• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "ethtool.h"
25 #include "tx.h"
26 #include "rx.h"
27 #include "efx.h"
28 #include "mdio_10g.h"
29 #include "falcon.h"
30 
31 #define EFX_MAX_MTU (9 * 1024)
32 
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34  * a work item is pushed onto this work queue to retry the allocation later,
35  * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36  * workqueue, there is nothing to be gained in making it per NIC
37  */
38 static struct workqueue_struct *refill_workqueue;
39 
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41  * queued onto this work queue. This is not a per-nic work queue, because
42  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43  */
44 static struct workqueue_struct *reset_workqueue;
45 
46 /**************************************************************************
47  *
48  * Configurable values
49  *
50  *************************************************************************/
51 
52 /*
53  * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54  *
55  * This sets the default for new devices.  It can be controlled later
56  * using ethtool.
57  */
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61 
62 /*
63  * Use separate channels for TX and RX events
64  *
65  * Set this to 1 to use separate channels for TX and RX. It allows us
66  * to control interrupt affinity separately for TX and RX.
67  *
68  * This is only used in MSI-X interrupt mode
69  */
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 		 "Use separate channels for TX and RX");
74 
75 /* This is the weight assigned to each of the (per-channel) virtual
76  * NAPI devices.
77  */
78 static int napi_weight = 64;
79 
80 /* This is the time (in jiffies) between invocations of the hardware
81  * monitor, which checks for known hardware bugs and resets the
82  * hardware and driver as necessary.
83  */
84 unsigned int efx_monitor_interval = 1 * HZ;
85 
86 /* This controls whether or not the driver will initialise devices
87  * with invalid MAC addresses stored in the EEPROM or flash.  If true,
88  * such devices will be initialised with a random locally-generated
89  * MAC address.  This allows for loading the sfc_mtd driver to
90  * reprogram the flash, even if the flash contents (including the MAC
91  * address) have previously been erased.
92  */
93 static unsigned int allow_bad_hwaddr;
94 
95 /* Initial interrupt moderation settings.  They can be modified after
96  * module load with ethtool.
97  *
98  * The default for RX should strike a balance between increasing the
99  * round-trip latency and reducing overhead.
100  */
101 static unsigned int rx_irq_mod_usec = 60;
102 
103 /* Initial interrupt moderation settings.  They can be modified after
104  * module load with ethtool.
105  *
106  * This default is chosen to ensure that a 10G link does not go idle
107  * while a TX queue is stopped after it has become full.  A queue is
108  * restarted when it drops below half full.  The time this takes (assuming
109  * worst case 3 descriptors per packet and 1024 descriptors) is
110  *   512 / 3 * 1.2 = 205 usec.
111  */
112 static unsigned int tx_irq_mod_usec = 150;
113 
114 /* This is the first interrupt mode to try out of:
115  * 0 => MSI-X
116  * 1 => MSI
117  * 2 => legacy
118  */
119 static unsigned int interrupt_mode;
120 
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122  * i.e. the number of CPUs among which we may distribute simultaneous
123  * interrupt handling.
124  *
125  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126  * The default (0) means to assign an interrupt to each package (level II cache)
127  */
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131 
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135 
136 /**************************************************************************
137  *
138  * Utility functions and prototypes
139  *
140  *************************************************************************/
141 static void efx_remove_channel(struct efx_channel *channel);
142 static void efx_remove_port(struct efx_nic *efx);
143 static void efx_fini_napi(struct efx_nic *efx);
144 static void efx_fini_channels(struct efx_nic *efx);
145 
146 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
147 	do {						\
148 		if (efx->state == STATE_RUNNING)	\
149 			ASSERT_RTNL();			\
150 	} while (0)
151 
152 /**************************************************************************
153  *
154  * Event queue processing
155  *
156  *************************************************************************/
157 
158 /* Process channel's event queue
159  *
160  * This function is responsible for processing the event queue of a
161  * single channel.  The caller must guarantee that this function will
162  * never be concurrently called more than once on the same channel,
163  * though different channels may be being processed concurrently.
164  */
efx_process_channel(struct efx_channel * channel,int rx_quota)165 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
166 {
167 	struct efx_nic *efx = channel->efx;
168 	int rx_packets;
169 
170 	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
171 		     !channel->enabled))
172 		return 0;
173 
174 	rx_packets = falcon_process_eventq(channel, rx_quota);
175 	if (rx_packets == 0)
176 		return 0;
177 
178 	/* Deliver last RX packet. */
179 	if (channel->rx_pkt) {
180 		__efx_rx_packet(channel, channel->rx_pkt,
181 				channel->rx_pkt_csummed);
182 		channel->rx_pkt = NULL;
183 	}
184 
185 	efx_flush_lro(channel);
186 	efx_rx_strategy(channel);
187 
188 	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
189 
190 	return rx_packets;
191 }
192 
193 /* Mark channel as finished processing
194  *
195  * Note that since we will not receive further interrupts for this
196  * channel before we finish processing and call the eventq_read_ack()
197  * method, there is no need to use the interrupt hold-off timers.
198  */
efx_channel_processed(struct efx_channel * channel)199 static inline void efx_channel_processed(struct efx_channel *channel)
200 {
201 	/* The interrupt handler for this channel may set work_pending
202 	 * as soon as we acknowledge the events we've seen.  Make sure
203 	 * it's cleared before then. */
204 	channel->work_pending = false;
205 	smp_wmb();
206 
207 	falcon_eventq_read_ack(channel);
208 }
209 
210 /* NAPI poll handler
211  *
212  * NAPI guarantees serialisation of polls of the same device, which
213  * provides the guarantee required by efx_process_channel().
214  */
efx_poll(struct napi_struct * napi,int budget)215 static int efx_poll(struct napi_struct *napi, int budget)
216 {
217 	struct efx_channel *channel =
218 		container_of(napi, struct efx_channel, napi_str);
219 	int rx_packets;
220 
221 	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
222 		  channel->channel, raw_smp_processor_id());
223 
224 	rx_packets = efx_process_channel(channel, budget);
225 
226 	if (rx_packets < budget) {
227 		/* There is no race here; although napi_disable() will
228 		 * only wait for netif_rx_complete(), this isn't a problem
229 		 * since efx_channel_processed() will have no effect if
230 		 * interrupts have already been disabled.
231 		 */
232 		netif_rx_complete(napi);
233 		efx_channel_processed(channel);
234 	}
235 
236 	return rx_packets;
237 }
238 
239 /* Process the eventq of the specified channel immediately on this CPU
240  *
241  * Disable hardware generated interrupts, wait for any existing
242  * processing to finish, then directly poll (and ack ) the eventq.
243  * Finally reenable NAPI and interrupts.
244  *
245  * Since we are touching interrupts the caller should hold the suspend lock
246  */
efx_process_channel_now(struct efx_channel * channel)247 void efx_process_channel_now(struct efx_channel *channel)
248 {
249 	struct efx_nic *efx = channel->efx;
250 
251 	BUG_ON(!channel->used_flags);
252 	BUG_ON(!channel->enabled);
253 
254 	/* Disable interrupts and wait for ISRs to complete */
255 	falcon_disable_interrupts(efx);
256 	if (efx->legacy_irq)
257 		synchronize_irq(efx->legacy_irq);
258 	if (channel->irq)
259 		synchronize_irq(channel->irq);
260 
261 	/* Wait for any NAPI processing to complete */
262 	napi_disable(&channel->napi_str);
263 
264 	/* Poll the channel */
265 	efx_process_channel(channel, efx->type->evq_size);
266 
267 	/* Ack the eventq. This may cause an interrupt to be generated
268 	 * when they are reenabled */
269 	efx_channel_processed(channel);
270 
271 	napi_enable(&channel->napi_str);
272 	falcon_enable_interrupts(efx);
273 }
274 
275 /* Create event queue
276  * Event queue memory allocations are done only once.  If the channel
277  * is reset, the memory buffer will be reused; this guards against
278  * errors during channel reset and also simplifies interrupt handling.
279  */
efx_probe_eventq(struct efx_channel * channel)280 static int efx_probe_eventq(struct efx_channel *channel)
281 {
282 	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
283 
284 	return falcon_probe_eventq(channel);
285 }
286 
287 /* Prepare channel's event queue */
efx_init_eventq(struct efx_channel * channel)288 static void efx_init_eventq(struct efx_channel *channel)
289 {
290 	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
291 
292 	channel->eventq_read_ptr = 0;
293 
294 	falcon_init_eventq(channel);
295 }
296 
efx_fini_eventq(struct efx_channel * channel)297 static void efx_fini_eventq(struct efx_channel *channel)
298 {
299 	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
300 
301 	falcon_fini_eventq(channel);
302 }
303 
efx_remove_eventq(struct efx_channel * channel)304 static void efx_remove_eventq(struct efx_channel *channel)
305 {
306 	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
307 
308 	falcon_remove_eventq(channel);
309 }
310 
311 /**************************************************************************
312  *
313  * Channel handling
314  *
315  *************************************************************************/
316 
efx_probe_channel(struct efx_channel * channel)317 static int efx_probe_channel(struct efx_channel *channel)
318 {
319 	struct efx_tx_queue *tx_queue;
320 	struct efx_rx_queue *rx_queue;
321 	int rc;
322 
323 	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
324 
325 	rc = efx_probe_eventq(channel);
326 	if (rc)
327 		goto fail1;
328 
329 	efx_for_each_channel_tx_queue(tx_queue, channel) {
330 		rc = efx_probe_tx_queue(tx_queue);
331 		if (rc)
332 			goto fail2;
333 	}
334 
335 	efx_for_each_channel_rx_queue(rx_queue, channel) {
336 		rc = efx_probe_rx_queue(rx_queue);
337 		if (rc)
338 			goto fail3;
339 	}
340 
341 	channel->n_rx_frm_trunc = 0;
342 
343 	return 0;
344 
345  fail3:
346 	efx_for_each_channel_rx_queue(rx_queue, channel)
347 		efx_remove_rx_queue(rx_queue);
348  fail2:
349 	efx_for_each_channel_tx_queue(tx_queue, channel)
350 		efx_remove_tx_queue(tx_queue);
351  fail1:
352 	return rc;
353 }
354 
355 
efx_set_channel_names(struct efx_nic * efx)356 static void efx_set_channel_names(struct efx_nic *efx)
357 {
358 	struct efx_channel *channel;
359 	const char *type = "";
360 	int number;
361 
362 	efx_for_each_channel(channel, efx) {
363 		number = channel->channel;
364 		if (efx->n_channels > efx->n_rx_queues) {
365 			if (channel->channel < efx->n_rx_queues) {
366 				type = "-rx";
367 			} else {
368 				type = "-tx";
369 				number -= efx->n_rx_queues;
370 			}
371 		}
372 		snprintf(channel->name, sizeof(channel->name),
373 			 "%s%s-%d", efx->name, type, number);
374 	}
375 }
376 
377 /* Channels are shutdown and reinitialised whilst the NIC is running
378  * to propagate configuration changes (mtu, checksum offload), or
379  * to clear hardware error conditions
380  */
efx_init_channels(struct efx_nic * efx)381 static void efx_init_channels(struct efx_nic *efx)
382 {
383 	struct efx_tx_queue *tx_queue;
384 	struct efx_rx_queue *rx_queue;
385 	struct efx_channel *channel;
386 
387 	/* Calculate the rx buffer allocation parameters required to
388 	 * support the current MTU, including padding for header
389 	 * alignment and overruns.
390 	 */
391 	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
392 			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
393 			      efx->type->rx_buffer_padding);
394 	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
395 
396 	/* Initialise the channels */
397 	efx_for_each_channel(channel, efx) {
398 		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
399 
400 		efx_init_eventq(channel);
401 
402 		efx_for_each_channel_tx_queue(tx_queue, channel)
403 			efx_init_tx_queue(tx_queue);
404 
405 		/* The rx buffer allocation strategy is MTU dependent */
406 		efx_rx_strategy(channel);
407 
408 		efx_for_each_channel_rx_queue(rx_queue, channel)
409 			efx_init_rx_queue(rx_queue);
410 
411 		WARN_ON(channel->rx_pkt != NULL);
412 		efx_rx_strategy(channel);
413 	}
414 }
415 
416 /* This enables event queue processing and packet transmission.
417  *
418  * Note that this function is not allowed to fail, since that would
419  * introduce too much complexity into the suspend/resume path.
420  */
efx_start_channel(struct efx_channel * channel)421 static void efx_start_channel(struct efx_channel *channel)
422 {
423 	struct efx_rx_queue *rx_queue;
424 
425 	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426 
427 	if (!(channel->efx->net_dev->flags & IFF_UP))
428 		netif_napi_add(channel->napi_dev, &channel->napi_str,
429 			       efx_poll, napi_weight);
430 
431 	/* The interrupt handler for this channel may set work_pending
432 	 * as soon as we enable it.  Make sure it's cleared before
433 	 * then.  Similarly, make sure it sees the enabled flag set. */
434 	channel->work_pending = false;
435 	channel->enabled = true;
436 	smp_wmb();
437 
438 	napi_enable(&channel->napi_str);
439 
440 	/* Load up RX descriptors */
441 	efx_for_each_channel_rx_queue(rx_queue, channel)
442 		efx_fast_push_rx_descriptors(rx_queue);
443 }
444 
445 /* This disables event queue processing and packet transmission.
446  * This function does not guarantee that all queue processing
447  * (e.g. RX refill) is complete.
448  */
efx_stop_channel(struct efx_channel * channel)449 static void efx_stop_channel(struct efx_channel *channel)
450 {
451 	struct efx_rx_queue *rx_queue;
452 
453 	if (!channel->enabled)
454 		return;
455 
456 	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457 
458 	channel->enabled = false;
459 	napi_disable(&channel->napi_str);
460 
461 	/* Ensure that any worker threads have exited or will be no-ops */
462 	efx_for_each_channel_rx_queue(rx_queue, channel) {
463 		spin_lock_bh(&rx_queue->add_lock);
464 		spin_unlock_bh(&rx_queue->add_lock);
465 	}
466 }
467 
efx_fini_channels(struct efx_nic * efx)468 static void efx_fini_channels(struct efx_nic *efx)
469 {
470 	struct efx_channel *channel;
471 	struct efx_tx_queue *tx_queue;
472 	struct efx_rx_queue *rx_queue;
473 	int rc;
474 
475 	EFX_ASSERT_RESET_SERIALISED(efx);
476 	BUG_ON(efx->port_enabled);
477 
478 	rc = falcon_flush_queues(efx);
479 	if (rc)
480 		EFX_ERR(efx, "failed to flush queues\n");
481 	else
482 		EFX_LOG(efx, "successfully flushed all queues\n");
483 
484 	efx_for_each_channel(channel, efx) {
485 		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
486 
487 		efx_for_each_channel_rx_queue(rx_queue, channel)
488 			efx_fini_rx_queue(rx_queue);
489 		efx_for_each_channel_tx_queue(tx_queue, channel)
490 			efx_fini_tx_queue(tx_queue);
491 		efx_fini_eventq(channel);
492 	}
493 }
494 
efx_remove_channel(struct efx_channel * channel)495 static void efx_remove_channel(struct efx_channel *channel)
496 {
497 	struct efx_tx_queue *tx_queue;
498 	struct efx_rx_queue *rx_queue;
499 
500 	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501 
502 	efx_for_each_channel_rx_queue(rx_queue, channel)
503 		efx_remove_rx_queue(rx_queue);
504 	efx_for_each_channel_tx_queue(tx_queue, channel)
505 		efx_remove_tx_queue(tx_queue);
506 	efx_remove_eventq(channel);
507 
508 	channel->used_flags = 0;
509 }
510 
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue,int delay)511 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512 {
513 	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
514 }
515 
516 /**************************************************************************
517  *
518  * Port handling
519  *
520  **************************************************************************/
521 
522 /* This ensures that the kernel is kept informed (via
523  * netif_carrier_on/off) of the link status, and also maintains the
524  * link status's stop on the port's TX queue.
525  */
efx_link_status_changed(struct efx_nic * efx)526 static void efx_link_status_changed(struct efx_nic *efx)
527 {
528 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 	 * that no events are triggered between unregister_netdev() and the
530 	 * driver unloading. A more general condition is that NETDEV_CHANGE
531 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 	if (!netif_running(efx->net_dev))
533 		return;
534 
535 	if (efx->port_inhibited) {
536 		netif_carrier_off(efx->net_dev);
537 		return;
538 	}
539 
540 	if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
541 		efx->n_link_state_changes++;
542 
543 		if (efx->link_up)
544 			netif_carrier_on(efx->net_dev);
545 		else
546 			netif_carrier_off(efx->net_dev);
547 	}
548 
549 	/* Status message for kernel log */
550 	if (efx->link_up) {
551 		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
552 			 efx->link_speed, efx->link_fd ? "full" : "half",
553 			 efx->net_dev->mtu,
554 			 (efx->promiscuous ? " [PROMISC]" : ""));
555 	} else {
556 		EFX_INFO(efx, "link down\n");
557 	}
558 
559 }
560 
561 /* This call reinitialises the MAC to pick up new PHY settings. The
562  * caller must hold the mac_lock */
__efx_reconfigure_port(struct efx_nic * efx)563 void __efx_reconfigure_port(struct efx_nic *efx)
564 {
565 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
566 
567 	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
568 		raw_smp_processor_id());
569 
570 	/* Serialise the promiscuous flag with efx_set_multicast_list. */
571 	if (efx_dev_registered(efx)) {
572 		netif_addr_lock_bh(efx->net_dev);
573 		netif_addr_unlock_bh(efx->net_dev);
574 	}
575 
576 	falcon_deconfigure_mac_wrapper(efx);
577 
578 	/* Reconfigure the PHY, disabling transmit in mac level loopback. */
579 	if (LOOPBACK_INTERNAL(efx))
580 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
581 	else
582 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
583 	efx->phy_op->reconfigure(efx);
584 
585 	if (falcon_switch_mac(efx))
586 		goto fail;
587 
588 	efx->mac_op->reconfigure(efx);
589 
590 	/* Inform kernel of loss/gain of carrier */
591 	efx_link_status_changed(efx);
592 	return;
593 
594 fail:
595 	EFX_ERR(efx, "failed to reconfigure MAC\n");
596 	efx->phy_op->fini(efx);
597 	efx->port_initialized = false;
598 }
599 
600 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
601  * disabled. */
efx_reconfigure_port(struct efx_nic * efx)602 void efx_reconfigure_port(struct efx_nic *efx)
603 {
604 	EFX_ASSERT_RESET_SERIALISED(efx);
605 
606 	mutex_lock(&efx->mac_lock);
607 	__efx_reconfigure_port(efx);
608 	mutex_unlock(&efx->mac_lock);
609 }
610 
611 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
612  * we don't efx_reconfigure_port() if the port is disabled. Care is taken
613  * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
efx_phy_work(struct work_struct * data)614 static void efx_phy_work(struct work_struct *data)
615 {
616 	struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
617 
618 	mutex_lock(&efx->mac_lock);
619 	if (efx->port_enabled)
620 		__efx_reconfigure_port(efx);
621 	mutex_unlock(&efx->mac_lock);
622 }
623 
efx_mac_work(struct work_struct * data)624 static void efx_mac_work(struct work_struct *data)
625 {
626 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
627 
628 	mutex_lock(&efx->mac_lock);
629 	if (efx->port_enabled)
630 		efx->mac_op->irq(efx);
631 	mutex_unlock(&efx->mac_lock);
632 }
633 
efx_probe_port(struct efx_nic * efx)634 static int efx_probe_port(struct efx_nic *efx)
635 {
636 	int rc;
637 
638 	EFX_LOG(efx, "create port\n");
639 
640 	/* Connect up MAC/PHY operations table and read MAC address */
641 	rc = falcon_probe_port(efx);
642 	if (rc)
643 		goto err;
644 
645 	if (phy_flash_cfg)
646 		efx->phy_mode = PHY_MODE_SPECIAL;
647 
648 	/* Sanity check MAC address */
649 	if (is_valid_ether_addr(efx->mac_address)) {
650 		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
651 	} else {
652 		EFX_ERR(efx, "invalid MAC address %pM\n",
653 			efx->mac_address);
654 		if (!allow_bad_hwaddr) {
655 			rc = -EINVAL;
656 			goto err;
657 		}
658 		random_ether_addr(efx->net_dev->dev_addr);
659 		EFX_INFO(efx, "using locally-generated MAC %pM\n",
660 			 efx->net_dev->dev_addr);
661 	}
662 
663 	return 0;
664 
665  err:
666 	efx_remove_port(efx);
667 	return rc;
668 }
669 
efx_init_port(struct efx_nic * efx)670 static int efx_init_port(struct efx_nic *efx)
671 {
672 	int rc;
673 
674 	EFX_LOG(efx, "init port\n");
675 
676 	rc = efx->phy_op->init(efx);
677 	if (rc)
678 		return rc;
679 	mutex_lock(&efx->mac_lock);
680 	efx->phy_op->reconfigure(efx);
681 	rc = falcon_switch_mac(efx);
682 	mutex_unlock(&efx->mac_lock);
683 	if (rc)
684 		goto fail;
685 	efx->mac_op->reconfigure(efx);
686 
687 	efx->port_initialized = true;
688 	efx_stats_enable(efx);
689 	return 0;
690 
691 fail:
692 	efx->phy_op->fini(efx);
693 	return rc;
694 }
695 
696 /* Allow efx_reconfigure_port() to be scheduled, and close the window
697  * between efx_stop_port and efx_flush_all whereby a previously scheduled
698  * efx_phy_work()/efx_mac_work() may have been cancelled */
efx_start_port(struct efx_nic * efx)699 static void efx_start_port(struct efx_nic *efx)
700 {
701 	EFX_LOG(efx, "start port\n");
702 	BUG_ON(efx->port_enabled);
703 
704 	mutex_lock(&efx->mac_lock);
705 	efx->port_enabled = true;
706 	__efx_reconfigure_port(efx);
707 	efx->mac_op->irq(efx);
708 	mutex_unlock(&efx->mac_lock);
709 }
710 
711 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
712  * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
713  * and efx_mac_work may still be scheduled via NAPI processing until
714  * efx_flush_all() is called */
efx_stop_port(struct efx_nic * efx)715 static void efx_stop_port(struct efx_nic *efx)
716 {
717 	EFX_LOG(efx, "stop port\n");
718 
719 	mutex_lock(&efx->mac_lock);
720 	efx->port_enabled = false;
721 	mutex_unlock(&efx->mac_lock);
722 
723 	/* Serialise against efx_set_multicast_list() */
724 	if (efx_dev_registered(efx)) {
725 		netif_addr_lock_bh(efx->net_dev);
726 		netif_addr_unlock_bh(efx->net_dev);
727 	}
728 }
729 
efx_fini_port(struct efx_nic * efx)730 static void efx_fini_port(struct efx_nic *efx)
731 {
732 	EFX_LOG(efx, "shut down port\n");
733 
734 	if (!efx->port_initialized)
735 		return;
736 
737 	efx_stats_disable(efx);
738 	efx->phy_op->fini(efx);
739 	efx->port_initialized = false;
740 
741 	efx->link_up = false;
742 	efx_link_status_changed(efx);
743 }
744 
efx_remove_port(struct efx_nic * efx)745 static void efx_remove_port(struct efx_nic *efx)
746 {
747 	EFX_LOG(efx, "destroying port\n");
748 
749 	falcon_remove_port(efx);
750 }
751 
752 /**************************************************************************
753  *
754  * NIC handling
755  *
756  **************************************************************************/
757 
758 /* This configures the PCI device to enable I/O and DMA. */
efx_init_io(struct efx_nic * efx)759 static int efx_init_io(struct efx_nic *efx)
760 {
761 	struct pci_dev *pci_dev = efx->pci_dev;
762 	dma_addr_t dma_mask = efx->type->max_dma_mask;
763 	int rc;
764 
765 	EFX_LOG(efx, "initialising I/O\n");
766 
767 	rc = pci_enable_device(pci_dev);
768 	if (rc) {
769 		EFX_ERR(efx, "failed to enable PCI device\n");
770 		goto fail1;
771 	}
772 
773 	pci_set_master(pci_dev);
774 
775 	/* Set the PCI DMA mask.  Try all possibilities from our
776 	 * genuine mask down to 32 bits, because some architectures
777 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
778 	 * masks event though they reject 46 bit masks.
779 	 */
780 	while (dma_mask > 0x7fffffffUL) {
781 		if (pci_dma_supported(pci_dev, dma_mask) &&
782 		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
783 			break;
784 		dma_mask >>= 1;
785 	}
786 	if (rc) {
787 		EFX_ERR(efx, "could not find a suitable DMA mask\n");
788 		goto fail2;
789 	}
790 	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
791 	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
792 	if (rc) {
793 		/* pci_set_consistent_dma_mask() is not *allowed* to
794 		 * fail with a mask that pci_set_dma_mask() accepted,
795 		 * but just in case...
796 		 */
797 		EFX_ERR(efx, "failed to set consistent DMA mask\n");
798 		goto fail2;
799 	}
800 
801 	efx->membase_phys = pci_resource_start(efx->pci_dev,
802 					       efx->type->mem_bar);
803 	rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
804 	if (rc) {
805 		EFX_ERR(efx, "request for memory BAR failed\n");
806 		rc = -EIO;
807 		goto fail3;
808 	}
809 	efx->membase = ioremap_nocache(efx->membase_phys,
810 				       efx->type->mem_map_size);
811 	if (!efx->membase) {
812 		EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
813 			efx->type->mem_bar,
814 			(unsigned long long)efx->membase_phys,
815 			efx->type->mem_map_size);
816 		rc = -ENOMEM;
817 		goto fail4;
818 	}
819 	EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
820 		efx->type->mem_bar, (unsigned long long)efx->membase_phys,
821 		efx->type->mem_map_size, efx->membase);
822 
823 	return 0;
824 
825  fail4:
826 	pci_release_region(efx->pci_dev, efx->type->mem_bar);
827  fail3:
828 	efx->membase_phys = 0;
829  fail2:
830 	pci_disable_device(efx->pci_dev);
831  fail1:
832 	return rc;
833 }
834 
efx_fini_io(struct efx_nic * efx)835 static void efx_fini_io(struct efx_nic *efx)
836 {
837 	EFX_LOG(efx, "shutting down I/O\n");
838 
839 	if (efx->membase) {
840 		iounmap(efx->membase);
841 		efx->membase = NULL;
842 	}
843 
844 	if (efx->membase_phys) {
845 		pci_release_region(efx->pci_dev, efx->type->mem_bar);
846 		efx->membase_phys = 0;
847 	}
848 
849 	pci_disable_device(efx->pci_dev);
850 }
851 
852 /* Get number of RX queues wanted.  Return number of online CPU
853  * packages in the expectation that an IRQ balancer will spread
854  * interrupts across them. */
efx_wanted_rx_queues(void)855 static int efx_wanted_rx_queues(void)
856 {
857 	cpumask_t core_mask;
858 	int count;
859 	int cpu;
860 
861 	cpus_clear(core_mask);
862 	count = 0;
863 	for_each_online_cpu(cpu) {
864 		if (!cpu_isset(cpu, core_mask)) {
865 			++count;
866 			cpus_or(core_mask, core_mask,
867 				topology_core_siblings(cpu));
868 		}
869 	}
870 
871 	return count;
872 }
873 
874 /* Probe the number and type of interrupts we are able to obtain, and
875  * the resulting numbers of channels and RX queues.
876  */
efx_probe_interrupts(struct efx_nic * efx)877 static void efx_probe_interrupts(struct efx_nic *efx)
878 {
879 	int max_channels =
880 		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
881 	int rc, i;
882 
883 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
884 		struct msix_entry xentries[EFX_MAX_CHANNELS];
885 		int wanted_ints;
886 		int rx_queues;
887 
888 		/* We want one RX queue and interrupt per CPU package
889 		 * (or as specified by the rss_cpus module parameter).
890 		 * We will need one channel per interrupt.
891 		 */
892 		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
893 		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
894 		wanted_ints = min(wanted_ints, max_channels);
895 
896 		for (i = 0; i < wanted_ints; i++)
897 			xentries[i].entry = i;
898 		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
899 		if (rc > 0) {
900 			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
901 				" available (%d < %d).\n", rc, wanted_ints);
902 			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
903 			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
904 			wanted_ints = rc;
905 			rc = pci_enable_msix(efx->pci_dev, xentries,
906 					     wanted_ints);
907 		}
908 
909 		if (rc == 0) {
910 			efx->n_rx_queues = min(rx_queues, wanted_ints);
911 			efx->n_channels = wanted_ints;
912 			for (i = 0; i < wanted_ints; i++)
913 				efx->channel[i].irq = xentries[i].vector;
914 		} else {
915 			/* Fall back to single channel MSI */
916 			efx->interrupt_mode = EFX_INT_MODE_MSI;
917 			EFX_ERR(efx, "could not enable MSI-X\n");
918 		}
919 	}
920 
921 	/* Try single interrupt MSI */
922 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
923 		efx->n_rx_queues = 1;
924 		efx->n_channels = 1;
925 		rc = pci_enable_msi(efx->pci_dev);
926 		if (rc == 0) {
927 			efx->channel[0].irq = efx->pci_dev->irq;
928 		} else {
929 			EFX_ERR(efx, "could not enable MSI\n");
930 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
931 		}
932 	}
933 
934 	/* Assume legacy interrupts */
935 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
936 		efx->n_rx_queues = 1;
937 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
938 		efx->legacy_irq = efx->pci_dev->irq;
939 	}
940 }
941 
efx_remove_interrupts(struct efx_nic * efx)942 static void efx_remove_interrupts(struct efx_nic *efx)
943 {
944 	struct efx_channel *channel;
945 
946 	/* Remove MSI/MSI-X interrupts */
947 	efx_for_each_channel(channel, efx)
948 		channel->irq = 0;
949 	pci_disable_msi(efx->pci_dev);
950 	pci_disable_msix(efx->pci_dev);
951 
952 	/* Remove legacy interrupt */
953 	efx->legacy_irq = 0;
954 }
955 
efx_set_channels(struct efx_nic * efx)956 static void efx_set_channels(struct efx_nic *efx)
957 {
958 	struct efx_tx_queue *tx_queue;
959 	struct efx_rx_queue *rx_queue;
960 
961 	efx_for_each_tx_queue(tx_queue, efx) {
962 		if (separate_tx_channels)
963 			tx_queue->channel = &efx->channel[efx->n_channels-1];
964 		else
965 			tx_queue->channel = &efx->channel[0];
966 		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
967 	}
968 
969 	efx_for_each_rx_queue(rx_queue, efx) {
970 		rx_queue->channel = &efx->channel[rx_queue->queue];
971 		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
972 	}
973 }
974 
efx_probe_nic(struct efx_nic * efx)975 static int efx_probe_nic(struct efx_nic *efx)
976 {
977 	int rc;
978 
979 	EFX_LOG(efx, "creating NIC\n");
980 
981 	/* Carry out hardware-type specific initialisation */
982 	rc = falcon_probe_nic(efx);
983 	if (rc)
984 		return rc;
985 
986 	/* Determine the number of channels and RX queues by trying to hook
987 	 * in MSI-X interrupts. */
988 	efx_probe_interrupts(efx);
989 
990 	efx_set_channels(efx);
991 
992 	/* Initialise the interrupt moderation settings */
993 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
994 
995 	return 0;
996 }
997 
efx_remove_nic(struct efx_nic * efx)998 static void efx_remove_nic(struct efx_nic *efx)
999 {
1000 	EFX_LOG(efx, "destroying NIC\n");
1001 
1002 	efx_remove_interrupts(efx);
1003 	falcon_remove_nic(efx);
1004 }
1005 
1006 /**************************************************************************
1007  *
1008  * NIC startup/shutdown
1009  *
1010  *************************************************************************/
1011 
efx_probe_all(struct efx_nic * efx)1012 static int efx_probe_all(struct efx_nic *efx)
1013 {
1014 	struct efx_channel *channel;
1015 	int rc;
1016 
1017 	/* Create NIC */
1018 	rc = efx_probe_nic(efx);
1019 	if (rc) {
1020 		EFX_ERR(efx, "failed to create NIC\n");
1021 		goto fail1;
1022 	}
1023 
1024 	/* Create port */
1025 	rc = efx_probe_port(efx);
1026 	if (rc) {
1027 		EFX_ERR(efx, "failed to create port\n");
1028 		goto fail2;
1029 	}
1030 
1031 	/* Create channels */
1032 	efx_for_each_channel(channel, efx) {
1033 		rc = efx_probe_channel(channel);
1034 		if (rc) {
1035 			EFX_ERR(efx, "failed to create channel %d\n",
1036 				channel->channel);
1037 			goto fail3;
1038 		}
1039 	}
1040 	efx_set_channel_names(efx);
1041 
1042 	return 0;
1043 
1044  fail3:
1045 	efx_for_each_channel(channel, efx)
1046 		efx_remove_channel(channel);
1047 	efx_remove_port(efx);
1048  fail2:
1049 	efx_remove_nic(efx);
1050  fail1:
1051 	return rc;
1052 }
1053 
1054 /* Called after previous invocation(s) of efx_stop_all, restarts the
1055  * port, kernel transmit queue, NAPI processing and hardware interrupts,
1056  * and ensures that the port is scheduled to be reconfigured.
1057  * This function is safe to call multiple times when the NIC is in any
1058  * state. */
efx_start_all(struct efx_nic * efx)1059 static void efx_start_all(struct efx_nic *efx)
1060 {
1061 	struct efx_channel *channel;
1062 
1063 	EFX_ASSERT_RESET_SERIALISED(efx);
1064 
1065 	/* Check that it is appropriate to restart the interface. All
1066 	 * of these flags are safe to read under just the rtnl lock */
1067 	if (efx->port_enabled)
1068 		return;
1069 	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1070 		return;
1071 	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1072 		return;
1073 
1074 	/* Mark the port as enabled so port reconfigurations can start, then
1075 	 * restart the transmit interface early so the watchdog timer stops */
1076 	efx_start_port(efx);
1077 	if (efx_dev_registered(efx))
1078 		efx_wake_queue(efx);
1079 
1080 	efx_for_each_channel(channel, efx)
1081 		efx_start_channel(channel);
1082 
1083 	falcon_enable_interrupts(efx);
1084 
1085 	/* Start hardware monitor if we're in RUNNING */
1086 	if (efx->state == STATE_RUNNING)
1087 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1088 				   efx_monitor_interval);
1089 }
1090 
1091 /* Flush all delayed work. Should only be called when no more delayed work
1092  * will be scheduled. This doesn't flush pending online resets (efx_reset),
1093  * since we're holding the rtnl_lock at this point. */
efx_flush_all(struct efx_nic * efx)1094 static void efx_flush_all(struct efx_nic *efx)
1095 {
1096 	struct efx_rx_queue *rx_queue;
1097 
1098 	/* Make sure the hardware monitor is stopped */
1099 	cancel_delayed_work_sync(&efx->monitor_work);
1100 
1101 	/* Ensure that all RX slow refills are complete. */
1102 	efx_for_each_rx_queue(rx_queue, efx)
1103 		cancel_delayed_work_sync(&rx_queue->work);
1104 
1105 	/* Stop scheduled port reconfigurations */
1106 	cancel_work_sync(&efx->mac_work);
1107 	cancel_work_sync(&efx->phy_work);
1108 
1109 }
1110 
1111 /* Quiesce hardware and software without bringing the link down.
1112  * Safe to call multiple times, when the nic and interface is in any
1113  * state. The caller is guaranteed to subsequently be in a position
1114  * to modify any hardware and software state they see fit without
1115  * taking locks. */
efx_stop_all(struct efx_nic * efx)1116 static void efx_stop_all(struct efx_nic *efx)
1117 {
1118 	struct efx_channel *channel;
1119 
1120 	EFX_ASSERT_RESET_SERIALISED(efx);
1121 
1122 	/* port_enabled can be read safely under the rtnl lock */
1123 	if (!efx->port_enabled)
1124 		return;
1125 
1126 	/* Disable interrupts and wait for ISR to complete */
1127 	falcon_disable_interrupts(efx);
1128 	if (efx->legacy_irq)
1129 		synchronize_irq(efx->legacy_irq);
1130 	efx_for_each_channel(channel, efx) {
1131 		if (channel->irq)
1132 			synchronize_irq(channel->irq);
1133 	}
1134 
1135 	/* Stop all NAPI processing and synchronous rx refills */
1136 	efx_for_each_channel(channel, efx)
1137 		efx_stop_channel(channel);
1138 
1139 	/* Stop all asynchronous port reconfigurations. Since all
1140 	 * event processing has already been stopped, there is no
1141 	 * window to loose phy events */
1142 	efx_stop_port(efx);
1143 
1144 	/* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1145 	efx_flush_all(efx);
1146 
1147 	/* Isolate the MAC from the TX and RX engines, so that queue
1148 	 * flushes will complete in a timely fashion. */
1149 	falcon_drain_tx_fifo(efx);
1150 
1151 	/* Stop the kernel transmit interface late, so the watchdog
1152 	 * timer isn't ticking over the flush */
1153 	if (efx_dev_registered(efx)) {
1154 		efx_stop_queue(efx);
1155 		netif_tx_lock_bh(efx->net_dev);
1156 		netif_tx_unlock_bh(efx->net_dev);
1157 	}
1158 }
1159 
efx_remove_all(struct efx_nic * efx)1160 static void efx_remove_all(struct efx_nic *efx)
1161 {
1162 	struct efx_channel *channel;
1163 
1164 	efx_for_each_channel(channel, efx)
1165 		efx_remove_channel(channel);
1166 	efx_remove_port(efx);
1167 	efx_remove_nic(efx);
1168 }
1169 
1170 /* A convinience function to safely flush all the queues */
efx_flush_queues(struct efx_nic * efx)1171 void efx_flush_queues(struct efx_nic *efx)
1172 {
1173 	EFX_ASSERT_RESET_SERIALISED(efx);
1174 
1175 	efx_stop_all(efx);
1176 
1177 	efx_fini_channels(efx);
1178 	efx_init_channels(efx);
1179 
1180 	efx_start_all(efx);
1181 }
1182 
1183 /**************************************************************************
1184  *
1185  * Interrupt moderation
1186  *
1187  **************************************************************************/
1188 
1189 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,int tx_usecs,int rx_usecs)1190 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1191 {
1192 	struct efx_tx_queue *tx_queue;
1193 	struct efx_rx_queue *rx_queue;
1194 
1195 	EFX_ASSERT_RESET_SERIALISED(efx);
1196 
1197 	efx_for_each_tx_queue(tx_queue, efx)
1198 		tx_queue->channel->irq_moderation = tx_usecs;
1199 
1200 	efx_for_each_rx_queue(rx_queue, efx)
1201 		rx_queue->channel->irq_moderation = rx_usecs;
1202 }
1203 
1204 /**************************************************************************
1205  *
1206  * Hardware monitor
1207  *
1208  **************************************************************************/
1209 
1210 /* Run periodically off the general workqueue. Serialised against
1211  * efx_reconfigure_port via the mac_lock */
efx_monitor(struct work_struct * data)1212 static void efx_monitor(struct work_struct *data)
1213 {
1214 	struct efx_nic *efx = container_of(data, struct efx_nic,
1215 					   monitor_work.work);
1216 	int rc;
1217 
1218 	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1219 		  raw_smp_processor_id());
1220 
1221 	/* If the mac_lock is already held then it is likely a port
1222 	 * reconfiguration is already in place, which will likely do
1223 	 * most of the work of check_hw() anyway. */
1224 	if (!mutex_trylock(&efx->mac_lock))
1225 		goto out_requeue;
1226 	if (!efx->port_enabled)
1227 		goto out_unlock;
1228 	rc = efx->board_info.monitor(efx);
1229 	if (rc) {
1230 		EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1231 			(rc == -ERANGE) ? "reported fault" : "failed");
1232 		efx->phy_mode |= PHY_MODE_LOW_POWER;
1233 		falcon_sim_phy_event(efx);
1234 	}
1235 	efx->phy_op->poll(efx);
1236 	efx->mac_op->poll(efx);
1237 
1238 out_unlock:
1239 	mutex_unlock(&efx->mac_lock);
1240 out_requeue:
1241 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1242 			   efx_monitor_interval);
1243 }
1244 
1245 /**************************************************************************
1246  *
1247  * ioctls
1248  *
1249  *************************************************************************/
1250 
1251 /* Net device ioctl
1252  * Context: process, rtnl_lock() held.
1253  */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)1254 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1255 {
1256 	struct efx_nic *efx = netdev_priv(net_dev);
1257 
1258 	EFX_ASSERT_RESET_SERIALISED(efx);
1259 
1260 	return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1261 }
1262 
1263 /**************************************************************************
1264  *
1265  * NAPI interface
1266  *
1267  **************************************************************************/
1268 
efx_init_napi(struct efx_nic * efx)1269 static int efx_init_napi(struct efx_nic *efx)
1270 {
1271 	struct efx_channel *channel;
1272 	int rc;
1273 
1274 	efx_for_each_channel(channel, efx) {
1275 		channel->napi_dev = efx->net_dev;
1276 		rc = efx_lro_init(&channel->lro_mgr, efx);
1277 		if (rc)
1278 			goto err;
1279 	}
1280 	return 0;
1281  err:
1282 	efx_fini_napi(efx);
1283 	return rc;
1284 }
1285 
efx_fini_napi(struct efx_nic * efx)1286 static void efx_fini_napi(struct efx_nic *efx)
1287 {
1288 	struct efx_channel *channel;
1289 
1290 	efx_for_each_channel(channel, efx) {
1291 		efx_lro_fini(&channel->lro_mgr);
1292 		channel->napi_dev = NULL;
1293 	}
1294 }
1295 
1296 /**************************************************************************
1297  *
1298  * Kernel netpoll interface
1299  *
1300  *************************************************************************/
1301 
1302 #ifdef CONFIG_NET_POLL_CONTROLLER
1303 
1304 /* Although in the common case interrupts will be disabled, this is not
1305  * guaranteed. However, all our work happens inside the NAPI callback,
1306  * so no locking is required.
1307  */
efx_netpoll(struct net_device * net_dev)1308 static void efx_netpoll(struct net_device *net_dev)
1309 {
1310 	struct efx_nic *efx = netdev_priv(net_dev);
1311 	struct efx_channel *channel;
1312 
1313 	efx_for_each_channel(channel, efx)
1314 		efx_schedule_channel(channel);
1315 }
1316 
1317 #endif
1318 
1319 /**************************************************************************
1320  *
1321  * Kernel net device interface
1322  *
1323  *************************************************************************/
1324 
1325 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)1326 static int efx_net_open(struct net_device *net_dev)
1327 {
1328 	struct efx_nic *efx = netdev_priv(net_dev);
1329 	EFX_ASSERT_RESET_SERIALISED(efx);
1330 
1331 	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1332 		raw_smp_processor_id());
1333 
1334 	if (efx->state == STATE_DISABLED)
1335 		return -EIO;
1336 	if (efx->phy_mode & PHY_MODE_SPECIAL)
1337 		return -EBUSY;
1338 
1339 	efx_start_all(efx);
1340 	return 0;
1341 }
1342 
1343 /* Context: process, rtnl_lock() held.
1344  * Note that the kernel will ignore our return code; this method
1345  * should really be a void.
1346  */
efx_net_stop(struct net_device * net_dev)1347 static int efx_net_stop(struct net_device *net_dev)
1348 {
1349 	struct efx_nic *efx = netdev_priv(net_dev);
1350 
1351 	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1352 		raw_smp_processor_id());
1353 
1354 	if (efx->state != STATE_DISABLED) {
1355 		/* Stop the device and flush all the channels */
1356 		efx_stop_all(efx);
1357 		efx_fini_channels(efx);
1358 		efx_init_channels(efx);
1359 	}
1360 
1361 	return 0;
1362 }
1363 
efx_stats_disable(struct efx_nic * efx)1364 void efx_stats_disable(struct efx_nic *efx)
1365 {
1366 	spin_lock(&efx->stats_lock);
1367 	++efx->stats_disable_count;
1368 	spin_unlock(&efx->stats_lock);
1369 }
1370 
efx_stats_enable(struct efx_nic * efx)1371 void efx_stats_enable(struct efx_nic *efx)
1372 {
1373 	spin_lock(&efx->stats_lock);
1374 	--efx->stats_disable_count;
1375 	spin_unlock(&efx->stats_lock);
1376 }
1377 
1378 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_net_stats(struct net_device * net_dev)1379 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1380 {
1381 	struct efx_nic *efx = netdev_priv(net_dev);
1382 	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1383 	struct net_device_stats *stats = &net_dev->stats;
1384 
1385 	/* Update stats if possible, but do not wait if another thread
1386 	 * is updating them or if MAC stats fetches are temporarily
1387 	 * disabled; slightly stale stats are acceptable.
1388 	 */
1389 	if (!spin_trylock(&efx->stats_lock))
1390 		return stats;
1391 	if (!efx->stats_disable_count) {
1392 		efx->mac_op->update_stats(efx);
1393 		falcon_update_nic_stats(efx);
1394 	}
1395 	spin_unlock(&efx->stats_lock);
1396 
1397 	stats->rx_packets = mac_stats->rx_packets;
1398 	stats->tx_packets = mac_stats->tx_packets;
1399 	stats->rx_bytes = mac_stats->rx_bytes;
1400 	stats->tx_bytes = mac_stats->tx_bytes;
1401 	stats->multicast = mac_stats->rx_multicast;
1402 	stats->collisions = mac_stats->tx_collision;
1403 	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1404 				   mac_stats->rx_length_error);
1405 	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1406 	stats->rx_crc_errors = mac_stats->rx_bad;
1407 	stats->rx_frame_errors = mac_stats->rx_align_error;
1408 	stats->rx_fifo_errors = mac_stats->rx_overflow;
1409 	stats->rx_missed_errors = mac_stats->rx_missed;
1410 	stats->tx_window_errors = mac_stats->tx_late_collision;
1411 
1412 	stats->rx_errors = (stats->rx_length_errors +
1413 			    stats->rx_over_errors +
1414 			    stats->rx_crc_errors +
1415 			    stats->rx_frame_errors +
1416 			    stats->rx_fifo_errors +
1417 			    stats->rx_missed_errors +
1418 			    mac_stats->rx_symbol_error);
1419 	stats->tx_errors = (stats->tx_window_errors +
1420 			    mac_stats->tx_bad);
1421 
1422 	return stats;
1423 }
1424 
1425 /* Context: netif_tx_lock held, BHs disabled. */
efx_watchdog(struct net_device * net_dev)1426 static void efx_watchdog(struct net_device *net_dev)
1427 {
1428 	struct efx_nic *efx = netdev_priv(net_dev);
1429 
1430 	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1431 		" resetting channels\n",
1432 		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1433 
1434 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1435 }
1436 
1437 
1438 /* Context: process, rtnl_lock() held. */
efx_change_mtu(struct net_device * net_dev,int new_mtu)1439 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1440 {
1441 	struct efx_nic *efx = netdev_priv(net_dev);
1442 	int rc = 0;
1443 
1444 	EFX_ASSERT_RESET_SERIALISED(efx);
1445 
1446 	if (new_mtu > EFX_MAX_MTU)
1447 		return -EINVAL;
1448 
1449 	efx_stop_all(efx);
1450 
1451 	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1452 
1453 	efx_fini_channels(efx);
1454 	net_dev->mtu = new_mtu;
1455 	efx_init_channels(efx);
1456 
1457 	efx_start_all(efx);
1458 	return rc;
1459 }
1460 
efx_set_mac_address(struct net_device * net_dev,void * data)1461 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1462 {
1463 	struct efx_nic *efx = netdev_priv(net_dev);
1464 	struct sockaddr *addr = data;
1465 	char *new_addr = addr->sa_data;
1466 
1467 	EFX_ASSERT_RESET_SERIALISED(efx);
1468 
1469 	if (!is_valid_ether_addr(new_addr)) {
1470 		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1471 			new_addr);
1472 		return -EINVAL;
1473 	}
1474 
1475 	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1476 
1477 	/* Reconfigure the MAC */
1478 	efx_reconfigure_port(efx);
1479 
1480 	return 0;
1481 }
1482 
1483 /* Context: netif_addr_lock held, BHs disabled. */
efx_set_multicast_list(struct net_device * net_dev)1484 static void efx_set_multicast_list(struct net_device *net_dev)
1485 {
1486 	struct efx_nic *efx = netdev_priv(net_dev);
1487 	struct dev_mc_list *mc_list = net_dev->mc_list;
1488 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1489 	bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1490 	bool changed = (efx->promiscuous != promiscuous);
1491 	u32 crc;
1492 	int bit;
1493 	int i;
1494 
1495 	efx->promiscuous = promiscuous;
1496 
1497 	/* Build multicast hash table */
1498 	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1499 		memset(mc_hash, 0xff, sizeof(*mc_hash));
1500 	} else {
1501 		memset(mc_hash, 0x00, sizeof(*mc_hash));
1502 		for (i = 0; i < net_dev->mc_count; i++) {
1503 			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1504 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1505 			set_bit_le(bit, mc_hash->byte);
1506 			mc_list = mc_list->next;
1507 		}
1508 	}
1509 
1510 	if (!efx->port_enabled)
1511 		/* Delay pushing settings until efx_start_port() */
1512 		return;
1513 
1514 	if (changed)
1515 		queue_work(efx->workqueue, &efx->phy_work);
1516 
1517 	/* Create and activate new global multicast hash table */
1518 	falcon_set_multicast_hash(efx);
1519 }
1520 
1521 static const struct net_device_ops efx_netdev_ops = {
1522 	.ndo_open		= efx_net_open,
1523 	.ndo_stop		= efx_net_stop,
1524 	.ndo_get_stats		= efx_net_stats,
1525 	.ndo_tx_timeout		= efx_watchdog,
1526 	.ndo_start_xmit		= efx_hard_start_xmit,
1527 	.ndo_validate_addr	= eth_validate_addr,
1528 	.ndo_do_ioctl		= efx_ioctl,
1529 	.ndo_change_mtu		= efx_change_mtu,
1530 	.ndo_set_mac_address	= efx_set_mac_address,
1531 	.ndo_set_multicast_list = efx_set_multicast_list,
1532 #ifdef CONFIG_NET_POLL_CONTROLLER
1533 	.ndo_poll_controller = efx_netpoll,
1534 #endif
1535 };
1536 
efx_update_name(struct efx_nic * efx)1537 static void efx_update_name(struct efx_nic *efx)
1538 {
1539 	strcpy(efx->name, efx->net_dev->name);
1540 	efx_mtd_rename(efx);
1541 	efx_set_channel_names(efx);
1542 }
1543 
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1544 static int efx_netdev_event(struct notifier_block *this,
1545 			    unsigned long event, void *ptr)
1546 {
1547 	struct net_device *net_dev = ptr;
1548 
1549 	if (net_dev->netdev_ops == &efx_netdev_ops &&
1550 	    event == NETDEV_CHANGENAME)
1551 		efx_update_name(netdev_priv(net_dev));
1552 
1553 	return NOTIFY_DONE;
1554 }
1555 
1556 static struct notifier_block efx_netdev_notifier = {
1557 	.notifier_call = efx_netdev_event,
1558 };
1559 
1560 static ssize_t
show_phy_type(struct device * dev,struct device_attribute * attr,char * buf)1561 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1562 {
1563 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1564 	return sprintf(buf, "%d\n", efx->phy_type);
1565 }
1566 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1567 
efx_register_netdev(struct efx_nic * efx)1568 static int efx_register_netdev(struct efx_nic *efx)
1569 {
1570 	struct net_device *net_dev = efx->net_dev;
1571 	int rc;
1572 
1573 	net_dev->watchdog_timeo = 5 * HZ;
1574 	net_dev->irq = efx->pci_dev->irq;
1575 	net_dev->netdev_ops = &efx_netdev_ops;
1576 	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1577 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1578 
1579 	/* Always start with carrier off; PHY events will detect the link */
1580 	netif_carrier_off(efx->net_dev);
1581 
1582 	/* Clear MAC statistics */
1583 	efx->mac_op->update_stats(efx);
1584 	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1585 
1586 	rc = register_netdev(net_dev);
1587 	if (rc) {
1588 		EFX_ERR(efx, "could not register net dev\n");
1589 		return rc;
1590 	}
1591 
1592 	rtnl_lock();
1593 	efx_update_name(efx);
1594 	rtnl_unlock();
1595 
1596 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1597 	if (rc) {
1598 		EFX_ERR(efx, "failed to init net dev attributes\n");
1599 		goto fail_registered;
1600 	}
1601 
1602 	return 0;
1603 
1604 fail_registered:
1605 	unregister_netdev(net_dev);
1606 	return rc;
1607 }
1608 
efx_unregister_netdev(struct efx_nic * efx)1609 static void efx_unregister_netdev(struct efx_nic *efx)
1610 {
1611 	struct efx_tx_queue *tx_queue;
1612 
1613 	if (!efx->net_dev)
1614 		return;
1615 
1616 	BUG_ON(netdev_priv(efx->net_dev) != efx);
1617 
1618 	/* Free up any skbs still remaining. This has to happen before
1619 	 * we try to unregister the netdev as running their destructors
1620 	 * may be needed to get the device ref. count to 0. */
1621 	efx_for_each_tx_queue(tx_queue, efx)
1622 		efx_release_tx_buffers(tx_queue);
1623 
1624 	if (efx_dev_registered(efx)) {
1625 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1626 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1627 		unregister_netdev(efx->net_dev);
1628 	}
1629 }
1630 
1631 /**************************************************************************
1632  *
1633  * Device reset and suspend
1634  *
1635  **************************************************************************/
1636 
1637 /* Tears down the entire software state and most of the hardware state
1638  * before reset.  */
efx_reset_down(struct efx_nic * efx,enum reset_type method,struct ethtool_cmd * ecmd)1639 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1640 		    struct ethtool_cmd *ecmd)
1641 {
1642 	EFX_ASSERT_RESET_SERIALISED(efx);
1643 
1644 	efx_stats_disable(efx);
1645 	efx_stop_all(efx);
1646 	mutex_lock(&efx->mac_lock);
1647 	mutex_lock(&efx->spi_lock);
1648 
1649 	efx->phy_op->get_settings(efx, ecmd);
1650 
1651 	efx_fini_channels(efx);
1652 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1653 		efx->phy_op->fini(efx);
1654 }
1655 
1656 /* This function will always ensure that the locks acquired in
1657  * efx_reset_down() are released. A failure return code indicates
1658  * that we were unable to reinitialise the hardware, and the
1659  * driver should be disabled. If ok is false, then the rx and tx
1660  * engines are not restarted, pending a RESET_DISABLE. */
efx_reset_up(struct efx_nic * efx,enum reset_type method,struct ethtool_cmd * ecmd,bool ok)1661 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1662 		 struct ethtool_cmd *ecmd, bool ok)
1663 {
1664 	int rc;
1665 
1666 	EFX_ASSERT_RESET_SERIALISED(efx);
1667 
1668 	rc = falcon_init_nic(efx);
1669 	if (rc) {
1670 		EFX_ERR(efx, "failed to initialise NIC\n");
1671 		ok = false;
1672 	}
1673 
1674 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1675 		if (ok) {
1676 			rc = efx->phy_op->init(efx);
1677 			if (rc)
1678 				ok = false;
1679 		} else
1680 			efx->port_initialized = false;
1681 	}
1682 
1683 	if (ok) {
1684 		efx_init_channels(efx);
1685 
1686 		if (efx->phy_op->set_settings(efx, ecmd))
1687 			EFX_ERR(efx, "could not restore PHY settings\n");
1688 	}
1689 
1690 	mutex_unlock(&efx->spi_lock);
1691 	mutex_unlock(&efx->mac_lock);
1692 
1693 	if (ok) {
1694 		efx_start_all(efx);
1695 		efx_stats_enable(efx);
1696 	}
1697 	return rc;
1698 }
1699 
1700 /* Reset the NIC as transparently as possible. Do not reset the PHY
1701  * Note that the reset may fail, in which case the card will be left
1702  * in a most-probably-unusable state.
1703  *
1704  * This function will sleep.  You cannot reset from within an atomic
1705  * state; use efx_schedule_reset() instead.
1706  *
1707  * Grabs the rtnl_lock.
1708  */
efx_reset(struct efx_nic * efx)1709 static int efx_reset(struct efx_nic *efx)
1710 {
1711 	struct ethtool_cmd ecmd;
1712 	enum reset_type method = efx->reset_pending;
1713 	int rc = 0;
1714 
1715 	/* Serialise with kernel interfaces */
1716 	rtnl_lock();
1717 
1718 	/* If we're not RUNNING then don't reset. Leave the reset_pending
1719 	 * flag set so that efx_pci_probe_main will be retried */
1720 	if (efx->state != STATE_RUNNING) {
1721 		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1722 		goto out_unlock;
1723 	}
1724 
1725 	EFX_INFO(efx, "resetting (%d)\n", method);
1726 
1727 	efx_reset_down(efx, method, &ecmd);
1728 
1729 	rc = falcon_reset_hw(efx, method);
1730 	if (rc) {
1731 		EFX_ERR(efx, "failed to reset hardware\n");
1732 		goto out_disable;
1733 	}
1734 
1735 	/* Allow resets to be rescheduled. */
1736 	efx->reset_pending = RESET_TYPE_NONE;
1737 
1738 	/* Reinitialise bus-mastering, which may have been turned off before
1739 	 * the reset was scheduled. This is still appropriate, even in the
1740 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1741 	 * can respond to requests. */
1742 	pci_set_master(efx->pci_dev);
1743 
1744 	/* Leave device stopped if necessary */
1745 	if (method == RESET_TYPE_DISABLE) {
1746 		efx_reset_up(efx, method, &ecmd, false);
1747 		rc = -EIO;
1748 	} else {
1749 		rc = efx_reset_up(efx, method, &ecmd, true);
1750 	}
1751 
1752 out_disable:
1753 	if (rc) {
1754 		EFX_ERR(efx, "has been disabled\n");
1755 		efx->state = STATE_DISABLED;
1756 		dev_close(efx->net_dev);
1757 	} else {
1758 		EFX_LOG(efx, "reset complete\n");
1759 	}
1760 
1761 out_unlock:
1762 	rtnl_unlock();
1763 	return rc;
1764 }
1765 
1766 /* The worker thread exists so that code that cannot sleep can
1767  * schedule a reset for later.
1768  */
efx_reset_work(struct work_struct * data)1769 static void efx_reset_work(struct work_struct *data)
1770 {
1771 	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1772 
1773 	efx_reset(nic);
1774 }
1775 
efx_schedule_reset(struct efx_nic * efx,enum reset_type type)1776 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1777 {
1778 	enum reset_type method;
1779 
1780 	if (efx->reset_pending != RESET_TYPE_NONE) {
1781 		EFX_INFO(efx, "quenching already scheduled reset\n");
1782 		return;
1783 	}
1784 
1785 	switch (type) {
1786 	case RESET_TYPE_INVISIBLE:
1787 	case RESET_TYPE_ALL:
1788 	case RESET_TYPE_WORLD:
1789 	case RESET_TYPE_DISABLE:
1790 		method = type;
1791 		break;
1792 	case RESET_TYPE_RX_RECOVERY:
1793 	case RESET_TYPE_RX_DESC_FETCH:
1794 	case RESET_TYPE_TX_DESC_FETCH:
1795 	case RESET_TYPE_TX_SKIP:
1796 		method = RESET_TYPE_INVISIBLE;
1797 		break;
1798 	default:
1799 		method = RESET_TYPE_ALL;
1800 		break;
1801 	}
1802 
1803 	if (method != type)
1804 		EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1805 	else
1806 		EFX_LOG(efx, "scheduling reset (%d)\n", method);
1807 
1808 	efx->reset_pending = method;
1809 
1810 	queue_work(reset_workqueue, &efx->reset_work);
1811 }
1812 
1813 /**************************************************************************
1814  *
1815  * List of NICs we support
1816  *
1817  **************************************************************************/
1818 
1819 /* PCI device ID table */
1820 static struct pci_device_id efx_pci_table[] __devinitdata = {
1821 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1822 	 .driver_data = (unsigned long) &falcon_a_nic_type},
1823 	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1824 	 .driver_data = (unsigned long) &falcon_b_nic_type},
1825 	{0}			/* end of list */
1826 };
1827 
1828 /**************************************************************************
1829  *
1830  * Dummy PHY/MAC/Board operations
1831  *
1832  * Can be used for some unimplemented operations
1833  * Needed so all function pointers are valid and do not have to be tested
1834  * before use
1835  *
1836  **************************************************************************/
efx_port_dummy_op_int(struct efx_nic * efx)1837 int efx_port_dummy_op_int(struct efx_nic *efx)
1838 {
1839 	return 0;
1840 }
efx_port_dummy_op_void(struct efx_nic * efx)1841 void efx_port_dummy_op_void(struct efx_nic *efx) {}
efx_port_dummy_op_blink(struct efx_nic * efx,bool blink)1842 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1843 
1844 static struct efx_mac_operations efx_dummy_mac_operations = {
1845 	.reconfigure	= efx_port_dummy_op_void,
1846 	.poll		= efx_port_dummy_op_void,
1847 	.irq		= efx_port_dummy_op_void,
1848 };
1849 
1850 static struct efx_phy_operations efx_dummy_phy_operations = {
1851 	.init		 = efx_port_dummy_op_int,
1852 	.reconfigure	 = efx_port_dummy_op_void,
1853 	.poll		 = efx_port_dummy_op_void,
1854 	.fini		 = efx_port_dummy_op_void,
1855 	.clear_interrupt = efx_port_dummy_op_void,
1856 };
1857 
1858 static struct efx_board efx_dummy_board_info = {
1859 	.init		= efx_port_dummy_op_int,
1860 	.init_leds	= efx_port_dummy_op_int,
1861 	.set_fault_led	= efx_port_dummy_op_blink,
1862 	.monitor	= efx_port_dummy_op_int,
1863 	.blink		= efx_port_dummy_op_blink,
1864 	.fini		= efx_port_dummy_op_void,
1865 };
1866 
1867 /**************************************************************************
1868  *
1869  * Data housekeeping
1870  *
1871  **************************************************************************/
1872 
1873 /* This zeroes out and then fills in the invariants in a struct
1874  * efx_nic (including all sub-structures).
1875  */
efx_init_struct(struct efx_nic * efx,struct efx_nic_type * type,struct pci_dev * pci_dev,struct net_device * net_dev)1876 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1877 			   struct pci_dev *pci_dev, struct net_device *net_dev)
1878 {
1879 	struct efx_channel *channel;
1880 	struct efx_tx_queue *tx_queue;
1881 	struct efx_rx_queue *rx_queue;
1882 	int i;
1883 
1884 	/* Initialise common structures */
1885 	memset(efx, 0, sizeof(*efx));
1886 	spin_lock_init(&efx->biu_lock);
1887 	spin_lock_init(&efx->phy_lock);
1888 	mutex_init(&efx->spi_lock);
1889 	INIT_WORK(&efx->reset_work, efx_reset_work);
1890 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1891 	efx->pci_dev = pci_dev;
1892 	efx->state = STATE_INIT;
1893 	efx->reset_pending = RESET_TYPE_NONE;
1894 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1895 	efx->board_info = efx_dummy_board_info;
1896 
1897 	efx->net_dev = net_dev;
1898 	efx->rx_checksum_enabled = true;
1899 	spin_lock_init(&efx->netif_stop_lock);
1900 	spin_lock_init(&efx->stats_lock);
1901 	efx->stats_disable_count = 1;
1902 	mutex_init(&efx->mac_lock);
1903 	efx->mac_op = &efx_dummy_mac_operations;
1904 	efx->phy_op = &efx_dummy_phy_operations;
1905 	efx->mii.dev = net_dev;
1906 	INIT_WORK(&efx->phy_work, efx_phy_work);
1907 	INIT_WORK(&efx->mac_work, efx_mac_work);
1908 	atomic_set(&efx->netif_stop_count, 1);
1909 
1910 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1911 		channel = &efx->channel[i];
1912 		channel->efx = efx;
1913 		channel->channel = i;
1914 		channel->work_pending = false;
1915 	}
1916 	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1917 		tx_queue = &efx->tx_queue[i];
1918 		tx_queue->efx = efx;
1919 		tx_queue->queue = i;
1920 		tx_queue->buffer = NULL;
1921 		tx_queue->channel = &efx->channel[0]; /* for safety */
1922 		tx_queue->tso_headers_free = NULL;
1923 	}
1924 	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1925 		rx_queue = &efx->rx_queue[i];
1926 		rx_queue->efx = efx;
1927 		rx_queue->queue = i;
1928 		rx_queue->channel = &efx->channel[0]; /* for safety */
1929 		rx_queue->buffer = NULL;
1930 		spin_lock_init(&rx_queue->add_lock);
1931 		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1932 	}
1933 
1934 	efx->type = type;
1935 
1936 	/* Sanity-check NIC type */
1937 	EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1938 			    (efx->type->txd_ring_mask + 1));
1939 	EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1940 			    (efx->type->rxd_ring_mask + 1));
1941 	EFX_BUG_ON_PARANOID(efx->type->evq_size &
1942 			    (efx->type->evq_size - 1));
1943 	/* As close as we can get to guaranteeing that we don't overflow */
1944 	EFX_BUG_ON_PARANOID(efx->type->evq_size <
1945 			    (efx->type->txd_ring_mask + 1 +
1946 			     efx->type->rxd_ring_mask + 1));
1947 	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1948 
1949 	/* Higher numbered interrupt modes are less capable! */
1950 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1951 				  interrupt_mode);
1952 
1953 	/* Would be good to use the net_dev name, but we're too early */
1954 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1955 		 pci_name(pci_dev));
1956 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1957 	if (!efx->workqueue)
1958 		return -ENOMEM;
1959 
1960 	return 0;
1961 }
1962 
efx_fini_struct(struct efx_nic * efx)1963 static void efx_fini_struct(struct efx_nic *efx)
1964 {
1965 	if (efx->workqueue) {
1966 		destroy_workqueue(efx->workqueue);
1967 		efx->workqueue = NULL;
1968 	}
1969 }
1970 
1971 /**************************************************************************
1972  *
1973  * PCI interface
1974  *
1975  **************************************************************************/
1976 
1977 /* Main body of final NIC shutdown code
1978  * This is called only at module unload (or hotplug removal).
1979  */
efx_pci_remove_main(struct efx_nic * efx)1980 static void efx_pci_remove_main(struct efx_nic *efx)
1981 {
1982 	EFX_ASSERT_RESET_SERIALISED(efx);
1983 
1984 	/* Skip everything if we never obtained a valid membase */
1985 	if (!efx->membase)
1986 		return;
1987 
1988 	efx_fini_channels(efx);
1989 	efx_fini_port(efx);
1990 
1991 	/* Shutdown the board, then the NIC and board state */
1992 	efx->board_info.fini(efx);
1993 	falcon_fini_interrupt(efx);
1994 
1995 	efx_fini_napi(efx);
1996 	efx_remove_all(efx);
1997 }
1998 
1999 /* Final NIC shutdown
2000  * This is called only at module unload (or hotplug removal).
2001  */
efx_pci_remove(struct pci_dev * pci_dev)2002 static void efx_pci_remove(struct pci_dev *pci_dev)
2003 {
2004 	struct efx_nic *efx;
2005 
2006 	efx = pci_get_drvdata(pci_dev);
2007 	if (!efx)
2008 		return;
2009 
2010 	/* Mark the NIC as fini, then stop the interface */
2011 	rtnl_lock();
2012 	efx->state = STATE_FINI;
2013 	dev_close(efx->net_dev);
2014 
2015 	/* Allow any queued efx_resets() to complete */
2016 	rtnl_unlock();
2017 
2018 	if (efx->membase == NULL)
2019 		goto out;
2020 
2021 	efx_unregister_netdev(efx);
2022 
2023 	efx_mtd_remove(efx);
2024 
2025 	/* Wait for any scheduled resets to complete. No more will be
2026 	 * scheduled from this point because efx_stop_all() has been
2027 	 * called, we are no longer registered with driverlink, and
2028 	 * the net_device's have been removed. */
2029 	cancel_work_sync(&efx->reset_work);
2030 
2031 	efx_pci_remove_main(efx);
2032 
2033 out:
2034 	efx_fini_io(efx);
2035 	EFX_LOG(efx, "shutdown successful\n");
2036 
2037 	pci_set_drvdata(pci_dev, NULL);
2038 	efx_fini_struct(efx);
2039 	free_netdev(efx->net_dev);
2040 };
2041 
2042 /* Main body of NIC initialisation
2043  * This is called at module load (or hotplug insertion, theoretically).
2044  */
efx_pci_probe_main(struct efx_nic * efx)2045 static int efx_pci_probe_main(struct efx_nic *efx)
2046 {
2047 	int rc;
2048 
2049 	/* Do start-of-day initialisation */
2050 	rc = efx_probe_all(efx);
2051 	if (rc)
2052 		goto fail1;
2053 
2054 	rc = efx_init_napi(efx);
2055 	if (rc)
2056 		goto fail2;
2057 
2058 	/* Initialise the board */
2059 	rc = efx->board_info.init(efx);
2060 	if (rc) {
2061 		EFX_ERR(efx, "failed to initialise board\n");
2062 		goto fail3;
2063 	}
2064 
2065 	rc = falcon_init_nic(efx);
2066 	if (rc) {
2067 		EFX_ERR(efx, "failed to initialise NIC\n");
2068 		goto fail4;
2069 	}
2070 
2071 	rc = efx_init_port(efx);
2072 	if (rc) {
2073 		EFX_ERR(efx, "failed to initialise port\n");
2074 		goto fail5;
2075 	}
2076 
2077 	efx_init_channels(efx);
2078 
2079 	rc = falcon_init_interrupt(efx);
2080 	if (rc)
2081 		goto fail6;
2082 
2083 	return 0;
2084 
2085  fail6:
2086 	efx_fini_channels(efx);
2087 	efx_fini_port(efx);
2088  fail5:
2089  fail4:
2090 	efx->board_info.fini(efx);
2091  fail3:
2092 	efx_fini_napi(efx);
2093  fail2:
2094 	efx_remove_all(efx);
2095  fail1:
2096 	return rc;
2097 }
2098 
2099 /* NIC initialisation
2100  *
2101  * This is called at module load (or hotplug insertion,
2102  * theoretically).  It sets up PCI mappings, tests and resets the NIC,
2103  * sets up and registers the network devices with the kernel and hooks
2104  * the interrupt service routine.  It does not prepare the device for
2105  * transmission; this is left to the first time one of the network
2106  * interfaces is brought up (i.e. efx_net_open).
2107  */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)2108 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2109 				   const struct pci_device_id *entry)
2110 {
2111 	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2112 	struct net_device *net_dev;
2113 	struct efx_nic *efx;
2114 	int i, rc;
2115 
2116 	/* Allocate and initialise a struct net_device and struct efx_nic */
2117 	net_dev = alloc_etherdev(sizeof(*efx));
2118 	if (!net_dev)
2119 		return -ENOMEM;
2120 	net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2121 			      NETIF_F_HIGHDMA | NETIF_F_TSO);
2122 	if (lro)
2123 		net_dev->features |= NETIF_F_LRO;
2124 	/* Mask for features that also apply to VLAN devices */
2125 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2126 				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2127 	efx = netdev_priv(net_dev);
2128 	pci_set_drvdata(pci_dev, efx);
2129 	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2130 	if (rc)
2131 		goto fail1;
2132 
2133 	EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2134 
2135 	/* Set up basic I/O (BAR mappings etc) */
2136 	rc = efx_init_io(efx);
2137 	if (rc)
2138 		goto fail2;
2139 
2140 	/* No serialisation is required with the reset path because
2141 	 * we're in STATE_INIT. */
2142 	for (i = 0; i < 5; i++) {
2143 		rc = efx_pci_probe_main(efx);
2144 
2145 		/* Serialise against efx_reset(). No more resets will be
2146 		 * scheduled since efx_stop_all() has been called, and we
2147 		 * have not and never have been registered with either
2148 		 * the rtnetlink or driverlink layers. */
2149 		cancel_work_sync(&efx->reset_work);
2150 
2151 		if (rc == 0) {
2152 			if (efx->reset_pending != RESET_TYPE_NONE) {
2153 				/* If there was a scheduled reset during
2154 				 * probe, the NIC is probably hosed anyway */
2155 				efx_pci_remove_main(efx);
2156 				rc = -EIO;
2157 			} else {
2158 				break;
2159 			}
2160 		}
2161 
2162 		/* Retry if a recoverably reset event has been scheduled */
2163 		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2164 		    (efx->reset_pending != RESET_TYPE_ALL))
2165 			goto fail3;
2166 
2167 		efx->reset_pending = RESET_TYPE_NONE;
2168 	}
2169 
2170 	if (rc) {
2171 		EFX_ERR(efx, "Could not reset NIC\n");
2172 		goto fail4;
2173 	}
2174 
2175 	/* Switch to the running state before we expose the device to
2176 	 * the OS.  This is to ensure that the initial gathering of
2177 	 * MAC stats succeeds. */
2178 	efx->state = STATE_RUNNING;
2179 
2180 	efx_mtd_probe(efx); /* allowed to fail */
2181 
2182 	rc = efx_register_netdev(efx);
2183 	if (rc)
2184 		goto fail5;
2185 
2186 	EFX_LOG(efx, "initialisation successful\n");
2187 	return 0;
2188 
2189  fail5:
2190 	efx_pci_remove_main(efx);
2191  fail4:
2192  fail3:
2193 	efx_fini_io(efx);
2194  fail2:
2195 	efx_fini_struct(efx);
2196  fail1:
2197 	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2198 	free_netdev(net_dev);
2199 	return rc;
2200 }
2201 
2202 static struct pci_driver efx_pci_driver = {
2203 	.name		= EFX_DRIVER_NAME,
2204 	.id_table	= efx_pci_table,
2205 	.probe		= efx_pci_probe,
2206 	.remove		= efx_pci_remove,
2207 };
2208 
2209 /**************************************************************************
2210  *
2211  * Kernel module interface
2212  *
2213  *************************************************************************/
2214 
2215 module_param(interrupt_mode, uint, 0444);
2216 MODULE_PARM_DESC(interrupt_mode,
2217 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2218 
efx_init_module(void)2219 static int __init efx_init_module(void)
2220 {
2221 	int rc;
2222 
2223 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2224 
2225 	rc = register_netdevice_notifier(&efx_netdev_notifier);
2226 	if (rc)
2227 		goto err_notifier;
2228 
2229 	refill_workqueue = create_workqueue("sfc_refill");
2230 	if (!refill_workqueue) {
2231 		rc = -ENOMEM;
2232 		goto err_refill;
2233 	}
2234 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2235 	if (!reset_workqueue) {
2236 		rc = -ENOMEM;
2237 		goto err_reset;
2238 	}
2239 
2240 	rc = pci_register_driver(&efx_pci_driver);
2241 	if (rc < 0)
2242 		goto err_pci;
2243 
2244 	return 0;
2245 
2246  err_pci:
2247 	destroy_workqueue(reset_workqueue);
2248  err_reset:
2249 	destroy_workqueue(refill_workqueue);
2250  err_refill:
2251 	unregister_netdevice_notifier(&efx_netdev_notifier);
2252  err_notifier:
2253 	return rc;
2254 }
2255 
efx_exit_module(void)2256 static void __exit efx_exit_module(void)
2257 {
2258 	printk(KERN_INFO "Solarflare NET driver unloading\n");
2259 
2260 	pci_unregister_driver(&efx_pci_driver);
2261 	destroy_workqueue(reset_workqueue);
2262 	destroy_workqueue(refill_workqueue);
2263 	unregister_netdevice_notifier(&efx_netdev_notifier);
2264 
2265 }
2266 
2267 module_init(efx_init_module);
2268 module_exit(efx_exit_module);
2269 
2270 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2271 	      "Solarflare Communications");
2272 MODULE_DESCRIPTION("Solarflare Communications network driver");
2273 MODULE_LICENSE("GPL");
2274 MODULE_DEVICE_TABLE(pci, efx_pci_table);
2275