• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18  *
19  *
20  * This driver is designed for the Broadcom SiByte SOC built-in
21  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22  *
23  * Updated to the driver model and the PHY abstraction layer
24  * by Maciej W. Rozycki.
25  */
26 
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 
47 #include <asm/cache.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>	/* Processor type for cache alignment. */
50 
51 /* This is only here until the firmware is ready.  In that case,
52    the firmware leaves the ethernet address in the register for us. */
53 #ifdef CONFIG_SIBYTE_STANDALONE
54 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
55 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
56 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
57 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
58 #endif
59 
60 
61 /* These identify the driver base version and may not be removed. */
62 #if 0
63 static char version1[] __initdata =
64 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
65 #endif
66 
67 
68 /* Operational parameters that usually are not changed. */
69 
70 #define CONFIG_SBMAC_COALESCE
71 
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT  (2*HZ)
74 
75 
76 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
77 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
78 
79 /* A few user-configurable values which may be modified when a driver
80    module is loaded. */
81 
82 /* 1 normal messages, 0 quiet .. 7 verbose. */
83 static int debug = 1;
84 module_param(debug, int, S_IRUGO);
85 MODULE_PARM_DESC(debug, "Debug messages");
86 
87 #ifdef CONFIG_SBMAC_COALESCE
88 static int int_pktcnt_tx = 255;
89 module_param(int_pktcnt_tx, int, S_IRUGO);
90 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
91 
92 static int int_timeout_tx = 255;
93 module_param(int_timeout_tx, int, S_IRUGO);
94 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
95 
96 static int int_pktcnt_rx = 64;
97 module_param(int_pktcnt_rx, int, S_IRUGO);
98 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
99 
100 static int int_timeout_rx = 64;
101 module_param(int_timeout_rx, int, S_IRUGO);
102 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
103 #endif
104 
105 #include <asm/sibyte/board.h>
106 #include <asm/sibyte/sb1250.h>
107 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
108 #include <asm/sibyte/bcm1480_regs.h>
109 #include <asm/sibyte/bcm1480_int.h>
110 #define R_MAC_DMA_OODPKTLOST_RX	R_MAC_DMA_OODPKTLOST
111 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
112 #include <asm/sibyte/sb1250_regs.h>
113 #include <asm/sibyte/sb1250_int.h>
114 #else
115 #error invalid SiByte MAC configuation
116 #endif
117 #include <asm/sibyte/sb1250_scd.h>
118 #include <asm/sibyte/sb1250_mac.h>
119 #include <asm/sibyte/sb1250_dma.h>
120 
121 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
122 #define UNIT_INT(n)		(K_BCM1480_INT_MAC_0 + ((n) * 2))
123 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
124 #define UNIT_INT(n)		(K_INT_MAC_0 + (n))
125 #else
126 #error invalid SiByte MAC configuation
127 #endif
128 
129 #ifdef K_INT_PHY
130 #define SBMAC_PHY_INT			K_INT_PHY
131 #else
132 #define SBMAC_PHY_INT			PHY_POLL
133 #endif
134 
135 /**********************************************************************
136  *  Simple types
137  ********************************************************************* */
138 
139 enum sbmac_speed {
140 	sbmac_speed_none = 0,
141 	sbmac_speed_10 = SPEED_10,
142 	sbmac_speed_100 = SPEED_100,
143 	sbmac_speed_1000 = SPEED_1000,
144 };
145 
146 enum sbmac_duplex {
147 	sbmac_duplex_none = -1,
148 	sbmac_duplex_half = DUPLEX_HALF,
149 	sbmac_duplex_full = DUPLEX_FULL,
150 };
151 
152 enum sbmac_fc {
153 	sbmac_fc_none,
154 	sbmac_fc_disabled,
155 	sbmac_fc_frame,
156 	sbmac_fc_collision,
157 	sbmac_fc_carrier,
158 };
159 
160 enum sbmac_state {
161 	sbmac_state_uninit,
162 	sbmac_state_off,
163 	sbmac_state_on,
164 	sbmac_state_broken,
165 };
166 
167 
168 /**********************************************************************
169  *  Macros
170  ********************************************************************* */
171 
172 
173 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
174 			  (d)->sbdma_dscrtable : (d)->f+1)
175 
176 
177 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
178 
179 #define SBMAC_MAX_TXDESCR	256
180 #define SBMAC_MAX_RXDESCR	256
181 
182 #define ETHER_ADDR_LEN		6
183 #define ENET_PACKET_SIZE	1518
184 /*#define ENET_PACKET_SIZE	9216 */
185 
186 /**********************************************************************
187  *  DMA Descriptor structure
188  ********************************************************************* */
189 
190 struct sbdmadscr {
191 	uint64_t  dscr_a;
192 	uint64_t  dscr_b;
193 };
194 
195 /**********************************************************************
196  *  DMA Controller structure
197  ********************************************************************* */
198 
199 struct sbmacdma {
200 
201 	/*
202 	 * This stuff is used to identify the channel and the registers
203 	 * associated with it.
204 	 */
205 	struct sbmac_softc	*sbdma_eth;	/* back pointer to associated
206 						   MAC */
207 	int			sbdma_channel;	/* channel number */
208 	int			sbdma_txdir;	/* direction (1=transmit) */
209 	int			sbdma_maxdescr;	/* total # of descriptors
210 						   in ring */
211 #ifdef CONFIG_SBMAC_COALESCE
212 	int			sbdma_int_pktcnt;
213 						/* # descriptors rx/tx
214 						   before interrupt */
215 	int			sbdma_int_timeout;
216 						/* # usec rx/tx interrupt */
217 #endif
218 	void __iomem		*sbdma_config0;	/* DMA config register 0 */
219 	void __iomem		*sbdma_config1;	/* DMA config register 1 */
220 	void __iomem		*sbdma_dscrbase;
221 						/* descriptor base address */
222 	void __iomem		*sbdma_dscrcnt;	/* descriptor count register */
223 	void __iomem		*sbdma_curdscr;	/* current descriptor
224 						   address */
225 	void __iomem		*sbdma_oodpktlost;
226 						/* pkt drop (rx only) */
227 
228 	/*
229 	 * This stuff is for maintenance of the ring
230 	 */
231 	void			*sbdma_dscrtable_unaligned;
232 	struct sbdmadscr	*sbdma_dscrtable;
233 						/* base of descriptor table */
234 	struct sbdmadscr	*sbdma_dscrtable_end;
235 						/* end of descriptor table */
236 	struct sk_buff		**sbdma_ctxtable;
237 						/* context table, one
238 						   per descr */
239 	dma_addr_t		sbdma_dscrtable_phys;
240 						/* and also the phys addr */
241 	struct sbdmadscr	*sbdma_addptr;	/* next dscr for sw to add */
242 	struct sbdmadscr	*sbdma_remptr;	/* next dscr for sw
243 						   to remove */
244 };
245 
246 
247 /**********************************************************************
248  *  Ethernet softc structure
249  ********************************************************************* */
250 
251 struct sbmac_softc {
252 
253 	/*
254 	 * Linux-specific things
255 	 */
256 	struct net_device	*sbm_dev;	/* pointer to linux device */
257 	struct napi_struct	napi;
258 	struct phy_device	*phy_dev;	/* the associated PHY device */
259 	struct mii_bus		*mii_bus;	/* the MII bus */
260 	int			phy_irq[PHY_MAX_ADDR];
261 	spinlock_t		sbm_lock;	/* spin lock */
262 	int			sbm_devflags;	/* current device flags */
263 
264 	/*
265 	 * Controller-specific things
266 	 */
267 	void __iomem		*sbm_base;	/* MAC's base address */
268 	enum sbmac_state	sbm_state;	/* current state */
269 
270 	void __iomem		*sbm_macenable;	/* MAC Enable Register */
271 	void __iomem		*sbm_maccfg;	/* MAC Config Register */
272 	void __iomem		*sbm_fifocfg;	/* FIFO Config Register */
273 	void __iomem		*sbm_framecfg;	/* Frame Config Register */
274 	void __iomem		*sbm_rxfilter;	/* Receive Filter Register */
275 	void __iomem		*sbm_isr;	/* Interrupt Status Register */
276 	void __iomem		*sbm_imr;	/* Interrupt Mask Register */
277 	void __iomem		*sbm_mdio;	/* MDIO Register */
278 
279 	enum sbmac_speed	sbm_speed;	/* current speed */
280 	enum sbmac_duplex	sbm_duplex;	/* current duplex */
281 	enum sbmac_fc		sbm_fc;		/* cur. flow control setting */
282 	int			sbm_pause;	/* current pause setting */
283 	int			sbm_link;	/* current link state */
284 
285 	unsigned char		sbm_hwaddr[ETHER_ADDR_LEN];
286 
287 	struct sbmacdma		sbm_txdma;	/* only channel 0 for now */
288 	struct sbmacdma		sbm_rxdma;
289 	int			rx_hw_checksum;
290 	int			sbe_idx;
291 };
292 
293 
294 /**********************************************************************
295  *  Externs
296  ********************************************************************* */
297 
298 /**********************************************************************
299  *  Prototypes
300  ********************************************************************* */
301 
302 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
303 			  int txrx, int maxdescr);
304 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
305 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
306 			       struct sk_buff *m);
307 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
308 static void sbdma_emptyring(struct sbmacdma *d);
309 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
310 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
311 			    int work_to_do, int poll);
312 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
313 			     int poll);
314 static int sbmac_initctx(struct sbmac_softc *s);
315 static void sbmac_channel_start(struct sbmac_softc *s);
316 static void sbmac_channel_stop(struct sbmac_softc *s);
317 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
318 						enum sbmac_state);
319 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
320 static uint64_t sbmac_addr2reg(unsigned char *ptr);
321 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
322 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
323 static void sbmac_setmulti(struct sbmac_softc *sc);
324 static int sbmac_init(struct platform_device *pldev, long long base);
325 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
326 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
327 			    enum sbmac_fc fc);
328 
329 static int sbmac_open(struct net_device *dev);
330 static void sbmac_tx_timeout (struct net_device *dev);
331 static void sbmac_set_rx_mode(struct net_device *dev);
332 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
333 static int sbmac_close(struct net_device *dev);
334 static int sbmac_poll(struct napi_struct *napi, int budget);
335 
336 static void sbmac_mii_poll(struct net_device *dev);
337 static int sbmac_mii_probe(struct net_device *dev);
338 
339 static void sbmac_mii_sync(void __iomem *sbm_mdio);
340 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
341 			       int bitcnt);
342 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
343 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
344 			   u16 val);
345 
346 
347 /**********************************************************************
348  *  Globals
349  ********************************************************************* */
350 
351 static char sbmac_string[] = "sb1250-mac";
352 static char sbmac_pretty[] = "SB1250 MAC";
353 
354 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
355 
356 
357 /**********************************************************************
358  *  MDIO constants
359  ********************************************************************* */
360 
361 #define	MII_COMMAND_START	0x01
362 #define	MII_COMMAND_READ	0x02
363 #define	MII_COMMAND_WRITE	0x01
364 #define	MII_COMMAND_ACK		0x02
365 
366 #define M_MAC_MDIO_DIR_OUTPUT	0		/* for clarity */
367 
368 #define ENABLE 		1
369 #define DISABLE		0
370 
371 /**********************************************************************
372  *  SBMAC_MII_SYNC(sbm_mdio)
373  *
374  *  Synchronize with the MII - send a pattern of bits to the MII
375  *  that will guarantee that it is ready to accept a command.
376  *
377  *  Input parameters:
378  *  	   sbm_mdio - address of the MAC's MDIO register
379  *
380  *  Return value:
381  *  	   nothing
382  ********************************************************************* */
383 
sbmac_mii_sync(void __iomem * sbm_mdio)384 static void sbmac_mii_sync(void __iomem *sbm_mdio)
385 {
386 	int cnt;
387 	uint64_t bits;
388 	int mac_mdio_genc;
389 
390 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
391 
392 	bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
393 
394 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
395 
396 	for (cnt = 0; cnt < 32; cnt++) {
397 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
398 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
399 	}
400 }
401 
402 /**********************************************************************
403  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
404  *
405  *  Send some bits to the MII.  The bits to be sent are right-
406  *  justified in the 'data' parameter.
407  *
408  *  Input parameters:
409  *  	   sbm_mdio - address of the MAC's MDIO register
410  *  	   data     - data to send
411  *  	   bitcnt   - number of bits to send
412  ********************************************************************* */
413 
sbmac_mii_senddata(void __iomem * sbm_mdio,unsigned int data,int bitcnt)414 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
415 			       int bitcnt)
416 {
417 	int i;
418 	uint64_t bits;
419 	unsigned int curmask;
420 	int mac_mdio_genc;
421 
422 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
423 
424 	bits = M_MAC_MDIO_DIR_OUTPUT;
425 	__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
426 
427 	curmask = 1 << (bitcnt - 1);
428 
429 	for (i = 0; i < bitcnt; i++) {
430 		if (data & curmask)
431 			bits |= M_MAC_MDIO_OUT;
432 		else bits &= ~M_MAC_MDIO_OUT;
433 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
434 		__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
435 		__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
436 		curmask >>= 1;
437 	}
438 }
439 
440 
441 
442 /**********************************************************************
443  *  SBMAC_MII_READ(bus, phyaddr, regidx)
444  *  Read a PHY register.
445  *
446  *  Input parameters:
447  *  	   bus     - MDIO bus handle
448  *  	   phyaddr - PHY's address
449  *  	   regnum  - index of register to read
450  *
451  *  Return value:
452  *  	   value read, or 0xffff if an error occurred.
453  ********************************************************************* */
454 
sbmac_mii_read(struct mii_bus * bus,int phyaddr,int regidx)455 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
456 {
457 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
458 	void __iomem *sbm_mdio = sc->sbm_mdio;
459 	int idx;
460 	int error;
461 	int regval;
462 	int mac_mdio_genc;
463 
464 	/*
465 	 * Synchronize ourselves so that the PHY knows the next
466 	 * thing coming down is a command
467 	 */
468 	sbmac_mii_sync(sbm_mdio);
469 
470 	/*
471 	 * Send the data to the PHY.  The sequence is
472 	 * a "start" command (2 bits)
473 	 * a "read" command (2 bits)
474 	 * the PHY addr (5 bits)
475 	 * the register index (5 bits)
476 	 */
477 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
478 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
479 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
480 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
481 
482 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
483 
484 	/*
485 	 * Switch the port around without a clock transition.
486 	 */
487 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488 
489 	/*
490 	 * Send out a clock pulse to signal we want the status
491 	 */
492 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
493 		     sbm_mdio);
494 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
495 
496 	/*
497 	 * If an error occurred, the PHY will signal '1' back
498 	 */
499 	error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
500 
501 	/*
502 	 * Issue an 'idle' clock pulse, but keep the direction
503 	 * the same.
504 	 */
505 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
506 		     sbm_mdio);
507 	__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
508 
509 	regval = 0;
510 
511 	for (idx = 0; idx < 16; idx++) {
512 		regval <<= 1;
513 
514 		if (error == 0) {
515 			if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
516 				regval |= 1;
517 		}
518 
519 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
520 			     sbm_mdio);
521 		__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
522 	}
523 
524 	/* Switch back to output */
525 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
526 
527 	if (error == 0)
528 		return regval;
529 	return 0xffff;
530 }
531 
532 
533 /**********************************************************************
534  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
535  *
536  *  Write a value to a PHY register.
537  *
538  *  Input parameters:
539  *  	   bus     - MDIO bus handle
540  *  	   phyaddr - PHY to use
541  *  	   regidx  - register within the PHY
542  *  	   regval  - data to write to register
543  *
544  *  Return value:
545  *  	   0 for success
546  ********************************************************************* */
547 
sbmac_mii_write(struct mii_bus * bus,int phyaddr,int regidx,u16 regval)548 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
549 			   u16 regval)
550 {
551 	struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
552 	void __iomem *sbm_mdio = sc->sbm_mdio;
553 	int mac_mdio_genc;
554 
555 	sbmac_mii_sync(sbm_mdio);
556 
557 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
558 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
559 	sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
560 	sbmac_mii_senddata(sbm_mdio, regidx, 5);
561 	sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
562 	sbmac_mii_senddata(sbm_mdio, regval, 16);
563 
564 	mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
565 
566 	__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
567 
568 	return 0;
569 }
570 
571 
572 
573 /**********************************************************************
574  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
575  *
576  *  Initialize a DMA channel context.  Since there are potentially
577  *  eight DMA channels per MAC, it's nice to do this in a standard
578  *  way.
579  *
580  *  Input parameters:
581  *  	   d - struct sbmacdma (DMA channel context)
582  *  	   s - struct sbmac_softc (pointer to a MAC)
583  *  	   chan - channel number (0..1 right now)
584  *  	   txrx - Identifies DMA_TX or DMA_RX for channel direction
585  *      maxdescr - number of descriptors
586  *
587  *  Return value:
588  *  	   nothing
589  ********************************************************************* */
590 
sbdma_initctx(struct sbmacdma * d,struct sbmac_softc * s,int chan,int txrx,int maxdescr)591 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
592 			  int txrx, int maxdescr)
593 {
594 #ifdef CONFIG_SBMAC_COALESCE
595 	int int_pktcnt, int_timeout;
596 #endif
597 
598 	/*
599 	 * Save away interesting stuff in the structure
600 	 */
601 
602 	d->sbdma_eth       = s;
603 	d->sbdma_channel   = chan;
604 	d->sbdma_txdir     = txrx;
605 
606 #if 0
607 	/* RMON clearing */
608 	s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
609 #endif
610 
611 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
612 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
613 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
614 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
615 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
616 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
617 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
618 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
619 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
620 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
621 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
622 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
623 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
624 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
625 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
626 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
627 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
628 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
629 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
630 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
631 	__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
632 
633 	/*
634 	 * initialize register pointers
635 	 */
636 
637 	d->sbdma_config0 =
638 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
639 	d->sbdma_config1 =
640 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
641 	d->sbdma_dscrbase =
642 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
643 	d->sbdma_dscrcnt =
644 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
645 	d->sbdma_curdscr =
646 		s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
647 	if (d->sbdma_txdir)
648 		d->sbdma_oodpktlost = NULL;
649 	else
650 		d->sbdma_oodpktlost =
651 			s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
652 
653 	/*
654 	 * Allocate memory for the ring
655 	 */
656 
657 	d->sbdma_maxdescr = maxdescr;
658 
659 	d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
660 					       sizeof(*d->sbdma_dscrtable),
661 					       GFP_KERNEL);
662 
663 	/*
664 	 * The descriptor table must be aligned to at least 16 bytes or the
665 	 * MAC will corrupt it.
666 	 */
667 	d->sbdma_dscrtable = (struct sbdmadscr *)
668 			     ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
669 				   sizeof(*d->sbdma_dscrtable));
670 
671 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
672 
673 	d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
674 
675 	/*
676 	 * And context table
677 	 */
678 
679 	d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
680 				    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
681 
682 #ifdef CONFIG_SBMAC_COALESCE
683 	/*
684 	 * Setup Rx/Tx DMA coalescing defaults
685 	 */
686 
687 	int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
688 	if ( int_pktcnt ) {
689 		d->sbdma_int_pktcnt = int_pktcnt;
690 	} else {
691 		d->sbdma_int_pktcnt = 1;
692 	}
693 
694 	int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
695 	if ( int_timeout ) {
696 		d->sbdma_int_timeout = int_timeout;
697 	} else {
698 		d->sbdma_int_timeout = 0;
699 	}
700 #endif
701 
702 }
703 
704 /**********************************************************************
705  *  SBDMA_CHANNEL_START(d)
706  *
707  *  Initialize the hardware registers for a DMA channel.
708  *
709  *  Input parameters:
710  *  	   d - DMA channel to init (context must be previously init'd
711  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
712  *
713  *  Return value:
714  *  	   nothing
715  ********************************************************************* */
716 
sbdma_channel_start(struct sbmacdma * d,int rxtx)717 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
718 {
719 	/*
720 	 * Turn on the DMA channel
721 	 */
722 
723 #ifdef CONFIG_SBMAC_COALESCE
724 	__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
725 		       0, d->sbdma_config1);
726 	__raw_writeq(M_DMA_EOP_INT_EN |
727 		       V_DMA_RINGSZ(d->sbdma_maxdescr) |
728 		       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
729 		       0, d->sbdma_config0);
730 #else
731 	__raw_writeq(0, d->sbdma_config1);
732 	__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
733 		       0, d->sbdma_config0);
734 #endif
735 
736 	__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
737 
738 	/*
739 	 * Initialize ring pointers
740 	 */
741 
742 	d->sbdma_addptr = d->sbdma_dscrtable;
743 	d->sbdma_remptr = d->sbdma_dscrtable;
744 }
745 
746 /**********************************************************************
747  *  SBDMA_CHANNEL_STOP(d)
748  *
749  *  Initialize the hardware registers for a DMA channel.
750  *
751  *  Input parameters:
752  *  	   d - DMA channel to init (context must be previously init'd
753  *
754  *  Return value:
755  *  	   nothing
756  ********************************************************************* */
757 
sbdma_channel_stop(struct sbmacdma * d)758 static void sbdma_channel_stop(struct sbmacdma *d)
759 {
760 	/*
761 	 * Turn off the DMA channel
762 	 */
763 
764 	__raw_writeq(0, d->sbdma_config1);
765 
766 	__raw_writeq(0, d->sbdma_dscrbase);
767 
768 	__raw_writeq(0, d->sbdma_config0);
769 
770 	/*
771 	 * Zero ring pointers
772 	 */
773 
774 	d->sbdma_addptr = NULL;
775 	d->sbdma_remptr = NULL;
776 }
777 
sbdma_align_skb(struct sk_buff * skb,unsigned int power2,unsigned int offset)778 static inline void sbdma_align_skb(struct sk_buff *skb,
779 				   unsigned int power2, unsigned int offset)
780 {
781 	unsigned char *addr = skb->data;
782 	unsigned char *newaddr = PTR_ALIGN(addr, power2);
783 
784 	skb_reserve(skb, newaddr - addr + offset);
785 }
786 
787 
788 /**********************************************************************
789  *  SBDMA_ADD_RCVBUFFER(d,sb)
790  *
791  *  Add a buffer to the specified DMA channel.   For receive channels,
792  *  this queues a buffer for inbound packets.
793  *
794  *  Input parameters:
795  *	   sc - softc structure
796  *  	    d - DMA channel descriptor
797  * 	   sb - sk_buff to add, or NULL if we should allocate one
798  *
799  *  Return value:
800  *  	   0 if buffer could not be added (ring is full)
801  *  	   1 if buffer added successfully
802  ********************************************************************* */
803 
804 
sbdma_add_rcvbuffer(struct sbmac_softc * sc,struct sbmacdma * d,struct sk_buff * sb)805 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
806 			       struct sk_buff *sb)
807 {
808 	struct net_device *dev = sc->sbm_dev;
809 	struct sbdmadscr *dsc;
810 	struct sbdmadscr *nextdsc;
811 	struct sk_buff *sb_new = NULL;
812 	int pktsize = ENET_PACKET_SIZE;
813 
814 	/* get pointer to our current place in the ring */
815 
816 	dsc = d->sbdma_addptr;
817 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
818 
819 	/*
820 	 * figure out if the ring is full - if the next descriptor
821 	 * is the same as the one that we're going to remove from
822 	 * the ring, the ring is full
823 	 */
824 
825 	if (nextdsc == d->sbdma_remptr) {
826 		return -ENOSPC;
827 	}
828 
829 	/*
830 	 * Allocate a sk_buff if we don't already have one.
831 	 * If we do have an sk_buff, reset it so that it's empty.
832 	 *
833 	 * Note: sk_buffs don't seem to be guaranteed to have any sort
834 	 * of alignment when they are allocated.  Therefore, allocate enough
835 	 * extra space to make sure that:
836 	 *
837 	 *    1. the data does not start in the middle of a cache line.
838 	 *    2. The data does not end in the middle of a cache line
839 	 *    3. The buffer can be aligned such that the IP addresses are
840 	 *       naturally aligned.
841 	 *
842 	 *  Remember, the SOCs MAC writes whole cache lines at a time,
843 	 *  without reading the old contents first.  So, if the sk_buff's
844 	 *  data portion starts in the middle of a cache line, the SOC
845 	 *  DMA will trash the beginning (and ending) portions.
846 	 */
847 
848 	if (sb == NULL) {
849 		sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
850 					       SMP_CACHE_BYTES * 2 +
851 					       NET_IP_ALIGN);
852 		if (sb_new == NULL) {
853 			pr_info("%s: sk_buff allocation failed\n",
854 			       d->sbdma_eth->sbm_dev->name);
855 			return -ENOBUFS;
856 		}
857 
858 		sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
859 	}
860 	else {
861 		sb_new = sb;
862 		/*
863 		 * nothing special to reinit buffer, it's already aligned
864 		 * and sb->data already points to a good place.
865 		 */
866 	}
867 
868 	/*
869 	 * fill in the descriptor
870 	 */
871 
872 #ifdef CONFIG_SBMAC_COALESCE
873 	/*
874 	 * Do not interrupt per DMA transfer.
875 	 */
876 	dsc->dscr_a = virt_to_phys(sb_new->data) |
877 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
878 #else
879 	dsc->dscr_a = virt_to_phys(sb_new->data) |
880 		V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
881 		M_DMA_DSCRA_INTERRUPT;
882 #endif
883 
884 	/* receiving: no options */
885 	dsc->dscr_b = 0;
886 
887 	/*
888 	 * fill in the context
889 	 */
890 
891 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
892 
893 	/*
894 	 * point at next packet
895 	 */
896 
897 	d->sbdma_addptr = nextdsc;
898 
899 	/*
900 	 * Give the buffer to the DMA engine.
901 	 */
902 
903 	__raw_writeq(1, d->sbdma_dscrcnt);
904 
905 	return 0;					/* we did it */
906 }
907 
908 /**********************************************************************
909  *  SBDMA_ADD_TXBUFFER(d,sb)
910  *
911  *  Add a transmit buffer to the specified DMA channel, causing a
912  *  transmit to start.
913  *
914  *  Input parameters:
915  *  	   d - DMA channel descriptor
916  * 	   sb - sk_buff to add
917  *
918  *  Return value:
919  *  	   0 transmit queued successfully
920  *  	   otherwise error code
921  ********************************************************************* */
922 
923 
sbdma_add_txbuffer(struct sbmacdma * d,struct sk_buff * sb)924 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
925 {
926 	struct sbdmadscr *dsc;
927 	struct sbdmadscr *nextdsc;
928 	uint64_t phys;
929 	uint64_t ncb;
930 	int length;
931 
932 	/* get pointer to our current place in the ring */
933 
934 	dsc = d->sbdma_addptr;
935 	nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
936 
937 	/*
938 	 * figure out if the ring is full - if the next descriptor
939 	 * is the same as the one that we're going to remove from
940 	 * the ring, the ring is full
941 	 */
942 
943 	if (nextdsc == d->sbdma_remptr) {
944 		return -ENOSPC;
945 	}
946 
947 	/*
948 	 * Under Linux, it's not necessary to copy/coalesce buffers
949 	 * like it is on NetBSD.  We think they're all contiguous,
950 	 * but that may not be true for GBE.
951 	 */
952 
953 	length = sb->len;
954 
955 	/*
956 	 * fill in the descriptor.  Note that the number of cache
957 	 * blocks in the descriptor is the number of blocks
958 	 * *spanned*, so we need to add in the offset (if any)
959 	 * while doing the calculation.
960 	 */
961 
962 	phys = virt_to_phys(sb->data);
963 	ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
964 
965 	dsc->dscr_a = phys |
966 		V_DMA_DSCRA_A_SIZE(ncb) |
967 #ifndef CONFIG_SBMAC_COALESCE
968 		M_DMA_DSCRA_INTERRUPT |
969 #endif
970 		M_DMA_ETHTX_SOP;
971 
972 	/* transmitting: set outbound options and length */
973 
974 	dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
975 		V_DMA_DSCRB_PKT_SIZE(length);
976 
977 	/*
978 	 * fill in the context
979 	 */
980 
981 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
982 
983 	/*
984 	 * point at next packet
985 	 */
986 
987 	d->sbdma_addptr = nextdsc;
988 
989 	/*
990 	 * Give the buffer to the DMA engine.
991 	 */
992 
993 	__raw_writeq(1, d->sbdma_dscrcnt);
994 
995 	return 0;					/* we did it */
996 }
997 
998 
999 
1000 
1001 /**********************************************************************
1002  *  SBDMA_EMPTYRING(d)
1003  *
1004  *  Free all allocated sk_buffs on the specified DMA channel;
1005  *
1006  *  Input parameters:
1007  *  	   d  - DMA channel
1008  *
1009  *  Return value:
1010  *  	   nothing
1011  ********************************************************************* */
1012 
sbdma_emptyring(struct sbmacdma * d)1013 static void sbdma_emptyring(struct sbmacdma *d)
1014 {
1015 	int idx;
1016 	struct sk_buff *sb;
1017 
1018 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1019 		sb = d->sbdma_ctxtable[idx];
1020 		if (sb) {
1021 			dev_kfree_skb(sb);
1022 			d->sbdma_ctxtable[idx] = NULL;
1023 		}
1024 	}
1025 }
1026 
1027 
1028 /**********************************************************************
1029  *  SBDMA_FILLRING(d)
1030  *
1031  *  Fill the specified DMA channel (must be receive channel)
1032  *  with sk_buffs
1033  *
1034  *  Input parameters:
1035  *	   sc - softc structure
1036  *  	    d - DMA channel
1037  *
1038  *  Return value:
1039  *  	   nothing
1040  ********************************************************************* */
1041 
sbdma_fillring(struct sbmac_softc * sc,struct sbmacdma * d)1042 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1043 {
1044 	int idx;
1045 
1046 	for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1047 		if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1048 			break;
1049 	}
1050 }
1051 
1052 #ifdef CONFIG_NET_POLL_CONTROLLER
sbmac_netpoll(struct net_device * netdev)1053 static void sbmac_netpoll(struct net_device *netdev)
1054 {
1055 	struct sbmac_softc *sc = netdev_priv(netdev);
1056 	int irq = sc->sbm_dev->irq;
1057 
1058 	__raw_writeq(0, sc->sbm_imr);
1059 
1060 	sbmac_intr(irq, netdev);
1061 
1062 #ifdef CONFIG_SBMAC_COALESCE
1063 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1064 	((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1065 	sc->sbm_imr);
1066 #else
1067 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1068 	(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1069 #endif
1070 }
1071 #endif
1072 
1073 /**********************************************************************
1074  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1075  *
1076  *  Process "completed" receive buffers on the specified DMA channel.
1077  *
1078  *  Input parameters:
1079  *            sc - softc structure
1080  *  	       d - DMA channel context
1081  *    work_to_do - no. of packets to process before enabling interrupt
1082  *                 again (for NAPI)
1083  *          poll - 1: using polling (for NAPI)
1084  *
1085  *  Return value:
1086  *  	   nothing
1087  ********************************************************************* */
1088 
sbdma_rx_process(struct sbmac_softc * sc,struct sbmacdma * d,int work_to_do,int poll)1089 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1090 			    int work_to_do, int poll)
1091 {
1092 	struct net_device *dev = sc->sbm_dev;
1093 	int curidx;
1094 	int hwidx;
1095 	struct sbdmadscr *dsc;
1096 	struct sk_buff *sb;
1097 	int len;
1098 	int work_done = 0;
1099 	int dropped = 0;
1100 
1101 	prefetch(d);
1102 
1103 again:
1104 	/* Check if the HW dropped any frames */
1105 	dev->stats.rx_fifo_errors
1106 	    += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1107 	__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1108 
1109 	while (work_to_do-- > 0) {
1110 		/*
1111 		 * figure out where we are (as an index) and where
1112 		 * the hardware is (also as an index)
1113 		 *
1114 		 * This could be done faster if (for example) the
1115 		 * descriptor table was page-aligned and contiguous in
1116 		 * both virtual and physical memory -- you could then
1117 		 * just compare the low-order bits of the virtual address
1118 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1119 		 */
1120 
1121 		dsc = d->sbdma_remptr;
1122 		curidx = dsc - d->sbdma_dscrtable;
1123 
1124 		prefetch(dsc);
1125 		prefetch(&d->sbdma_ctxtable[curidx]);
1126 
1127 		hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1128 			 d->sbdma_dscrtable_phys) /
1129 			sizeof(*d->sbdma_dscrtable);
1130 
1131 		/*
1132 		 * If they're the same, that means we've processed all
1133 		 * of the descriptors up to (but not including) the one that
1134 		 * the hardware is working on right now.
1135 		 */
1136 
1137 		if (curidx == hwidx)
1138 			goto done;
1139 
1140 		/*
1141 		 * Otherwise, get the packet's sk_buff ptr back
1142 		 */
1143 
1144 		sb = d->sbdma_ctxtable[curidx];
1145 		d->sbdma_ctxtable[curidx] = NULL;
1146 
1147 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1148 
1149 		/*
1150 		 * Check packet status.  If good, process it.
1151 		 * If not, silently drop it and put it back on the
1152 		 * receive ring.
1153 		 */
1154 
1155 		if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1156 
1157 			/*
1158 			 * Add a new buffer to replace the old one.  If we fail
1159 			 * to allocate a buffer, we're going to drop this
1160 			 * packet and put it right back on the receive ring.
1161 			 */
1162 
1163 			if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1164 				     -ENOBUFS)) {
1165 				dev->stats.rx_dropped++;
1166 				/* Re-add old buffer */
1167 				sbdma_add_rcvbuffer(sc, d, sb);
1168 				/* No point in continuing at the moment */
1169 				printk(KERN_ERR "dropped packet (1)\n");
1170 				d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1171 				goto done;
1172 			} else {
1173 				/*
1174 				 * Set length into the packet
1175 				 */
1176 				skb_put(sb,len);
1177 
1178 				/*
1179 				 * Buffer has been replaced on the
1180 				 * receive ring.  Pass the buffer to
1181 				 * the kernel
1182 				 */
1183 				sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1184 				/* Check hw IPv4/TCP checksum if supported */
1185 				if (sc->rx_hw_checksum == ENABLE) {
1186 					if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1187 					    !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1188 						sb->ip_summed = CHECKSUM_UNNECESSARY;
1189 						/* don't need to set sb->csum */
1190 					} else {
1191 						sb->ip_summed = CHECKSUM_NONE;
1192 					}
1193 				}
1194 				prefetch(sb->data);
1195 				prefetch((const void *)(((char *)sb->data)+32));
1196 				if (poll)
1197 					dropped = netif_receive_skb(sb);
1198 				else
1199 					dropped = netif_rx(sb);
1200 
1201 				if (dropped == NET_RX_DROP) {
1202 					dev->stats.rx_dropped++;
1203 					d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1204 					goto done;
1205 				}
1206 				else {
1207 					dev->stats.rx_bytes += len;
1208 					dev->stats.rx_packets++;
1209 				}
1210 			}
1211 		} else {
1212 			/*
1213 			 * Packet was mangled somehow.  Just drop it and
1214 			 * put it back on the receive ring.
1215 			 */
1216 			dev->stats.rx_errors++;
1217 			sbdma_add_rcvbuffer(sc, d, sb);
1218 		}
1219 
1220 
1221 		/*
1222 		 * .. and advance to the next buffer.
1223 		 */
1224 
1225 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1226 		work_done++;
1227 	}
1228 	if (!poll) {
1229 		work_to_do = 32;
1230 		goto again; /* collect fifo drop statistics again */
1231 	}
1232 done:
1233 	return work_done;
1234 }
1235 
1236 /**********************************************************************
1237  *  SBDMA_TX_PROCESS(sc,d)
1238  *
1239  *  Process "completed" transmit buffers on the specified DMA channel.
1240  *  This is normally called within the interrupt service routine.
1241  *  Note that this isn't really ideal for priority channels, since
1242  *  it processes all of the packets on a given channel before
1243  *  returning.
1244  *
1245  *  Input parameters:
1246  *      sc - softc structure
1247  *  	 d - DMA channel context
1248  *    poll - 1: using polling (for NAPI)
1249  *
1250  *  Return value:
1251  *  	   nothing
1252  ********************************************************************* */
1253 
sbdma_tx_process(struct sbmac_softc * sc,struct sbmacdma * d,int poll)1254 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1255 			     int poll)
1256 {
1257 	struct net_device *dev = sc->sbm_dev;
1258 	int curidx;
1259 	int hwidx;
1260 	struct sbdmadscr *dsc;
1261 	struct sk_buff *sb;
1262 	unsigned long flags;
1263 	int packets_handled = 0;
1264 
1265 	spin_lock_irqsave(&(sc->sbm_lock), flags);
1266 
1267 	if (d->sbdma_remptr == d->sbdma_addptr)
1268 	  goto end_unlock;
1269 
1270 	hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1271 		 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1272 
1273 	for (;;) {
1274 		/*
1275 		 * figure out where we are (as an index) and where
1276 		 * the hardware is (also as an index)
1277 		 *
1278 		 * This could be done faster if (for example) the
1279 		 * descriptor table was page-aligned and contiguous in
1280 		 * both virtual and physical memory -- you could then
1281 		 * just compare the low-order bits of the virtual address
1282 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1283 		 */
1284 
1285 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1286 
1287 		/*
1288 		 * If they're the same, that means we've processed all
1289 		 * of the descriptors up to (but not including) the one that
1290 		 * the hardware is working on right now.
1291 		 */
1292 
1293 		if (curidx == hwidx)
1294 			break;
1295 
1296 		/*
1297 		 * Otherwise, get the packet's sk_buff ptr back
1298 		 */
1299 
1300 		dsc = &(d->sbdma_dscrtable[curidx]);
1301 		sb = d->sbdma_ctxtable[curidx];
1302 		d->sbdma_ctxtable[curidx] = NULL;
1303 
1304 		/*
1305 		 * Stats
1306 		 */
1307 
1308 		dev->stats.tx_bytes += sb->len;
1309 		dev->stats.tx_packets++;
1310 
1311 		/*
1312 		 * for transmits, we just free buffers.
1313 		 */
1314 
1315 		dev_kfree_skb_irq(sb);
1316 
1317 		/*
1318 		 * .. and advance to the next buffer.
1319 		 */
1320 
1321 		d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1322 
1323 		packets_handled++;
1324 
1325 	}
1326 
1327 	/*
1328 	 * Decide if we should wake up the protocol or not.
1329 	 * Other drivers seem to do this when we reach a low
1330 	 * watermark on the transmit queue.
1331 	 */
1332 
1333 	if (packets_handled)
1334 		netif_wake_queue(d->sbdma_eth->sbm_dev);
1335 
1336 end_unlock:
1337 	spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1338 
1339 }
1340 
1341 
1342 
1343 /**********************************************************************
1344  *  SBMAC_INITCTX(s)
1345  *
1346  *  Initialize an Ethernet context structure - this is called
1347  *  once per MAC on the 1250.  Memory is allocated here, so don't
1348  *  call it again from inside the ioctl routines that bring the
1349  *  interface up/down
1350  *
1351  *  Input parameters:
1352  *  	   s - sbmac context structure
1353  *
1354  *  Return value:
1355  *  	   0
1356  ********************************************************************* */
1357 
sbmac_initctx(struct sbmac_softc * s)1358 static int sbmac_initctx(struct sbmac_softc *s)
1359 {
1360 
1361 	/*
1362 	 * figure out the addresses of some ports
1363 	 */
1364 
1365 	s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1366 	s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1367 	s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1368 	s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1369 	s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1370 	s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1371 	s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1372 	s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1373 
1374 	/*
1375 	 * Initialize the DMA channels.  Right now, only one per MAC is used
1376 	 * Note: Only do this _once_, as it allocates memory from the kernel!
1377 	 */
1378 
1379 	sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1380 	sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1381 
1382 	/*
1383 	 * initial state is OFF
1384 	 */
1385 
1386 	s->sbm_state = sbmac_state_off;
1387 
1388 	return 0;
1389 }
1390 
1391 
sbdma_uninitctx(struct sbmacdma * d)1392 static void sbdma_uninitctx(struct sbmacdma *d)
1393 {
1394 	if (d->sbdma_dscrtable_unaligned) {
1395 		kfree(d->sbdma_dscrtable_unaligned);
1396 		d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1397 	}
1398 
1399 	if (d->sbdma_ctxtable) {
1400 		kfree(d->sbdma_ctxtable);
1401 		d->sbdma_ctxtable = NULL;
1402 	}
1403 }
1404 
1405 
sbmac_uninitctx(struct sbmac_softc * sc)1406 static void sbmac_uninitctx(struct sbmac_softc *sc)
1407 {
1408 	sbdma_uninitctx(&(sc->sbm_txdma));
1409 	sbdma_uninitctx(&(sc->sbm_rxdma));
1410 }
1411 
1412 
1413 /**********************************************************************
1414  *  SBMAC_CHANNEL_START(s)
1415  *
1416  *  Start packet processing on this MAC.
1417  *
1418  *  Input parameters:
1419  *  	   s - sbmac structure
1420  *
1421  *  Return value:
1422  *  	   nothing
1423  ********************************************************************* */
1424 
sbmac_channel_start(struct sbmac_softc * s)1425 static void sbmac_channel_start(struct sbmac_softc *s)
1426 {
1427 	uint64_t reg;
1428 	void __iomem *port;
1429 	uint64_t cfg,fifo,framecfg;
1430 	int idx, th_value;
1431 
1432 	/*
1433 	 * Don't do this if running
1434 	 */
1435 
1436 	if (s->sbm_state == sbmac_state_on)
1437 		return;
1438 
1439 	/*
1440 	 * Bring the controller out of reset, but leave it off.
1441 	 */
1442 
1443 	__raw_writeq(0, s->sbm_macenable);
1444 
1445 	/*
1446 	 * Ignore all received packets
1447 	 */
1448 
1449 	__raw_writeq(0, s->sbm_rxfilter);
1450 
1451 	/*
1452 	 * Calculate values for various control registers.
1453 	 */
1454 
1455 	cfg = M_MAC_RETRY_EN |
1456 		M_MAC_TX_HOLD_SOP_EN |
1457 		V_MAC_TX_PAUSE_CNT_16K |
1458 		M_MAC_AP_STAT_EN |
1459 		M_MAC_FAST_SYNC |
1460 		M_MAC_SS_EN |
1461 		0;
1462 
1463 	/*
1464 	 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1465 	 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1466 	 * Use a larger RD_THRSH for gigabit
1467 	 */
1468 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1469 		th_value = 28;
1470 	else
1471 		th_value = 64;
1472 
1473 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
1474 		((s->sbm_speed == sbmac_speed_1000)
1475 		 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1476 		V_MAC_TX_RL_THRSH(4) |
1477 		V_MAC_RX_PL_THRSH(4) |
1478 		V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
1479 		V_MAC_RX_PL_THRSH(4) |
1480 		V_MAC_RX_RL_THRSH(8) |
1481 		0;
1482 
1483 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1484 		V_MAC_MAX_FRAMESZ_DEFAULT |
1485 		V_MAC_BACKOFF_SEL(1);
1486 
1487 	/*
1488 	 * Clear out the hash address map
1489 	 */
1490 
1491 	port = s->sbm_base + R_MAC_HASH_BASE;
1492 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1493 		__raw_writeq(0, port);
1494 		port += sizeof(uint64_t);
1495 	}
1496 
1497 	/*
1498 	 * Clear out the exact-match table
1499 	 */
1500 
1501 	port = s->sbm_base + R_MAC_ADDR_BASE;
1502 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1503 		__raw_writeq(0, port);
1504 		port += sizeof(uint64_t);
1505 	}
1506 
1507 	/*
1508 	 * Clear out the DMA Channel mapping table registers
1509 	 */
1510 
1511 	port = s->sbm_base + R_MAC_CHUP0_BASE;
1512 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1513 		__raw_writeq(0, port);
1514 		port += sizeof(uint64_t);
1515 	}
1516 
1517 
1518 	port = s->sbm_base + R_MAC_CHLO0_BASE;
1519 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1520 		__raw_writeq(0, port);
1521 		port += sizeof(uint64_t);
1522 	}
1523 
1524 	/*
1525 	 * Program the hardware address.  It goes into the hardware-address
1526 	 * register as well as the first filter register.
1527 	 */
1528 
1529 	reg = sbmac_addr2reg(s->sbm_hwaddr);
1530 
1531 	port = s->sbm_base + R_MAC_ADDR_BASE;
1532 	__raw_writeq(reg, port);
1533 	port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1534 
1535 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1536 	/*
1537 	 * Pass1 SOCs do not receive packets addressed to the
1538 	 * destination address in the R_MAC_ETHERNET_ADDR register.
1539 	 * Set the value to zero.
1540 	 */
1541 	__raw_writeq(0, port);
1542 #else
1543 	__raw_writeq(reg, port);
1544 #endif
1545 
1546 	/*
1547 	 * Set the receive filter for no packets, and write values
1548 	 * to the various config registers
1549 	 */
1550 
1551 	__raw_writeq(0, s->sbm_rxfilter);
1552 	__raw_writeq(0, s->sbm_imr);
1553 	__raw_writeq(framecfg, s->sbm_framecfg);
1554 	__raw_writeq(fifo, s->sbm_fifocfg);
1555 	__raw_writeq(cfg, s->sbm_maccfg);
1556 
1557 	/*
1558 	 * Initialize DMA channels (rings should be ok now)
1559 	 */
1560 
1561 	sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1562 	sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1563 
1564 	/*
1565 	 * Configure the speed, duplex, and flow control
1566 	 */
1567 
1568 	sbmac_set_speed(s,s->sbm_speed);
1569 	sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1570 
1571 	/*
1572 	 * Fill the receive ring
1573 	 */
1574 
1575 	sbdma_fillring(s, &(s->sbm_rxdma));
1576 
1577 	/*
1578 	 * Turn on the rest of the bits in the enable register
1579 	 */
1580 
1581 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1582 	__raw_writeq(M_MAC_RXDMA_EN0 |
1583 		       M_MAC_TXDMA_EN0, s->sbm_macenable);
1584 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1585 	__raw_writeq(M_MAC_RXDMA_EN0 |
1586 		       M_MAC_TXDMA_EN0 |
1587 		       M_MAC_RX_ENABLE |
1588 		       M_MAC_TX_ENABLE, s->sbm_macenable);
1589 #else
1590 #error invalid SiByte MAC configuation
1591 #endif
1592 
1593 #ifdef CONFIG_SBMAC_COALESCE
1594 	__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1595 		       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1596 #else
1597 	__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1598 		       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1599 #endif
1600 
1601 	/*
1602 	 * Enable receiving unicasts and broadcasts
1603 	 */
1604 
1605 	__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1606 
1607 	/*
1608 	 * we're running now.
1609 	 */
1610 
1611 	s->sbm_state = sbmac_state_on;
1612 
1613 	/*
1614 	 * Program multicast addresses
1615 	 */
1616 
1617 	sbmac_setmulti(s);
1618 
1619 	/*
1620 	 * If channel was in promiscuous mode before, turn that on
1621 	 */
1622 
1623 	if (s->sbm_devflags & IFF_PROMISC) {
1624 		sbmac_promiscuous_mode(s,1);
1625 	}
1626 
1627 }
1628 
1629 
1630 /**********************************************************************
1631  *  SBMAC_CHANNEL_STOP(s)
1632  *
1633  *  Stop packet processing on this MAC.
1634  *
1635  *  Input parameters:
1636  *  	   s - sbmac structure
1637  *
1638  *  Return value:
1639  *  	   nothing
1640  ********************************************************************* */
1641 
sbmac_channel_stop(struct sbmac_softc * s)1642 static void sbmac_channel_stop(struct sbmac_softc *s)
1643 {
1644 	/* don't do this if already stopped */
1645 
1646 	if (s->sbm_state == sbmac_state_off)
1647 		return;
1648 
1649 	/* don't accept any packets, disable all interrupts */
1650 
1651 	__raw_writeq(0, s->sbm_rxfilter);
1652 	__raw_writeq(0, s->sbm_imr);
1653 
1654 	/* Turn off ticker */
1655 
1656 	/* XXX */
1657 
1658 	/* turn off receiver and transmitter */
1659 
1660 	__raw_writeq(0, s->sbm_macenable);
1661 
1662 	/* We're stopped now. */
1663 
1664 	s->sbm_state = sbmac_state_off;
1665 
1666 	/*
1667 	 * Stop DMA channels (rings should be ok now)
1668 	 */
1669 
1670 	sbdma_channel_stop(&(s->sbm_rxdma));
1671 	sbdma_channel_stop(&(s->sbm_txdma));
1672 
1673 	/* Empty the receive and transmit rings */
1674 
1675 	sbdma_emptyring(&(s->sbm_rxdma));
1676 	sbdma_emptyring(&(s->sbm_txdma));
1677 
1678 }
1679 
1680 /**********************************************************************
1681  *  SBMAC_SET_CHANNEL_STATE(state)
1682  *
1683  *  Set the channel's state ON or OFF
1684  *
1685  *  Input parameters:
1686  *  	   state - new state
1687  *
1688  *  Return value:
1689  *  	   old state
1690  ********************************************************************* */
sbmac_set_channel_state(struct sbmac_softc * sc,enum sbmac_state state)1691 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1692 						enum sbmac_state state)
1693 {
1694 	enum sbmac_state oldstate = sc->sbm_state;
1695 
1696 	/*
1697 	 * If same as previous state, return
1698 	 */
1699 
1700 	if (state == oldstate) {
1701 		return oldstate;
1702 	}
1703 
1704 	/*
1705 	 * If new state is ON, turn channel on
1706 	 */
1707 
1708 	if (state == sbmac_state_on) {
1709 		sbmac_channel_start(sc);
1710 	}
1711 	else {
1712 		sbmac_channel_stop(sc);
1713 	}
1714 
1715 	/*
1716 	 * Return previous state
1717 	 */
1718 
1719 	return oldstate;
1720 }
1721 
1722 
1723 /**********************************************************************
1724  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1725  *
1726  *  Turn on or off promiscuous mode
1727  *
1728  *  Input parameters:
1729  *  	   sc - softc
1730  *      onoff - 1 to turn on, 0 to turn off
1731  *
1732  *  Return value:
1733  *  	   nothing
1734  ********************************************************************* */
1735 
sbmac_promiscuous_mode(struct sbmac_softc * sc,int onoff)1736 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1737 {
1738 	uint64_t reg;
1739 
1740 	if (sc->sbm_state != sbmac_state_on)
1741 		return;
1742 
1743 	if (onoff) {
1744 		reg = __raw_readq(sc->sbm_rxfilter);
1745 		reg |= M_MAC_ALLPKT_EN;
1746 		__raw_writeq(reg, sc->sbm_rxfilter);
1747 	}
1748 	else {
1749 		reg = __raw_readq(sc->sbm_rxfilter);
1750 		reg &= ~M_MAC_ALLPKT_EN;
1751 		__raw_writeq(reg, sc->sbm_rxfilter);
1752 	}
1753 }
1754 
1755 /**********************************************************************
1756  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1757  *
1758  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1759  *
1760  *  Input parameters:
1761  *  	   sc - softc
1762  *
1763  *  Return value:
1764  *  	   nothing
1765  ********************************************************************* */
1766 
sbmac_set_iphdr_offset(struct sbmac_softc * sc)1767 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1768 {
1769 	uint64_t reg;
1770 
1771 	/* Hard code the off set to 15 for now */
1772 	reg = __raw_readq(sc->sbm_rxfilter);
1773 	reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1774 	__raw_writeq(reg, sc->sbm_rxfilter);
1775 
1776 	/* BCM1250 pass1 didn't have hardware checksum.  Everything
1777 	   later does.  */
1778 	if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1779 		sc->rx_hw_checksum = DISABLE;
1780 	} else {
1781 		sc->rx_hw_checksum = ENABLE;
1782 	}
1783 }
1784 
1785 
1786 /**********************************************************************
1787  *  SBMAC_ADDR2REG(ptr)
1788  *
1789  *  Convert six bytes into the 64-bit register value that
1790  *  we typically write into the SBMAC's address/mcast registers
1791  *
1792  *  Input parameters:
1793  *  	   ptr - pointer to 6 bytes
1794  *
1795  *  Return value:
1796  *  	   register value
1797  ********************************************************************* */
1798 
sbmac_addr2reg(unsigned char * ptr)1799 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1800 {
1801 	uint64_t reg = 0;
1802 
1803 	ptr += 6;
1804 
1805 	reg |= (uint64_t) *(--ptr);
1806 	reg <<= 8;
1807 	reg |= (uint64_t) *(--ptr);
1808 	reg <<= 8;
1809 	reg |= (uint64_t) *(--ptr);
1810 	reg <<= 8;
1811 	reg |= (uint64_t) *(--ptr);
1812 	reg <<= 8;
1813 	reg |= (uint64_t) *(--ptr);
1814 	reg <<= 8;
1815 	reg |= (uint64_t) *(--ptr);
1816 
1817 	return reg;
1818 }
1819 
1820 
1821 /**********************************************************************
1822  *  SBMAC_SET_SPEED(s,speed)
1823  *
1824  *  Configure LAN speed for the specified MAC.
1825  *  Warning: must be called when MAC is off!
1826  *
1827  *  Input parameters:
1828  *  	   s - sbmac structure
1829  *  	   speed - speed to set MAC to (see enum sbmac_speed)
1830  *
1831  *  Return value:
1832  *  	   1 if successful
1833  *      0 indicates invalid parameters
1834  ********************************************************************* */
1835 
sbmac_set_speed(struct sbmac_softc * s,enum sbmac_speed speed)1836 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1837 {
1838 	uint64_t cfg;
1839 	uint64_t framecfg;
1840 
1841 	/*
1842 	 * Save new current values
1843 	 */
1844 
1845 	s->sbm_speed = speed;
1846 
1847 	if (s->sbm_state == sbmac_state_on)
1848 		return 0;	/* save for next restart */
1849 
1850 	/*
1851 	 * Read current register values
1852 	 */
1853 
1854 	cfg = __raw_readq(s->sbm_maccfg);
1855 	framecfg = __raw_readq(s->sbm_framecfg);
1856 
1857 	/*
1858 	 * Mask out the stuff we want to change
1859 	 */
1860 
1861 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1862 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1863 		      M_MAC_SLOT_SIZE);
1864 
1865 	/*
1866 	 * Now add in the new bits
1867 	 */
1868 
1869 	switch (speed) {
1870 	case sbmac_speed_10:
1871 		framecfg |= V_MAC_IFG_RX_10 |
1872 			V_MAC_IFG_TX_10 |
1873 			K_MAC_IFG_THRSH_10 |
1874 			V_MAC_SLOT_SIZE_10;
1875 		cfg |= V_MAC_SPEED_SEL_10MBPS;
1876 		break;
1877 
1878 	case sbmac_speed_100:
1879 		framecfg |= V_MAC_IFG_RX_100 |
1880 			V_MAC_IFG_TX_100 |
1881 			V_MAC_IFG_THRSH_100 |
1882 			V_MAC_SLOT_SIZE_100;
1883 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
1884 		break;
1885 
1886 	case sbmac_speed_1000:
1887 		framecfg |= V_MAC_IFG_RX_1000 |
1888 			V_MAC_IFG_TX_1000 |
1889 			V_MAC_IFG_THRSH_1000 |
1890 			V_MAC_SLOT_SIZE_1000;
1891 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1892 		break;
1893 
1894 	default:
1895 		return 0;
1896 	}
1897 
1898 	/*
1899 	 * Send the bits back to the hardware
1900 	 */
1901 
1902 	__raw_writeq(framecfg, s->sbm_framecfg);
1903 	__raw_writeq(cfg, s->sbm_maccfg);
1904 
1905 	return 1;
1906 }
1907 
1908 /**********************************************************************
1909  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1910  *
1911  *  Set Ethernet duplex and flow control options for this MAC
1912  *  Warning: must be called when MAC is off!
1913  *
1914  *  Input parameters:
1915  *  	   s - sbmac structure
1916  *  	   duplex - duplex setting (see enum sbmac_duplex)
1917  *  	   fc - flow control setting (see enum sbmac_fc)
1918  *
1919  *  Return value:
1920  *  	   1 if ok
1921  *  	   0 if an invalid parameter combination was specified
1922  ********************************************************************* */
1923 
sbmac_set_duplex(struct sbmac_softc * s,enum sbmac_duplex duplex,enum sbmac_fc fc)1924 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1925 			    enum sbmac_fc fc)
1926 {
1927 	uint64_t cfg;
1928 
1929 	/*
1930 	 * Save new current values
1931 	 */
1932 
1933 	s->sbm_duplex = duplex;
1934 	s->sbm_fc = fc;
1935 
1936 	if (s->sbm_state == sbmac_state_on)
1937 		return 0;	/* save for next restart */
1938 
1939 	/*
1940 	 * Read current register values
1941 	 */
1942 
1943 	cfg = __raw_readq(s->sbm_maccfg);
1944 
1945 	/*
1946 	 * Mask off the stuff we're about to change
1947 	 */
1948 
1949 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1950 
1951 
1952 	switch (duplex) {
1953 	case sbmac_duplex_half:
1954 		switch (fc) {
1955 		case sbmac_fc_disabled:
1956 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1957 			break;
1958 
1959 		case sbmac_fc_collision:
1960 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1961 			break;
1962 
1963 		case sbmac_fc_carrier:
1964 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1965 			break;
1966 
1967 		case sbmac_fc_frame:		/* not valid in half duplex */
1968 		default:			/* invalid selection */
1969 			return 0;
1970 		}
1971 		break;
1972 
1973 	case sbmac_duplex_full:
1974 		switch (fc) {
1975 		case sbmac_fc_disabled:
1976 			cfg |= V_MAC_FC_CMD_DISABLED;
1977 			break;
1978 
1979 		case sbmac_fc_frame:
1980 			cfg |= V_MAC_FC_CMD_ENABLED;
1981 			break;
1982 
1983 		case sbmac_fc_collision:	/* not valid in full duplex */
1984 		case sbmac_fc_carrier:		/* not valid in full duplex */
1985 		default:
1986 			return 0;
1987 		}
1988 		break;
1989 	default:
1990 		return 0;
1991 	}
1992 
1993 	/*
1994 	 * Send the bits back to the hardware
1995 	 */
1996 
1997 	__raw_writeq(cfg, s->sbm_maccfg);
1998 
1999 	return 1;
2000 }
2001 
2002 
2003 
2004 
2005 /**********************************************************************
2006  *  SBMAC_INTR()
2007  *
2008  *  Interrupt handler for MAC interrupts
2009  *
2010  *  Input parameters:
2011  *  	   MAC structure
2012  *
2013  *  Return value:
2014  *  	   nothing
2015  ********************************************************************* */
sbmac_intr(int irq,void * dev_instance)2016 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2017 {
2018 	struct net_device *dev = (struct net_device *) dev_instance;
2019 	struct sbmac_softc *sc = netdev_priv(dev);
2020 	uint64_t isr;
2021 	int handled = 0;
2022 
2023 	/*
2024 	 * Read the ISR (this clears the bits in the real
2025 	 * register, except for counter addr)
2026 	 */
2027 
2028 	isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2029 
2030 	if (isr == 0)
2031 		return IRQ_RETVAL(0);
2032 	handled = 1;
2033 
2034 	/*
2035 	 * Transmits on channel 0
2036 	 */
2037 
2038 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2039 		sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2040 
2041 	if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2042 		if (netif_rx_schedule_prep(&sc->napi)) {
2043 			__raw_writeq(0, sc->sbm_imr);
2044 			__netif_rx_schedule(&sc->napi);
2045 			/* Depend on the exit from poll to reenable intr */
2046 		}
2047 		else {
2048 			/* may leave some packets behind */
2049 			sbdma_rx_process(sc,&(sc->sbm_rxdma),
2050 					 SBMAC_MAX_RXDESCR * 2, 0);
2051 		}
2052 	}
2053 	return IRQ_RETVAL(handled);
2054 }
2055 
2056 /**********************************************************************
2057  *  SBMAC_START_TX(skb,dev)
2058  *
2059  *  Start output on the specified interface.  Basically, we
2060  *  queue as many buffers as we can until the ring fills up, or
2061  *  we run off the end of the queue, whichever comes first.
2062  *
2063  *  Input parameters:
2064  *
2065  *
2066  *  Return value:
2067  *  	   nothing
2068  ********************************************************************* */
sbmac_start_tx(struct sk_buff * skb,struct net_device * dev)2069 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2070 {
2071 	struct sbmac_softc *sc = netdev_priv(dev);
2072 	unsigned long flags;
2073 
2074 	/* lock eth irq */
2075 	spin_lock_irqsave(&sc->sbm_lock, flags);
2076 
2077 	/*
2078 	 * Put the buffer on the transmit ring.  If we
2079 	 * don't have room, stop the queue.
2080 	 */
2081 
2082 	if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2083 		/* XXX save skb that we could not send */
2084 		netif_stop_queue(dev);
2085 		spin_unlock_irqrestore(&sc->sbm_lock, flags);
2086 
2087 		return 1;
2088 	}
2089 
2090 	dev->trans_start = jiffies;
2091 
2092 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2093 
2094 	return 0;
2095 }
2096 
2097 /**********************************************************************
2098  *  SBMAC_SETMULTI(sc)
2099  *
2100  *  Reprogram the multicast table into the hardware, given
2101  *  the list of multicasts associated with the interface
2102  *  structure.
2103  *
2104  *  Input parameters:
2105  *  	   sc - softc
2106  *
2107  *  Return value:
2108  *  	   nothing
2109  ********************************************************************* */
2110 
sbmac_setmulti(struct sbmac_softc * sc)2111 static void sbmac_setmulti(struct sbmac_softc *sc)
2112 {
2113 	uint64_t reg;
2114 	void __iomem *port;
2115 	int idx;
2116 	struct dev_mc_list *mclist;
2117 	struct net_device *dev = sc->sbm_dev;
2118 
2119 	/*
2120 	 * Clear out entire multicast table.  We do this by nuking
2121 	 * the entire hash table and all the direct matches except
2122 	 * the first one, which is used for our station address
2123 	 */
2124 
2125 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2126 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2127 		__raw_writeq(0, port);
2128 	}
2129 
2130 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2131 		port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2132 		__raw_writeq(0, port);
2133 	}
2134 
2135 	/*
2136 	 * Clear the filter to say we don't want any multicasts.
2137 	 */
2138 
2139 	reg = __raw_readq(sc->sbm_rxfilter);
2140 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2141 	__raw_writeq(reg, sc->sbm_rxfilter);
2142 
2143 	if (dev->flags & IFF_ALLMULTI) {
2144 		/*
2145 		 * Enable ALL multicasts.  Do this by inverting the
2146 		 * multicast enable bit.
2147 		 */
2148 		reg = __raw_readq(sc->sbm_rxfilter);
2149 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2150 		__raw_writeq(reg, sc->sbm_rxfilter);
2151 		return;
2152 	}
2153 
2154 
2155 	/*
2156 	 * Progam new multicast entries.  For now, only use the
2157 	 * perfect filter.  In the future we'll need to use the
2158 	 * hash filter if the perfect filter overflows
2159 	 */
2160 
2161 	/* XXX only using perfect filter for now, need to use hash
2162 	 * XXX if the table overflows */
2163 
2164 	idx = 1;		/* skip station address */
2165 	mclist = dev->mc_list;
2166 	while (mclist && (idx < MAC_ADDR_COUNT)) {
2167 		reg = sbmac_addr2reg(mclist->dmi_addr);
2168 		port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2169 		__raw_writeq(reg, port);
2170 		idx++;
2171 		mclist = mclist->next;
2172 	}
2173 
2174 	/*
2175 	 * Enable the "accept multicast bits" if we programmed at least one
2176 	 * multicast.
2177 	 */
2178 
2179 	if (idx > 1) {
2180 		reg = __raw_readq(sc->sbm_rxfilter);
2181 		reg |= M_MAC_MCAST_EN;
2182 		__raw_writeq(reg, sc->sbm_rxfilter);
2183 	}
2184 }
2185 
2186 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2187 /**********************************************************************
2188  *  SBMAC_PARSE_XDIGIT(str)
2189  *
2190  *  Parse a hex digit, returning its value
2191  *
2192  *  Input parameters:
2193  *  	   str - character
2194  *
2195  *  Return value:
2196  *  	   hex value, or -1 if invalid
2197  ********************************************************************* */
2198 
sbmac_parse_xdigit(char str)2199 static int sbmac_parse_xdigit(char str)
2200 {
2201 	int digit;
2202 
2203 	if ((str >= '0') && (str <= '9'))
2204 		digit = str - '0';
2205 	else if ((str >= 'a') && (str <= 'f'))
2206 		digit = str - 'a' + 10;
2207 	else if ((str >= 'A') && (str <= 'F'))
2208 		digit = str - 'A' + 10;
2209 	else
2210 		return -1;
2211 
2212 	return digit;
2213 }
2214 
2215 /**********************************************************************
2216  *  SBMAC_PARSE_HWADDR(str,hwaddr)
2217  *
2218  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2219  *  Ethernet address.
2220  *
2221  *  Input parameters:
2222  *  	   str - string
2223  *  	   hwaddr - pointer to hardware address
2224  *
2225  *  Return value:
2226  *  	   0 if ok, else -1
2227  ********************************************************************* */
2228 
sbmac_parse_hwaddr(char * str,unsigned char * hwaddr)2229 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2230 {
2231 	int digit1,digit2;
2232 	int idx = 6;
2233 
2234 	while (*str && (idx > 0)) {
2235 		digit1 = sbmac_parse_xdigit(*str);
2236 		if (digit1 < 0)
2237 			return -1;
2238 		str++;
2239 		if (!*str)
2240 			return -1;
2241 
2242 		if ((*str == ':') || (*str == '-')) {
2243 			digit2 = digit1;
2244 			digit1 = 0;
2245 		}
2246 		else {
2247 			digit2 = sbmac_parse_xdigit(*str);
2248 			if (digit2 < 0)
2249 				return -1;
2250 			str++;
2251 		}
2252 
2253 		*hwaddr++ = (digit1 << 4) | digit2;
2254 		idx--;
2255 
2256 		if (*str == '-')
2257 			str++;
2258 		if (*str == ':')
2259 			str++;
2260 	}
2261 	return 0;
2262 }
2263 #endif
2264 
sb1250_change_mtu(struct net_device * _dev,int new_mtu)2265 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2266 {
2267 	if (new_mtu >  ENET_PACKET_SIZE)
2268 		return -EINVAL;
2269 	_dev->mtu = new_mtu;
2270 	pr_info("changing the mtu to %d\n", new_mtu);
2271 	return 0;
2272 }
2273 
2274 /**********************************************************************
2275  *  SBMAC_INIT(dev)
2276  *
2277  *  Attach routine - init hardware and hook ourselves into linux
2278  *
2279  *  Input parameters:
2280  *  	   dev - net_device structure
2281  *
2282  *  Return value:
2283  *  	   status
2284  ********************************************************************* */
2285 
sbmac_init(struct platform_device * pldev,long long base)2286 static int sbmac_init(struct platform_device *pldev, long long base)
2287 {
2288 	struct net_device *dev = pldev->dev.driver_data;
2289 	int idx = pldev->id;
2290 	struct sbmac_softc *sc = netdev_priv(dev);
2291 	unsigned char *eaddr;
2292 	uint64_t ea_reg;
2293 	int i;
2294 	int err;
2295 
2296 	sc->sbm_dev = dev;
2297 	sc->sbe_idx = idx;
2298 
2299 	eaddr = sc->sbm_hwaddr;
2300 
2301 	/*
2302 	 * Read the ethernet address.  The firwmare left this programmed
2303 	 * for us in the ethernet address register for each mac.
2304 	 */
2305 
2306 	ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2307 	__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2308 	for (i = 0; i < 6; i++) {
2309 		eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2310 		ea_reg >>= 8;
2311 	}
2312 
2313 	for (i = 0; i < 6; i++) {
2314 		dev->dev_addr[i] = eaddr[i];
2315 	}
2316 
2317 	/*
2318 	 * Initialize context (get pointers to registers and stuff), then
2319 	 * allocate the memory for the descriptor tables.
2320 	 */
2321 
2322 	sbmac_initctx(sc);
2323 
2324 	/*
2325 	 * Set up Linux device callins
2326 	 */
2327 
2328 	spin_lock_init(&(sc->sbm_lock));
2329 
2330 	dev->open               = sbmac_open;
2331 	dev->hard_start_xmit    = sbmac_start_tx;
2332 	dev->stop               = sbmac_close;
2333 	dev->set_multicast_list = sbmac_set_rx_mode;
2334 	dev->do_ioctl           = sbmac_mii_ioctl;
2335 	dev->tx_timeout         = sbmac_tx_timeout;
2336 	dev->watchdog_timeo     = TX_TIMEOUT;
2337 
2338 	netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2339 
2340 	dev->change_mtu         = sb1250_change_mtu;
2341 #ifdef CONFIG_NET_POLL_CONTROLLER
2342 	dev->poll_controller = sbmac_netpoll;
2343 #endif
2344 
2345 	dev->irq		= UNIT_INT(idx);
2346 
2347 	/* This is needed for PASS2 for Rx H/W checksum feature */
2348 	sbmac_set_iphdr_offset(sc);
2349 
2350 	sc->mii_bus = mdiobus_alloc();
2351 	if (sc->mii_bus == NULL) {
2352 		sbmac_uninitctx(sc);
2353 		return -ENOMEM;
2354 	}
2355 
2356 	err = register_netdev(dev);
2357 	if (err) {
2358 		printk(KERN_ERR "%s.%d: unable to register netdev\n",
2359 		       sbmac_string, idx);
2360 		mdiobus_free(sc->mii_bus);
2361 		sbmac_uninitctx(sc);
2362 		return err;
2363 	}
2364 
2365 	pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2366 
2367 	if (sc->rx_hw_checksum == ENABLE)
2368 		pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2369 
2370 	/*
2371 	 * Display Ethernet address (this is called during the config
2372 	 * process so we need to finish off the config message that
2373 	 * was being displayed)
2374 	 */
2375 	pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2376 	       dev->name, base, eaddr);
2377 
2378 	sc->mii_bus->name = sbmac_mdio_string;
2379 	snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2380 	sc->mii_bus->priv = sc;
2381 	sc->mii_bus->read = sbmac_mii_read;
2382 	sc->mii_bus->write = sbmac_mii_write;
2383 	sc->mii_bus->irq = sc->phy_irq;
2384 	for (i = 0; i < PHY_MAX_ADDR; ++i)
2385 		sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2386 
2387 	sc->mii_bus->parent = &pldev->dev;
2388 	dev_set_drvdata(&pldev->dev, sc->mii_bus);
2389 
2390 	return 0;
2391 }
2392 
2393 
sbmac_open(struct net_device * dev)2394 static int sbmac_open(struct net_device *dev)
2395 {
2396 	struct sbmac_softc *sc = netdev_priv(dev);
2397 	int err;
2398 
2399 	if (debug > 1)
2400 		pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2401 
2402 	/*
2403 	 * map/route interrupt (clear status first, in case something
2404 	 * weird is pending; we haven't initialized the mac registers
2405 	 * yet)
2406 	 */
2407 
2408 	__raw_readq(sc->sbm_isr);
2409 	err = request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev);
2410 	if (err) {
2411 		printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2412 		       dev->irq);
2413 		goto out_err;
2414 	}
2415 
2416 	/*
2417 	 * Probe PHY address
2418 	 */
2419 	err = mdiobus_register(sc->mii_bus);
2420 	if (err) {
2421 		printk(KERN_ERR "%s: unable to register MDIO bus\n",
2422 		       dev->name);
2423 		goto out_unirq;
2424 	}
2425 
2426 	sc->sbm_speed = sbmac_speed_none;
2427 	sc->sbm_duplex = sbmac_duplex_none;
2428 	sc->sbm_fc = sbmac_fc_none;
2429 	sc->sbm_pause = -1;
2430 	sc->sbm_link = 0;
2431 
2432 	/*
2433 	 * Attach to the PHY
2434 	 */
2435 	err = sbmac_mii_probe(dev);
2436 	if (err)
2437 		goto out_unregister;
2438 
2439 	/*
2440 	 * Turn on the channel
2441 	 */
2442 
2443 	sbmac_set_channel_state(sc,sbmac_state_on);
2444 
2445 	netif_start_queue(dev);
2446 
2447 	sbmac_set_rx_mode(dev);
2448 
2449 	phy_start(sc->phy_dev);
2450 
2451 	napi_enable(&sc->napi);
2452 
2453 	return 0;
2454 
2455 out_unregister:
2456 	mdiobus_unregister(sc->mii_bus);
2457 
2458 out_unirq:
2459 	free_irq(dev->irq, dev);
2460 
2461 out_err:
2462 	return err;
2463 }
2464 
sbmac_mii_probe(struct net_device * dev)2465 static int sbmac_mii_probe(struct net_device *dev)
2466 {
2467 	struct sbmac_softc *sc = netdev_priv(dev);
2468 	struct phy_device *phy_dev;
2469 	int i;
2470 
2471 	for (i = 0; i < PHY_MAX_ADDR; i++) {
2472 		phy_dev = sc->mii_bus->phy_map[i];
2473 		if (phy_dev)
2474 			break;
2475 	}
2476 	if (!phy_dev) {
2477 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
2478 		return -ENXIO;
2479 	}
2480 
2481 	phy_dev = phy_connect(dev, phy_dev->dev.bus_id, &sbmac_mii_poll, 0,
2482 			      PHY_INTERFACE_MODE_GMII);
2483 	if (IS_ERR(phy_dev)) {
2484 		printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2485 		return PTR_ERR(phy_dev);
2486 	}
2487 
2488 	/* Remove any features not supported by the controller */
2489 	phy_dev->supported &= SUPPORTED_10baseT_Half |
2490 			      SUPPORTED_10baseT_Full |
2491 			      SUPPORTED_100baseT_Half |
2492 			      SUPPORTED_100baseT_Full |
2493 			      SUPPORTED_1000baseT_Half |
2494 			      SUPPORTED_1000baseT_Full |
2495 			      SUPPORTED_Autoneg |
2496 			      SUPPORTED_MII |
2497 			      SUPPORTED_Pause |
2498 			      SUPPORTED_Asym_Pause;
2499 	phy_dev->advertising = phy_dev->supported;
2500 
2501 	pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2502 		dev->name, phy_dev->drv->name,
2503 		phy_dev->dev.bus_id, phy_dev->irq);
2504 
2505 	sc->phy_dev = phy_dev;
2506 
2507 	return 0;
2508 }
2509 
2510 
sbmac_mii_poll(struct net_device * dev)2511 static void sbmac_mii_poll(struct net_device *dev)
2512 {
2513 	struct sbmac_softc *sc = netdev_priv(dev);
2514 	struct phy_device *phy_dev = sc->phy_dev;
2515 	unsigned long flags;
2516 	enum sbmac_fc fc;
2517 	int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2518 
2519 	link_chg = (sc->sbm_link != phy_dev->link);
2520 	speed_chg = (sc->sbm_speed != phy_dev->speed);
2521 	duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2522 	pause_chg = (sc->sbm_pause != phy_dev->pause);
2523 
2524 	if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2525 		return;					/* Hmmm... */
2526 
2527 	if (!phy_dev->link) {
2528 		if (link_chg) {
2529 			sc->sbm_link = phy_dev->link;
2530 			sc->sbm_speed = sbmac_speed_none;
2531 			sc->sbm_duplex = sbmac_duplex_none;
2532 			sc->sbm_fc = sbmac_fc_disabled;
2533 			sc->sbm_pause = -1;
2534 			pr_info("%s: link unavailable\n", dev->name);
2535 		}
2536 		return;
2537 	}
2538 
2539 	if (phy_dev->duplex == DUPLEX_FULL) {
2540 		if (phy_dev->pause)
2541 			fc = sbmac_fc_frame;
2542 		else
2543 			fc = sbmac_fc_disabled;
2544 	} else
2545 		fc = sbmac_fc_collision;
2546 	fc_chg = (sc->sbm_fc != fc);
2547 
2548 	pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2549 		phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2550 
2551 	spin_lock_irqsave(&sc->sbm_lock, flags);
2552 
2553 	sc->sbm_speed = phy_dev->speed;
2554 	sc->sbm_duplex = phy_dev->duplex;
2555 	sc->sbm_fc = fc;
2556 	sc->sbm_pause = phy_dev->pause;
2557 	sc->sbm_link = phy_dev->link;
2558 
2559 	if ((speed_chg || duplex_chg || fc_chg) &&
2560 	    sc->sbm_state != sbmac_state_off) {
2561 		/*
2562 		 * something changed, restart the channel
2563 		 */
2564 		if (debug > 1)
2565 			pr_debug("%s: restarting channel "
2566 				 "because PHY state changed\n", dev->name);
2567 		sbmac_channel_stop(sc);
2568 		sbmac_channel_start(sc);
2569 	}
2570 
2571 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2572 }
2573 
2574 
sbmac_tx_timeout(struct net_device * dev)2575 static void sbmac_tx_timeout (struct net_device *dev)
2576 {
2577 	struct sbmac_softc *sc = netdev_priv(dev);
2578 	unsigned long flags;
2579 
2580 	spin_lock_irqsave(&sc->sbm_lock, flags);
2581 
2582 
2583 	dev->trans_start = jiffies;
2584 	dev->stats.tx_errors++;
2585 
2586 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2587 
2588 	printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2589 }
2590 
2591 
2592 
2593 
sbmac_set_rx_mode(struct net_device * dev)2594 static void sbmac_set_rx_mode(struct net_device *dev)
2595 {
2596 	unsigned long flags;
2597 	struct sbmac_softc *sc = netdev_priv(dev);
2598 
2599 	spin_lock_irqsave(&sc->sbm_lock, flags);
2600 	if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2601 		/*
2602 		 * Promiscuous changed.
2603 		 */
2604 
2605 		if (dev->flags & IFF_PROMISC) {
2606 			sbmac_promiscuous_mode(sc,1);
2607 		}
2608 		else {
2609 			sbmac_promiscuous_mode(sc,0);
2610 		}
2611 	}
2612 	spin_unlock_irqrestore(&sc->sbm_lock, flags);
2613 
2614 	/*
2615 	 * Program the multicasts.  Do this every time.
2616 	 */
2617 
2618 	sbmac_setmulti(sc);
2619 
2620 }
2621 
sbmac_mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2622 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2623 {
2624 	struct sbmac_softc *sc = netdev_priv(dev);
2625 
2626 	if (!netif_running(dev) || !sc->phy_dev)
2627 		return -EINVAL;
2628 
2629 	return phy_mii_ioctl(sc->phy_dev, if_mii(rq), cmd);
2630 }
2631 
sbmac_close(struct net_device * dev)2632 static int sbmac_close(struct net_device *dev)
2633 {
2634 	struct sbmac_softc *sc = netdev_priv(dev);
2635 
2636 	napi_disable(&sc->napi);
2637 
2638 	phy_stop(sc->phy_dev);
2639 
2640 	sbmac_set_channel_state(sc, sbmac_state_off);
2641 
2642 	netif_stop_queue(dev);
2643 
2644 	if (debug > 1)
2645 		pr_debug("%s: Shutting down ethercard\n", dev->name);
2646 
2647 	phy_disconnect(sc->phy_dev);
2648 	sc->phy_dev = NULL;
2649 
2650 	mdiobus_unregister(sc->mii_bus);
2651 
2652 	free_irq(dev->irq, dev);
2653 
2654 	sbdma_emptyring(&(sc->sbm_txdma));
2655 	sbdma_emptyring(&(sc->sbm_rxdma));
2656 
2657 	return 0;
2658 }
2659 
sbmac_poll(struct napi_struct * napi,int budget)2660 static int sbmac_poll(struct napi_struct *napi, int budget)
2661 {
2662 	struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2663 	struct net_device *dev = sc->sbm_dev;
2664 	int work_done;
2665 
2666 	work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2667 	sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2668 
2669 	if (work_done < budget) {
2670 		netif_rx_complete(napi);
2671 
2672 #ifdef CONFIG_SBMAC_COALESCE
2673 		__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2674 			     ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2675 			     sc->sbm_imr);
2676 #else
2677 		__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2678 			     (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2679 #endif
2680 	}
2681 
2682 	return work_done;
2683 }
2684 
2685 
sbmac_probe(struct platform_device * pldev)2686 static int __init sbmac_probe(struct platform_device *pldev)
2687 {
2688 	struct net_device *dev;
2689 	struct sbmac_softc *sc;
2690 	void __iomem *sbm_base;
2691 	struct resource *res;
2692 	u64 sbmac_orig_hwaddr;
2693 	int err;
2694 
2695 	res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2696 	BUG_ON(!res);
2697 	sbm_base = ioremap_nocache(res->start, res->end - res->start + 1);
2698 	if (!sbm_base) {
2699 		printk(KERN_ERR "%s: unable to map device registers\n",
2700 		       pldev->dev.bus_id);
2701 		err = -ENOMEM;
2702 		goto out_out;
2703 	}
2704 
2705 	/*
2706 	 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2707 	 * value for us by the firmware if we're going to use this MAC.
2708 	 * If we find a zero, skip this MAC.
2709 	 */
2710 	sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2711 	pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", pldev->dev.bus_id,
2712 		 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2713 	if (sbmac_orig_hwaddr == 0) {
2714 		err = 0;
2715 		goto out_unmap;
2716 	}
2717 
2718 	/*
2719 	 * Okay, cool.  Initialize this MAC.
2720 	 */
2721 	dev = alloc_etherdev(sizeof(struct sbmac_softc));
2722 	if (!dev) {
2723 		printk(KERN_ERR "%s: unable to allocate etherdev\n",
2724 		       pldev->dev.bus_id);
2725 		err = -ENOMEM;
2726 		goto out_unmap;
2727 	}
2728 
2729 	pldev->dev.driver_data = dev;
2730 	SET_NETDEV_DEV(dev, &pldev->dev);
2731 
2732 	sc = netdev_priv(dev);
2733 	sc->sbm_base = sbm_base;
2734 
2735 	err = sbmac_init(pldev, res->start);
2736 	if (err)
2737 		goto out_kfree;
2738 
2739 	return 0;
2740 
2741 out_kfree:
2742 	free_netdev(dev);
2743 	__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2744 
2745 out_unmap:
2746 	iounmap(sbm_base);
2747 
2748 out_out:
2749 	return err;
2750 }
2751 
sbmac_remove(struct platform_device * pldev)2752 static int __exit sbmac_remove(struct platform_device *pldev)
2753 {
2754 	struct net_device *dev = pldev->dev.driver_data;
2755 	struct sbmac_softc *sc = netdev_priv(dev);
2756 
2757 	unregister_netdev(dev);
2758 	sbmac_uninitctx(sc);
2759 	mdiobus_free(sc->mii_bus);
2760 	iounmap(sc->sbm_base);
2761 	free_netdev(dev);
2762 
2763 	return 0;
2764 }
2765 
2766 
2767 static struct platform_device **sbmac_pldev;
2768 static int sbmac_max_units;
2769 
2770 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
sbmac_setup_hwaddr(int idx,char * addr)2771 static void __init sbmac_setup_hwaddr(int idx, char *addr)
2772 {
2773 	void __iomem *sbm_base;
2774 	unsigned long start, end;
2775 	uint8_t eaddr[6];
2776 	uint64_t val;
2777 
2778 	if (idx >= sbmac_max_units)
2779 		return;
2780 
2781 	start = A_MAC_CHANNEL_BASE(idx);
2782 	end = A_MAC_CHANNEL_BASE(idx + 1) - 1;
2783 
2784 	sbm_base = ioremap_nocache(start, end - start + 1);
2785 	if (!sbm_base) {
2786 		printk(KERN_ERR "%s: unable to map device registers\n",
2787 		       sbmac_string);
2788 		return;
2789 	}
2790 
2791 	sbmac_parse_hwaddr(addr, eaddr);
2792 	val = sbmac_addr2reg(eaddr);
2793 	__raw_writeq(val, sbm_base + R_MAC_ETHERNET_ADDR);
2794 	val = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2795 
2796 	iounmap(sbm_base);
2797 }
2798 #endif
2799 
sbmac_platform_probe_one(int idx)2800 static int __init sbmac_platform_probe_one(int idx)
2801 {
2802 	struct platform_device *pldev;
2803 	struct {
2804 		struct resource r;
2805 		char name[strlen(sbmac_pretty) + 4];
2806 	} *res;
2807 	int err;
2808 
2809 	res = kzalloc(sizeof(*res), GFP_KERNEL);
2810 	if (!res) {
2811 		printk(KERN_ERR "%s.%d: unable to allocate memory\n",
2812 		       sbmac_string, idx);
2813 		err = -ENOMEM;
2814 		goto out_err;
2815 	}
2816 
2817 	/*
2818 	 * This is the base address of the MAC.
2819 	 */
2820 	snprintf(res->name, sizeof(res->name), "%s %d", sbmac_pretty, idx);
2821 	res->r.name = res->name;
2822 	res->r.flags = IORESOURCE_MEM;
2823 	res->r.start = A_MAC_CHANNEL_BASE(idx);
2824 	res->r.end = A_MAC_CHANNEL_BASE(idx + 1) - 1;
2825 
2826 	pldev = platform_device_register_simple(sbmac_string, idx, &res->r, 1);
2827 	if (IS_ERR(pldev)) {
2828 		printk(KERN_ERR "%s.%d: unable to register platform device\n",
2829 		       sbmac_string, idx);
2830 		err = PTR_ERR(pldev);
2831 		goto out_kfree;
2832 	}
2833 
2834 	if (!pldev->dev.driver) {
2835 		err = 0;		/* No hardware at this address. */
2836 		goto out_unregister;
2837 	}
2838 
2839 	sbmac_pldev[idx] = pldev;
2840 	return 0;
2841 
2842 out_unregister:
2843 	platform_device_unregister(pldev);
2844 
2845 out_kfree:
2846 	kfree(res);
2847 
2848 out_err:
2849 	return err;
2850 }
2851 
sbmac_platform_probe(void)2852 static void __init sbmac_platform_probe(void)
2853 {
2854 	int i;
2855 
2856 	/* Set the number of available units based on the SOC type.  */
2857 	switch (soc_type) {
2858 	case K_SYS_SOC_TYPE_BCM1250:
2859 	case K_SYS_SOC_TYPE_BCM1250_ALT:
2860 		sbmac_max_units = 3;
2861 		break;
2862 	case K_SYS_SOC_TYPE_BCM1120:
2863 	case K_SYS_SOC_TYPE_BCM1125:
2864 	case K_SYS_SOC_TYPE_BCM1125H:
2865 	case K_SYS_SOC_TYPE_BCM1250_ALT2:	/* Hybrid */
2866 		sbmac_max_units = 2;
2867 		break;
2868 	case K_SYS_SOC_TYPE_BCM1x55:
2869 	case K_SYS_SOC_TYPE_BCM1x80:
2870 		sbmac_max_units = 4;
2871 		break;
2872 	default:
2873 		return;				/* none */
2874 	}
2875 
2876 	/*
2877 	 * For bringup when not using the firmware, we can pre-fill
2878 	 * the MAC addresses using the environment variables
2879 	 * specified in this file (or maybe from the config file?)
2880 	 */
2881 #ifdef SBMAC_ETH0_HWADDR
2882 	sbmac_setup_hwaddr(0, SBMAC_ETH0_HWADDR);
2883 #endif
2884 #ifdef SBMAC_ETH1_HWADDR
2885 	sbmac_setup_hwaddr(1, SBMAC_ETH1_HWADDR);
2886 #endif
2887 #ifdef SBMAC_ETH2_HWADDR
2888 	sbmac_setup_hwaddr(2, SBMAC_ETH2_HWADDR);
2889 #endif
2890 #ifdef SBMAC_ETH3_HWADDR
2891 	sbmac_setup_hwaddr(3, SBMAC_ETH3_HWADDR);
2892 #endif
2893 
2894 	sbmac_pldev = kcalloc(sbmac_max_units, sizeof(*sbmac_pldev),
2895 			      GFP_KERNEL);
2896 	if (!sbmac_pldev) {
2897 		printk(KERN_ERR "%s: unable to allocate memory\n",
2898 		       sbmac_string);
2899 		return;
2900 	}
2901 
2902 	/*
2903 	 * Walk through the Ethernet controllers and find
2904 	 * those who have their MAC addresses set.
2905 	 */
2906 	for (i = 0; i < sbmac_max_units; i++)
2907 		if (sbmac_platform_probe_one(i))
2908 			break;
2909 }
2910 
2911 
sbmac_platform_cleanup(void)2912 static void __exit sbmac_platform_cleanup(void)
2913 {
2914 	int i;
2915 
2916 	for (i = 0; i < sbmac_max_units; i++)
2917 		platform_device_unregister(sbmac_pldev[i]);
2918 	kfree(sbmac_pldev);
2919 }
2920 
2921 
2922 static struct platform_driver sbmac_driver = {
2923 	.probe = sbmac_probe,
2924 	.remove = __exit_p(sbmac_remove),
2925 	.driver = {
2926 		.name = sbmac_string,
2927 	},
2928 };
2929 
sbmac_init_module(void)2930 static int __init sbmac_init_module(void)
2931 {
2932 	int err;
2933 
2934 	err = platform_driver_register(&sbmac_driver);
2935 	if (err)
2936 		return err;
2937 
2938 	sbmac_platform_probe();
2939 
2940 	return err;
2941 }
2942 
sbmac_cleanup_module(void)2943 static void __exit sbmac_cleanup_module(void)
2944 {
2945 	sbmac_platform_cleanup();
2946 	platform_driver_unregister(&sbmac_driver);
2947 }
2948 
2949 module_init(sbmac_init_module);
2950 module_exit(sbmac_cleanup_module);
2951