1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 *
20 * This driver is designed for the Broadcom SiByte SOC built-in
21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 *
23 * Updated to the driver model and the PHY abstraction layer
24 * by Maciej W. Rozycki.
25 */
26
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46
47 #include <asm/cache.h>
48 #include <asm/io.h>
49 #include <asm/processor.h> /* Processor type for cache alignment. */
50
51 /* This is only here until the firmware is ready. In that case,
52 the firmware leaves the ethernet address in the register for us. */
53 #ifdef CONFIG_SIBYTE_STANDALONE
54 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
55 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
56 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
57 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
58 #endif
59
60
61 /* These identify the driver base version and may not be removed. */
62 #if 0
63 static char version1[] __initdata =
64 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
65 #endif
66
67
68 /* Operational parameters that usually are not changed. */
69
70 #define CONFIG_SBMAC_COALESCE
71
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (2*HZ)
74
75
76 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
77 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
78
79 /* A few user-configurable values which may be modified when a driver
80 module is loaded. */
81
82 /* 1 normal messages, 0 quiet .. 7 verbose. */
83 static int debug = 1;
84 module_param(debug, int, S_IRUGO);
85 MODULE_PARM_DESC(debug, "Debug messages");
86
87 #ifdef CONFIG_SBMAC_COALESCE
88 static int int_pktcnt_tx = 255;
89 module_param(int_pktcnt_tx, int, S_IRUGO);
90 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
91
92 static int int_timeout_tx = 255;
93 module_param(int_timeout_tx, int, S_IRUGO);
94 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
95
96 static int int_pktcnt_rx = 64;
97 module_param(int_pktcnt_rx, int, S_IRUGO);
98 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
99
100 static int int_timeout_rx = 64;
101 module_param(int_timeout_rx, int, S_IRUGO);
102 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
103 #endif
104
105 #include <asm/sibyte/board.h>
106 #include <asm/sibyte/sb1250.h>
107 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
108 #include <asm/sibyte/bcm1480_regs.h>
109 #include <asm/sibyte/bcm1480_int.h>
110 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
111 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
112 #include <asm/sibyte/sb1250_regs.h>
113 #include <asm/sibyte/sb1250_int.h>
114 #else
115 #error invalid SiByte MAC configuation
116 #endif
117 #include <asm/sibyte/sb1250_scd.h>
118 #include <asm/sibyte/sb1250_mac.h>
119 #include <asm/sibyte/sb1250_dma.h>
120
121 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
122 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
123 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
124 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
125 #else
126 #error invalid SiByte MAC configuation
127 #endif
128
129 #ifdef K_INT_PHY
130 #define SBMAC_PHY_INT K_INT_PHY
131 #else
132 #define SBMAC_PHY_INT PHY_POLL
133 #endif
134
135 /**********************************************************************
136 * Simple types
137 ********************************************************************* */
138
139 enum sbmac_speed {
140 sbmac_speed_none = 0,
141 sbmac_speed_10 = SPEED_10,
142 sbmac_speed_100 = SPEED_100,
143 sbmac_speed_1000 = SPEED_1000,
144 };
145
146 enum sbmac_duplex {
147 sbmac_duplex_none = -1,
148 sbmac_duplex_half = DUPLEX_HALF,
149 sbmac_duplex_full = DUPLEX_FULL,
150 };
151
152 enum sbmac_fc {
153 sbmac_fc_none,
154 sbmac_fc_disabled,
155 sbmac_fc_frame,
156 sbmac_fc_collision,
157 sbmac_fc_carrier,
158 };
159
160 enum sbmac_state {
161 sbmac_state_uninit,
162 sbmac_state_off,
163 sbmac_state_on,
164 sbmac_state_broken,
165 };
166
167
168 /**********************************************************************
169 * Macros
170 ********************************************************************* */
171
172
173 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
174 (d)->sbdma_dscrtable : (d)->f+1)
175
176
177 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
178
179 #define SBMAC_MAX_TXDESCR 256
180 #define SBMAC_MAX_RXDESCR 256
181
182 #define ETHER_ADDR_LEN 6
183 #define ENET_PACKET_SIZE 1518
184 /*#define ENET_PACKET_SIZE 9216 */
185
186 /**********************************************************************
187 * DMA Descriptor structure
188 ********************************************************************* */
189
190 struct sbdmadscr {
191 uint64_t dscr_a;
192 uint64_t dscr_b;
193 };
194
195 /**********************************************************************
196 * DMA Controller structure
197 ********************************************************************* */
198
199 struct sbmacdma {
200
201 /*
202 * This stuff is used to identify the channel and the registers
203 * associated with it.
204 */
205 struct sbmac_softc *sbdma_eth; /* back pointer to associated
206 MAC */
207 int sbdma_channel; /* channel number */
208 int sbdma_txdir; /* direction (1=transmit) */
209 int sbdma_maxdescr; /* total # of descriptors
210 in ring */
211 #ifdef CONFIG_SBMAC_COALESCE
212 int sbdma_int_pktcnt;
213 /* # descriptors rx/tx
214 before interrupt */
215 int sbdma_int_timeout;
216 /* # usec rx/tx interrupt */
217 #endif
218 void __iomem *sbdma_config0; /* DMA config register 0 */
219 void __iomem *sbdma_config1; /* DMA config register 1 */
220 void __iomem *sbdma_dscrbase;
221 /* descriptor base address */
222 void __iomem *sbdma_dscrcnt; /* descriptor count register */
223 void __iomem *sbdma_curdscr; /* current descriptor
224 address */
225 void __iomem *sbdma_oodpktlost;
226 /* pkt drop (rx only) */
227
228 /*
229 * This stuff is for maintenance of the ring
230 */
231 void *sbdma_dscrtable_unaligned;
232 struct sbdmadscr *sbdma_dscrtable;
233 /* base of descriptor table */
234 struct sbdmadscr *sbdma_dscrtable_end;
235 /* end of descriptor table */
236 struct sk_buff **sbdma_ctxtable;
237 /* context table, one
238 per descr */
239 dma_addr_t sbdma_dscrtable_phys;
240 /* and also the phys addr */
241 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
242 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
243 to remove */
244 };
245
246
247 /**********************************************************************
248 * Ethernet softc structure
249 ********************************************************************* */
250
251 struct sbmac_softc {
252
253 /*
254 * Linux-specific things
255 */
256 struct net_device *sbm_dev; /* pointer to linux device */
257 struct napi_struct napi;
258 struct phy_device *phy_dev; /* the associated PHY device */
259 struct mii_bus *mii_bus; /* the MII bus */
260 int phy_irq[PHY_MAX_ADDR];
261 spinlock_t sbm_lock; /* spin lock */
262 int sbm_devflags; /* current device flags */
263
264 /*
265 * Controller-specific things
266 */
267 void __iomem *sbm_base; /* MAC's base address */
268 enum sbmac_state sbm_state; /* current state */
269
270 void __iomem *sbm_macenable; /* MAC Enable Register */
271 void __iomem *sbm_maccfg; /* MAC Config Register */
272 void __iomem *sbm_fifocfg; /* FIFO Config Register */
273 void __iomem *sbm_framecfg; /* Frame Config Register */
274 void __iomem *sbm_rxfilter; /* Receive Filter Register */
275 void __iomem *sbm_isr; /* Interrupt Status Register */
276 void __iomem *sbm_imr; /* Interrupt Mask Register */
277 void __iomem *sbm_mdio; /* MDIO Register */
278
279 enum sbmac_speed sbm_speed; /* current speed */
280 enum sbmac_duplex sbm_duplex; /* current duplex */
281 enum sbmac_fc sbm_fc; /* cur. flow control setting */
282 int sbm_pause; /* current pause setting */
283 int sbm_link; /* current link state */
284
285 unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
286
287 struct sbmacdma sbm_txdma; /* only channel 0 for now */
288 struct sbmacdma sbm_rxdma;
289 int rx_hw_checksum;
290 int sbe_idx;
291 };
292
293
294 /**********************************************************************
295 * Externs
296 ********************************************************************* */
297
298 /**********************************************************************
299 * Prototypes
300 ********************************************************************* */
301
302 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
303 int txrx, int maxdescr);
304 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
305 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
306 struct sk_buff *m);
307 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
308 static void sbdma_emptyring(struct sbmacdma *d);
309 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
310 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
311 int work_to_do, int poll);
312 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
313 int poll);
314 static int sbmac_initctx(struct sbmac_softc *s);
315 static void sbmac_channel_start(struct sbmac_softc *s);
316 static void sbmac_channel_stop(struct sbmac_softc *s);
317 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
318 enum sbmac_state);
319 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
320 static uint64_t sbmac_addr2reg(unsigned char *ptr);
321 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
322 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
323 static void sbmac_setmulti(struct sbmac_softc *sc);
324 static int sbmac_init(struct platform_device *pldev, long long base);
325 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
326 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
327 enum sbmac_fc fc);
328
329 static int sbmac_open(struct net_device *dev);
330 static void sbmac_tx_timeout (struct net_device *dev);
331 static void sbmac_set_rx_mode(struct net_device *dev);
332 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
333 static int sbmac_close(struct net_device *dev);
334 static int sbmac_poll(struct napi_struct *napi, int budget);
335
336 static void sbmac_mii_poll(struct net_device *dev);
337 static int sbmac_mii_probe(struct net_device *dev);
338
339 static void sbmac_mii_sync(void __iomem *sbm_mdio);
340 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
341 int bitcnt);
342 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
343 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
344 u16 val);
345
346
347 /**********************************************************************
348 * Globals
349 ********************************************************************* */
350
351 static char sbmac_string[] = "sb1250-mac";
352 static char sbmac_pretty[] = "SB1250 MAC";
353
354 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
355
356
357 /**********************************************************************
358 * MDIO constants
359 ********************************************************************* */
360
361 #define MII_COMMAND_START 0x01
362 #define MII_COMMAND_READ 0x02
363 #define MII_COMMAND_WRITE 0x01
364 #define MII_COMMAND_ACK 0x02
365
366 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
367
368 #define ENABLE 1
369 #define DISABLE 0
370
371 /**********************************************************************
372 * SBMAC_MII_SYNC(sbm_mdio)
373 *
374 * Synchronize with the MII - send a pattern of bits to the MII
375 * that will guarantee that it is ready to accept a command.
376 *
377 * Input parameters:
378 * sbm_mdio - address of the MAC's MDIO register
379 *
380 * Return value:
381 * nothing
382 ********************************************************************* */
383
sbmac_mii_sync(void __iomem * sbm_mdio)384 static void sbmac_mii_sync(void __iomem *sbm_mdio)
385 {
386 int cnt;
387 uint64_t bits;
388 int mac_mdio_genc;
389
390 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
391
392 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
393
394 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
395
396 for (cnt = 0; cnt < 32; cnt++) {
397 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
398 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
399 }
400 }
401
402 /**********************************************************************
403 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
404 *
405 * Send some bits to the MII. The bits to be sent are right-
406 * justified in the 'data' parameter.
407 *
408 * Input parameters:
409 * sbm_mdio - address of the MAC's MDIO register
410 * data - data to send
411 * bitcnt - number of bits to send
412 ********************************************************************* */
413
sbmac_mii_senddata(void __iomem * sbm_mdio,unsigned int data,int bitcnt)414 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
415 int bitcnt)
416 {
417 int i;
418 uint64_t bits;
419 unsigned int curmask;
420 int mac_mdio_genc;
421
422 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
423
424 bits = M_MAC_MDIO_DIR_OUTPUT;
425 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
426
427 curmask = 1 << (bitcnt - 1);
428
429 for (i = 0; i < bitcnt; i++) {
430 if (data & curmask)
431 bits |= M_MAC_MDIO_OUT;
432 else bits &= ~M_MAC_MDIO_OUT;
433 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
434 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
435 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
436 curmask >>= 1;
437 }
438 }
439
440
441
442 /**********************************************************************
443 * SBMAC_MII_READ(bus, phyaddr, regidx)
444 * Read a PHY register.
445 *
446 * Input parameters:
447 * bus - MDIO bus handle
448 * phyaddr - PHY's address
449 * regnum - index of register to read
450 *
451 * Return value:
452 * value read, or 0xffff if an error occurred.
453 ********************************************************************* */
454
sbmac_mii_read(struct mii_bus * bus,int phyaddr,int regidx)455 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
456 {
457 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
458 void __iomem *sbm_mdio = sc->sbm_mdio;
459 int idx;
460 int error;
461 int regval;
462 int mac_mdio_genc;
463
464 /*
465 * Synchronize ourselves so that the PHY knows the next
466 * thing coming down is a command
467 */
468 sbmac_mii_sync(sbm_mdio);
469
470 /*
471 * Send the data to the PHY. The sequence is
472 * a "start" command (2 bits)
473 * a "read" command (2 bits)
474 * the PHY addr (5 bits)
475 * the register index (5 bits)
476 */
477 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
478 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
479 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
480 sbmac_mii_senddata(sbm_mdio, regidx, 5);
481
482 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
483
484 /*
485 * Switch the port around without a clock transition.
486 */
487 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
488
489 /*
490 * Send out a clock pulse to signal we want the status
491 */
492 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
493 sbm_mdio);
494 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
495
496 /*
497 * If an error occurred, the PHY will signal '1' back
498 */
499 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
500
501 /*
502 * Issue an 'idle' clock pulse, but keep the direction
503 * the same.
504 */
505 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
506 sbm_mdio);
507 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
508
509 regval = 0;
510
511 for (idx = 0; idx < 16; idx++) {
512 regval <<= 1;
513
514 if (error == 0) {
515 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
516 regval |= 1;
517 }
518
519 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
520 sbm_mdio);
521 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
522 }
523
524 /* Switch back to output */
525 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
526
527 if (error == 0)
528 return regval;
529 return 0xffff;
530 }
531
532
533 /**********************************************************************
534 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
535 *
536 * Write a value to a PHY register.
537 *
538 * Input parameters:
539 * bus - MDIO bus handle
540 * phyaddr - PHY to use
541 * regidx - register within the PHY
542 * regval - data to write to register
543 *
544 * Return value:
545 * 0 for success
546 ********************************************************************* */
547
sbmac_mii_write(struct mii_bus * bus,int phyaddr,int regidx,u16 regval)548 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
549 u16 regval)
550 {
551 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
552 void __iomem *sbm_mdio = sc->sbm_mdio;
553 int mac_mdio_genc;
554
555 sbmac_mii_sync(sbm_mdio);
556
557 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
558 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
559 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
560 sbmac_mii_senddata(sbm_mdio, regidx, 5);
561 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
562 sbmac_mii_senddata(sbm_mdio, regval, 16);
563
564 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
565
566 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
567
568 return 0;
569 }
570
571
572
573 /**********************************************************************
574 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
575 *
576 * Initialize a DMA channel context. Since there are potentially
577 * eight DMA channels per MAC, it's nice to do this in a standard
578 * way.
579 *
580 * Input parameters:
581 * d - struct sbmacdma (DMA channel context)
582 * s - struct sbmac_softc (pointer to a MAC)
583 * chan - channel number (0..1 right now)
584 * txrx - Identifies DMA_TX or DMA_RX for channel direction
585 * maxdescr - number of descriptors
586 *
587 * Return value:
588 * nothing
589 ********************************************************************* */
590
sbdma_initctx(struct sbmacdma * d,struct sbmac_softc * s,int chan,int txrx,int maxdescr)591 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
592 int txrx, int maxdescr)
593 {
594 #ifdef CONFIG_SBMAC_COALESCE
595 int int_pktcnt, int_timeout;
596 #endif
597
598 /*
599 * Save away interesting stuff in the structure
600 */
601
602 d->sbdma_eth = s;
603 d->sbdma_channel = chan;
604 d->sbdma_txdir = txrx;
605
606 #if 0
607 /* RMON clearing */
608 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
609 #endif
610
611 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
612 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
613 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
614 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
615 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
616 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
617 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
618 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
619 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
620 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
621 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
622 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
623 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
624 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
625 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
626 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
627 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
628 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
629 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
630 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
631 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
632
633 /*
634 * initialize register pointers
635 */
636
637 d->sbdma_config0 =
638 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
639 d->sbdma_config1 =
640 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
641 d->sbdma_dscrbase =
642 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
643 d->sbdma_dscrcnt =
644 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
645 d->sbdma_curdscr =
646 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
647 if (d->sbdma_txdir)
648 d->sbdma_oodpktlost = NULL;
649 else
650 d->sbdma_oodpktlost =
651 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
652
653 /*
654 * Allocate memory for the ring
655 */
656
657 d->sbdma_maxdescr = maxdescr;
658
659 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
660 sizeof(*d->sbdma_dscrtable),
661 GFP_KERNEL);
662
663 /*
664 * The descriptor table must be aligned to at least 16 bytes or the
665 * MAC will corrupt it.
666 */
667 d->sbdma_dscrtable = (struct sbdmadscr *)
668 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
669 sizeof(*d->sbdma_dscrtable));
670
671 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
672
673 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
674
675 /*
676 * And context table
677 */
678
679 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
680 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
681
682 #ifdef CONFIG_SBMAC_COALESCE
683 /*
684 * Setup Rx/Tx DMA coalescing defaults
685 */
686
687 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
688 if ( int_pktcnt ) {
689 d->sbdma_int_pktcnt = int_pktcnt;
690 } else {
691 d->sbdma_int_pktcnt = 1;
692 }
693
694 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
695 if ( int_timeout ) {
696 d->sbdma_int_timeout = int_timeout;
697 } else {
698 d->sbdma_int_timeout = 0;
699 }
700 #endif
701
702 }
703
704 /**********************************************************************
705 * SBDMA_CHANNEL_START(d)
706 *
707 * Initialize the hardware registers for a DMA channel.
708 *
709 * Input parameters:
710 * d - DMA channel to init (context must be previously init'd
711 * rxtx - DMA_RX or DMA_TX depending on what type of channel
712 *
713 * Return value:
714 * nothing
715 ********************************************************************* */
716
sbdma_channel_start(struct sbmacdma * d,int rxtx)717 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
718 {
719 /*
720 * Turn on the DMA channel
721 */
722
723 #ifdef CONFIG_SBMAC_COALESCE
724 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
725 0, d->sbdma_config1);
726 __raw_writeq(M_DMA_EOP_INT_EN |
727 V_DMA_RINGSZ(d->sbdma_maxdescr) |
728 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
729 0, d->sbdma_config0);
730 #else
731 __raw_writeq(0, d->sbdma_config1);
732 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
733 0, d->sbdma_config0);
734 #endif
735
736 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
737
738 /*
739 * Initialize ring pointers
740 */
741
742 d->sbdma_addptr = d->sbdma_dscrtable;
743 d->sbdma_remptr = d->sbdma_dscrtable;
744 }
745
746 /**********************************************************************
747 * SBDMA_CHANNEL_STOP(d)
748 *
749 * Initialize the hardware registers for a DMA channel.
750 *
751 * Input parameters:
752 * d - DMA channel to init (context must be previously init'd
753 *
754 * Return value:
755 * nothing
756 ********************************************************************* */
757
sbdma_channel_stop(struct sbmacdma * d)758 static void sbdma_channel_stop(struct sbmacdma *d)
759 {
760 /*
761 * Turn off the DMA channel
762 */
763
764 __raw_writeq(0, d->sbdma_config1);
765
766 __raw_writeq(0, d->sbdma_dscrbase);
767
768 __raw_writeq(0, d->sbdma_config0);
769
770 /*
771 * Zero ring pointers
772 */
773
774 d->sbdma_addptr = NULL;
775 d->sbdma_remptr = NULL;
776 }
777
sbdma_align_skb(struct sk_buff * skb,unsigned int power2,unsigned int offset)778 static inline void sbdma_align_skb(struct sk_buff *skb,
779 unsigned int power2, unsigned int offset)
780 {
781 unsigned char *addr = skb->data;
782 unsigned char *newaddr = PTR_ALIGN(addr, power2);
783
784 skb_reserve(skb, newaddr - addr + offset);
785 }
786
787
788 /**********************************************************************
789 * SBDMA_ADD_RCVBUFFER(d,sb)
790 *
791 * Add a buffer to the specified DMA channel. For receive channels,
792 * this queues a buffer for inbound packets.
793 *
794 * Input parameters:
795 * sc - softc structure
796 * d - DMA channel descriptor
797 * sb - sk_buff to add, or NULL if we should allocate one
798 *
799 * Return value:
800 * 0 if buffer could not be added (ring is full)
801 * 1 if buffer added successfully
802 ********************************************************************* */
803
804
sbdma_add_rcvbuffer(struct sbmac_softc * sc,struct sbmacdma * d,struct sk_buff * sb)805 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
806 struct sk_buff *sb)
807 {
808 struct net_device *dev = sc->sbm_dev;
809 struct sbdmadscr *dsc;
810 struct sbdmadscr *nextdsc;
811 struct sk_buff *sb_new = NULL;
812 int pktsize = ENET_PACKET_SIZE;
813
814 /* get pointer to our current place in the ring */
815
816 dsc = d->sbdma_addptr;
817 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
818
819 /*
820 * figure out if the ring is full - if the next descriptor
821 * is the same as the one that we're going to remove from
822 * the ring, the ring is full
823 */
824
825 if (nextdsc == d->sbdma_remptr) {
826 return -ENOSPC;
827 }
828
829 /*
830 * Allocate a sk_buff if we don't already have one.
831 * If we do have an sk_buff, reset it so that it's empty.
832 *
833 * Note: sk_buffs don't seem to be guaranteed to have any sort
834 * of alignment when they are allocated. Therefore, allocate enough
835 * extra space to make sure that:
836 *
837 * 1. the data does not start in the middle of a cache line.
838 * 2. The data does not end in the middle of a cache line
839 * 3. The buffer can be aligned such that the IP addresses are
840 * naturally aligned.
841 *
842 * Remember, the SOCs MAC writes whole cache lines at a time,
843 * without reading the old contents first. So, if the sk_buff's
844 * data portion starts in the middle of a cache line, the SOC
845 * DMA will trash the beginning (and ending) portions.
846 */
847
848 if (sb == NULL) {
849 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
850 SMP_CACHE_BYTES * 2 +
851 NET_IP_ALIGN);
852 if (sb_new == NULL) {
853 pr_info("%s: sk_buff allocation failed\n",
854 d->sbdma_eth->sbm_dev->name);
855 return -ENOBUFS;
856 }
857
858 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
859 }
860 else {
861 sb_new = sb;
862 /*
863 * nothing special to reinit buffer, it's already aligned
864 * and sb->data already points to a good place.
865 */
866 }
867
868 /*
869 * fill in the descriptor
870 */
871
872 #ifdef CONFIG_SBMAC_COALESCE
873 /*
874 * Do not interrupt per DMA transfer.
875 */
876 dsc->dscr_a = virt_to_phys(sb_new->data) |
877 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
878 #else
879 dsc->dscr_a = virt_to_phys(sb_new->data) |
880 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
881 M_DMA_DSCRA_INTERRUPT;
882 #endif
883
884 /* receiving: no options */
885 dsc->dscr_b = 0;
886
887 /*
888 * fill in the context
889 */
890
891 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
892
893 /*
894 * point at next packet
895 */
896
897 d->sbdma_addptr = nextdsc;
898
899 /*
900 * Give the buffer to the DMA engine.
901 */
902
903 __raw_writeq(1, d->sbdma_dscrcnt);
904
905 return 0; /* we did it */
906 }
907
908 /**********************************************************************
909 * SBDMA_ADD_TXBUFFER(d,sb)
910 *
911 * Add a transmit buffer to the specified DMA channel, causing a
912 * transmit to start.
913 *
914 * Input parameters:
915 * d - DMA channel descriptor
916 * sb - sk_buff to add
917 *
918 * Return value:
919 * 0 transmit queued successfully
920 * otherwise error code
921 ********************************************************************* */
922
923
sbdma_add_txbuffer(struct sbmacdma * d,struct sk_buff * sb)924 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
925 {
926 struct sbdmadscr *dsc;
927 struct sbdmadscr *nextdsc;
928 uint64_t phys;
929 uint64_t ncb;
930 int length;
931
932 /* get pointer to our current place in the ring */
933
934 dsc = d->sbdma_addptr;
935 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
936
937 /*
938 * figure out if the ring is full - if the next descriptor
939 * is the same as the one that we're going to remove from
940 * the ring, the ring is full
941 */
942
943 if (nextdsc == d->sbdma_remptr) {
944 return -ENOSPC;
945 }
946
947 /*
948 * Under Linux, it's not necessary to copy/coalesce buffers
949 * like it is on NetBSD. We think they're all contiguous,
950 * but that may not be true for GBE.
951 */
952
953 length = sb->len;
954
955 /*
956 * fill in the descriptor. Note that the number of cache
957 * blocks in the descriptor is the number of blocks
958 * *spanned*, so we need to add in the offset (if any)
959 * while doing the calculation.
960 */
961
962 phys = virt_to_phys(sb->data);
963 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
964
965 dsc->dscr_a = phys |
966 V_DMA_DSCRA_A_SIZE(ncb) |
967 #ifndef CONFIG_SBMAC_COALESCE
968 M_DMA_DSCRA_INTERRUPT |
969 #endif
970 M_DMA_ETHTX_SOP;
971
972 /* transmitting: set outbound options and length */
973
974 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
975 V_DMA_DSCRB_PKT_SIZE(length);
976
977 /*
978 * fill in the context
979 */
980
981 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
982
983 /*
984 * point at next packet
985 */
986
987 d->sbdma_addptr = nextdsc;
988
989 /*
990 * Give the buffer to the DMA engine.
991 */
992
993 __raw_writeq(1, d->sbdma_dscrcnt);
994
995 return 0; /* we did it */
996 }
997
998
999
1000
1001 /**********************************************************************
1002 * SBDMA_EMPTYRING(d)
1003 *
1004 * Free all allocated sk_buffs on the specified DMA channel;
1005 *
1006 * Input parameters:
1007 * d - DMA channel
1008 *
1009 * Return value:
1010 * nothing
1011 ********************************************************************* */
1012
sbdma_emptyring(struct sbmacdma * d)1013 static void sbdma_emptyring(struct sbmacdma *d)
1014 {
1015 int idx;
1016 struct sk_buff *sb;
1017
1018 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1019 sb = d->sbdma_ctxtable[idx];
1020 if (sb) {
1021 dev_kfree_skb(sb);
1022 d->sbdma_ctxtable[idx] = NULL;
1023 }
1024 }
1025 }
1026
1027
1028 /**********************************************************************
1029 * SBDMA_FILLRING(d)
1030 *
1031 * Fill the specified DMA channel (must be receive channel)
1032 * with sk_buffs
1033 *
1034 * Input parameters:
1035 * sc - softc structure
1036 * d - DMA channel
1037 *
1038 * Return value:
1039 * nothing
1040 ********************************************************************* */
1041
sbdma_fillring(struct sbmac_softc * sc,struct sbmacdma * d)1042 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1043 {
1044 int idx;
1045
1046 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1047 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1048 break;
1049 }
1050 }
1051
1052 #ifdef CONFIG_NET_POLL_CONTROLLER
sbmac_netpoll(struct net_device * netdev)1053 static void sbmac_netpoll(struct net_device *netdev)
1054 {
1055 struct sbmac_softc *sc = netdev_priv(netdev);
1056 int irq = sc->sbm_dev->irq;
1057
1058 __raw_writeq(0, sc->sbm_imr);
1059
1060 sbmac_intr(irq, netdev);
1061
1062 #ifdef CONFIG_SBMAC_COALESCE
1063 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1064 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1065 sc->sbm_imr);
1066 #else
1067 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1068 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1069 #endif
1070 }
1071 #endif
1072
1073 /**********************************************************************
1074 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1075 *
1076 * Process "completed" receive buffers on the specified DMA channel.
1077 *
1078 * Input parameters:
1079 * sc - softc structure
1080 * d - DMA channel context
1081 * work_to_do - no. of packets to process before enabling interrupt
1082 * again (for NAPI)
1083 * poll - 1: using polling (for NAPI)
1084 *
1085 * Return value:
1086 * nothing
1087 ********************************************************************* */
1088
sbdma_rx_process(struct sbmac_softc * sc,struct sbmacdma * d,int work_to_do,int poll)1089 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1090 int work_to_do, int poll)
1091 {
1092 struct net_device *dev = sc->sbm_dev;
1093 int curidx;
1094 int hwidx;
1095 struct sbdmadscr *dsc;
1096 struct sk_buff *sb;
1097 int len;
1098 int work_done = 0;
1099 int dropped = 0;
1100
1101 prefetch(d);
1102
1103 again:
1104 /* Check if the HW dropped any frames */
1105 dev->stats.rx_fifo_errors
1106 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1107 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1108
1109 while (work_to_do-- > 0) {
1110 /*
1111 * figure out where we are (as an index) and where
1112 * the hardware is (also as an index)
1113 *
1114 * This could be done faster if (for example) the
1115 * descriptor table was page-aligned and contiguous in
1116 * both virtual and physical memory -- you could then
1117 * just compare the low-order bits of the virtual address
1118 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1119 */
1120
1121 dsc = d->sbdma_remptr;
1122 curidx = dsc - d->sbdma_dscrtable;
1123
1124 prefetch(dsc);
1125 prefetch(&d->sbdma_ctxtable[curidx]);
1126
1127 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1128 d->sbdma_dscrtable_phys) /
1129 sizeof(*d->sbdma_dscrtable);
1130
1131 /*
1132 * If they're the same, that means we've processed all
1133 * of the descriptors up to (but not including) the one that
1134 * the hardware is working on right now.
1135 */
1136
1137 if (curidx == hwidx)
1138 goto done;
1139
1140 /*
1141 * Otherwise, get the packet's sk_buff ptr back
1142 */
1143
1144 sb = d->sbdma_ctxtable[curidx];
1145 d->sbdma_ctxtable[curidx] = NULL;
1146
1147 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1148
1149 /*
1150 * Check packet status. If good, process it.
1151 * If not, silently drop it and put it back on the
1152 * receive ring.
1153 */
1154
1155 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1156
1157 /*
1158 * Add a new buffer to replace the old one. If we fail
1159 * to allocate a buffer, we're going to drop this
1160 * packet and put it right back on the receive ring.
1161 */
1162
1163 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1164 -ENOBUFS)) {
1165 dev->stats.rx_dropped++;
1166 /* Re-add old buffer */
1167 sbdma_add_rcvbuffer(sc, d, sb);
1168 /* No point in continuing at the moment */
1169 printk(KERN_ERR "dropped packet (1)\n");
1170 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1171 goto done;
1172 } else {
1173 /*
1174 * Set length into the packet
1175 */
1176 skb_put(sb,len);
1177
1178 /*
1179 * Buffer has been replaced on the
1180 * receive ring. Pass the buffer to
1181 * the kernel
1182 */
1183 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1184 /* Check hw IPv4/TCP checksum if supported */
1185 if (sc->rx_hw_checksum == ENABLE) {
1186 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1187 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1188 sb->ip_summed = CHECKSUM_UNNECESSARY;
1189 /* don't need to set sb->csum */
1190 } else {
1191 sb->ip_summed = CHECKSUM_NONE;
1192 }
1193 }
1194 prefetch(sb->data);
1195 prefetch((const void *)(((char *)sb->data)+32));
1196 if (poll)
1197 dropped = netif_receive_skb(sb);
1198 else
1199 dropped = netif_rx(sb);
1200
1201 if (dropped == NET_RX_DROP) {
1202 dev->stats.rx_dropped++;
1203 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1204 goto done;
1205 }
1206 else {
1207 dev->stats.rx_bytes += len;
1208 dev->stats.rx_packets++;
1209 }
1210 }
1211 } else {
1212 /*
1213 * Packet was mangled somehow. Just drop it and
1214 * put it back on the receive ring.
1215 */
1216 dev->stats.rx_errors++;
1217 sbdma_add_rcvbuffer(sc, d, sb);
1218 }
1219
1220
1221 /*
1222 * .. and advance to the next buffer.
1223 */
1224
1225 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1226 work_done++;
1227 }
1228 if (!poll) {
1229 work_to_do = 32;
1230 goto again; /* collect fifo drop statistics again */
1231 }
1232 done:
1233 return work_done;
1234 }
1235
1236 /**********************************************************************
1237 * SBDMA_TX_PROCESS(sc,d)
1238 *
1239 * Process "completed" transmit buffers on the specified DMA channel.
1240 * This is normally called within the interrupt service routine.
1241 * Note that this isn't really ideal for priority channels, since
1242 * it processes all of the packets on a given channel before
1243 * returning.
1244 *
1245 * Input parameters:
1246 * sc - softc structure
1247 * d - DMA channel context
1248 * poll - 1: using polling (for NAPI)
1249 *
1250 * Return value:
1251 * nothing
1252 ********************************************************************* */
1253
sbdma_tx_process(struct sbmac_softc * sc,struct sbmacdma * d,int poll)1254 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1255 int poll)
1256 {
1257 struct net_device *dev = sc->sbm_dev;
1258 int curidx;
1259 int hwidx;
1260 struct sbdmadscr *dsc;
1261 struct sk_buff *sb;
1262 unsigned long flags;
1263 int packets_handled = 0;
1264
1265 spin_lock_irqsave(&(sc->sbm_lock), flags);
1266
1267 if (d->sbdma_remptr == d->sbdma_addptr)
1268 goto end_unlock;
1269
1270 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1271 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1272
1273 for (;;) {
1274 /*
1275 * figure out where we are (as an index) and where
1276 * the hardware is (also as an index)
1277 *
1278 * This could be done faster if (for example) the
1279 * descriptor table was page-aligned and contiguous in
1280 * both virtual and physical memory -- you could then
1281 * just compare the low-order bits of the virtual address
1282 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1283 */
1284
1285 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1286
1287 /*
1288 * If they're the same, that means we've processed all
1289 * of the descriptors up to (but not including) the one that
1290 * the hardware is working on right now.
1291 */
1292
1293 if (curidx == hwidx)
1294 break;
1295
1296 /*
1297 * Otherwise, get the packet's sk_buff ptr back
1298 */
1299
1300 dsc = &(d->sbdma_dscrtable[curidx]);
1301 sb = d->sbdma_ctxtable[curidx];
1302 d->sbdma_ctxtable[curidx] = NULL;
1303
1304 /*
1305 * Stats
1306 */
1307
1308 dev->stats.tx_bytes += sb->len;
1309 dev->stats.tx_packets++;
1310
1311 /*
1312 * for transmits, we just free buffers.
1313 */
1314
1315 dev_kfree_skb_irq(sb);
1316
1317 /*
1318 * .. and advance to the next buffer.
1319 */
1320
1321 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1322
1323 packets_handled++;
1324
1325 }
1326
1327 /*
1328 * Decide if we should wake up the protocol or not.
1329 * Other drivers seem to do this when we reach a low
1330 * watermark on the transmit queue.
1331 */
1332
1333 if (packets_handled)
1334 netif_wake_queue(d->sbdma_eth->sbm_dev);
1335
1336 end_unlock:
1337 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1338
1339 }
1340
1341
1342
1343 /**********************************************************************
1344 * SBMAC_INITCTX(s)
1345 *
1346 * Initialize an Ethernet context structure - this is called
1347 * once per MAC on the 1250. Memory is allocated here, so don't
1348 * call it again from inside the ioctl routines that bring the
1349 * interface up/down
1350 *
1351 * Input parameters:
1352 * s - sbmac context structure
1353 *
1354 * Return value:
1355 * 0
1356 ********************************************************************* */
1357
sbmac_initctx(struct sbmac_softc * s)1358 static int sbmac_initctx(struct sbmac_softc *s)
1359 {
1360
1361 /*
1362 * figure out the addresses of some ports
1363 */
1364
1365 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1366 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1367 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1368 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1369 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1370 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1371 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1372 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1373
1374 /*
1375 * Initialize the DMA channels. Right now, only one per MAC is used
1376 * Note: Only do this _once_, as it allocates memory from the kernel!
1377 */
1378
1379 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1380 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1381
1382 /*
1383 * initial state is OFF
1384 */
1385
1386 s->sbm_state = sbmac_state_off;
1387
1388 return 0;
1389 }
1390
1391
sbdma_uninitctx(struct sbmacdma * d)1392 static void sbdma_uninitctx(struct sbmacdma *d)
1393 {
1394 if (d->sbdma_dscrtable_unaligned) {
1395 kfree(d->sbdma_dscrtable_unaligned);
1396 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1397 }
1398
1399 if (d->sbdma_ctxtable) {
1400 kfree(d->sbdma_ctxtable);
1401 d->sbdma_ctxtable = NULL;
1402 }
1403 }
1404
1405
sbmac_uninitctx(struct sbmac_softc * sc)1406 static void sbmac_uninitctx(struct sbmac_softc *sc)
1407 {
1408 sbdma_uninitctx(&(sc->sbm_txdma));
1409 sbdma_uninitctx(&(sc->sbm_rxdma));
1410 }
1411
1412
1413 /**********************************************************************
1414 * SBMAC_CHANNEL_START(s)
1415 *
1416 * Start packet processing on this MAC.
1417 *
1418 * Input parameters:
1419 * s - sbmac structure
1420 *
1421 * Return value:
1422 * nothing
1423 ********************************************************************* */
1424
sbmac_channel_start(struct sbmac_softc * s)1425 static void sbmac_channel_start(struct sbmac_softc *s)
1426 {
1427 uint64_t reg;
1428 void __iomem *port;
1429 uint64_t cfg,fifo,framecfg;
1430 int idx, th_value;
1431
1432 /*
1433 * Don't do this if running
1434 */
1435
1436 if (s->sbm_state == sbmac_state_on)
1437 return;
1438
1439 /*
1440 * Bring the controller out of reset, but leave it off.
1441 */
1442
1443 __raw_writeq(0, s->sbm_macenable);
1444
1445 /*
1446 * Ignore all received packets
1447 */
1448
1449 __raw_writeq(0, s->sbm_rxfilter);
1450
1451 /*
1452 * Calculate values for various control registers.
1453 */
1454
1455 cfg = M_MAC_RETRY_EN |
1456 M_MAC_TX_HOLD_SOP_EN |
1457 V_MAC_TX_PAUSE_CNT_16K |
1458 M_MAC_AP_STAT_EN |
1459 M_MAC_FAST_SYNC |
1460 M_MAC_SS_EN |
1461 0;
1462
1463 /*
1464 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1465 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1466 * Use a larger RD_THRSH for gigabit
1467 */
1468 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1469 th_value = 28;
1470 else
1471 th_value = 64;
1472
1473 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1474 ((s->sbm_speed == sbmac_speed_1000)
1475 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1476 V_MAC_TX_RL_THRSH(4) |
1477 V_MAC_RX_PL_THRSH(4) |
1478 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1479 V_MAC_RX_PL_THRSH(4) |
1480 V_MAC_RX_RL_THRSH(8) |
1481 0;
1482
1483 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1484 V_MAC_MAX_FRAMESZ_DEFAULT |
1485 V_MAC_BACKOFF_SEL(1);
1486
1487 /*
1488 * Clear out the hash address map
1489 */
1490
1491 port = s->sbm_base + R_MAC_HASH_BASE;
1492 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1493 __raw_writeq(0, port);
1494 port += sizeof(uint64_t);
1495 }
1496
1497 /*
1498 * Clear out the exact-match table
1499 */
1500
1501 port = s->sbm_base + R_MAC_ADDR_BASE;
1502 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1503 __raw_writeq(0, port);
1504 port += sizeof(uint64_t);
1505 }
1506
1507 /*
1508 * Clear out the DMA Channel mapping table registers
1509 */
1510
1511 port = s->sbm_base + R_MAC_CHUP0_BASE;
1512 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1513 __raw_writeq(0, port);
1514 port += sizeof(uint64_t);
1515 }
1516
1517
1518 port = s->sbm_base + R_MAC_CHLO0_BASE;
1519 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1520 __raw_writeq(0, port);
1521 port += sizeof(uint64_t);
1522 }
1523
1524 /*
1525 * Program the hardware address. It goes into the hardware-address
1526 * register as well as the first filter register.
1527 */
1528
1529 reg = sbmac_addr2reg(s->sbm_hwaddr);
1530
1531 port = s->sbm_base + R_MAC_ADDR_BASE;
1532 __raw_writeq(reg, port);
1533 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1534
1535 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1536 /*
1537 * Pass1 SOCs do not receive packets addressed to the
1538 * destination address in the R_MAC_ETHERNET_ADDR register.
1539 * Set the value to zero.
1540 */
1541 __raw_writeq(0, port);
1542 #else
1543 __raw_writeq(reg, port);
1544 #endif
1545
1546 /*
1547 * Set the receive filter for no packets, and write values
1548 * to the various config registers
1549 */
1550
1551 __raw_writeq(0, s->sbm_rxfilter);
1552 __raw_writeq(0, s->sbm_imr);
1553 __raw_writeq(framecfg, s->sbm_framecfg);
1554 __raw_writeq(fifo, s->sbm_fifocfg);
1555 __raw_writeq(cfg, s->sbm_maccfg);
1556
1557 /*
1558 * Initialize DMA channels (rings should be ok now)
1559 */
1560
1561 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1562 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1563
1564 /*
1565 * Configure the speed, duplex, and flow control
1566 */
1567
1568 sbmac_set_speed(s,s->sbm_speed);
1569 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1570
1571 /*
1572 * Fill the receive ring
1573 */
1574
1575 sbdma_fillring(s, &(s->sbm_rxdma));
1576
1577 /*
1578 * Turn on the rest of the bits in the enable register
1579 */
1580
1581 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1582 __raw_writeq(M_MAC_RXDMA_EN0 |
1583 M_MAC_TXDMA_EN0, s->sbm_macenable);
1584 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1585 __raw_writeq(M_MAC_RXDMA_EN0 |
1586 M_MAC_TXDMA_EN0 |
1587 M_MAC_RX_ENABLE |
1588 M_MAC_TX_ENABLE, s->sbm_macenable);
1589 #else
1590 #error invalid SiByte MAC configuation
1591 #endif
1592
1593 #ifdef CONFIG_SBMAC_COALESCE
1594 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1595 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1596 #else
1597 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1598 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1599 #endif
1600
1601 /*
1602 * Enable receiving unicasts and broadcasts
1603 */
1604
1605 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1606
1607 /*
1608 * we're running now.
1609 */
1610
1611 s->sbm_state = sbmac_state_on;
1612
1613 /*
1614 * Program multicast addresses
1615 */
1616
1617 sbmac_setmulti(s);
1618
1619 /*
1620 * If channel was in promiscuous mode before, turn that on
1621 */
1622
1623 if (s->sbm_devflags & IFF_PROMISC) {
1624 sbmac_promiscuous_mode(s,1);
1625 }
1626
1627 }
1628
1629
1630 /**********************************************************************
1631 * SBMAC_CHANNEL_STOP(s)
1632 *
1633 * Stop packet processing on this MAC.
1634 *
1635 * Input parameters:
1636 * s - sbmac structure
1637 *
1638 * Return value:
1639 * nothing
1640 ********************************************************************* */
1641
sbmac_channel_stop(struct sbmac_softc * s)1642 static void sbmac_channel_stop(struct sbmac_softc *s)
1643 {
1644 /* don't do this if already stopped */
1645
1646 if (s->sbm_state == sbmac_state_off)
1647 return;
1648
1649 /* don't accept any packets, disable all interrupts */
1650
1651 __raw_writeq(0, s->sbm_rxfilter);
1652 __raw_writeq(0, s->sbm_imr);
1653
1654 /* Turn off ticker */
1655
1656 /* XXX */
1657
1658 /* turn off receiver and transmitter */
1659
1660 __raw_writeq(0, s->sbm_macenable);
1661
1662 /* We're stopped now. */
1663
1664 s->sbm_state = sbmac_state_off;
1665
1666 /*
1667 * Stop DMA channels (rings should be ok now)
1668 */
1669
1670 sbdma_channel_stop(&(s->sbm_rxdma));
1671 sbdma_channel_stop(&(s->sbm_txdma));
1672
1673 /* Empty the receive and transmit rings */
1674
1675 sbdma_emptyring(&(s->sbm_rxdma));
1676 sbdma_emptyring(&(s->sbm_txdma));
1677
1678 }
1679
1680 /**********************************************************************
1681 * SBMAC_SET_CHANNEL_STATE(state)
1682 *
1683 * Set the channel's state ON or OFF
1684 *
1685 * Input parameters:
1686 * state - new state
1687 *
1688 * Return value:
1689 * old state
1690 ********************************************************************* */
sbmac_set_channel_state(struct sbmac_softc * sc,enum sbmac_state state)1691 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1692 enum sbmac_state state)
1693 {
1694 enum sbmac_state oldstate = sc->sbm_state;
1695
1696 /*
1697 * If same as previous state, return
1698 */
1699
1700 if (state == oldstate) {
1701 return oldstate;
1702 }
1703
1704 /*
1705 * If new state is ON, turn channel on
1706 */
1707
1708 if (state == sbmac_state_on) {
1709 sbmac_channel_start(sc);
1710 }
1711 else {
1712 sbmac_channel_stop(sc);
1713 }
1714
1715 /*
1716 * Return previous state
1717 */
1718
1719 return oldstate;
1720 }
1721
1722
1723 /**********************************************************************
1724 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1725 *
1726 * Turn on or off promiscuous mode
1727 *
1728 * Input parameters:
1729 * sc - softc
1730 * onoff - 1 to turn on, 0 to turn off
1731 *
1732 * Return value:
1733 * nothing
1734 ********************************************************************* */
1735
sbmac_promiscuous_mode(struct sbmac_softc * sc,int onoff)1736 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1737 {
1738 uint64_t reg;
1739
1740 if (sc->sbm_state != sbmac_state_on)
1741 return;
1742
1743 if (onoff) {
1744 reg = __raw_readq(sc->sbm_rxfilter);
1745 reg |= M_MAC_ALLPKT_EN;
1746 __raw_writeq(reg, sc->sbm_rxfilter);
1747 }
1748 else {
1749 reg = __raw_readq(sc->sbm_rxfilter);
1750 reg &= ~M_MAC_ALLPKT_EN;
1751 __raw_writeq(reg, sc->sbm_rxfilter);
1752 }
1753 }
1754
1755 /**********************************************************************
1756 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1757 *
1758 * Set the iphdr offset as 15 assuming ethernet encapsulation
1759 *
1760 * Input parameters:
1761 * sc - softc
1762 *
1763 * Return value:
1764 * nothing
1765 ********************************************************************* */
1766
sbmac_set_iphdr_offset(struct sbmac_softc * sc)1767 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1768 {
1769 uint64_t reg;
1770
1771 /* Hard code the off set to 15 for now */
1772 reg = __raw_readq(sc->sbm_rxfilter);
1773 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1774 __raw_writeq(reg, sc->sbm_rxfilter);
1775
1776 /* BCM1250 pass1 didn't have hardware checksum. Everything
1777 later does. */
1778 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1779 sc->rx_hw_checksum = DISABLE;
1780 } else {
1781 sc->rx_hw_checksum = ENABLE;
1782 }
1783 }
1784
1785
1786 /**********************************************************************
1787 * SBMAC_ADDR2REG(ptr)
1788 *
1789 * Convert six bytes into the 64-bit register value that
1790 * we typically write into the SBMAC's address/mcast registers
1791 *
1792 * Input parameters:
1793 * ptr - pointer to 6 bytes
1794 *
1795 * Return value:
1796 * register value
1797 ********************************************************************* */
1798
sbmac_addr2reg(unsigned char * ptr)1799 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1800 {
1801 uint64_t reg = 0;
1802
1803 ptr += 6;
1804
1805 reg |= (uint64_t) *(--ptr);
1806 reg <<= 8;
1807 reg |= (uint64_t) *(--ptr);
1808 reg <<= 8;
1809 reg |= (uint64_t) *(--ptr);
1810 reg <<= 8;
1811 reg |= (uint64_t) *(--ptr);
1812 reg <<= 8;
1813 reg |= (uint64_t) *(--ptr);
1814 reg <<= 8;
1815 reg |= (uint64_t) *(--ptr);
1816
1817 return reg;
1818 }
1819
1820
1821 /**********************************************************************
1822 * SBMAC_SET_SPEED(s,speed)
1823 *
1824 * Configure LAN speed for the specified MAC.
1825 * Warning: must be called when MAC is off!
1826 *
1827 * Input parameters:
1828 * s - sbmac structure
1829 * speed - speed to set MAC to (see enum sbmac_speed)
1830 *
1831 * Return value:
1832 * 1 if successful
1833 * 0 indicates invalid parameters
1834 ********************************************************************* */
1835
sbmac_set_speed(struct sbmac_softc * s,enum sbmac_speed speed)1836 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1837 {
1838 uint64_t cfg;
1839 uint64_t framecfg;
1840
1841 /*
1842 * Save new current values
1843 */
1844
1845 s->sbm_speed = speed;
1846
1847 if (s->sbm_state == sbmac_state_on)
1848 return 0; /* save for next restart */
1849
1850 /*
1851 * Read current register values
1852 */
1853
1854 cfg = __raw_readq(s->sbm_maccfg);
1855 framecfg = __raw_readq(s->sbm_framecfg);
1856
1857 /*
1858 * Mask out the stuff we want to change
1859 */
1860
1861 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1862 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1863 M_MAC_SLOT_SIZE);
1864
1865 /*
1866 * Now add in the new bits
1867 */
1868
1869 switch (speed) {
1870 case sbmac_speed_10:
1871 framecfg |= V_MAC_IFG_RX_10 |
1872 V_MAC_IFG_TX_10 |
1873 K_MAC_IFG_THRSH_10 |
1874 V_MAC_SLOT_SIZE_10;
1875 cfg |= V_MAC_SPEED_SEL_10MBPS;
1876 break;
1877
1878 case sbmac_speed_100:
1879 framecfg |= V_MAC_IFG_RX_100 |
1880 V_MAC_IFG_TX_100 |
1881 V_MAC_IFG_THRSH_100 |
1882 V_MAC_SLOT_SIZE_100;
1883 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1884 break;
1885
1886 case sbmac_speed_1000:
1887 framecfg |= V_MAC_IFG_RX_1000 |
1888 V_MAC_IFG_TX_1000 |
1889 V_MAC_IFG_THRSH_1000 |
1890 V_MAC_SLOT_SIZE_1000;
1891 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1892 break;
1893
1894 default:
1895 return 0;
1896 }
1897
1898 /*
1899 * Send the bits back to the hardware
1900 */
1901
1902 __raw_writeq(framecfg, s->sbm_framecfg);
1903 __raw_writeq(cfg, s->sbm_maccfg);
1904
1905 return 1;
1906 }
1907
1908 /**********************************************************************
1909 * SBMAC_SET_DUPLEX(s,duplex,fc)
1910 *
1911 * Set Ethernet duplex and flow control options for this MAC
1912 * Warning: must be called when MAC is off!
1913 *
1914 * Input parameters:
1915 * s - sbmac structure
1916 * duplex - duplex setting (see enum sbmac_duplex)
1917 * fc - flow control setting (see enum sbmac_fc)
1918 *
1919 * Return value:
1920 * 1 if ok
1921 * 0 if an invalid parameter combination was specified
1922 ********************************************************************* */
1923
sbmac_set_duplex(struct sbmac_softc * s,enum sbmac_duplex duplex,enum sbmac_fc fc)1924 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1925 enum sbmac_fc fc)
1926 {
1927 uint64_t cfg;
1928
1929 /*
1930 * Save new current values
1931 */
1932
1933 s->sbm_duplex = duplex;
1934 s->sbm_fc = fc;
1935
1936 if (s->sbm_state == sbmac_state_on)
1937 return 0; /* save for next restart */
1938
1939 /*
1940 * Read current register values
1941 */
1942
1943 cfg = __raw_readq(s->sbm_maccfg);
1944
1945 /*
1946 * Mask off the stuff we're about to change
1947 */
1948
1949 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1950
1951
1952 switch (duplex) {
1953 case sbmac_duplex_half:
1954 switch (fc) {
1955 case sbmac_fc_disabled:
1956 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1957 break;
1958
1959 case sbmac_fc_collision:
1960 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1961 break;
1962
1963 case sbmac_fc_carrier:
1964 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1965 break;
1966
1967 case sbmac_fc_frame: /* not valid in half duplex */
1968 default: /* invalid selection */
1969 return 0;
1970 }
1971 break;
1972
1973 case sbmac_duplex_full:
1974 switch (fc) {
1975 case sbmac_fc_disabled:
1976 cfg |= V_MAC_FC_CMD_DISABLED;
1977 break;
1978
1979 case sbmac_fc_frame:
1980 cfg |= V_MAC_FC_CMD_ENABLED;
1981 break;
1982
1983 case sbmac_fc_collision: /* not valid in full duplex */
1984 case sbmac_fc_carrier: /* not valid in full duplex */
1985 default:
1986 return 0;
1987 }
1988 break;
1989 default:
1990 return 0;
1991 }
1992
1993 /*
1994 * Send the bits back to the hardware
1995 */
1996
1997 __raw_writeq(cfg, s->sbm_maccfg);
1998
1999 return 1;
2000 }
2001
2002
2003
2004
2005 /**********************************************************************
2006 * SBMAC_INTR()
2007 *
2008 * Interrupt handler for MAC interrupts
2009 *
2010 * Input parameters:
2011 * MAC structure
2012 *
2013 * Return value:
2014 * nothing
2015 ********************************************************************* */
sbmac_intr(int irq,void * dev_instance)2016 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2017 {
2018 struct net_device *dev = (struct net_device *) dev_instance;
2019 struct sbmac_softc *sc = netdev_priv(dev);
2020 uint64_t isr;
2021 int handled = 0;
2022
2023 /*
2024 * Read the ISR (this clears the bits in the real
2025 * register, except for counter addr)
2026 */
2027
2028 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2029
2030 if (isr == 0)
2031 return IRQ_RETVAL(0);
2032 handled = 1;
2033
2034 /*
2035 * Transmits on channel 0
2036 */
2037
2038 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2039 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2040
2041 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2042 if (netif_rx_schedule_prep(&sc->napi)) {
2043 __raw_writeq(0, sc->sbm_imr);
2044 __netif_rx_schedule(&sc->napi);
2045 /* Depend on the exit from poll to reenable intr */
2046 }
2047 else {
2048 /* may leave some packets behind */
2049 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2050 SBMAC_MAX_RXDESCR * 2, 0);
2051 }
2052 }
2053 return IRQ_RETVAL(handled);
2054 }
2055
2056 /**********************************************************************
2057 * SBMAC_START_TX(skb,dev)
2058 *
2059 * Start output on the specified interface. Basically, we
2060 * queue as many buffers as we can until the ring fills up, or
2061 * we run off the end of the queue, whichever comes first.
2062 *
2063 * Input parameters:
2064 *
2065 *
2066 * Return value:
2067 * nothing
2068 ********************************************************************* */
sbmac_start_tx(struct sk_buff * skb,struct net_device * dev)2069 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2070 {
2071 struct sbmac_softc *sc = netdev_priv(dev);
2072 unsigned long flags;
2073
2074 /* lock eth irq */
2075 spin_lock_irqsave(&sc->sbm_lock, flags);
2076
2077 /*
2078 * Put the buffer on the transmit ring. If we
2079 * don't have room, stop the queue.
2080 */
2081
2082 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2083 /* XXX save skb that we could not send */
2084 netif_stop_queue(dev);
2085 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2086
2087 return 1;
2088 }
2089
2090 dev->trans_start = jiffies;
2091
2092 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2093
2094 return 0;
2095 }
2096
2097 /**********************************************************************
2098 * SBMAC_SETMULTI(sc)
2099 *
2100 * Reprogram the multicast table into the hardware, given
2101 * the list of multicasts associated with the interface
2102 * structure.
2103 *
2104 * Input parameters:
2105 * sc - softc
2106 *
2107 * Return value:
2108 * nothing
2109 ********************************************************************* */
2110
sbmac_setmulti(struct sbmac_softc * sc)2111 static void sbmac_setmulti(struct sbmac_softc *sc)
2112 {
2113 uint64_t reg;
2114 void __iomem *port;
2115 int idx;
2116 struct dev_mc_list *mclist;
2117 struct net_device *dev = sc->sbm_dev;
2118
2119 /*
2120 * Clear out entire multicast table. We do this by nuking
2121 * the entire hash table and all the direct matches except
2122 * the first one, which is used for our station address
2123 */
2124
2125 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2126 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2127 __raw_writeq(0, port);
2128 }
2129
2130 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2131 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2132 __raw_writeq(0, port);
2133 }
2134
2135 /*
2136 * Clear the filter to say we don't want any multicasts.
2137 */
2138
2139 reg = __raw_readq(sc->sbm_rxfilter);
2140 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2141 __raw_writeq(reg, sc->sbm_rxfilter);
2142
2143 if (dev->flags & IFF_ALLMULTI) {
2144 /*
2145 * Enable ALL multicasts. Do this by inverting the
2146 * multicast enable bit.
2147 */
2148 reg = __raw_readq(sc->sbm_rxfilter);
2149 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2150 __raw_writeq(reg, sc->sbm_rxfilter);
2151 return;
2152 }
2153
2154
2155 /*
2156 * Progam new multicast entries. For now, only use the
2157 * perfect filter. In the future we'll need to use the
2158 * hash filter if the perfect filter overflows
2159 */
2160
2161 /* XXX only using perfect filter for now, need to use hash
2162 * XXX if the table overflows */
2163
2164 idx = 1; /* skip station address */
2165 mclist = dev->mc_list;
2166 while (mclist && (idx < MAC_ADDR_COUNT)) {
2167 reg = sbmac_addr2reg(mclist->dmi_addr);
2168 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2169 __raw_writeq(reg, port);
2170 idx++;
2171 mclist = mclist->next;
2172 }
2173
2174 /*
2175 * Enable the "accept multicast bits" if we programmed at least one
2176 * multicast.
2177 */
2178
2179 if (idx > 1) {
2180 reg = __raw_readq(sc->sbm_rxfilter);
2181 reg |= M_MAC_MCAST_EN;
2182 __raw_writeq(reg, sc->sbm_rxfilter);
2183 }
2184 }
2185
2186 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2187 /**********************************************************************
2188 * SBMAC_PARSE_XDIGIT(str)
2189 *
2190 * Parse a hex digit, returning its value
2191 *
2192 * Input parameters:
2193 * str - character
2194 *
2195 * Return value:
2196 * hex value, or -1 if invalid
2197 ********************************************************************* */
2198
sbmac_parse_xdigit(char str)2199 static int sbmac_parse_xdigit(char str)
2200 {
2201 int digit;
2202
2203 if ((str >= '0') && (str <= '9'))
2204 digit = str - '0';
2205 else if ((str >= 'a') && (str <= 'f'))
2206 digit = str - 'a' + 10;
2207 else if ((str >= 'A') && (str <= 'F'))
2208 digit = str - 'A' + 10;
2209 else
2210 return -1;
2211
2212 return digit;
2213 }
2214
2215 /**********************************************************************
2216 * SBMAC_PARSE_HWADDR(str,hwaddr)
2217 *
2218 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2219 * Ethernet address.
2220 *
2221 * Input parameters:
2222 * str - string
2223 * hwaddr - pointer to hardware address
2224 *
2225 * Return value:
2226 * 0 if ok, else -1
2227 ********************************************************************* */
2228
sbmac_parse_hwaddr(char * str,unsigned char * hwaddr)2229 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2230 {
2231 int digit1,digit2;
2232 int idx = 6;
2233
2234 while (*str && (idx > 0)) {
2235 digit1 = sbmac_parse_xdigit(*str);
2236 if (digit1 < 0)
2237 return -1;
2238 str++;
2239 if (!*str)
2240 return -1;
2241
2242 if ((*str == ':') || (*str == '-')) {
2243 digit2 = digit1;
2244 digit1 = 0;
2245 }
2246 else {
2247 digit2 = sbmac_parse_xdigit(*str);
2248 if (digit2 < 0)
2249 return -1;
2250 str++;
2251 }
2252
2253 *hwaddr++ = (digit1 << 4) | digit2;
2254 idx--;
2255
2256 if (*str == '-')
2257 str++;
2258 if (*str == ':')
2259 str++;
2260 }
2261 return 0;
2262 }
2263 #endif
2264
sb1250_change_mtu(struct net_device * _dev,int new_mtu)2265 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2266 {
2267 if (new_mtu > ENET_PACKET_SIZE)
2268 return -EINVAL;
2269 _dev->mtu = new_mtu;
2270 pr_info("changing the mtu to %d\n", new_mtu);
2271 return 0;
2272 }
2273
2274 /**********************************************************************
2275 * SBMAC_INIT(dev)
2276 *
2277 * Attach routine - init hardware and hook ourselves into linux
2278 *
2279 * Input parameters:
2280 * dev - net_device structure
2281 *
2282 * Return value:
2283 * status
2284 ********************************************************************* */
2285
sbmac_init(struct platform_device * pldev,long long base)2286 static int sbmac_init(struct platform_device *pldev, long long base)
2287 {
2288 struct net_device *dev = pldev->dev.driver_data;
2289 int idx = pldev->id;
2290 struct sbmac_softc *sc = netdev_priv(dev);
2291 unsigned char *eaddr;
2292 uint64_t ea_reg;
2293 int i;
2294 int err;
2295
2296 sc->sbm_dev = dev;
2297 sc->sbe_idx = idx;
2298
2299 eaddr = sc->sbm_hwaddr;
2300
2301 /*
2302 * Read the ethernet address. The firwmare left this programmed
2303 * for us in the ethernet address register for each mac.
2304 */
2305
2306 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2307 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2308 for (i = 0; i < 6; i++) {
2309 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2310 ea_reg >>= 8;
2311 }
2312
2313 for (i = 0; i < 6; i++) {
2314 dev->dev_addr[i] = eaddr[i];
2315 }
2316
2317 /*
2318 * Initialize context (get pointers to registers and stuff), then
2319 * allocate the memory for the descriptor tables.
2320 */
2321
2322 sbmac_initctx(sc);
2323
2324 /*
2325 * Set up Linux device callins
2326 */
2327
2328 spin_lock_init(&(sc->sbm_lock));
2329
2330 dev->open = sbmac_open;
2331 dev->hard_start_xmit = sbmac_start_tx;
2332 dev->stop = sbmac_close;
2333 dev->set_multicast_list = sbmac_set_rx_mode;
2334 dev->do_ioctl = sbmac_mii_ioctl;
2335 dev->tx_timeout = sbmac_tx_timeout;
2336 dev->watchdog_timeo = TX_TIMEOUT;
2337
2338 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2339
2340 dev->change_mtu = sb1250_change_mtu;
2341 #ifdef CONFIG_NET_POLL_CONTROLLER
2342 dev->poll_controller = sbmac_netpoll;
2343 #endif
2344
2345 dev->irq = UNIT_INT(idx);
2346
2347 /* This is needed for PASS2 for Rx H/W checksum feature */
2348 sbmac_set_iphdr_offset(sc);
2349
2350 sc->mii_bus = mdiobus_alloc();
2351 if (sc->mii_bus == NULL) {
2352 sbmac_uninitctx(sc);
2353 return -ENOMEM;
2354 }
2355
2356 err = register_netdev(dev);
2357 if (err) {
2358 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2359 sbmac_string, idx);
2360 mdiobus_free(sc->mii_bus);
2361 sbmac_uninitctx(sc);
2362 return err;
2363 }
2364
2365 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2366
2367 if (sc->rx_hw_checksum == ENABLE)
2368 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2369
2370 /*
2371 * Display Ethernet address (this is called during the config
2372 * process so we need to finish off the config message that
2373 * was being displayed)
2374 */
2375 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2376 dev->name, base, eaddr);
2377
2378 sc->mii_bus->name = sbmac_mdio_string;
2379 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2380 sc->mii_bus->priv = sc;
2381 sc->mii_bus->read = sbmac_mii_read;
2382 sc->mii_bus->write = sbmac_mii_write;
2383 sc->mii_bus->irq = sc->phy_irq;
2384 for (i = 0; i < PHY_MAX_ADDR; ++i)
2385 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2386
2387 sc->mii_bus->parent = &pldev->dev;
2388 dev_set_drvdata(&pldev->dev, sc->mii_bus);
2389
2390 return 0;
2391 }
2392
2393
sbmac_open(struct net_device * dev)2394 static int sbmac_open(struct net_device *dev)
2395 {
2396 struct sbmac_softc *sc = netdev_priv(dev);
2397 int err;
2398
2399 if (debug > 1)
2400 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2401
2402 /*
2403 * map/route interrupt (clear status first, in case something
2404 * weird is pending; we haven't initialized the mac registers
2405 * yet)
2406 */
2407
2408 __raw_readq(sc->sbm_isr);
2409 err = request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev);
2410 if (err) {
2411 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2412 dev->irq);
2413 goto out_err;
2414 }
2415
2416 /*
2417 * Probe PHY address
2418 */
2419 err = mdiobus_register(sc->mii_bus);
2420 if (err) {
2421 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2422 dev->name);
2423 goto out_unirq;
2424 }
2425
2426 sc->sbm_speed = sbmac_speed_none;
2427 sc->sbm_duplex = sbmac_duplex_none;
2428 sc->sbm_fc = sbmac_fc_none;
2429 sc->sbm_pause = -1;
2430 sc->sbm_link = 0;
2431
2432 /*
2433 * Attach to the PHY
2434 */
2435 err = sbmac_mii_probe(dev);
2436 if (err)
2437 goto out_unregister;
2438
2439 /*
2440 * Turn on the channel
2441 */
2442
2443 sbmac_set_channel_state(sc,sbmac_state_on);
2444
2445 netif_start_queue(dev);
2446
2447 sbmac_set_rx_mode(dev);
2448
2449 phy_start(sc->phy_dev);
2450
2451 napi_enable(&sc->napi);
2452
2453 return 0;
2454
2455 out_unregister:
2456 mdiobus_unregister(sc->mii_bus);
2457
2458 out_unirq:
2459 free_irq(dev->irq, dev);
2460
2461 out_err:
2462 return err;
2463 }
2464
sbmac_mii_probe(struct net_device * dev)2465 static int sbmac_mii_probe(struct net_device *dev)
2466 {
2467 struct sbmac_softc *sc = netdev_priv(dev);
2468 struct phy_device *phy_dev;
2469 int i;
2470
2471 for (i = 0; i < PHY_MAX_ADDR; i++) {
2472 phy_dev = sc->mii_bus->phy_map[i];
2473 if (phy_dev)
2474 break;
2475 }
2476 if (!phy_dev) {
2477 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2478 return -ENXIO;
2479 }
2480
2481 phy_dev = phy_connect(dev, phy_dev->dev.bus_id, &sbmac_mii_poll, 0,
2482 PHY_INTERFACE_MODE_GMII);
2483 if (IS_ERR(phy_dev)) {
2484 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2485 return PTR_ERR(phy_dev);
2486 }
2487
2488 /* Remove any features not supported by the controller */
2489 phy_dev->supported &= SUPPORTED_10baseT_Half |
2490 SUPPORTED_10baseT_Full |
2491 SUPPORTED_100baseT_Half |
2492 SUPPORTED_100baseT_Full |
2493 SUPPORTED_1000baseT_Half |
2494 SUPPORTED_1000baseT_Full |
2495 SUPPORTED_Autoneg |
2496 SUPPORTED_MII |
2497 SUPPORTED_Pause |
2498 SUPPORTED_Asym_Pause;
2499 phy_dev->advertising = phy_dev->supported;
2500
2501 pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2502 dev->name, phy_dev->drv->name,
2503 phy_dev->dev.bus_id, phy_dev->irq);
2504
2505 sc->phy_dev = phy_dev;
2506
2507 return 0;
2508 }
2509
2510
sbmac_mii_poll(struct net_device * dev)2511 static void sbmac_mii_poll(struct net_device *dev)
2512 {
2513 struct sbmac_softc *sc = netdev_priv(dev);
2514 struct phy_device *phy_dev = sc->phy_dev;
2515 unsigned long flags;
2516 enum sbmac_fc fc;
2517 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2518
2519 link_chg = (sc->sbm_link != phy_dev->link);
2520 speed_chg = (sc->sbm_speed != phy_dev->speed);
2521 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2522 pause_chg = (sc->sbm_pause != phy_dev->pause);
2523
2524 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2525 return; /* Hmmm... */
2526
2527 if (!phy_dev->link) {
2528 if (link_chg) {
2529 sc->sbm_link = phy_dev->link;
2530 sc->sbm_speed = sbmac_speed_none;
2531 sc->sbm_duplex = sbmac_duplex_none;
2532 sc->sbm_fc = sbmac_fc_disabled;
2533 sc->sbm_pause = -1;
2534 pr_info("%s: link unavailable\n", dev->name);
2535 }
2536 return;
2537 }
2538
2539 if (phy_dev->duplex == DUPLEX_FULL) {
2540 if (phy_dev->pause)
2541 fc = sbmac_fc_frame;
2542 else
2543 fc = sbmac_fc_disabled;
2544 } else
2545 fc = sbmac_fc_collision;
2546 fc_chg = (sc->sbm_fc != fc);
2547
2548 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2549 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2550
2551 spin_lock_irqsave(&sc->sbm_lock, flags);
2552
2553 sc->sbm_speed = phy_dev->speed;
2554 sc->sbm_duplex = phy_dev->duplex;
2555 sc->sbm_fc = fc;
2556 sc->sbm_pause = phy_dev->pause;
2557 sc->sbm_link = phy_dev->link;
2558
2559 if ((speed_chg || duplex_chg || fc_chg) &&
2560 sc->sbm_state != sbmac_state_off) {
2561 /*
2562 * something changed, restart the channel
2563 */
2564 if (debug > 1)
2565 pr_debug("%s: restarting channel "
2566 "because PHY state changed\n", dev->name);
2567 sbmac_channel_stop(sc);
2568 sbmac_channel_start(sc);
2569 }
2570
2571 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2572 }
2573
2574
sbmac_tx_timeout(struct net_device * dev)2575 static void sbmac_tx_timeout (struct net_device *dev)
2576 {
2577 struct sbmac_softc *sc = netdev_priv(dev);
2578 unsigned long flags;
2579
2580 spin_lock_irqsave(&sc->sbm_lock, flags);
2581
2582
2583 dev->trans_start = jiffies;
2584 dev->stats.tx_errors++;
2585
2586 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2587
2588 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2589 }
2590
2591
2592
2593
sbmac_set_rx_mode(struct net_device * dev)2594 static void sbmac_set_rx_mode(struct net_device *dev)
2595 {
2596 unsigned long flags;
2597 struct sbmac_softc *sc = netdev_priv(dev);
2598
2599 spin_lock_irqsave(&sc->sbm_lock, flags);
2600 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2601 /*
2602 * Promiscuous changed.
2603 */
2604
2605 if (dev->flags & IFF_PROMISC) {
2606 sbmac_promiscuous_mode(sc,1);
2607 }
2608 else {
2609 sbmac_promiscuous_mode(sc,0);
2610 }
2611 }
2612 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2613
2614 /*
2615 * Program the multicasts. Do this every time.
2616 */
2617
2618 sbmac_setmulti(sc);
2619
2620 }
2621
sbmac_mii_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2622 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2623 {
2624 struct sbmac_softc *sc = netdev_priv(dev);
2625
2626 if (!netif_running(dev) || !sc->phy_dev)
2627 return -EINVAL;
2628
2629 return phy_mii_ioctl(sc->phy_dev, if_mii(rq), cmd);
2630 }
2631
sbmac_close(struct net_device * dev)2632 static int sbmac_close(struct net_device *dev)
2633 {
2634 struct sbmac_softc *sc = netdev_priv(dev);
2635
2636 napi_disable(&sc->napi);
2637
2638 phy_stop(sc->phy_dev);
2639
2640 sbmac_set_channel_state(sc, sbmac_state_off);
2641
2642 netif_stop_queue(dev);
2643
2644 if (debug > 1)
2645 pr_debug("%s: Shutting down ethercard\n", dev->name);
2646
2647 phy_disconnect(sc->phy_dev);
2648 sc->phy_dev = NULL;
2649
2650 mdiobus_unregister(sc->mii_bus);
2651
2652 free_irq(dev->irq, dev);
2653
2654 sbdma_emptyring(&(sc->sbm_txdma));
2655 sbdma_emptyring(&(sc->sbm_rxdma));
2656
2657 return 0;
2658 }
2659
sbmac_poll(struct napi_struct * napi,int budget)2660 static int sbmac_poll(struct napi_struct *napi, int budget)
2661 {
2662 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2663 struct net_device *dev = sc->sbm_dev;
2664 int work_done;
2665
2666 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2667 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2668
2669 if (work_done < budget) {
2670 netif_rx_complete(napi);
2671
2672 #ifdef CONFIG_SBMAC_COALESCE
2673 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2674 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2675 sc->sbm_imr);
2676 #else
2677 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2678 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2679 #endif
2680 }
2681
2682 return work_done;
2683 }
2684
2685
sbmac_probe(struct platform_device * pldev)2686 static int __init sbmac_probe(struct platform_device *pldev)
2687 {
2688 struct net_device *dev;
2689 struct sbmac_softc *sc;
2690 void __iomem *sbm_base;
2691 struct resource *res;
2692 u64 sbmac_orig_hwaddr;
2693 int err;
2694
2695 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2696 BUG_ON(!res);
2697 sbm_base = ioremap_nocache(res->start, res->end - res->start + 1);
2698 if (!sbm_base) {
2699 printk(KERN_ERR "%s: unable to map device registers\n",
2700 pldev->dev.bus_id);
2701 err = -ENOMEM;
2702 goto out_out;
2703 }
2704
2705 /*
2706 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2707 * value for us by the firmware if we're going to use this MAC.
2708 * If we find a zero, skip this MAC.
2709 */
2710 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2711 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", pldev->dev.bus_id,
2712 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2713 if (sbmac_orig_hwaddr == 0) {
2714 err = 0;
2715 goto out_unmap;
2716 }
2717
2718 /*
2719 * Okay, cool. Initialize this MAC.
2720 */
2721 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2722 if (!dev) {
2723 printk(KERN_ERR "%s: unable to allocate etherdev\n",
2724 pldev->dev.bus_id);
2725 err = -ENOMEM;
2726 goto out_unmap;
2727 }
2728
2729 pldev->dev.driver_data = dev;
2730 SET_NETDEV_DEV(dev, &pldev->dev);
2731
2732 sc = netdev_priv(dev);
2733 sc->sbm_base = sbm_base;
2734
2735 err = sbmac_init(pldev, res->start);
2736 if (err)
2737 goto out_kfree;
2738
2739 return 0;
2740
2741 out_kfree:
2742 free_netdev(dev);
2743 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2744
2745 out_unmap:
2746 iounmap(sbm_base);
2747
2748 out_out:
2749 return err;
2750 }
2751
sbmac_remove(struct platform_device * pldev)2752 static int __exit sbmac_remove(struct platform_device *pldev)
2753 {
2754 struct net_device *dev = pldev->dev.driver_data;
2755 struct sbmac_softc *sc = netdev_priv(dev);
2756
2757 unregister_netdev(dev);
2758 sbmac_uninitctx(sc);
2759 mdiobus_free(sc->mii_bus);
2760 iounmap(sc->sbm_base);
2761 free_netdev(dev);
2762
2763 return 0;
2764 }
2765
2766
2767 static struct platform_device **sbmac_pldev;
2768 static int sbmac_max_units;
2769
2770 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
sbmac_setup_hwaddr(int idx,char * addr)2771 static void __init sbmac_setup_hwaddr(int idx, char *addr)
2772 {
2773 void __iomem *sbm_base;
2774 unsigned long start, end;
2775 uint8_t eaddr[6];
2776 uint64_t val;
2777
2778 if (idx >= sbmac_max_units)
2779 return;
2780
2781 start = A_MAC_CHANNEL_BASE(idx);
2782 end = A_MAC_CHANNEL_BASE(idx + 1) - 1;
2783
2784 sbm_base = ioremap_nocache(start, end - start + 1);
2785 if (!sbm_base) {
2786 printk(KERN_ERR "%s: unable to map device registers\n",
2787 sbmac_string);
2788 return;
2789 }
2790
2791 sbmac_parse_hwaddr(addr, eaddr);
2792 val = sbmac_addr2reg(eaddr);
2793 __raw_writeq(val, sbm_base + R_MAC_ETHERNET_ADDR);
2794 val = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2795
2796 iounmap(sbm_base);
2797 }
2798 #endif
2799
sbmac_platform_probe_one(int idx)2800 static int __init sbmac_platform_probe_one(int idx)
2801 {
2802 struct platform_device *pldev;
2803 struct {
2804 struct resource r;
2805 char name[strlen(sbmac_pretty) + 4];
2806 } *res;
2807 int err;
2808
2809 res = kzalloc(sizeof(*res), GFP_KERNEL);
2810 if (!res) {
2811 printk(KERN_ERR "%s.%d: unable to allocate memory\n",
2812 sbmac_string, idx);
2813 err = -ENOMEM;
2814 goto out_err;
2815 }
2816
2817 /*
2818 * This is the base address of the MAC.
2819 */
2820 snprintf(res->name, sizeof(res->name), "%s %d", sbmac_pretty, idx);
2821 res->r.name = res->name;
2822 res->r.flags = IORESOURCE_MEM;
2823 res->r.start = A_MAC_CHANNEL_BASE(idx);
2824 res->r.end = A_MAC_CHANNEL_BASE(idx + 1) - 1;
2825
2826 pldev = platform_device_register_simple(sbmac_string, idx, &res->r, 1);
2827 if (IS_ERR(pldev)) {
2828 printk(KERN_ERR "%s.%d: unable to register platform device\n",
2829 sbmac_string, idx);
2830 err = PTR_ERR(pldev);
2831 goto out_kfree;
2832 }
2833
2834 if (!pldev->dev.driver) {
2835 err = 0; /* No hardware at this address. */
2836 goto out_unregister;
2837 }
2838
2839 sbmac_pldev[idx] = pldev;
2840 return 0;
2841
2842 out_unregister:
2843 platform_device_unregister(pldev);
2844
2845 out_kfree:
2846 kfree(res);
2847
2848 out_err:
2849 return err;
2850 }
2851
sbmac_platform_probe(void)2852 static void __init sbmac_platform_probe(void)
2853 {
2854 int i;
2855
2856 /* Set the number of available units based on the SOC type. */
2857 switch (soc_type) {
2858 case K_SYS_SOC_TYPE_BCM1250:
2859 case K_SYS_SOC_TYPE_BCM1250_ALT:
2860 sbmac_max_units = 3;
2861 break;
2862 case K_SYS_SOC_TYPE_BCM1120:
2863 case K_SYS_SOC_TYPE_BCM1125:
2864 case K_SYS_SOC_TYPE_BCM1125H:
2865 case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2866 sbmac_max_units = 2;
2867 break;
2868 case K_SYS_SOC_TYPE_BCM1x55:
2869 case K_SYS_SOC_TYPE_BCM1x80:
2870 sbmac_max_units = 4;
2871 break;
2872 default:
2873 return; /* none */
2874 }
2875
2876 /*
2877 * For bringup when not using the firmware, we can pre-fill
2878 * the MAC addresses using the environment variables
2879 * specified in this file (or maybe from the config file?)
2880 */
2881 #ifdef SBMAC_ETH0_HWADDR
2882 sbmac_setup_hwaddr(0, SBMAC_ETH0_HWADDR);
2883 #endif
2884 #ifdef SBMAC_ETH1_HWADDR
2885 sbmac_setup_hwaddr(1, SBMAC_ETH1_HWADDR);
2886 #endif
2887 #ifdef SBMAC_ETH2_HWADDR
2888 sbmac_setup_hwaddr(2, SBMAC_ETH2_HWADDR);
2889 #endif
2890 #ifdef SBMAC_ETH3_HWADDR
2891 sbmac_setup_hwaddr(3, SBMAC_ETH3_HWADDR);
2892 #endif
2893
2894 sbmac_pldev = kcalloc(sbmac_max_units, sizeof(*sbmac_pldev),
2895 GFP_KERNEL);
2896 if (!sbmac_pldev) {
2897 printk(KERN_ERR "%s: unable to allocate memory\n",
2898 sbmac_string);
2899 return;
2900 }
2901
2902 /*
2903 * Walk through the Ethernet controllers and find
2904 * those who have their MAC addresses set.
2905 */
2906 for (i = 0; i < sbmac_max_units; i++)
2907 if (sbmac_platform_probe_one(i))
2908 break;
2909 }
2910
2911
sbmac_platform_cleanup(void)2912 static void __exit sbmac_platform_cleanup(void)
2913 {
2914 int i;
2915
2916 for (i = 0; i < sbmac_max_units; i++)
2917 platform_device_unregister(sbmac_pldev[i]);
2918 kfree(sbmac_pldev);
2919 }
2920
2921
2922 static struct platform_driver sbmac_driver = {
2923 .probe = sbmac_probe,
2924 .remove = __exit_p(sbmac_remove),
2925 .driver = {
2926 .name = sbmac_string,
2927 },
2928 };
2929
sbmac_init_module(void)2930 static int __init sbmac_init_module(void)
2931 {
2932 int err;
2933
2934 err = platform_driver_register(&sbmac_driver);
2935 if (err)
2936 return err;
2937
2938 sbmac_platform_probe();
2939
2940 return err;
2941 }
2942
sbmac_cleanup_module(void)2943 static void __exit sbmac_cleanup_module(void)
2944 {
2945 sbmac_platform_cleanup();
2946 platform_driver_unregister(&sbmac_driver);
2947 }
2948
2949 module_init(sbmac_init_module);
2950 module_exit(sbmac_cleanup_module);
2951