc->p.lbq_page = NULL;
1399 			bq++;
1400 			i++;
1401 		}
1402 		__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1403 				VLAN_ETH_HLEN : ETH_HLEN);
1404 	}
1405 	return skb;
1406 }
1407 
1408 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1409 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1410 				   struct rx_ring *rx_ring,
1411 				   struct ib_mac_iocb_rsp *ib_mac_rsp)
1412 {
1413 	struct net_device *ndev = qdev->ndev;
1414 	struct sk_buff *skb = NULL;
1415 
1416 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1417 
1418 	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1419 	if (unlikely(!skb)) {
1420 		QPRINTK(qdev, RX_STATUS, DEBUG,
1421 			"No skb available, drop packet.\n");
1422 		return;
1423 	}
1424 
1425 	prefetch(skb->data);
1426 	skb->dev = ndev;
1427 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1428 		QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1429 			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430 			IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1431 			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1432 			IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1433 			(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1434 			IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1435 	}
1436 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1437 		QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1438 	}
1439 
1440 	skb->protocol = eth_type_trans(skb, ndev);
1441 	skb->ip_summed = CHECKSUM_NONE;
1442 
1443 	/* If rx checksum is on, and there are no
1444 	 * csum or frame errors.
1445 	 */
1446 	if (qdev->rx_csum &&
1447 		!(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1448 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1449 		/* TCP frame. */
1450 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1451 			QPRINTK(qdev, RX_STATUS, DEBUG,
1452 					"TCP checksum done!\n");
1453 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1454 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1455 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1456 		/* Unfragmented ipv4 UDP frame. */
1457 			struct iphdr *iph = (struct iphdr *) skb->data;
1458 			if (!(iph->frag_off &
1459 				cpu_to_be16(IP_MF|IP_OFFSET))) {
1460 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1461 				QPRINTK(qdev, RX_STATUS, DEBUG,
1462 						"TCP checksum done!\n");
1463 			}
1464 		}
1465 	}
1466 	qdev->stats.rx_packets++;
1467 	qdev->stats.rx_bytes += skb->len;
1468 	skb->protocol = eth_type_trans(skb, ndev);
1469 	if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1470 		QPRINTK(qdev, RX_STATUS, DEBUG,
1471 			"Passing a VLAN packet upstream.\n");
1472 		vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1473 				le16_to_cpu(ib_mac_rsp->vlan_id));
1474 	} else {
1475 		QPRINTK(qdev, RX_STATUS, DEBUG,
1476 			"Passing a normal packet upstream.\n");
1477 		netif_receive_skb(skb);
1478 	}
1479 }
1480 
1481 /* Process an outbound completion from an rx ring. */
ql_process_mac_tx_intr(struct ql_adapter * qdev,struct ob_mac_iocb_rsp * mac_rsp)1482 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1483 				   struct ob_mac_iocb_rsp *mac_rsp)
1484 {
1485 	struct tx_ring *tx_ring;
1486 	struct tx_ring_desc *tx_ring_desc;
1487 
1488 	QL_DUMP_OB_MAC_RSP(mac_rsp);
1489 	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1490 	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1491 	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1492 	qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1493 	qdev->stats.tx_packets++;
1494 	dev_kfree_skb(tx_ring_desc->skb);
1495 	tx_ring_desc->skb = NULL;
1496 
1497 	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1498 					OB_MAC_IOCB_RSP_S |
1499 					OB_MAC_IOCB_RSP_L |
1500 					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1501 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1502 			QPRINTK(qdev, TX_DONE, WARNING,
1503 				"Total descriptor length did not match transfer length.\n");
1504 		}
1505 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1506 			QPRINTK(qdev, TX_DONE, WARNING,
1507 				"Frame too short to be legal, not sent.\n");
1508 		}
1509 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1510 			QPRINTK(qdev, TX_DONE, WARNING,
1511 				"Frame too long, but sent anyway.\n");
1512 		}
1513 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1514 			QPRINTK(qdev, TX_DONE, WARNING,
1515 				"PCI backplane error. Frame not sent.\n");
1516 		}
1517 	}
1518 	atomic_inc(&tx_ring->tx_count);
1519 }
1520 
1521 /* Fire up a handler to reset the MPI processor. */
ql_queue_fw_error(struct ql_adapter * qdev)1522 void ql_queue_fw_error(struct ql_adapter *qdev)
1523 {
1524 	netif_stop_queue(qdev->ndev);
1525 	netif_carrier_off(qdev->ndev);
1526 	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1527 }
1528 
ql_queue_asic_error(struct ql_adapter * qdev)1529 void ql_queue_asic_error(struct ql_adapter *qdev)
1530 {
1531 	netif_stop_queue(qdev->ndev);
1532 	netif_carrier_off(qdev->ndev);
1533 	ql_disable_interrupts(qdev);
1534 	/* Clear adapter up bit to signal the recovery
1535 	 * process that it shouldn't kill the reset worker
1536 	 * thread
1537 	 */
1538 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
1539 	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1540 }
1541 
ql_process_chip_ae_intr(struct ql_adapter * qdev,struct ib_ae_iocb_rsp * ib_ae_rsp)1542 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1543 				    struct ib_ae_iocb_rsp *ib_ae_rsp)
1544 {
1545 	switch (ib_ae_rsp->event) {
1546 	case MGMT_ERR_EVENT:
1547 		QPRINTK(qdev, RX_ERR, ERR,
1548 			"Management Processor Fatal Error.\n");
1549 		ql_queue_fw_error(qdev);
1550 		return;
1551 
1552 	case CAM_LOOKUP_ERR_EVENT:
1553 		QPRINTK(qdev, LINK, ERR,
1554 			"Multiple CAM hits lookup occurred.\n");
1555 		QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1556 		ql_queue_asic_error(qdev);
1557 		return;
1558 
1559 	case SOFT_ECC_ERROR_EVENT:
1560 		QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1561 		ql_queue_asic_error(qdev);
1562 		break;
1563 
1564 	case PCI_ERR_ANON_BUF_RD:
1565 		QPRINTK(qdev, RX_ERR, ERR,
1566 			"PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1567 			ib_ae_rsp->q_id);
1568 		ql_queue_asic_error(qdev);
1569 		break;
1570 
1571 	default:
1572 		QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1573 			ib_ae_rsp->event);
1574 		ql_queue_asic_error(qdev);
1575 		break;
1576 	}
1577 }
1578 
ql_clean_outbound_rx_ring(struct rx_ring * rx_ring)1579 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1580 {
1581 	struct ql_adapter *qdev = rx_ring->qdev;
1582 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1583 	struct ob_mac_iocb_rsp *net_rsp = NULL;
1584 	int count = 0;
1585 
1586 	/* While there are entries in the completion queue. */
1587 	while (prod != rx_ring->cnsmr_idx) {
1588 
1589 		QPRINTK(qdev, RX_STATUS, DEBUG,
1590 			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1591 			prod, rx_ring->cnsmr_idx);
1592 
1593 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1594 		rmb();
1595 		switch (net_rsp->opcode) {
1596 
1597 		case OPCODE_OB_MAC_TSO_IOCB:
1598 		case OPCODE_OB_MAC_IOCB:
1599 			ql_process_mac_tx_intr(qdev, net_rsp);
1600 			break;
1601 		default:
1602 			QPRINTK(qdev, RX_STATUS, DEBUG,
1603 				"Hit default case, not handled! dropping the packet, opcode = %x.\n",
1604 				net_rsp->opcode);
1605 		}
1606 		count++;
1607 		ql_update_cq(rx_ring);
1608 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1609 	}
1610 	ql_write_cq_idx(rx_ring);
1611 	if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1612 		struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1613 		if (atomic_read(&tx_ring->queue_stopped) &&
1614 		    (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1615 			/*
1616 			 * The queue got stopped because the tx_ring was full.
1617 			 * Wake it up, because it's now at least 25% empty.
1618 			 */
1619 			netif_wake_queue(qdev->ndev);
1620 	}
1621 
1622 	return count;
1623 }
1624 
ql_clean_inbound_rx_ring(struct rx_ring * rx_ring,int budget)1625 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1626 {
1627 	struct ql_adapter *qdev = rx_ring->qdev;
1628 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1629 	struct ql_net_rsp_iocb *net_rsp;
1630 	int count = 0;
1631 
1632 	/* While there are entries in the completion queue. */
1633 	while (prod != rx_ring->cnsmr_idx) {
1634 
1635 		QPRINTK(qdev, RX_STATUS, DEBUG,
1636 			"cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1637 			prod, rx_ring->cnsmr_idx);
1638 
1639 		net_rsp = rx_ring->curr_entry;
1640 		rmb();
1641 		switch (net_rsp->opcode) {
1642 		case OPCODE_IB_MAC_IOCB:
1643 			ql_process_mac_rx_intr(qdev, rx_ring,
1644 					       (struct ib_mac_iocb_rsp *)
1645 					       net_rsp);
1646 			break;
1647 
1648 		case OPCODE_IB_AE_IOCB:
1649 			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1650 						net_rsp);
1651 			break;
1652 		default:
1653 			{
1654 				QPRINTK(qdev, RX_STATUS, DEBUG,
1655 					"Hit default case, not handled! dropping the packet, opcode = %x.\n",
1656 					net_rsp->opcode);
1657 			}
1658 		}
1659 		count++;
1660 		ql_update_cq(rx_ring);
1661 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1662 		if (count == budget)
1663 			break;
1664 	}
1665 	ql_update_buffer_queues(qdev, rx_ring);
1666 	ql_write_cq_idx(rx_ring);
1667 	return count;
1668 }
1669 
ql_napi_poll_msix(struct napi_struct * napi,int budget)1670 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1671 {
1672 	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1673 	struct ql_adapter *qdev = rx_ring->qdev;
1674 	int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1675 
1676 	QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1677 		rx_ring->cq_id);
1678 
1679 	if (work_done < budget) {
1680 		__netif_rx_complete(napi);
1681 		ql_enable_completion_interrupt(qdev, rx_ring->irq);
1682 	}
1683 	return work_done;
1684 }
1685 
ql_vlan_rx_register(struct net_device * ndev,struct vlan_group * grp)1686 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1687 {
1688 	struct ql_adapter *qdev = netdev_priv(ndev);
1689 
1690 	qdev->vlgrp = grp;
1691 	if (grp) {
1692 		QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1693 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1694 			   NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1695 	} else {
1696 		QPRINTK(qdev, IFUP, DEBUG,
1697 			"Turning off VLAN in NIC_RCV_CFG.\n");
1698 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1699 	}
1700 }
1701 
ql_vlan_rx_add_vid(struct net_device * ndev,u16 vid)1702 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1703 {
1704 	struct ql_adapter *qdev = netdev_priv(ndev);
1705 	u32 enable_bit = MAC_ADDR_E;
1706 
1707 	spin_lock(&qdev->hw_lock);
1708 	if (ql_set_mac_addr_reg
1709 	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1710 		QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1711 	}
1712 	spin_unlock(&qdev->hw_lock);
1713 }
1714 
ql_vlan_rx_kill_vid(struct net_device * ndev,u16 vid)1715 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1716 {
1717 	struct ql_adapter *qdev = netdev_priv(ndev);
1718 	u32 enable_bit = 0;
1719 
1720 	spin_lock(&qdev->hw_lock);
1721 	if (ql_set_mac_addr_reg
1722 	    (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1723 		QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1724 	}
1725 	spin_unlock(&qdev->hw_lock);
1726 
1727 }
1728 
1729 /* Worker thread to process a given rx_ring that is dedicated
1730  * to outbound completions.
1731  */
ql_tx_clean(struct work_struct * work)1732 static void ql_tx_clean(struct work_struct *work)
1733 {
1734 	struct rx_ring *rx_ring =
1735 	    container_of(work, struct rx_ring, rx_work.work);
1736 	ql_clean_outbound_rx_ring(rx_ring);
1737 	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1738 
1739 }
1740 
1741 /* Worker thread to process a given rx_ring that is dedicated
1742  * to inbound completions.
1743  */
ql_rx_clean(struct work_struct * work)1744 static void ql_rx_clean(struct work_struct *work)
1745 {
1746 	struct rx_ring *rx_ring =
1747 	    container_of(work, struct rx_ring, rx_work.work);
1748 	ql_clean_inbound_rx_ring(rx_ring, 64);
1749 	ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1750 }
1751 
1752 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
qlge_msix_tx_isr(int irq,void * dev_id)1753 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1754 {
1755 	struct rx_ring *rx_ring = dev_id;
1756 	queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1757 			      &rx_ring->rx_work, 0);
1758 	return IRQ_HANDLED;
1759 }
1760 
1761 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
qlge_msix_rx_isr(int irq,void * dev_id)1762 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1763 {
1764 	struct rx_ring *rx_ring = dev_id;
1765 	netif_rx_schedule(&rx_ring->napi);
1766 	return IRQ_HANDLED;
1767 }
1768 
1769 /* This handles a fatal error, MPI activity, and the default
1770  * rx_ring in an MSI-X multiple vector environment.
1771  * In MSI/Legacy environment it also process the rest of
1772  * the rx_rings.
1773  */
qlge_isr(int irq,void * dev_id)1774 static irqreturn_t qlge_isr(int irq, void *dev_id)
1775 {
1776 	struct rx_ring *rx_ring = dev_id;
1777 	struct ql_adapter *qdev = rx_ring->qdev;
1778 	struct intr_context *intr_context = &qdev->intr_context[0];
1779 	u32 var;
1780 	int i;
1781 	int work_done = 0;
1782 
1783 	spin_lock(&qdev->hw_lock);
1784 	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1785 		QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1786 		spin_unlock(&qdev->hw_lock);
1787 		return IRQ_NONE;
1788 	}
1789 	spin_unlock(&qdev->hw_lock);
1790 
1791 	var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1792 
1793 	/*
1794 	 * Check for fatal error.
1795 	 */
1796 	if (var & STS_FE) {
1797 		ql_queue_asic_error(qdev);
1798 		QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1799 		var = ql_read32(qdev, ERR_STS);
1800 		QPRINTK(qdev, INTR, ERR,
1801 			"Resetting chip. Error Status Register = 0x%x\n", var);
1802 		return IRQ_HANDLED;
1803 	}
1804 
1805 	/*
1806 	 * Check MPI processor activity.
1807 	 */
1808 	if (var & STS_PI) {
1809 		/*
1810 		 * We've got an async event or mailbox completion.
1811 		 * Handle it and clear the source of the interrupt.
1812 		 */
1813 		QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1814 		ql_disable_completion_interrupt(qdev, intr_context->intr);
1815 		queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1816 				      &qdev->mpi_work, 0);
1817 		work_done++;
1818 	}
1819 
1820 	/*
1821 	 * Check the default queue and wake handler if active.
1822 	 */
1823 	rx_ring = &qdev->rx_ring[0];
1824 	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1825 		QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1826 		ql_disable_completion_interrupt(qdev, intr_context->intr);
1827 		queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1828 				      &rx_ring->rx_work, 0);
1829 		work_done++;
1830 	}
1831 
1832 	if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1833 		/*
1834 		 * Start the DPC for each active queue.
1835 		 */
1836 		for (i = 1; i < qdev->rx_ring_count; i++) {
1837 			rx_ring = &qdev->rx_ring[i];
1838 			if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1839 			    rx_ring->cnsmr_idx) {
1840 				QPRINTK(qdev, INTR, INFO,
1841 					"Waking handler for rx_ring[%d].\n", i);
1842 				ql_disable_completion_interrupt(qdev,
1843 								intr_context->
1844 								intr);
1845 				if (i < qdev->rss_ring_first_cq_id)
1846 					queue_delayed_work_on(rx_ring->cpu,
1847 							      qdev->q_workqueue,
1848 							      &rx_ring->rx_work,
1849 							      0);
1850 				else
1851 					netif_rx_schedule(&rx_ring->napi);
1852 				work_done++;
1853 			}
1854 		}
1855 	}
1856 	ql_enable_completion_interrupt(qdev, intr_context->intr);
1857 	return work_done ? IRQ_HANDLED : IRQ_NONE;
1858 }
1859 
ql_tso(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)1860 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1861 {
1862 
1863 	if (skb_is_gso(skb)) {
1864 		int err;
1865 		if (skb_header_cloned(skb)) {
1866 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1867 			if (err)
1868 				return err;
1869 		}
1870 
1871 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1872 		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1873 		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1874 		mac_iocb_ptr->total_hdrs_len =
1875 		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1876 		mac_iocb_ptr->net_trans_offset =
1877 		    cpu_to_le16(skb_network_offset(skb) |
1878 				skb_transport_offset(skb)
1879 				<< OB_MAC_TRANSPORT_HDR_SHIFT);
1880 		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1881 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1882 		if (likely(skb->protocol == htons(ETH_P_IP))) {
1883 			struct iphdr *iph = ip_hdr(skb);
1884 			iph->check = 0;
1885 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1886 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1887 								 iph->daddr, 0,
1888 								 IPPROTO_TCP,
1889 								 0);
1890 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1891 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1892 			tcp_hdr(skb)->check =
1893 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1894 					     &ipv6_hdr(skb)->daddr,
1895 					     0, IPPROTO_TCP, 0);
1896 		}
1897 		return 1;
1898 	}
1899 	return 0;
1900 }
1901 
ql_hw_csum_setup(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)1902 static void ql_hw_csum_setup(struct sk_buff *skb,
1903 			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1904 {
1905 	int len;
1906 	struct iphdr *iph = ip_hdr(skb);
1907 	__sum16 *check;
1908 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1909 	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1910 	mac_iocb_ptr->net_trans_offset =
1911 		cpu_to_le16(skb_network_offset(skb) |
1912 		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1913 
1914 	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1915 	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1916 	if (likely(iph->protocol == IPPROTO_TCP)) {
1917 		check = &(tcp_hdr(skb)->check);
1918 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1919 		mac_iocb_ptr->total_hdrs_len =
1920 		    cpu_to_le16(skb_transport_offset(skb) +
1921 				(tcp_hdr(skb)->doff << 2));
1922 	} else {
1923 		check = &(udp_hdr(skb)->check);
1924 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1925 		mac_iocb_ptr->total_hdrs_len =
1926 		    cpu_to_le16(skb_transport_offset(skb) +
1927 				sizeof(struct udphdr));
1928 	}
1929 	*check = ~csum_tcpudp_magic(iph->saddr,
1930 				    iph->daddr, len, iph->protocol, 0);
1931 }
1932 
qlge_send(struct sk_buff * skb,struct net_device * ndev)1933 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1934 {
1935 	struct tx_ring_desc *tx_ring_desc;
1936 	struct ob_mac_iocb_req *mac_iocb_ptr;
1937 	struct ql_adapter *qdev = netdev_priv(ndev);
1938 	int tso;
1939 	struct tx_ring *tx_ring;
1940 	u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1941 
1942 	tx_ring = &qdev->tx_ring[tx_ring_idx];
1943 
1944 	if (skb_padto(skb, ETH_ZLEN))
1945 		return NETDEV_TX_OK;
1946 
1947 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1948 		QPRINTK(qdev, TX_QUEUED, INFO,
1949 			"%s: shutting down tx queue %d du to lack of resources.\n",
1950 			__func__, tx_ring_idx);
1951 		netif_stop_queue(ndev);
1952 		atomic_inc(&tx_ring->queue_stopped);
1953 		return NETDEV_TX_BUSY;
1954 	}
1955 	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1956 	mac_iocb_ptr = tx_ring_desc->queue_entry;
1957 	memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1958 
1959 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1960 	mac_iocb_ptr->tid = tx_ring_desc->index;
1961 	/* We use the upper 32-bits to store the tx queue for this IO.
1962 	 * When we get the completion we can use it to establish the context.
1963 	 */
1964 	mac_iocb_ptr->txq_idx = tx_ring_idx;
1965 	tx_ring_desc->skb = skb;
1966 
1967 	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1968 
1969 	if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1970 		QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1971 			vlan_tx_tag_get(skb));
1972 		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1973 		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1974 	}
1975 	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1976 	if (tso < 0) {
1977 		dev_kfree_skb_any(skb);
1978 		return NETDEV_TX_OK;
1979 	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1980 		ql_hw_csum_setup(skb,
1981 				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1982 	}
1983 	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1984 			NETDEV_TX_OK) {
1985 		QPRINTK(qdev, TX_QUEUED, ERR,
1986 				"Could not map the segments.\n");
1987 		return NETDEV_TX_BUSY;
1988 	}
1989 	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1990 	tx_ring->prod_idx++;
1991 	if (tx_ring->prod_idx == tx_ring->wq_len)
1992 		tx_ring->prod_idx = 0;
1993 	wmb();
1994 
1995 	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1996 	ndev->trans_start = jiffies;
1997 	QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1998 		tx_ring->prod_idx, skb->len);
1999 
2000 	atomic_dec(&tx_ring->tx_count);
2001 	return NETDEV_TX_OK;
2002 }
2003 
ql_free_shadow_space(struct ql_adapter * qdev)2004 static void ql_free_shadow_space(struct ql_adapter *qdev)
2005 {
2006 	if (qdev->rx_ring_shadow_reg_area) {
2007 		pci_free_consistent(qdev->pdev,
2008 				    PAGE_SIZE,
2009 				    qdev->rx_ring_shadow_reg_area,
2010 				    qdev->rx_ring_shadow_reg_dma);
2011 		qdev->rx_ring_shadow_reg_area = NULL;
2012 	}
2013 	if (qdev->tx_ring_shadow_reg_area) {
2014 		pci_free_consistent(qdev->pdev,
2015 				    PAGE_SIZE,
2016 				    qdev->tx_ring_shadow_reg_area,
2017 				    qdev->tx_ring_shadow_reg_dma);
2018 		qdev->tx_ring_shadow_reg_area = NULL;
2019 	}
2020 }
2021 
ql_alloc_shadow_space(struct ql_adapter * qdev)2022 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2023 {
2024 	qdev->rx_ring_shadow_reg_area =
2025 	    pci_alloc_consistent(qdev->pdev,
2026 				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2027 	if (qdev->rx_ring_shadow_reg_area == NULL) {
2028 		QPRINTK(qdev, IFUP, ERR,
2029 			"Allocation of RX shadow space failed.\n");
2030 		return -ENOMEM;
2031 	}
2032 	qdev->tx_ring_shadow_reg_area =
2033 	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2034 				 &qdev->tx_ring_shadow_reg_dma);
2035 	if (qdev->tx_ring_shadow_reg_area == NULL) {
2036 		QPRINTK(qdev, IFUP, ERR,
2037 			"Allocation of TX shadow space failed.\n");
2038 		goto err_wqp_sh_area;
2039 	}
2040 	return 0;
2041 
2042 err_wqp_sh_area:
2043 	pci_free_consistent(qdev->pdev,
2044 			    PAGE_SIZE,
2045 			    qdev->rx_ring_shadow_reg_area,
2046 			    qdev->rx_ring_shadow_reg_dma);
2047 	return -ENOMEM;
2048 }
2049 
ql_init_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2050 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2051 {
2052 	struct tx_ring_desc *tx_ring_desc;
2053 	int i;
2054 	struct ob_mac_iocb_req *mac_iocb_ptr;
2055 
2056 	mac_iocb_ptr = tx_ring->wq_base;
2057 	tx_ring_desc = tx_ring->q;
2058 	for (i = 0; i < tx_ring->wq_len; i++) {
2059 		tx_ring_desc->index = i;
2060 		tx_ring_desc->skb = NULL;
2061 		tx_ring_desc->queue_entry = mac_iocb_ptr;
2062 		mac_iocb_ptr++;
2063 		tx_ring_desc++;
2064 	}
2065 	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2066 	atomic_set(&tx_ring->queue_stopped, 0);
2067 }
2068 
ql_free_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2069 static void ql_free_tx_resources(struct ql_adapter *qdev,
2070 				 struct tx_ring *tx_ring)
2071 {
2072 	if (tx_ring->wq_base) {
2073 		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2074 				    tx_ring->wq_base, tx_ring->wq_base_dma);
2075 		tx_ring->wq_base = NULL;
2076 	}
2077 	kfree(tx_ring->q);
2078 	tx_ring->q = NULL;
2079 }
2080 
ql_alloc_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2081 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2082 				 struct tx_ring *tx_ring)
2083 {
2084 	tx_ring->wq_base =
2085 	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2086 				 &tx_ring->wq_base_dma);
2087 
2088 	if ((tx_ring->wq_base == NULL)
2089 	    || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2090 		QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2091 		return -ENOMEM;
2092 	}
2093 	tx_ring->q =
2094 	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2095 	if (tx_ring->q == NULL)
2096 		goto err;
2097 
2098 	return 0;
2099 err:
2100 	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2101 			    tx_ring->wq_base, tx_ring->wq_base_dma);
2102 	return -ENOMEM;
2103 }
2104 
ql_free_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2105 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2106 {
2107 	int i;
2108 	struct bq_desc *lbq_desc;
2109 
2110 	for (i = 0; i < rx_ring->lbq_len; i++) {
2111 		lbq_desc = &rx_ring->lbq[i];
2112 		if (lbq_desc->p.lbq_page) {
2113 			pci_unmap_page(qdev->pdev,
2114 				       pci_unmap_addr(lbq_desc, mapaddr),
2115 				       pci_unmap_len(lbq_desc, maplen),
2116 				       PCI_DMA_FROMDEVICE);
2117 
2118 			put_page(lbq_desc->p.lbq_page);
2119 			lbq_desc->p.lbq_page = NULL;
2120 		}
2121 	}
2122 }
2123 
2124 /*
2125  * Allocate and map a page for each element of the lbq.
2126  */
ql_alloc_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2127 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2128 				struct rx_ring *rx_ring)
2129 {
2130 	int i;
2131 	struct bq_desc *lbq_desc;
2132 	u64 map;
2133 	__le64 *bq = rx_ring->lbq_base;
2134 
2135 	for (i = 0; i < rx_ring->lbq_len; i++) {
2136 		lbq_desc = &rx_ring->lbq[i];
2137 		memset(lbq_desc, 0, sizeof(lbq_desc));
2138 		lbq_desc->addr = bq;
2139 		lbq_desc->index = i;
2140 		lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2141 		if (unlikely(!lbq_desc->p.lbq_page)) {
2142 			QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2143 			goto mem_error;
2144 		} else {
2145 			map = pci_map_page(qdev->pdev,
2146 					   lbq_desc->p.lbq_page,
2147 					   0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2148 			if (pci_dma_mapping_error(qdev->pdev, map)) {
2149 				QPRINTK(qdev, IFUP, ERR,
2150 					"PCI mapping failed.\n");
2151 				goto mem_error;
2152 			}
2153 			pci_unmap_addr_set(lbq_desc, mapaddr, map);
2154 			pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2155 			*lbq_desc->addr = cpu_to_le64(map);
2156 		}
2157 		bq++;
2158 	}
2159 	return 0;
2160 mem_error:
2161 	ql_free_lbq_buffers(qdev, rx_ring);
2162 	return -ENOMEM;
2163 }
2164 
ql_free_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2165 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2166 {
2167 	int i;
2168 	struct bq_desc *sbq_desc;
2169 
2170 	for (i = 0; i < rx_ring->sbq_len; i++) {
2171 		sbq_desc = &rx_ring->sbq[i];
2172 		if (sbq_desc == NULL) {
2173 			QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2174 			return;
2175 		}
2176 		if (sbq_desc->p.skb) {
2177 			pci_unmap_single(qdev->pdev,
2178 					 pci_unmap_addr(sbq_desc, mapaddr),
2179 					 pci_unmap_len(sbq_desc, maplen),
2180 					 PCI_DMA_FROMDEVICE);
2181 			dev_kfree_skb(sbq_desc->p.skb);
2182 			sbq_desc->p.skb = NULL;
2183 		}
2184 	}
2185 }
2186 
2187 /* Allocate and map an skb for each element of the sbq. */
ql_alloc_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2188 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2189 				struct rx_ring *rx_ring)
2190 {
2191 	int i;
2192 	struct bq_desc *sbq_desc;
2193 	struct sk_buff *skb;
2194 	u64 map;
2195 	__le64 *bq = rx_ring->sbq_base;
2196 
2197 	for (i = 0; i < rx_ring->sbq_len; i++) {
2198 		sbq_desc = &rx_ring->sbq[i];
2199 		memset(sbq_desc, 0, sizeof(sbq_desc));
2200 		sbq_desc->index = i;
2201 		sbq_desc->addr = bq;
2202 		skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2203 		if (unlikely(!skb)) {
2204 			/* Better luck next round */
2205 			QPRINTK(qdev, IFUP, ERR,
2206 				"small buff alloc failed for %d bytes at index %d.\n",
2207 				rx_ring->sbq_buf_size, i);
2208 			goto mem_err;
2209 		}
2210 		skb_reserve(skb, QLGE_SB_PAD);
2211 		sbq_desc->p.skb = skb;
2212 		/*
2213 		 * Map only half the buffer. Because the
2214 		 * other half may get some data copied to it
2215 		 * when the completion arrives.
2216 		 */
2217 		map = pci_map_single(qdev->pdev,
2218 				     skb->data,
2219 				     rx_ring->sbq_buf_size / 2,
2220 				     PCI_DMA_FROMDEVICE);
2221 		if (pci_dma_mapping_error(qdev->pdev, map)) {
2222 			QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2223 			goto mem_err;
2224 		}
2225 		pci_unmap_addr_set(sbq_desc, mapaddr, map);
2226 		pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2227 		*sbq_desc->addr = cpu_to_le64(map);
2228 		bq++;
2229 	}
2230 	return 0;
2231 mem_err:
2232 	ql_free_sbq_buffers(qdev, rx_ring);
2233 	return -ENOMEM;
2234 }
2235 
ql_free_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2236 static void ql_free_rx_resources(struct ql_adapter *qdev,
2237 				 struct rx_ring *rx_ring)
2238 {
2239 	if (rx_ring->sbq_len)
2240 		ql_free_sbq_buffers(qdev, rx_ring);
2241 	if (rx_ring->lbq_len)
2242 		ql_free_lbq_buffers(qdev, rx_ring);
2243 
2244 	/* Free the small buffer queue. */
2245 	if (rx_ring->sbq_base) {
2246 		pci_free_consistent(qdev->pdev,
2247 				    rx_ring->sbq_size,
2248 				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
2249 		rx_ring->sbq_base = NULL;
2250 	}
2251 
2252 	/* Free the small buffer queue control blocks. */
2253 	kfree(rx_ring->sbq);
2254 	rx_ring->sbq = NULL;
2255 
2256 	/* Free the large buffer queue. */
2257 	if (rx_ring->lbq_base) {
2258 		pci_free_consistent(qdev->pdev,
2259 				    rx_ring->lbq_size,
2260 				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
2261 		rx_ring->lbq_base = NULL;
2262 	}
2263 
2264 	/* Free the large buffer queue control blocks. */
2265 	kfree(rx_ring->lbq);
2266 	rx_ring->lbq = NULL;
2267 
2268 	/* Free the rx queue. */
2269 	if (rx_ring->cq_base) {
2270 		pci_free_consistent(qdev->pdev,
2271 				    rx_ring->cq_size,
2272 				    rx_ring->cq_base, rx_ring->cq_base_dma);
2273 		rx_ring->cq_base = NULL;
2274 	}
2275 }
2276 
2277 /* Allocate queues and buffers for this completions queue based
2278  * on the values in the parameter structure. */
ql_alloc_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2279 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2280 				 struct rx_ring *rx_ring)
2281 {
2282 
2283 	/*
2284 	 * Allocate the completion queue for this rx_ring.
2285 	 */
2286 	rx_ring->cq_base =
2287 	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2288 				 &rx_ring->cq_base_dma);
2289 
2290 	if (rx_ring->cq_base == NULL) {
2291 		QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2292 		return -ENOMEM;
2293 	}
2294 
2295 	if (rx_ring->sbq_len) {
2296 		/*
2297 		 * Allocate small buffer queue.
2298 		 */
2299 		rx_ring->sbq_base =
2300 		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2301 					 &rx_ring->sbq_base_dma);
2302 
2303 		if (rx_ring->sbq_base == NULL) {
2304 			QPRINTK(qdev, IFUP, ERR,
2305 				"Small buffer queue allocation failed.\n");
2306 			goto err_mem;
2307 		}
2308 
2309 		/*
2310 		 * Allocate small buffer queue control blocks.
2311 		 */
2312 		rx_ring->sbq =
2313 		    kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2314 			    GFP_KERNEL);
2315 		if (rx_ring->sbq == NULL) {
2316 			QPRINTK(qdev, IFUP, ERR,
2317 				"Small buffer queue control block allocation failed.\n");
2318 			goto err_mem;
2319 		}
2320 
2321 		if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2322 			QPRINTK(qdev, IFUP, ERR,
2323 				"Small buffer allocation failed.\n");
2324 			goto err_mem;
2325 		}
2326 	}
2327 
2328 	if (rx_ring->lbq_len) {
2329 		/*
2330 		 * Allocate large buffer queue.
2331 		 */
2332 		rx_ring->lbq_base =
2333 		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2334 					 &rx_ring->lbq_base_dma);
2335 
2336 		if (rx_ring->lbq_base == NULL) {
2337 			QPRINTK(qdev, IFUP, ERR,
2338 				"Large buffer queue allocation failed.\n");
2339 			goto err_mem;
2340 		}
2341 		/*
2342 		 * Allocate large buffer queue control blocks.
2343 		 */
2344 		rx_ring->lbq =
2345 		    kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2346 			    GFP_KERNEL);
2347 		if (rx_ring->lbq == NULL) {
2348 			QPRINTK(qdev, IFUP, ERR,
2349 				"Large buffer queue control block allocation failed.\n");
2350 			goto err_mem;
2351 		}
2352 
2353 		/*
2354 		 * Allocate the buffers.
2355 		 */
2356 		if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2357 			QPRINTK(qdev, IFUP, ERR,
2358 				"Large buffer allocation failed.\n");
2359 			goto err_mem;
2360 		}
2361 	}
2362 
2363 	return 0;
2364 
2365 err_mem:
2366 	ql_free_rx_resources(qdev, rx_ring);
2367 	return -ENOMEM;
2368 }
2369 
ql_tx_ring_clean(struct ql_adapter * qdev)2370 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2371 {
2372 	struct tx_ring *tx_ring;
2373 	struct tx_ring_desc *tx_ring_desc;
2374 	int i, j;
2375 
2376 	/*
2377 	 * Loop through all queues and free
2378 	 * any resources.
2379 	 */
2380 	for (j = 0; j < qdev->tx_ring_count; j++) {
2381 		tx_ring = &qdev->tx_ring[j];
2382 		for (i = 0; i < tx_ring->wq_len; i++) {
2383 			tx_ring_desc = &tx_ring->q[i];
2384 			if (tx_ring_desc && tx_ring_desc->skb) {
2385 				QPRINTK(qdev, IFDOWN, ERR,
2386 				"Freeing lost SKB %p, from queue %d, index %d.\n",
2387 					tx_ring_desc->skb, j,
2388 					tx_ring_desc->index);
2389 				ql_unmap_send(qdev, tx_ring_desc,
2390 					      tx_ring_desc->map_cnt);
2391 				dev_kfree_skb(tx_ring_desc->skb);
2392 				tx_ring_desc->skb = NULL;
2393 			}
2394 		}
2395 	}
2396 }
2397 
ql_free_mem_resources(struct ql_adapter * qdev)2398 static void ql_free_mem_resources(struct ql_adapter *qdev)
2399 {
2400 	int i;
2401 
2402 	for (i = 0; i < qdev->tx_ring_count; i++)
2403 		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2404 	for (i = 0; i < qdev->rx_ring_count; i++)
2405 		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2406 	ql_free_shadow_space(qdev);
2407 }
2408 
ql_alloc_mem_resources(struct ql_adapter * qdev)2409 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2410 {
2411 	int i;
2412 
2413 	/* Allocate space for our shadow registers and such. */
2414 	if (ql_alloc_shadow_space(qdev))
2415 		return -ENOMEM;
2416 
2417 	for (i = 0; i < qdev->rx_ring_count; i++) {
2418 		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2419 			QPRINTK(qdev, IFUP, ERR,
2420 				"RX resource allocation failed.\n");
2421 			goto err_mem;
2422 		}
2423 	}
2424 	/* Allocate tx queue resources */
2425 	for (i = 0; i < qdev->tx_ring_count; i++) {
2426 		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2427 			QPRINTK(qdev, IFUP, ERR,
2428 				"TX resource allocation failed.\n");
2429 			goto err_mem;
2430 		}
2431 	}
2432 	return 0;
2433 
2434 err_mem:
2435 	ql_free_mem_resources(qdev);
2436 	return -ENOMEM;
2437 }
2438 
2439 /* Set up the rx ring control block and pass it to the chip.
2440  * The control block is defined as
2441  * "Completion Queue Initialization Control Block", or cqicb.
2442  */
ql_start_rx_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2443 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2444 {
2445 	struct cqicb *cqicb = &rx_ring->cqicb;
2446 	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2447 	    (rx_ring->cq_id * sizeof(u64) * 4);
2448 	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2449 	    (rx_ring->cq_id * sizeof(u64) * 4);
2450 	void __iomem *doorbell_area =
2451 	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2452 	int err = 0;
2453 	u16 bq_len;
2454 
2455 	/* Set up the shadow registers for this ring. */
2456 	rx_ring->prod_idx_sh_reg = shadow_reg;
2457 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2458 	shadow_reg += sizeof(u64);
2459 	shadow_reg_dma += sizeof(u64);
2460 	rx_ring->lbq_base_indirect = shadow_reg;
2461 	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2462 	shadow_reg += sizeof(u64);
2463 	shadow_reg_dma += sizeof(u64);
2464 	rx_ring->sbq_base_indirect = shadow_reg;
2465 	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2466 
2467 	/* PCI doorbell mem area + 0x00 for consumer index register */
2468 	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2469 	rx_ring->cnsmr_idx = 0;
2470 	rx_ring->curr_entry = rx_ring->cq_base;
2471 
2472 	/* PCI doorbell mem area + 0x04 for valid register */
2473 	rx_ring->valid_db_reg = doorbell_area + 0x04;
2474 
2475 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
2476 	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2477 
2478 	/* PCI doorbell mem area + 0x1c */
2479 	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2480 
2481 	memset((void *)cqicb, 0, sizeof(struct cqicb));
2482 	cqicb->msix_vect = rx_ring->irq;
2483 
2484 	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2485 	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2486 
2487 	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2488 
2489 	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2490 
2491 	/*
2492 	 * Set up the control block load flags.
2493 	 */
2494 	cqicb->flags = FLAGS_LC |	/* Load queue base address */
2495 	    FLAGS_LV |		/* Load MSI-X vector */
2496 	    FLAGS_LI;		/* Load irq delay values */
2497 	if (rx_ring->lbq_len) {
2498 		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
2499 		*((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2500 		cqicb->lbq_addr =
2501 		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2502 		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2503 			(u16) rx_ring->lbq_buf_size;
2504 		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2505 		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2506 			(u16) rx_ring->lbq_len;
2507 		cqicb->lbq_len = cpu_to_le16(bq_len);
2508 		rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2509 		rx_ring->lbq_curr_idx = 0;
2510 		rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2511 		rx_ring->lbq_free_cnt = 16;
2512 	}
2513 	if (rx_ring->sbq_len) {
2514 		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
2515 		*((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2516 		cqicb->sbq_addr =
2517 		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2518 		cqicb->sbq_buf_size =
2519 		    cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2520 		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2521 			(u16) rx_ring->sbq_len;
2522 		cqicb->sbq_len = cpu_to_le16(bq_len);
2523 		rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2524 		rx_ring->sbq_curr_idx = 0;
2525 		rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2526 		rx_ring->sbq_free_cnt = 16;
2527 	}
2528 	switch (rx_ring->type) {
2529 	case TX_Q:
2530 		/* If there's only one interrupt, then we use
2531 		 * worker threads to process the outbound
2532 		 * completion handling rx_rings. We do this so
2533 		 * they can be run on multiple CPUs. There is
2534 		 * room to play with this more where we would only
2535 		 * run in a worker if there are more than x number
2536 		 * of outbound completions on the queue and more
2537 		 * than one queue active.  Some threshold that
2538 		 * would indicate a benefit in spite of the cost
2539 		 * of a context switch.
2540 		 * If there's more than one interrupt, then the
2541 		 * outbound completions are processed in the ISR.
2542 		 */
2543 		if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2544 			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2545 		else {
2546 			/* With all debug warnings on we see a WARN_ON message
2547 			 * when we free the skb in the interrupt context.
2548 			 */
2549 			INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2550 		}
2551 		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2552 		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2553 		break;
2554 	case DEFAULT_Q:
2555 		INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2556 		cqicb->irq_delay = 0;
2557 		cqicb->pkt_delay = 0;
2558 		break;
2559 	case RX_Q:
2560 		/* Inbound completion handling rx_rings run in
2561 		 * separate NAPI contexts.
2562 		 */
2563 		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2564 			       64);
2565 		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2566 		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2567 		break;
2568 	default:
2569 		QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2570 			rx_ring->type);
2571 	}
2572 	QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2573 	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2574 			   CFG_LCQ, rx_ring->cq_id);
2575 	if (err) {
2576 		QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2577 		return err;
2578 	}
2579 	QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2580 	/*
2581 	 * Advance the producer index for the buffer queues.
2582 	 */
2583 	wmb();
2584 	if (rx_ring->lbq_len)
2585 		ql_write_db_reg(rx_ring->lbq_prod_idx,
2586 				rx_ring->lbq_prod_idx_db_reg);
2587 	if (rx_ring->sbq_len)
2588 		ql_write_db_reg(rx_ring->sbq_prod_idx,
2589 				rx_ring->sbq_prod_idx_db_reg);
2590 	return err;
2591 }
2592 
ql_start_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2593 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2594 {
2595 	struct wqicb *wqicb = (struct wqicb *)tx_ring;
2596 	void __iomem *doorbell_area =
2597 	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2598 	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2599 	    (tx_ring->wq_id * sizeof(u64));
2600 	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2601 	    (tx_ring->wq_id * sizeof(u64));
2602 	int err = 0;
2603 
2604 	/*
2605 	 * Assign doorbell registers for this tx_ring.
2606 	 */
2607 	/* TX PCI doorbell mem area for tx producer index */
2608 	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2609 	tx_ring->prod_idx = 0;
2610 	/* TX PCI doorbell mem area + 0x04 */
2611 	tx_ring->valid_db_reg = doorbell_area + 0x04;
2612 
2613 	/*
2614 	 * Assign shadow registers for this tx_ring.
2615 	 */
2616 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2617 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2618 
2619 	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2620 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2621 				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2622 	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2623 	wqicb->rid = 0;
2624 	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2625 
2626 	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2627 
2628 	ql_init_tx_ring(qdev, tx_ring);
2629 
2630 	err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2631 			   (u16) tx_ring->wq_id);
2632 	if (err) {
2633 		QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2634 		return err;
2635 	}
2636 	QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2637 	return err;
2638 }
2639 
ql_disable_msix(struct ql_adapter * qdev)2640 static void ql_disable_msix(struct ql_adapter *qdev)
2641 {
2642 	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2643 		pci_disable_msix(qdev->pdev);
2644 		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2645 		kfree(qdev->msi_x_entry);
2646 		qdev->msi_x_entry = NULL;
2647 	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2648 		pci_disable_msi(qdev->pdev);
2649 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
2650 	}
2651 }
2652 
ql_enable_msix(struct ql_adapter * qdev)2653 static void ql_enable_msix(struct ql_adapter *qdev)
2654 {
2655 	int i;
2656 
2657 	qdev->intr_count = 1;
2658 	/* Get the MSIX vectors. */
2659 	if (irq_type == MSIX_IRQ) {
2660 		/* Try to alloc space for the msix struct,
2661 		 * if it fails then go to MSI/legacy.
2662 		 */
2663 		qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2664 					    sizeof(struct msix_entry),
2665 					    GFP_KERNEL);
2666 		if (!qdev->msi_x_entry) {
2667 			irq_type = MSI_IRQ;
2668 			goto msi;
2669 		}
2670 
2671 		for (i = 0; i < qdev->rx_ring_count; i++)
2672 			qdev->msi_x_entry[i].entry = i;
2673 
2674 		if (!pci_enable_msix
2675 		    (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2676 			set_bit(QL_MSIX_ENABLED, &qdev->flags);
2677 			qdev->intr_count = qdev->rx_ring_count;
2678 			QPRINTK(qdev, IFUP, INFO,
2679 				"MSI-X Enabled, got %d vectors.\n",
2680 				qdev->intr_count);
2681 			return;
2682 		} else {
2683 			kfree(qdev->msi_x_entry);
2684 			qdev->msi_x_entry = NULL;
2685 			QPRINTK(qdev, IFUP, WARNING,
2686 				"MSI-X Enable failed, trying MSI.\n");
2687 			irq_type = MSI_IRQ;
2688 		}
2689 	}
2690 msi:
2691 	if (irq_type == MSI_IRQ) {
2692 		if (!pci_enable_msi(qdev->pdev)) {
2693 			set_bit(QL_MSI_ENABLED, &qdev->flags);
2694 			QPRINTK(qdev, IFUP, INFO,
2695 				"Running with MSI interrupts.\n");
2696 			return;
2697 		}
2698 	}
2699 	irq_type = LEG_IRQ;
2700 	QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2701 }
2702 
2703 /*
2704  * Here we build the intr_context structures based on
2705  * our rx_ring count and intr vector count.
2706  * The intr_context structure is used to hook each vector
2707  * to possibly different handlers.
2708  */
ql_resolve_queues_to_irqs(struct ql_adapter * qdev)2709 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2710 {
2711 	int i = 0;
2712 	struct intr_context *intr_context = &qdev->intr_context[0];
2713 
2714 	ql_enable_msix(qdev);
2715 
2716 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2717 		/* Each rx_ring has it's
2718 		 * own intr_context since we have separate
2719 		 * vectors for each queue.
2720 		 * This only true when MSI-X is enabled.
2721 		 */
2722 		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2723 			qdev->rx_ring[i].irq = i;
2724 			intr_context->intr = i;
2725 			intr_context->qdev = qdev;
2726 			/*
2727 			 * We set up each vectors enable/disable/read bits so
2728 			 * there's no bit/mask calculations in the critical path.
2729 			 */
2730 			intr_context->intr_en_mask =
2731 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2732 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2733 			    | i;
2734 			intr_context->intr_dis_mask =
2735 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2736 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2737 			    INTR_EN_IHD | i;
2738 			intr_context->intr_read_mask =
2739 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2740 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2741 			    i;
2742 
2743 			if (i == 0) {
2744 				/*
2745 				 * Default queue handles bcast/mcast plus
2746 				 * async events.  Needs buffers.
2747 				 */
2748 				intr_context->handler = qlge_isr;
2749 				sprintf(intr_context->name, "%s-default-queue",
2750 					qdev->ndev->name);
2751 			} else if (i < qdev->rss_ring_first_cq_id) {
2752 				/*
2753 				 * Outbound queue is for outbound completions only.
2754 				 */
2755 				intr_context->handler = qlge_msix_tx_isr;
2756 				sprintf(intr_context->name, "%s-tx-%d",
2757 					qdev->ndev->name, i);
2758 			} else {
2759 				/*
2760 				 * Inbound queues handle unicast frames only.
2761 				 */
2762 				intr_context->handler = qlge_msix_rx_isr;
2763 				sprintf(intr_context->name, "%s-rx-%d",
2764 					qdev->ndev->name, i);
2765 			}
2766 		}
2767 	} else {
2768 		/*
2769 		 * All rx_rings use the same intr_context since
2770 		 * there is only one vector.
2771 		 */
2772 		intr_context->intr = 0;
2773 		intr_context->qdev = qdev;
2774 		/*
2775 		 * We set up each vectors enable/disable/read bits so
2776 		 * there's no bit/mask calculations in the critical path.
2777 		 */
2778 		intr_context->intr_en_mask =
2779 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2780 		intr_context->intr_dis_mask =
2781 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2782 		    INTR_EN_TYPE_DISABLE;
2783 		intr_context->intr_read_mask =
2784 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2785 		/*
2786 		 * Single interrupt means one handler for all rings.
2787 		 */
2788 		intr_context->handler = qlge_isr;
2789 		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2790 		for (i = 0; i < qdev->rx_ring_count; i++)
2791 			qdev->rx_ring[i].irq = 0;
2792 	}
2793 }
2794 
ql_free_irq(struct ql_adapter * qdev)2795 static void ql_free_irq(struct ql_adapter *qdev)
2796 {
2797 	int i;
2798 	struct intr_context *intr_context = &qdev->intr_context[0];
2799 
2800 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2801 		if (intr_context->hooked) {
2802 			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2803 				free_irq(qdev->msi_x_entry[i].vector,
2804 					 &qdev->rx_ring[i]);
2805 				QPRINTK(qdev, IFDOWN, ERR,
2806 					"freeing msix interrupt %d.\n", i);
2807 			} else {
2808 				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2809 				QPRINTK(qdev, IFDOWN, ERR,
2810 					"freeing msi interrupt %d.\n", i);
2811 			}
2812 		}
2813 	}
2814 	ql_disable_msix(qdev);
2815 }
2816 
ql_request_irq(struct ql_adapter * qdev)2817 static int ql_request_irq(struct ql_adapter *qdev)
2818 {
2819 	int i;
2820 	int status = 0;
2821 	struct pci_dev *pdev = qdev->pdev;
2822 	struct intr_context *intr_context = &qdev->intr_context[0];
2823 
2824 	ql_resolve_queues_to_irqs(qdev);
2825 
2826 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2827 		atomic_set(&intr_context->irq_cnt, 0);
2828 		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2829 			status = request_irq(qdev->msi_x_entry[i].vector,
2830 					     intr_context->handler,
2831 					     0,
2832 					     intr_context->name,
2833 					     &qdev->rx_ring[i]);
2834 			if (status) {
2835 				QPRINTK(qdev, IFUP, ERR,
2836 					"Failed request for MSIX interrupt %d.\n",
2837 					i);
2838 				goto err_irq;
2839 			} else {
2840 				QPRINTK(qdev, IFUP, INFO,
2841 					"Hooked intr %d, queue type %s%s%s, with name %s.\n",
2842 					i,
2843 					qdev->rx_ring[i].type ==
2844 					DEFAULT_Q ? "DEFAULT_Q" : "",
2845 					qdev->rx_ring[i].type ==
2846 					TX_Q ? "TX_Q" : "",
2847 					qdev->rx_ring[i].type ==
2848 					RX_Q ? "RX_Q" : "", intr_context->name);
2849 			}
2850 		} else {
2851 			QPRINTK(qdev, IFUP, DEBUG,
2852 				"trying msi or legacy interrupts.\n");
2853 			QPRINTK(qdev, IFUP, DEBUG,
2854 				"%s: irq = %d.\n", __func__, pdev->irq);
2855 			QPRINTK(qdev, IFUP, DEBUG,
2856 				"%s: context->name = %s.\n", __func__,
2857 			       intr_context->name);
2858 			QPRINTK(qdev, IFUP, DEBUG,
2859 				"%s: dev_id = 0x%p.\n", __func__,
2860 			       &qdev->rx_ring[0]);
2861 			status =
2862 			    request_irq(pdev->irq, qlge_isr,
2863 					test_bit(QL_MSI_ENABLED,
2864 						 &qdev->
2865 						 flags) ? 0 : IRQF_SHARED,
2866 					intr_context->name, &qdev->rx_ring[0]);
2867 			if (status)
2868 				goto err_irq;
2869 
2870 			QPRINTK(qdev, IFUP, ERR,
2871 				"Hooked intr %d, queue type %s%s%s, with name %s.\n",
2872 				i,
2873 				qdev->rx_ring[0].type ==
2874 				DEFAULT_Q ? "DEFAULT_Q" : "",
2875 				qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2876 				qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2877 				intr_context->name);
2878 		}
2879 		intr_context->hooked = 1;
2880 	}
2881 	return status;
2882 err_irq:
2883 	QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2884 	ql_free_irq(qdev);
2885 	return status;
2886 }
2887 
ql_start_rss(struct ql_adapter * qdev)2888 static int ql_start_rss(struct ql_adapter *qdev)
2889 {
2890 	struct ricb *ricb = &qdev->ricb;
2891 	int status = 0;
2892 	int i;
2893 	u8 *hash_id = (u8 *) ricb->hash_cq_id;
2894 
2895 	memset((void *)ricb, 0, sizeof(ricb));
2896 
2897 	ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2898 	ricb->flags =
2899 	    (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2900 	     RSS_RT6);
2901 	ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2902 
2903 	/*
2904 	 * Fill out the Indirection Table.
2905 	 */
2906 	for (i = 0; i < 256; i++)
2907 		hash_id[i] = i & (qdev->rss_ring_count - 1);
2908 
2909 	/*
2910 	 * Random values for the IPv6 and IPv4 Hash Keys.
2911 	 */
2912 	get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2913 	get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2914 
2915 	QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2916 
2917 	status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2918 	if (status) {
2919 		QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2920 		return status;
2921 	}
2922 	QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2923 	return status;
2924 }
2925 
2926 /* Initialize the frame-to-queue routing. */
ql_route_initialize(struct ql_adapter * qdev)2927 static int ql_route_initialize(struct ql_adapter *qdev)
2928 {
2929 	int status = 0;
2930 	int i;
2931 
2932 	/* Clear all the entries in the routing table. */
2933 	for (i = 0; i < 16; i++) {
2934 		status = ql_set_routing_reg(qdev, i, 0, 0);
2935 		if (status) {
2936 			QPRINTK(qdev, IFUP, ERR,
2937 				"Failed to init routing register for CAM packets.\n");
2938 			return status;
2939 		}
2940 	}
2941 
2942 	status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2943 	if (status) {
2944 		QPRINTK(qdev, IFUP, ERR,
2945 			"Failed to init routing register for error packets.\n");
2946 		return status;
2947 	}
2948 	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2949 	if (status) {
2950 		QPRINTK(qdev, IFUP, ERR,
2951 			"Failed to init routing register for broadcast packets.\n");
2952 		return status;
2953 	}
2954 	/* If we have more than one inbound queue, then turn on RSS in the
2955 	 * routing block.
2956 	 */
2957 	if (qdev->rss_ring_count > 1) {
2958 		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2959 					RT_IDX_RSS_MATCH, 1);
2960 		if (status) {
2961 			QPRINTK(qdev, IFUP, ERR,
2962 				"Failed to init routing register for MATCH RSS packets.\n");
2963 			return status;
2964 		}
2965 	}
2966 
2967 	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2968 				    RT_IDX_CAM_HIT, 1);
2969 	if (status) {
2970 		QPRINTK(qdev, IFUP, ERR,
2971 			"Failed to init routing register for CAM packets.\n");
2972 		return status;
2973 	}
2974 	return status;
2975 }
2976 
ql_adapter_initialize(struct ql_adapter * qdev)2977 static int ql_adapter_initialize(struct ql_adapter *qdev)
2978 {
2979 	u32 value, mask;
2980 	int i;
2981 	int status = 0;
2982 
2983 	/*
2984 	 * Set up the System register to halt on errors.
2985 	 */
2986 	value = SYS_EFE | SYS_FAE;
2987 	mask = value << 16;
2988 	ql_write32(qdev, SYS, mask | value);
2989 
2990 	/* Set the default queue, and VLAN behavior. */
2991 	value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
2992 	mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
2993 	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2994 
2995 	/* Set the MPI interrupt to enabled. */
2996 	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2997 
2998 	/* Enable the function, set pagesize, enable error checking. */
2999 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3000 	    FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3001 
3002 	/* Set/clear header splitting. */
3003 	mask = FSC_VM_PAGESIZE_MASK |
3004 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3005 	ql_write32(qdev, FSC, mask | value);
3006 
3007 	ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3008 		min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3009 
3010 	/* Start up the rx queues. */
3011 	for (i = 0; i < qdev->rx_ring_count; i++) {
3012 		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3013 		if (status) {
3014 			QPRINTK(qdev, IFUP, ERR,
3015 				"Failed to start rx ring[%d].\n", i);
3016 			return status;
3017 		}
3018 	}
3019 
3020 	/* If there is more than one inbound completion queue
3021 	 * then download a RICB to configure RSS.
3022 	 */
3023 	if (qdev->rss_ring_count > 1) {
3024 		status = ql_start_rss(qdev);
3025 		if (status) {
3026 			QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3027 			return status;
3028 		}
3029 	}
3030 
3031 	/* Start up the tx queues. */
3032 	for (i = 0; i < qdev->tx_ring_count; i++) {
3033 		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3034 		if (status) {
3035 			QPRINTK(qdev, IFUP, ERR,
3036 				"Failed to start tx ring[%d].\n", i);
3037 			return status;
3038 		}
3039 	}
3040 
3041 	status = ql_port_initialize(qdev);
3042 	if (status) {
3043 		QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3044 		return status;
3045 	}
3046 
3047 	status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3048 				     MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3049 	if (status) {
3050 		QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3051 		return status;
3052 	}
3053 
3054 	status = ql_route_initialize(qdev);
3055 	if (status) {
3056 		QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3057 		return status;
3058 	}
3059 
3060 	/* Start NAPI for the RSS queues. */
3061 	for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3062 		QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3063 			i);
3064 		napi_enable(&qdev->rx_ring[i].napi);
3065 	}
3066 
3067 	return status;
3068 }
3069 
3070 /* Issue soft reset to chip. */
ql_adapter_reset(struct ql_adapter * qdev)3071 static int ql_adapter_reset(struct ql_adapter *qdev)
3072 {
3073 	u32 value;
3074 	int max_wait_time;
3075 	int status = 0;
3076 	int resetCnt = 0;
3077 
3078 #define MAX_RESET_CNT   1
3079 issueReset:
3080 	resetCnt++;
3081 	QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3082 	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3083 	/* Wait for reset to complete. */
3084 	max_wait_time = 3;
3085 	QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3086 		max_wait_time);
3087 	do {
3088 		value = ql_read32(qdev, RST_FO);
3089 		if ((value & RST_FO_FR) == 0)
3090 			break;
3091 
3092 		ssleep(1);
3093 	} while ((--max_wait_time));
3094 	if (value & RST_FO_FR) {
3095 		QPRINTK(qdev, IFDOWN, ERR,
3096 			"Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3097 		if (resetCnt < MAX_RESET_CNT)
3098 			goto issueReset;
3099 	}
3100 	if (max_wait_time == 0) {
3101 		status = -ETIMEDOUT;
3102 		QPRINTK(qdev, IFDOWN, ERR,
3103 			"ETIMEOUT!!! errored out of resetting the chip!\n");
3104 	}
3105 
3106 	return status;
3107 }
3108 
ql_display_dev_info(struct net_device * ndev)3109 static void ql_display_dev_info(struct net_device *ndev)
3110 {
3111 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3112 
3113 	QPRINTK(qdev, PROBE, INFO,
3114 		"Function #%d, NIC Roll %d, NIC Rev = %d, "
3115 		"XG Roll = %d, XG Rev = %d.\n",
3116 		qdev->func,
3117 		qdev->chip_rev_id & 0x0000000f,
3118 		qdev->chip_rev_id >> 4 & 0x0000000f,
3119 		qdev->chip_rev_id >> 8 & 0x0000000f,
3120 		qdev->chip_rev_id >> 12 & 0x0000000f);
3121 	QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3122 }
3123 
ql_adapter_down(struct ql_adapter * qdev)3124 static int ql_adapter_down(struct ql_adapter *qdev)
3125 {
3126 	struct net_device *ndev = qdev->ndev;
3127 	int i, status = 0;
3128 	struct rx_ring *rx_ring;
3129 
3130 	netif_stop_queue(ndev);
3131 	netif_carrier_off(ndev);
3132 
3133 	/* Don't kill the reset worker thread if we
3134 	 * are in the process of recovery.
3135 	 */
3136 	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3137 		cancel_delayed_work_sync(&qdev->asic_reset_work);
3138 	cancel_delayed_work_sync(&qdev->mpi_reset_work);
3139 	cancel_delayed_work_sync(&qdev->mpi_work);
3140 
3141 	/* The default queue at index 0 is always processed in
3142 	 * a workqueue.
3143 	 */
3144 	cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3145 
3146 	/* The rest of the rx_rings are processed in
3147 	 * a workqueue only if it's a single interrupt
3148 	 * environment (MSI/Legacy).
3149 	 */
3150 	for (i = 1; i < qdev->rx_ring_count; i++) {
3151 		rx_ring = &qdev->rx_ring[i];
3152 		/* Only the RSS rings use NAPI on multi irq
3153 		 * environment.  Outbound completion processing
3154 		 * is done in interrupt context.
3155 		 */
3156 		if (i >= qdev->rss_ring_first_cq_id) {
3157 			napi_disable(&rx_ring->napi);
3158 		} else {
3159 			cancel_delayed_work_sync(&rx_ring->rx_work);
3160 		}
3161 	}
3162 
3163 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3164 
3165 	ql_disable_interrupts(qdev);
3166 
3167 	ql_tx_ring_clean(qdev);
3168 
3169 	/* Call netif_napi_del() from common point.
3170 	 */
3171 	for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3172 		netif_napi_del(&qdev->rx_ring[i].napi);
3173 
3174 	spin_lock(&qdev->hw_lock);
3175 	status = ql_adapter_reset(qdev);
3176 	if (status)
3177 		QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3178 			qdev->func);
3179 	spin_unlock(&qdev->hw_lock);
3180 	return status;
3181 }
3182 
ql_adapter_up(struct ql_adapter * qdev)3183 static int ql_adapter_up(struct ql_adapter *qdev)
3184 {
3185 	int err = 0;
3186 
3187 	spin_lock(&qdev->hw_lock);
3188 	err = ql_adapter_initialize(qdev);
3189 	if (err) {
3190 		QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3191 		spin_unlock(&qdev->hw_lock);
3192 		goto err_init;
3193 	}
3194 	spin_unlock(&qdev->hw_lock);
3195 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3196 	ql_enable_interrupts(qdev);
3197 	ql_enable_all_completion_interrupts(qdev);
3198 	if ((ql_read32(qdev, STS) & qdev->port_init)) {
3199 		netif_carrier_on(qdev->ndev);
3200 		netif_start_queue(qdev->ndev);
3201 	}
3202 
3203 	return 0;
3204 err_init:
3205 	ql_adapter_reset(qdev);
3206 	return err;
3207 }
3208 
ql_cycle_adapter(struct ql_adapter * qdev)3209 static int ql_cycle_adapter(struct ql_adapter *qdev)
3210 {
3211 	int status;
3212 
3213 	status = ql_adapter_down(qdev);
3214 	if (status)
3215 		goto error;
3216 
3217 	status = ql_adapter_up(qdev);
3218 	if (status)
3219 		goto error;
3220 
3221 	return status;
3222 error:
3223 	QPRINTK(qdev, IFUP, ALERT,
3224 		"Driver up/down cycle failed, closing device\n");
3225 	rtnl_lock();
3226 	dev_close(qdev->ndev);
3227 	rtnl_unlock();
3228 	return status;
3229 }
3230 
ql_release_adapter_resources(struct ql_adapter * qdev)3231 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3232 {
3233 	ql_free_mem_resources(qdev);
3234 	ql_free_irq(qdev);
3235 }
3236 
ql_get_adapter_resources(struct ql_adapter * qdev)3237 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3238 {
3239 	int status = 0;
3240 
3241 	if (ql_alloc_mem_resources(qdev)) {
3242 		QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3243 		return -ENOMEM;
3244 	}
3245 	status = ql_request_irq(qdev);
3246 	if (status)
3247 		goto err_irq;
3248 	return status;
3249 err_irq:
3250 	ql_free_mem_resources(qdev);
3251 	return status;
3252 }
3253 
qlge_close(struct net_device * ndev)3254 static int qlge_close(struct net_device *ndev)
3255 {
3256 	struct ql_adapter *qdev = netdev_priv(ndev);
3257 
3258 	/*
3259 	 * Wait for device to recover from a reset.
3260 	 * (Rarely happens, but possible.)
3261 	 */
3262 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3263 		msleep(1);
3264 	ql_adapter_down(qdev);
3265 	ql_release_adapter_resources(qdev);
3266 	return 0;
3267 }
3268 
ql_configure_rings(struct ql_adapter * qdev)3269 static int ql_configure_rings(struct ql_adapter *qdev)
3270 {
3271 	int i;
3272 	struct rx_ring *rx_ring;
3273 	struct tx_ring *tx_ring;
3274 	int cpu_cnt = num_online_cpus();
3275 
3276 	/*
3277 	 * For each processor present we allocate one
3278 	 * rx_ring for outbound completions, and one
3279 	 * rx_ring for inbound completions.  Plus there is
3280 	 * always the one default queue.  For the CPU
3281 	 * counts we end up with the following rx_rings:
3282 	 * rx_ring count =
3283 	 *  one default queue +
3284 	 *  (CPU count * outbound completion rx_ring) +
3285 	 *  (CPU count * inbound (RSS) completion rx_ring)
3286 	 * To keep it simple we limit the total number of
3287 	 * queues to < 32, so we truncate CPU to 8.
3288 	 * This limitation can be removed when requested.
3289 	 */
3290 
3291 	if (cpu_cnt > MAX_CPUS)
3292 		cpu_cnt = MAX_CPUS;
3293 
3294 	/*
3295 	 * rx_ring[0] is always the default queue.
3296 	 */
3297 	/* Allocate outbound completion ring for each CPU. */
3298 	qdev->tx_ring_count = cpu_cnt;
3299 	/* Allocate inbound completion (RSS) ring for each CPU. */
3300 	qdev->rss_ring_count = cpu_cnt;
3301 	/* cq_id for the first inbound ring handler. */
3302 	qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3303 	/*
3304 	 * qdev->rx_ring_count:
3305 	 * Total number of rx_rings.  This includes the one
3306 	 * default queue, a number of outbound completion
3307 	 * handler rx_rings, and the number of inbound
3308 	 * completion handler rx_rings.
3309 	 */
3310 	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3311 
3312 	for (i = 0; i < qdev->tx_ring_count; i++) {
3313 		tx_ring = &qdev->tx_ring[i];
3314 		memset((void *)tx_ring, 0, sizeof(tx_ring));
3315 		tx_ring->qdev = qdev;
3316 		tx_ring->wq_id = i;
3317 		tx_ring->wq_len = qdev->tx_ring_size;
3318 		tx_ring->wq_size =
3319 		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3320 
3321 		/*
3322 		 * The completion queue ID for the tx rings start
3323 		 * immediately after the default Q ID, which is zero.
3324 		 */
3325 		tx_ring->cq_id = i + 1;
3326 	}
3327 
3328 	for (i = 0; i < qdev->rx_ring_count; i++) {
3329 		rx_ring = &qdev->rx_ring[i];
3330 		memset((void *)rx_ring, 0, sizeof(rx_ring));
3331 		rx_ring->qdev = qdev;
3332 		rx_ring->cq_id = i;
3333 		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
3334 		if (i == 0) {	/* Default queue at index 0. */
3335 			/*
3336 			 * Default queue handles bcast/mcast plus
3337 			 * async events.  Needs buffers.
3338 			 */
3339 			rx_ring->cq_len = qdev->rx_ring_size;
3340 			rx_ring->cq_size =
3341 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3342 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3343 			rx_ring->lbq_size =
3344 			    rx_ring->lbq_len * sizeof(__le64);
3345 			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3346 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3347 			rx_ring->sbq_size =
3348 			    rx_ring->sbq_len * sizeof(__le64);
3349 			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3350 			rx_ring->type = DEFAULT_Q;
3351 		} else if (i < qdev->rss_ring_first_cq_id) {
3352 			/*
3353 			 * Outbound queue handles outbound completions only.
3354 			 */
3355 			/* outbound cq is same size as tx_ring it services. */
3356 			rx_ring->cq_len = qdev->tx_ring_size;
3357 			rx_ring->cq_size =
3358 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3359 			rx_ring->lbq_len = 0;
3360 			rx_ring->lbq_size = 0;
3361 			rx_ring->lbq_buf_size = 0;
3362 			rx_ring->sbq_len = 0;
3363 			rx_ring->sbq_size = 0;
3364 			rx_ring->sbq_buf_size = 0;
3365 			rx_ring->type = TX_Q;
3366 		} else {	/* Inbound completions (RSS) queues */
3367 			/*
3368 			 * Inbound queues handle unicast frames only.
3369 			 */
3370 			rx_ring->cq_len = qdev->rx_ring_size;
3371 			rx_ring->cq_size =
3372 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3373 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3374 			rx_ring->lbq_size =
3375 			    rx_ring->lbq_len * sizeof(__le64);
3376 			rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3377 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3378 			rx_ring->sbq_size =
3379 			    rx_ring->sbq_len * sizeof(__le64);
3380 			rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3381 			rx_ring->type = RX_Q;
3382 		}
3383 	}
3384 	return 0;
3385 }
3386 
qlge_open(struct net_device * ndev)3387 static int qlge_open(struct net_device *ndev)
3388 {
3389 	int err = 0;
3390 	struct ql_adapter *qdev = netdev_priv(ndev);
3391 
3392 	err = ql_configure_rings(qdev);
3393 	if (err)
3394 		return err;
3395 
3396 	err = ql_get_adapter_resources(qdev);
3397 	if (err)
3398 		goto error_up;
3399 
3400 	err = ql_adapter_up(qdev);
3401 	if (err)
3402 		goto error_up;
3403 
3404 	return err;
3405 
3406 error_up:
3407 	ql_release_adapter_resources(qdev);
3408 	return err;
3409 }
3410 
qlge_change_mtu(struct net_device * ndev,int new_mtu)3411 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3412 {
3413 	struct ql_adapter *qdev = netdev_priv(ndev);
3414 
3415 	if (ndev->mtu == 1500 && new_mtu == 9000) {
3416 		QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3417 	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
3418 		QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3419 	} else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3420 		   (ndev->mtu == 9000 && new_mtu == 9000)) {
3421 		return 0;
3422 	} else
3423 		return -EINVAL;
3424 	ndev->mtu = new_mtu;
3425 	return 0;
3426 }
3427 
qlge_get_stats(struct net_device * ndev)3428 static struct net_device_stats *qlge_get_stats(struct net_device
3429 					       *ndev)
3430 {
3431 	struct ql_adapter *qdev = netdev_priv(ndev);
3432 	return &qdev->stats;
3433 }
3434 
qlge_set_multicast_list(struct net_device * ndev)3435 static void qlge_set_multicast_list(struct net_device *ndev)
3436 {
3437 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3438 	struct dev_mc_list *mc_ptr;
3439 	int i;
3440 
3441 	spin_lock(&qdev->hw_lock);
3442 	/*
3443 	 * Set or clear promiscuous mode if a
3444 	 * transition is taking place.
3445 	 */
3446 	if (ndev->flags & IFF_PROMISC) {
3447 		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3448 			if (ql_set_routing_reg
3449 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3450 				QPRINTK(qdev, HW, ERR,
3451 					"Failed to set promiscous mode.\n");
3452 			} else {
3453 				set_bit(QL_PROMISCUOUS, &qdev->flags);
3454 			}
3455 		}
3456 	} else {
3457 		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3458 			if (ql_set_routing_reg
3459 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3460 				QPRINTK(qdev, HW, ERR,
3461 					"Failed to clear promiscous mode.\n");
3462 			} else {
3463 				clear_bit(QL_PROMISCUOUS, &qdev->flags);
3464 			}
3465 		}
3466 	}
3467 
3468 	/*
3469 	 * Set or clear all multicast mode if a
3470 	 * transition is taking place.
3471 	 */
3472 	if ((ndev->flags & IFF_ALLMULTI) ||
3473 	    (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3474 		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3475 			if (ql_set_routing_reg
3476 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3477 				QPRINTK(qdev, HW, ERR,
3478 					"Failed to set all-multi mode.\n");
3479 			} else {
3480 				set_bit(QL_ALLMULTI, &qdev->flags);
3481 			}
3482 		}
3483 	} else {
3484 		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3485 			if (ql_set_routing_reg
3486 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3487 				QPRINTK(qdev, HW, ERR,
3488 					"Failed to clear all-multi mode.\n");
3489 			} else {
3490 				clear_bit(QL_ALLMULTI, &qdev->flags);
3491 			}
3492 		}
3493 	}
3494 
3495 	if (ndev->mc_count) {
3496 		for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3497 		     i++, mc_ptr = mc_ptr->next)
3498 			if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3499 						MAC_ADDR_TYPE_MULTI_MAC, i)) {
3500 				QPRINTK(qdev, HW, ERR,
3501 					"Failed to loadmulticast address.\n");
3502 				goto exit;
3503 			}
3504 		if (ql_set_routing_reg
3505 		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3506 			QPRINTK(qdev, HW, ERR,
3507 				"Failed to set multicast match mode.\n");
3508 		} else {
3509 			set_bit(QL_ALLMULTI, &qdev->flags);
3510 		}
3511 	}
3512 exit:
3513 	spin_unlock(&qdev->hw_lock);
3514 }
3515 
qlge_set_mac_address(struct net_device * ndev,void * p)3516 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3517 {
3518 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3519 	struct sockaddr *addr = p;
3520 	int ret = 0;
3521 
3522 	if (netif_running(ndev))
3523 		return -EBUSY;
3524 
3525 	if (!is_valid_ether_addr(addr->sa_data))
3526 		return -EADDRNOTAVAIL;
3527 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3528 
3529 	spin_lock(&qdev->hw_lock);
3530 	if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3531 			MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3532 		QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3533 		ret = -1;
3534 	}
3535 	spin_unlock(&qdev->hw_lock);
3536 
3537 	return ret;
3538 }
3539 
qlge_tx_timeout(struct net_device * ndev)3540 static void qlge_tx_timeout(struct net_device *ndev)
3541 {
3542 	struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3543 	ql_queue_asic_error(qdev);
3544 }
3545 
ql_asic_reset_work(struct work_struct * work)3546 static void ql_asic_reset_work(struct work_struct *work)
3547 {
3548 	struct ql_adapter *qdev =
3549 	    container_of(work, struct ql_adapter, asic_reset_work.work);
3550 	ql_cycle_adapter(qdev);
3551 }
3552 
ql_get_board_info(struct ql_adapter * qdev)3553 static void ql_get_board_info(struct ql_adapter *qdev)
3554 {
3555 	qdev->func =
3556 	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3557 	if (qdev->func) {
3558 		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3559 		qdev->port_link_up = STS_PL1;
3560 		qdev->port_init = STS_PI1;
3561 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3562 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3563 	} else {
3564 		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3565 		qdev->port_link_up = STS_PL0;
3566 		qdev->port_init = STS_PI0;
3567 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3568 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3569 	}
3570 	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3571 }
3572 
ql_release_all(struct pci_dev * pdev)3573 static void ql_release_all(struct pci_dev *pdev)
3574 {
3575 	struct net_device *ndev = pci_get_drvdata(pdev);
3576 	struct ql_adapter *qdev = netdev_priv(ndev);
3577 
3578 	if (qdev->workqueue) {
3579 		destroy_workqueue(qdev->workqueue);
3580 		qdev->workqueue = NULL;
3581 	}
3582 	if (qdev->q_workqueue) {
3583 		destroy_workqueue(qdev->q_workqueue);
3584 		qdev->q_workqueue = NULL;
3585 	}
3586 	if (qdev->reg_base)
3587 		iounmap(qdev->reg_base);
3588 	if (qdev->doorbell_area)
3589 		iounmap(qdev->doorbell_area);
3590 	pci_release_regions(pdev);
3591 	pci_set_drvdata(pdev, NULL);
3592 }
3593 
ql_init_device(struct pci_dev * pdev,struct net_device * ndev,int cards_found)3594 static int __devinit ql_init_device(struct pci_dev *pdev,
3595 				    struct net_device *ndev, int cards_found)
3596 {
3597 	struct ql_adapter *qdev = netdev_priv(ndev);
3598 	int pos, err = 0;
3599 	u16 val16;
3600 
3601 	memset((void *)qdev, 0, sizeof(qdev));
3602 	err = pci_enable_device(pdev);
3603 	if (err) {
3604 		dev_err(&pdev->dev, "PCI device enable failed.\n");
3605 		return err;
3606 	}
3607 
3608 	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3609 	if (pos <= 0) {
3610 		dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3611 			"aborting.\n");
3612 		goto err_out;
3613 	} else {
3614 		pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3615 		val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3616 		val16 |= (PCI_EXP_DEVCTL_CERE |
3617 			  PCI_EXP_DEVCTL_NFERE |
3618 			  PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3619 		pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3620 	}
3621 
3622 	err = pci_request_regions(pdev, DRV_NAME);
3623 	if (err) {
3624 		dev_err(&pdev->dev, "PCI region request failed.\n");
3625 		goto err_out;
3626 	}
3627 
3628 	pci_set_master(pdev);
3629 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3630 		set_bit(QL_DMA64, &qdev->flags);
3631 		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3632 	} else {
3633 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3634 		if (!err)
3635 		       err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3636 	}
3637 
3638 	if (err) {
3639 		dev_err(&pdev->dev, "No usable DMA configuration.\n");
3640 		goto err_out;
3641 	}
3642 
3643 	pci_set_drvdata(pdev, ndev);
3644 	qdev->reg_base =
3645 	    ioremap_nocache(pci_resource_start(pdev, 1),
3646 			    pci_resource_len(pdev, 1));
3647 	if (!qdev->reg_base) {
3648 		dev_err(&pdev->dev, "Register mapping failed.\n");
3649 		err = -ENOMEM;
3650 		goto err_out;
3651 	}
3652 
3653 	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3654 	qdev->doorbell_area =
3655 	    ioremap_nocache(pci_resource_start(pdev, 3),
3656 			    pci_resource_len(pdev, 3));
3657 	if (!qdev->doorbell_area) {
3658 		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3659 		err = -ENOMEM;
3660 		goto err_out;
3661 	}
3662 
3663 	ql_get_board_info(qdev);
3664 	qdev->ndev = ndev;
3665 	qdev->pdev = pdev;
3666 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3667 	spin_lock_init(&qdev->hw_lock);
3668 	spin_lock_init(&qdev->stats_lock);
3669 
3670 	/* make sure the EEPROM is good */
3671 	err = ql_get_flash_params(qdev);
3672 	if (err) {
3673 		dev_err(&pdev->dev, "Invalid FLASH.\n");
3674 		goto err_out;
3675 	}
3676 
3677 	if (!is_valid_ether_addr(qdev->flash.mac_addr))
3678 		goto err_out;
3679 
3680 	memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3681 	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3682 
3683 	/* Set up the default ring sizes. */
3684 	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3685 	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3686 
3687 	/* Set up the coalescing parameters. */
3688 	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3689 	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3690 	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3691 	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3692 
3693 	/*
3694 	 * Set up the operating parameters.
3695 	 */
3696 	qdev->rx_csum = 1;
3697 
3698 	qdev->q_workqueue = create_workqueue(ndev->name);
3699 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3700 	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3701 	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3702 	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3703 
3704 	if (!cards_found) {
3705 		dev_info(&pdev->dev, "%s\n", DRV_STRING);
3706 		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3707 			 DRV_NAME, DRV_VERSION);
3708 	}
3709 	return 0;
3710 err_out:
3711 	ql_release_all(pdev);
3712 	pci_disable_device(pdev);
3713 	return err;
3714 }
3715 
3716 
3717 static const struct net_device_ops qlge_netdev_ops = {
3718 	.ndo_open		= qlge_open,
3719 	.ndo_stop		= qlge_close,
3720 	.ndo_start_xmit		= qlge_send,
3721 	.ndo_change_mtu		= qlge_change_mtu,
3722 	.ndo_get_stats		= qlge_get_stats,
3723 	.ndo_set_multicast_list = qlge_set_multicast_list,
3724 	.ndo_set_mac_address	= qlge_set_mac_address,
3725 	.ndo_validate_addr	= eth_validate_addr,
3726 	.ndo_tx_timeout		= qlge_tx_timeout,
3727 	.ndo_vlan_rx_register	= ql_vlan_rx_register,
3728 	.ndo_vlan_rx_add_vid	= ql_vlan_rx_add_vid,
3729 	.ndo_vlan_rx_kill_vid	= ql_vlan_rx_kill_vid,
3730 };
3731 
qlge_probe(struct pci_dev * pdev,const struct pci_device_id * pci_entry)3732 static int __devinit qlge_probe(struct pci_dev *pdev,
3733 				const struct pci_device_id *pci_entry)
3734 {
3735 	struct net_device *ndev = NULL;
3736 	struct ql_adapter *qdev = NULL;
3737 	static int cards_found = 0;
3738 	int err = 0;
3739 
3740 	ndev = alloc_etherdev(sizeof(struct ql_adapter));
3741 	if (!ndev)
3742 		return -ENOMEM;
3743 
3744 	err = ql_init_device(pdev, ndev, cards_found);
3745 	if (err < 0) {
3746 		free_netdev(ndev);
3747 		return err;
3748 	}
3749 
3750 	qdev = netdev_priv(ndev);
3751 	SET_NETDEV_DEV(ndev, &pdev->dev);
3752 	ndev->features = (0
3753 			  | NETIF_F_IP_CSUM
3754 			  | NETIF_F_SG
3755 			  | NETIF_F_TSO
3756 			  | NETIF_F_TSO6
3757 			  | NETIF_F_TSO_ECN
3758 			  | NETIF_F_HW_VLAN_TX
3759 			  | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3760 
3761 	if (test_bit(QL_DMA64, &qdev->flags))
3762 		ndev->features |= NETIF_F_HIGHDMA;
3763 
3764 	/*
3765 	 * Set up net_device structure.
3766 	 */
3767 	ndev->tx_queue_len = qdev->tx_ring_size;
3768 	ndev->irq = pdev->irq;
3769 
3770 	ndev->netdev_ops = &qlge_netdev_ops;
3771 	SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3772 	ndev->watchdog_timeo = 10 * HZ;
3773 
3774 	err = register_netdev(ndev);
3775 	if (err) {
3776 		dev_err(&pdev->dev, "net device registration failed.\n");
3777 		ql_release_all(pdev);
3778 		pci_disable_device(pdev);
3779 		return err;
3780 	}
3781 	netif_carrier_off(ndev);
3782 	netif_stop_queue(ndev);
3783 	ql_display_dev_info(ndev);
3784 	cards_found++;
3785 	return 0;
3786 }
3787 
qlge_remove(struct pci_dev * pdev)3788 static void __devexit qlge_remove(struct pci_dev *pdev)
3789 {
3790 	struct net_device *ndev = pci_get_drvdata(pdev);
3791 	unregister_netdev(ndev);
3792 	ql_release_all(pdev);
3793 	pci_disable_device(pdev);
3794 	free_netdev(ndev);
3795 }
3796 
3797 /*
3798  * This callback is called by the PCI subsystem whenever
3799  * a PCI bus error is detected.
3800  */
qlge_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)3801 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3802 					       enum pci_channel_state state)
3803 {
3804 	struct net_device *ndev = pci_get_drvdata(pdev);
3805 	struct ql_adapter *qdev = netdev_priv(ndev);
3806 
3807 	if (netif_running(ndev))
3808 		ql_adapter_down(qdev);
3809 
3810 	pci_disable_device(pdev);
3811 
3812 	/* Request a slot reset. */
3813 	return PCI_ERS_RESULT_NEED_RESET;
3814 }
3815 
3816 /*
3817  * This callback is called after the PCI buss has been reset.
3818  * Basically, this tries to restart the card from scratch.
3819  * This is a shortened version of the device probe/discovery code,
3820  * it resembles the first-half of the () routine.
3821  */
qlge_io_slot_reset(struct pci_dev * pdev)3822 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3823 {
3824 	struct net_device *ndev = pci_get_drvdata(pdev);
3825 	struct ql_adapter *qdev = netdev_priv(ndev);
3826 
3827 	if (pci_enable_device(pdev)) {
3828 		QPRINTK(qdev, IFUP, ERR,
3829 			"Cannot re-enable PCI device after reset.\n");
3830 		return PCI_ERS_RESULT_DISCONNECT;
3831 	}
3832 
3833 	pci_set_master(pdev);
3834 
3835 	netif_carrier_off(ndev);
3836 	netif_stop_queue(ndev);
3837 	ql_adapter_reset(qdev);
3838 
3839 	/* Make sure the EEPROM is good */
3840 	memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3841 
3842 	if (!is_valid_ether_addr(ndev->perm_addr)) {
3843 		QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3844 		return PCI_ERS_RESULT_DISCONNECT;
3845 	}
3846 
3847 	return PCI_ERS_RESULT_RECOVERED;
3848 }
3849 
qlge_io_resume(struct pci_dev * pdev)3850 static void qlge_io_resume(struct pci_dev *pdev)
3851 {
3852 	struct net_device *ndev = pci_get_drvdata(pdev);
3853 	struct ql_adapter *qdev = netdev_priv(ndev);
3854 
3855 	pci_set_master(pdev);
3856 
3857 	if (netif_running(ndev)) {
3858 		if (ql_adapter_up(qdev)) {
3859 			QPRINTK(qdev, IFUP, ERR,
3860 				"Device initialization failed after reset.\n");
3861 			return;
3862 		}
3863 	}
3864 
3865 	netif_device_attach(ndev);
3866 }
3867 
3868 static struct pci_error_handlers qlge_err_handler = {
3869 	.error_detected = qlge_io_error_detected,
3870 	.slot_reset = qlge_io_slot_reset,
3871 	.resume = qlge_io_resume,
3872 };
3873 
qlge_suspend(struct pci_dev * pdev,pm_message_t state)3874 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3875 {
3876 	struct net_device *ndev = pci_get_drvdata(pdev);
3877 	struct ql_adapter *qdev = netdev_priv(ndev);
3878 	int err;
3879 
3880 	netif_device_detach(ndev);
3881 
3882 	if (netif_running(ndev)) {
3883 		err = ql_adapter_down(qdev);
3884 		if (!err)
3885 			return err;
3886 	}
3887 
3888 	err = pci_save_state(pdev);
3889 	if (err)
3890 		return err;
3891 
3892 	pci_disable_device(pdev);
3893 
3894 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
3895 
3896 	return 0;
3897 }
3898 
3899 #ifdef CONFIG_PM
qlge_resume(struct pci_dev * pdev)3900 static int qlge_resume(struct pci_dev *pdev)
3901 {
3902 	struct net_device *ndev = pci_get_drvdata(pdev);
3903 	struct ql_adapter *qdev = netdev_priv(ndev);
3904 	int err;
3905 
3906 	pci_set_power_state(pdev, PCI_D0);
3907 	pci_restore_state(pdev);
3908 	err = pci_enable_device(pdev);
3909 	if (err) {
3910 		QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3911 		return err;
3912 	}
3913 	pci_set_master(pdev);
3914 
3915 	pci_enable_wake(pdev, PCI_D3hot, 0);
3916 	pci_enable_wake(pdev, PCI_D3cold, 0);
3917 
3918 	if (netif_running(ndev)) {
3919 		err = ql_adapter_up(qdev);
3920 		if (err)
3921 			return err;
3922 	}
3923 
3924 	netif_device_attach(ndev);
3925 
3926 	return 0;
3927 }
3928 #endif /* CONFIG_PM */
3929 
qlge_shutdown(struct pci_dev * pdev)3930 static void qlge_shutdown(struct pci_dev *pdev)
3931 {
3932 	qlge_suspend(pdev, PMSG_SUSPEND);
3933 }
3934 
3935 static struct pci_driver qlge_driver = {
3936 	.name = DRV_NAME,
3937 	.id_table = qlge_pci_tbl,
3938 	.probe = qlge_probe,
3939 	.remove = __devexit_p(qlge_remove),
3940 #ifdef CONFIG_PM
3941 	.suspend = qlge_suspend,
3942 	.resume = qlge_resume,
3943 #endif
3944 	.shutdown = qlge_shutdown,
3945 	.err_handler = &qlge_err_handler
3946 };
3947 
qlge_init_module(void)3948 static int __init qlge_init_module(void)
3949 {
3950 	return pci_register_driver(&qlge_driver);
3951 }
3952 
qlge_exit(void)3953 static void __exit qlge_exit(void)
3954 {
3955 	pci_unregister_driver(&qlge_driver);
3956 }
3957 
3958 module_init(qlge_init_module);
3959 module_exit(qlge_exit);
3960