• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2    Copyright 1999 Silicon Integrated System Corporation
3    Revision:	1.08.10 Apr. 2 2006
4 
5    Modified from the driver which is originally written by Donald Becker.
6 
7    This software may be used and distributed according to the terms
8    of the GNU General Public License (GPL), incorporated herein by reference.
9    Drivers based on this skeleton fall under the GPL and must retain
10    the authorship (implicit copyright) notice.
11 
12    References:
13    SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14    preliminary Rev. 1.0 Jan. 14, 1998
15    SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16    preliminary Rev. 1.0 Nov. 10, 1998
17    SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18    preliminary Rev. 1.0 Jan. 18, 1998
19 
20    Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
21    Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22    Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23    Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24    Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25    Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26    Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27    Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28    Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29    Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30    Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31    Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32    Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33    Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34    Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
35    Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36    Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37    Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38    Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
39    Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40    Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41    Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42    Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43    Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44    Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45    Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46    Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47    Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48    Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49    Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/string.h>
56 #include <linux/timer.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/pci.h>
62 #include <linux/netdevice.h>
63 #include <linux/init.h>
64 #include <linux/mii.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/delay.h>
68 #include <linux/ethtool.h>
69 #include <linux/crc32.h>
70 #include <linux/bitops.h>
71 #include <linux/dma-mapping.h>
72 
73 #include <asm/processor.h>      /* Processor type for cache alignment. */
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h>	/* User space memory access functions */
77 
78 #include "sis900.h"
79 
80 #define SIS900_MODULE_NAME "sis900"
81 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
82 
83 static char version[] __devinitdata =
84 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
85 
86 static int max_interrupt_work = 40;
87 static int multicast_filter_limit = 128;
88 
89 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
90 
91 #define SIS900_DEF_MSG \
92 	(NETIF_MSG_DRV		| \
93 	 NETIF_MSG_LINK		| \
94 	 NETIF_MSG_RX_ERR	| \
95 	 NETIF_MSG_TX_ERR)
96 
97 /* Time in jiffies before concluding the transmitter is hung. */
98 #define TX_TIMEOUT  (4*HZ)
99 
100 enum {
101 	SIS_900 = 0,
102 	SIS_7016
103 };
104 static const char * card_names[] = {
105 	"SiS 900 PCI Fast Ethernet",
106 	"SiS 7016 PCI Fast Ethernet"
107 };
108 static struct pci_device_id sis900_pci_tbl [] = {
109 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
110 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
111 	{PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
112 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
113 	{0,}
114 };
115 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
116 
117 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
118 
119 static const struct mii_chip_info {
120 	const char * name;
121 	u16 phy_id0;
122 	u16 phy_id1;
123 	u8  phy_types;
124 #define	HOME 	0x0001
125 #define LAN	0x0002
126 #define MIX	0x0003
127 #define UNKNOWN	0x0
128 } mii_chip_table[] = {
129 	{ "SiS 900 Internal MII PHY", 		0x001d, 0x8000, LAN },
130 	{ "SiS 7014 Physical Layer Solution", 	0x0016, 0xf830, LAN },
131 	{ "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
132 	{ "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
133 	{ "ADM 7001 LAN PHY",			0x002e, 0xcc60, LAN },
134 	{ "AMD 79C901 10BASE-T PHY",  		0x0000, 0x6B70, LAN },
135 	{ "AMD 79C901 HomePNA PHY",		0x0000, 0x6B90, HOME},
136 	{ "ICS LAN PHY",			0x0015, 0xF440, LAN },
137 	{ "ICS LAN PHY",			0x0143, 0xBC70, LAN },
138 	{ "NS 83851 PHY",			0x2000, 0x5C20, MIX },
139 	{ "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
140 	{ "Realtek RTL8201 PHY",		0x0000, 0x8200, LAN },
141 	{ "VIA 6103 PHY",			0x0101, 0x8f20, LAN },
142 	{NULL,},
143 };
144 
145 struct mii_phy {
146 	struct mii_phy * next;
147 	int phy_addr;
148 	u16 phy_id0;
149 	u16 phy_id1;
150 	u16 status;
151 	u8  phy_types;
152 };
153 
154 typedef struct _BufferDesc {
155 	u32 link;
156 	u32 cmdsts;
157 	u32 bufptr;
158 } BufferDesc;
159 
160 struct sis900_private {
161 	struct pci_dev * pci_dev;
162 
163 	spinlock_t lock;
164 
165 	struct mii_phy * mii;
166 	struct mii_phy * first_mii; /* record the first mii structure */
167 	unsigned int cur_phy;
168 	struct mii_if_info mii_info;
169 
170 	struct timer_list timer; /* Link status detection timer. */
171 	u8 autong_complete; /* 1: auto-negotiate complete  */
172 
173 	u32 msg_enable;
174 
175 	unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
176 	unsigned int cur_tx, dirty_tx;
177 
178 	/* The saved address of a sent/receive-in-place packet buffer */
179 	struct sk_buff *tx_skbuff[NUM_TX_DESC];
180 	struct sk_buff *rx_skbuff[NUM_RX_DESC];
181 	BufferDesc *tx_ring;
182 	BufferDesc *rx_ring;
183 
184 	dma_addr_t tx_ring_dma;
185 	dma_addr_t rx_ring_dma;
186 
187 	unsigned int tx_full; /* The Tx queue is full. */
188 	u8 host_bridge_rev;
189 	u8 chipset_rev;
190 };
191 
192 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
193 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
194 MODULE_LICENSE("GPL");
195 
196 module_param(multicast_filter_limit, int, 0444);
197 module_param(max_interrupt_work, int, 0444);
198 module_param(sis900_debug, int, 0444);
199 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
200 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
201 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
202 
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 static void sis900_poll(struct net_device *dev);
205 #endif
206 static int sis900_open(struct net_device *net_dev);
207 static int sis900_mii_probe (struct net_device * net_dev);
208 static void sis900_init_rxfilter (struct net_device * net_dev);
209 static u16 read_eeprom(long ioaddr, int location);
210 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
211 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
212 static void sis900_timer(unsigned long data);
213 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
214 static void sis900_tx_timeout(struct net_device *net_dev);
215 static void sis900_init_tx_ring(struct net_device *net_dev);
216 static void sis900_init_rx_ring(struct net_device *net_dev);
217 static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
218 static int sis900_rx(struct net_device *net_dev);
219 static void sis900_finish_xmit (struct net_device *net_dev);
220 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
221 static int sis900_close(struct net_device *net_dev);
222 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
223 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
224 static void set_rx_mode(struct net_device *net_dev);
225 static void sis900_reset(struct net_device *net_dev);
226 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
227 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
228 static u16 sis900_default_phy(struct net_device * net_dev);
229 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
230 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
231 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
232 static void sis900_set_mode (long ioaddr, int speed, int duplex);
233 static const struct ethtool_ops sis900_ethtool_ops;
234 
235 /**
236  *	sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
237  *	@pci_dev: the sis900 pci device
238  *	@net_dev: the net device to get address for
239  *
240  *	Older SiS900 and friends, use EEPROM to store MAC address.
241  *	MAC address is read from read_eeprom() into @net_dev->dev_addr.
242  */
243 
sis900_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)244 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
245 {
246 	long ioaddr = pci_resource_start(pci_dev, 0);
247 	u16 signature;
248 	int i;
249 
250 	/* check to see if we have sane EEPROM */
251 	signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
252 	if (signature == 0xffff || signature == 0x0000) {
253 		printk (KERN_WARNING "%s: Error EERPOM read %x\n",
254 			pci_name(pci_dev), signature);
255 		return 0;
256 	}
257 
258 	/* get MAC address from EEPROM */
259 	for (i = 0; i < 3; i++)
260 	        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
261 
262 	return 1;
263 }
264 
265 /**
266  *	sis630e_get_mac_addr - Get MAC address for SiS630E model
267  *	@pci_dev: the sis900 pci device
268  *	@net_dev: the net device to get address for
269  *
270  *	SiS630E model, use APC CMOS RAM to store MAC address.
271  *	APC CMOS RAM is accessed through ISA bridge.
272  *	MAC address is read into @net_dev->dev_addr.
273  */
274 
sis630e_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)275 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
276 					struct net_device *net_dev)
277 {
278 	struct pci_dev *isa_bridge = NULL;
279 	u8 reg;
280 	int i;
281 
282 	isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
283 	if (!isa_bridge)
284 		isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
285 	if (!isa_bridge) {
286 		printk(KERN_WARNING "%s: Can not find ISA bridge\n",
287 		       pci_name(pci_dev));
288 		return 0;
289 	}
290 	pci_read_config_byte(isa_bridge, 0x48, &reg);
291 	pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
292 
293 	for (i = 0; i < 6; i++) {
294 		outb(0x09 + i, 0x70);
295 		((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
296 	}
297 	pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
298 	pci_dev_put(isa_bridge);
299 
300 	return 1;
301 }
302 
303 
304 /**
305  *	sis635_get_mac_addr - Get MAC address for SIS635 model
306  *	@pci_dev: the sis900 pci device
307  *	@net_dev: the net device to get address for
308  *
309  *	SiS635 model, set MAC Reload Bit to load Mac address from APC
310  *	to rfdr. rfdr is accessed through rfcr. MAC address is read into
311  *	@net_dev->dev_addr.
312  */
313 
sis635_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)314 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
315 					struct net_device *net_dev)
316 {
317 	long ioaddr = net_dev->base_addr;
318 	u32 rfcrSave;
319 	u32 i;
320 
321 	rfcrSave = inl(rfcr + ioaddr);
322 
323 	outl(rfcrSave | RELOAD, ioaddr + cr);
324 	outl(0, ioaddr + cr);
325 
326 	/* disable packet filtering before setting filter */
327 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
328 
329 	/* load MAC addr to filter data register */
330 	for (i = 0 ; i < 3 ; i++) {
331 		outl((i << RFADDR_shift), ioaddr + rfcr);
332 		*( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
333 	}
334 
335 	/* enable packet filtering */
336 	outl(rfcrSave | RFEN, rfcr + ioaddr);
337 
338 	return 1;
339 }
340 
341 /**
342  *	sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
343  *	@pci_dev: the sis900 pci device
344  *	@net_dev: the net device to get address for
345  *
346  *	SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
347  *	is shared by
348  *	LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
349  *	and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
350  *	by LAN, otherwise is not. After MAC address is read from EEPROM, send
351  *	EEDONE signal to refuse EEPROM access by LAN.
352  *	The EEPROM map of SiS962 or SiS963 is different to SiS900.
353  *	The signature field in SiS962 or SiS963 spec is meaningless.
354  *	MAC address is read into @net_dev->dev_addr.
355  */
356 
sis96x_get_mac_addr(struct pci_dev * pci_dev,struct net_device * net_dev)357 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
358 					struct net_device *net_dev)
359 {
360 	long ioaddr = net_dev->base_addr;
361 	long ee_addr = ioaddr + mear;
362 	u32 waittime = 0;
363 	int i;
364 
365 	outl(EEREQ, ee_addr);
366 	while(waittime < 2000) {
367 		if(inl(ee_addr) & EEGNT) {
368 
369 			/* get MAC address from EEPROM */
370 			for (i = 0; i < 3; i++)
371 			        ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
372 
373 			outl(EEDONE, ee_addr);
374 			return 1;
375 		} else {
376 			udelay(1);
377 			waittime ++;
378 		}
379 	}
380 	outl(EEDONE, ee_addr);
381 	return 0;
382 }
383 
384 static const struct net_device_ops sis900_netdev_ops = {
385 	.ndo_open		 = sis900_open,
386 	.ndo_stop		= sis900_close,
387 	.ndo_start_xmit		= sis900_start_xmit,
388 	.ndo_set_config		= sis900_set_config,
389 	.ndo_set_multicast_list	= set_rx_mode,
390 	.ndo_change_mtu		= eth_change_mtu,
391 	.ndo_validate_addr	= eth_validate_addr,
392 	.ndo_set_mac_address 	= eth_mac_addr,
393 	.ndo_do_ioctl		= mii_ioctl,
394 	.ndo_tx_timeout		= sis900_tx_timeout,
395 #ifdef CONFIG_NET_POLL_CONTROLLER
396         .ndo_poll_controller	= sis900_poll,
397 #endif
398 };
399 
400 /**
401  *	sis900_probe - Probe for sis900 device
402  *	@pci_dev: the sis900 pci device
403  *	@pci_id: the pci device ID
404  *
405  *	Check and probe sis900 net device for @pci_dev.
406  *	Get mac address according to the chip revision,
407  *	and assign SiS900-specific entries in the device structure.
408  *	ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
409  */
410 
sis900_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_id)411 static int __devinit sis900_probe(struct pci_dev *pci_dev,
412 				const struct pci_device_id *pci_id)
413 {
414 	struct sis900_private *sis_priv;
415 	struct net_device *net_dev;
416 	struct pci_dev *dev;
417 	dma_addr_t ring_dma;
418 	void *ring_space;
419 	long ioaddr;
420 	int i, ret;
421 	const char *card_name = card_names[pci_id->driver_data];
422 	const char *dev_name = pci_name(pci_dev);
423 
424 /* when built into the kernel, we only print version if device is found */
425 #ifndef MODULE
426 	static int printed_version;
427 	if (!printed_version++)
428 		printk(version);
429 #endif
430 
431 	/* setup various bits in PCI command register */
432 	ret = pci_enable_device(pci_dev);
433 	if(ret) return ret;
434 
435 	i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
436 	if(i){
437 		printk(KERN_ERR "sis900.c: architecture does not support "
438 			"32bit PCI busmaster DMA\n");
439 		return i;
440 	}
441 
442 	pci_set_master(pci_dev);
443 
444 	net_dev = alloc_etherdev(sizeof(struct sis900_private));
445 	if (!net_dev)
446 		return -ENOMEM;
447 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
448 
449 	/* We do a request_region() to register /proc/ioports info. */
450 	ioaddr = pci_resource_start(pci_dev, 0);
451 	ret = pci_request_regions(pci_dev, "sis900");
452 	if (ret)
453 		goto err_out;
454 
455 	sis_priv = netdev_priv(net_dev);
456 	net_dev->base_addr = ioaddr;
457 	net_dev->irq = pci_dev->irq;
458 	sis_priv->pci_dev = pci_dev;
459 	spin_lock_init(&sis_priv->lock);
460 
461 	pci_set_drvdata(pci_dev, net_dev);
462 
463 	ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
464 	if (!ring_space) {
465 		ret = -ENOMEM;
466 		goto err_out_cleardev;
467 	}
468 	sis_priv->tx_ring = (BufferDesc *)ring_space;
469 	sis_priv->tx_ring_dma = ring_dma;
470 
471 	ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
472 	if (!ring_space) {
473 		ret = -ENOMEM;
474 		goto err_unmap_tx;
475 	}
476 	sis_priv->rx_ring = (BufferDesc *)ring_space;
477 	sis_priv->rx_ring_dma = ring_dma;
478 
479 	/* The SiS900-specific entries in the device structure. */
480 	net_dev->netdev_ops = &sis900_netdev_ops;
481 	net_dev->watchdog_timeo = TX_TIMEOUT;
482 	net_dev->ethtool_ops = &sis900_ethtool_ops;
483 
484 	if (sis900_debug > 0)
485 		sis_priv->msg_enable = sis900_debug;
486 	else
487 		sis_priv->msg_enable = SIS900_DEF_MSG;
488 
489 	sis_priv->mii_info.dev = net_dev;
490 	sis_priv->mii_info.mdio_read = mdio_read;
491 	sis_priv->mii_info.mdio_write = mdio_write;
492 	sis_priv->mii_info.phy_id_mask = 0x1f;
493 	sis_priv->mii_info.reg_num_mask = 0x1f;
494 
495 	/* Get Mac address according to the chip revision */
496 	pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
497 	if(netif_msg_probe(sis_priv))
498 		printk(KERN_DEBUG "%s: detected revision %2.2x, "
499 				"trying to get MAC address...\n",
500 				dev_name, sis_priv->chipset_rev);
501 
502 	ret = 0;
503 	if (sis_priv->chipset_rev == SIS630E_900_REV)
504 		ret = sis630e_get_mac_addr(pci_dev, net_dev);
505 	else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
506 		ret = sis635_get_mac_addr(pci_dev, net_dev);
507 	else if (sis_priv->chipset_rev == SIS96x_900_REV)
508 		ret = sis96x_get_mac_addr(pci_dev, net_dev);
509 	else
510 		ret = sis900_get_mac_addr(pci_dev, net_dev);
511 
512 	if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
513 		random_ether_addr(net_dev->dev_addr);
514 		printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
515 				"using random generated one\n", dev_name);
516 	}
517 
518 	/* 630ET : set the mii access mode as software-mode */
519 	if (sis_priv->chipset_rev == SIS630ET_900_REV)
520 		outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
521 
522 	/* probe for mii transceiver */
523 	if (sis900_mii_probe(net_dev) == 0) {
524 		printk(KERN_WARNING "%s: Error probing MII device.\n",
525 		       dev_name);
526 		ret = -ENODEV;
527 		goto err_unmap_rx;
528 	}
529 
530 	/* save our host bridge revision */
531 	dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
532 	if (dev) {
533 		pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
534 		pci_dev_put(dev);
535 	}
536 
537 	ret = register_netdev(net_dev);
538 	if (ret)
539 		goto err_unmap_rx;
540 
541 	/* print some information about our NIC */
542 	printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
543 	       net_dev->name, card_name, ioaddr, net_dev->irq,
544 	       net_dev->dev_addr);
545 
546 	/* Detect Wake on Lan support */
547 	ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
548 	if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
549 		printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
550 
551 	return 0;
552 
553  err_unmap_rx:
554 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
555 		sis_priv->rx_ring_dma);
556  err_unmap_tx:
557 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
558 		sis_priv->tx_ring_dma);
559  err_out_cleardev:
560  	pci_set_drvdata(pci_dev, NULL);
561 	pci_release_regions(pci_dev);
562  err_out:
563 	free_netdev(net_dev);
564 	return ret;
565 }
566 
567 /**
568  *	sis900_mii_probe - Probe MII PHY for sis900
569  *	@net_dev: the net device to probe for
570  *
571  *	Search for total of 32 possible mii phy addresses.
572  *	Identify and set current phy if found one,
573  *	return error if it failed to found.
574  */
575 
sis900_mii_probe(struct net_device * net_dev)576 static int __devinit sis900_mii_probe(struct net_device * net_dev)
577 {
578 	struct sis900_private *sis_priv = netdev_priv(net_dev);
579 	const char *dev_name = pci_name(sis_priv->pci_dev);
580 	u16 poll_bit = MII_STAT_LINK, status = 0;
581 	unsigned long timeout = jiffies + 5 * HZ;
582 	int phy_addr;
583 
584 	sis_priv->mii = NULL;
585 
586 	/* search for total of 32 possible mii phy addresses */
587 	for (phy_addr = 0; phy_addr < 32; phy_addr++) {
588 		struct mii_phy * mii_phy = NULL;
589 		u16 mii_status;
590 		int i;
591 
592 		mii_phy = NULL;
593 		for(i = 0; i < 2; i++)
594 			mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
595 
596 		if (mii_status == 0xffff || mii_status == 0x0000) {
597 			if (netif_msg_probe(sis_priv))
598 				printk(KERN_DEBUG "%s: MII at address %d"
599 						" not accessible\n",
600 						dev_name, phy_addr);
601 			continue;
602 		}
603 
604 		if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
605 			printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
606 			mii_phy = sis_priv->first_mii;
607 			while (mii_phy) {
608 				struct mii_phy *phy;
609 				phy = mii_phy;
610 				mii_phy = mii_phy->next;
611 				kfree(phy);
612 			}
613 			return 0;
614 		}
615 
616 		mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
617 		mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
618 		mii_phy->phy_addr = phy_addr;
619 		mii_phy->status = mii_status;
620 		mii_phy->next = sis_priv->mii;
621 		sis_priv->mii = mii_phy;
622 		sis_priv->first_mii = mii_phy;
623 
624 		for (i = 0; mii_chip_table[i].phy_id1; i++)
625 			if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
626 			    ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
627 				mii_phy->phy_types = mii_chip_table[i].phy_types;
628 				if (mii_chip_table[i].phy_types == MIX)
629 					mii_phy->phy_types =
630 					    (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
631 				printk(KERN_INFO "%s: %s transceiver found "
632 							"at address %d.\n",
633 							dev_name,
634 							mii_chip_table[i].name,
635 							phy_addr);
636 				break;
637 			}
638 
639 		if( !mii_chip_table[i].phy_id1 ) {
640 			printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
641 			       dev_name, phy_addr);
642 			mii_phy->phy_types = UNKNOWN;
643 		}
644 	}
645 
646 	if (sis_priv->mii == NULL) {
647 		printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
648 		return 0;
649 	}
650 
651 	/* select default PHY for mac */
652 	sis_priv->mii = NULL;
653 	sis900_default_phy( net_dev );
654 
655 	/* Reset phy if default phy is internal sis900 */
656         if ((sis_priv->mii->phy_id0 == 0x001D) &&
657 	    ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
658         	status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
659 
660         /* workaround for ICS1893 PHY */
661         if ((sis_priv->mii->phy_id0 == 0x0015) &&
662             ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
663             	mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
664 
665 	if(status & MII_STAT_LINK){
666 		while (poll_bit) {
667 			yield();
668 
669 			poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
670 			if (time_after_eq(jiffies, timeout)) {
671 				printk(KERN_WARNING "%s: reset phy and link down now\n",
672 				       dev_name);
673 				return -ETIME;
674 			}
675 		}
676 	}
677 
678 	if (sis_priv->chipset_rev == SIS630E_900_REV) {
679 		/* SiS 630E has some bugs on default value of PHY registers */
680 		mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
681 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
682 		mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
683 		mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
684 		//mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
685 	}
686 
687 	if (sis_priv->mii->status & MII_STAT_LINK)
688 		netif_carrier_on(net_dev);
689 	else
690 		netif_carrier_off(net_dev);
691 
692 	return 1;
693 }
694 
695 /**
696  *	sis900_default_phy - Select default PHY for sis900 mac.
697  *	@net_dev: the net device to probe for
698  *
699  *	Select first detected PHY with link as default.
700  *	If no one is link on, select PHY whose types is HOME as default.
701  *	If HOME doesn't exist, select LAN.
702  */
703 
sis900_default_phy(struct net_device * net_dev)704 static u16 sis900_default_phy(struct net_device * net_dev)
705 {
706 	struct sis900_private *sis_priv = netdev_priv(net_dev);
707  	struct mii_phy *phy = NULL, *phy_home = NULL,
708 		*default_phy = NULL, *phy_lan = NULL;
709 	u16 status;
710 
711         for (phy=sis_priv->first_mii; phy; phy=phy->next) {
712 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
713 		status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
714 
715 		/* Link ON & Not select default PHY & not ghost PHY */
716 		 if ((status & MII_STAT_LINK) && !default_phy &&
717 					(phy->phy_types != UNKNOWN))
718 		 	default_phy = phy;
719 		 else {
720 			status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
721 			mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
722 				status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
723 			if (phy->phy_types == HOME)
724 				phy_home = phy;
725 			else if(phy->phy_types == LAN)
726 				phy_lan = phy;
727 		 }
728 	}
729 
730 	if (!default_phy && phy_home)
731 		default_phy = phy_home;
732 	else if (!default_phy && phy_lan)
733 		default_phy = phy_lan;
734 	else if (!default_phy)
735 		default_phy = sis_priv->first_mii;
736 
737 	if (sis_priv->mii != default_phy) {
738 		sis_priv->mii = default_phy;
739 		sis_priv->cur_phy = default_phy->phy_addr;
740 		printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
741 		       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
742 	}
743 
744 	sis_priv->mii_info.phy_id = sis_priv->cur_phy;
745 
746 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
747 	status &= (~MII_CNTL_ISOLATE);
748 
749 	mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
750 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
751 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
752 
753 	return status;
754 }
755 
756 
757 /**
758  * 	sis900_set_capability - set the media capability of network adapter.
759  *	@net_dev : the net device to probe for
760  *	@phy : default PHY
761  *
762  *	Set the media capability of network adapter according to
763  *	mii status register. It's necessary before auto-negotiate.
764  */
765 
sis900_set_capability(struct net_device * net_dev,struct mii_phy * phy)766 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
767 {
768 	u16 cap;
769 	u16 status;
770 
771 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
772 	status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
773 
774 	cap = MII_NWAY_CSMA_CD |
775 		((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
776 		((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
777 		((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
778 		((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
779 
780 	mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
781 }
782 
783 
784 /* Delay between EEPROM clock transitions. */
785 #define eeprom_delay()  inl(ee_addr)
786 
787 /**
788  *	read_eeprom - Read Serial EEPROM
789  *	@ioaddr: base i/o address
790  *	@location: the EEPROM location to read
791  *
792  *	Read Serial EEPROM through EEPROM Access Register.
793  *	Note that location is in word (16 bits) unit
794  */
795 
read_eeprom(long ioaddr,int location)796 static u16 __devinit read_eeprom(long ioaddr, int location)
797 {
798 	int i;
799 	u16 retval = 0;
800 	long ee_addr = ioaddr + mear;
801 	u32 read_cmd = location | EEread;
802 
803 	outl(0, ee_addr);
804 	eeprom_delay();
805 	outl(EECS, ee_addr);
806 	eeprom_delay();
807 
808 	/* Shift the read command (9) bits out. */
809 	for (i = 8; i >= 0; i--) {
810 		u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
811 		outl(dataval, ee_addr);
812 		eeprom_delay();
813 		outl(dataval | EECLK, ee_addr);
814 		eeprom_delay();
815 	}
816 	outl(EECS, ee_addr);
817 	eeprom_delay();
818 
819 	/* read the 16-bits data in */
820 	for (i = 16; i > 0; i--) {
821 		outl(EECS, ee_addr);
822 		eeprom_delay();
823 		outl(EECS | EECLK, ee_addr);
824 		eeprom_delay();
825 		retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
826 		eeprom_delay();
827 	}
828 
829 	/* Terminate the EEPROM access. */
830 	outl(0, ee_addr);
831 	eeprom_delay();
832 
833 	return (retval);
834 }
835 
836 /* Read and write the MII management registers using software-generated
837    serial MDIO protocol. Note that the command bits and data bits are
838    send out separately */
839 #define mdio_delay()    inl(mdio_addr)
840 
mdio_idle(long mdio_addr)841 static void mdio_idle(long mdio_addr)
842 {
843 	outl(MDIO | MDDIR, mdio_addr);
844 	mdio_delay();
845 	outl(MDIO | MDDIR | MDC, mdio_addr);
846 }
847 
848 /* Syncronize the MII management interface by shifting 32 one bits out. */
mdio_reset(long mdio_addr)849 static void mdio_reset(long mdio_addr)
850 {
851 	int i;
852 
853 	for (i = 31; i >= 0; i--) {
854 		outl(MDDIR | MDIO, mdio_addr);
855 		mdio_delay();
856 		outl(MDDIR | MDIO | MDC, mdio_addr);
857 		mdio_delay();
858 	}
859 	return;
860 }
861 
862 /**
863  *	mdio_read - read MII PHY register
864  *	@net_dev: the net device to read
865  *	@phy_id: the phy address to read
866  *	@location: the phy regiester id to read
867  *
868  *	Read MII registers through MDIO and MDC
869  *	using MDIO management frame structure and protocol(defined by ISO/IEC).
870  *	Please see SiS7014 or ICS spec
871  */
872 
mdio_read(struct net_device * net_dev,int phy_id,int location)873 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
874 {
875 	long mdio_addr = net_dev->base_addr + mear;
876 	int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
877 	u16 retval = 0;
878 	int i;
879 
880 	mdio_reset(mdio_addr);
881 	mdio_idle(mdio_addr);
882 
883 	for (i = 15; i >= 0; i--) {
884 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
885 		outl(dataval, mdio_addr);
886 		mdio_delay();
887 		outl(dataval | MDC, mdio_addr);
888 		mdio_delay();
889 	}
890 
891 	/* Read the 16 data bits. */
892 	for (i = 16; i > 0; i--) {
893 		outl(0, mdio_addr);
894 		mdio_delay();
895 		retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
896 		outl(MDC, mdio_addr);
897 		mdio_delay();
898 	}
899 	outl(0x00, mdio_addr);
900 
901 	return retval;
902 }
903 
904 /**
905  *	mdio_write - write MII PHY register
906  *	@net_dev: the net device to write
907  *	@phy_id: the phy address to write
908  *	@location: the phy regiester id to write
909  *	@value: the register value to write with
910  *
911  *	Write MII registers with @value through MDIO and MDC
912  *	using MDIO management frame structure and protocol(defined by ISO/IEC)
913  *	please see SiS7014 or ICS spec
914  */
915 
mdio_write(struct net_device * net_dev,int phy_id,int location,int value)916 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
917 			int value)
918 {
919 	long mdio_addr = net_dev->base_addr + mear;
920 	int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
921 	int i;
922 
923 	mdio_reset(mdio_addr);
924 	mdio_idle(mdio_addr);
925 
926 	/* Shift the command bits out. */
927 	for (i = 15; i >= 0; i--) {
928 		int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
929 		outb(dataval, mdio_addr);
930 		mdio_delay();
931 		outb(dataval | MDC, mdio_addr);
932 		mdio_delay();
933 	}
934 	mdio_delay();
935 
936 	/* Shift the value bits out. */
937 	for (i = 15; i >= 0; i--) {
938 		int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
939 		outl(dataval, mdio_addr);
940 		mdio_delay();
941 		outl(dataval | MDC, mdio_addr);
942 		mdio_delay();
943 	}
944 	mdio_delay();
945 
946 	/* Clear out extra bits. */
947 	for (i = 2; i > 0; i--) {
948 		outb(0, mdio_addr);
949 		mdio_delay();
950 		outb(MDC, mdio_addr);
951 		mdio_delay();
952 	}
953 	outl(0x00, mdio_addr);
954 
955 	return;
956 }
957 
958 
959 /**
960  *	sis900_reset_phy - reset sis900 mii phy.
961  *	@net_dev: the net device to write
962  *	@phy_addr: default phy address
963  *
964  *	Some specific phy can't work properly without reset.
965  *	This function will be called during initialization and
966  *	link status change from ON to DOWN.
967  */
968 
sis900_reset_phy(struct net_device * net_dev,int phy_addr)969 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
970 {
971 	int i;
972 	u16 status;
973 
974 	for (i = 0; i < 2; i++)
975 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
976 
977 	mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
978 
979 	return status;
980 }
981 
982 #ifdef CONFIG_NET_POLL_CONTROLLER
983 /*
984  * Polling 'interrupt' - used by things like netconsole to send skbs
985  * without having to re-enable interrupts. It's not called while
986  * the interrupt routine is executing.
987 */
sis900_poll(struct net_device * dev)988 static void sis900_poll(struct net_device *dev)
989 {
990 	disable_irq(dev->irq);
991 	sis900_interrupt(dev->irq, dev);
992 	enable_irq(dev->irq);
993 }
994 #endif
995 
996 /**
997  *	sis900_open - open sis900 device
998  *	@net_dev: the net device to open
999  *
1000  *	Do some initialization and start net interface.
1001  *	enable interrupts and set sis900 timer.
1002  */
1003 
1004 static int
sis900_open(struct net_device * net_dev)1005 sis900_open(struct net_device *net_dev)
1006 {
1007 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1008 	long ioaddr = net_dev->base_addr;
1009 	int ret;
1010 
1011 	/* Soft reset the chip. */
1012 	sis900_reset(net_dev);
1013 
1014 	/* Equalizer workaround Rule */
1015 	sis630_set_eq(net_dev, sis_priv->chipset_rev);
1016 
1017 	ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1018 						net_dev->name, net_dev);
1019 	if (ret)
1020 		return ret;
1021 
1022 	sis900_init_rxfilter(net_dev);
1023 
1024 	sis900_init_tx_ring(net_dev);
1025 	sis900_init_rx_ring(net_dev);
1026 
1027 	set_rx_mode(net_dev);
1028 
1029 	netif_start_queue(net_dev);
1030 
1031 	/* Workaround for EDB */
1032 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1033 
1034 	/* Enable all known interrupts by setting the interrupt mask. */
1035 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1036 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1037 	outl(IE, ioaddr + ier);
1038 
1039 	sis900_check_mode(net_dev, sis_priv->mii);
1040 
1041 	/* Set the timer to switch to check for link beat and perhaps switch
1042 	   to an alternate media type. */
1043 	init_timer(&sis_priv->timer);
1044 	sis_priv->timer.expires = jiffies + HZ;
1045 	sis_priv->timer.data = (unsigned long)net_dev;
1046 	sis_priv->timer.function = &sis900_timer;
1047 	add_timer(&sis_priv->timer);
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  *	sis900_init_rxfilter - Initialize the Rx filter
1054  *	@net_dev: the net device to initialize for
1055  *
1056  *	Set receive filter address to our MAC address
1057  *	and enable packet filtering.
1058  */
1059 
1060 static void
sis900_init_rxfilter(struct net_device * net_dev)1061 sis900_init_rxfilter (struct net_device * net_dev)
1062 {
1063 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1064 	long ioaddr = net_dev->base_addr;
1065 	u32 rfcrSave;
1066 	u32 i;
1067 
1068 	rfcrSave = inl(rfcr + ioaddr);
1069 
1070 	/* disable packet filtering before setting filter */
1071 	outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1072 
1073 	/* load MAC addr to filter data register */
1074 	for (i = 0 ; i < 3 ; i++) {
1075 		u32 w;
1076 
1077 		w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1078 		outl((i << RFADDR_shift), ioaddr + rfcr);
1079 		outl(w, ioaddr + rfdr);
1080 
1081 		if (netif_msg_hw(sis_priv)) {
1082 			printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1083 			       net_dev->name, i, inl(ioaddr + rfdr));
1084 		}
1085 	}
1086 
1087 	/* enable packet filtering */
1088 	outl(rfcrSave | RFEN, rfcr + ioaddr);
1089 }
1090 
1091 /**
1092  *	sis900_init_tx_ring - Initialize the Tx descriptor ring
1093  *	@net_dev: the net device to initialize for
1094  *
1095  *	Initialize the Tx descriptor ring,
1096  */
1097 
1098 static void
sis900_init_tx_ring(struct net_device * net_dev)1099 sis900_init_tx_ring(struct net_device *net_dev)
1100 {
1101 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1102 	long ioaddr = net_dev->base_addr;
1103 	int i;
1104 
1105 	sis_priv->tx_full = 0;
1106 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1107 
1108 	for (i = 0; i < NUM_TX_DESC; i++) {
1109 		sis_priv->tx_skbuff[i] = NULL;
1110 
1111 		sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1112 			((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1113 		sis_priv->tx_ring[i].cmdsts = 0;
1114 		sis_priv->tx_ring[i].bufptr = 0;
1115 	}
1116 
1117 	/* load Transmit Descriptor Register */
1118 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1119 	if (netif_msg_hw(sis_priv))
1120 		printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1121 		       net_dev->name, inl(ioaddr + txdp));
1122 }
1123 
1124 /**
1125  *	sis900_init_rx_ring - Initialize the Rx descriptor ring
1126  *	@net_dev: the net device to initialize for
1127  *
1128  *	Initialize the Rx descriptor ring,
1129  *	and pre-allocate recevie buffers (socket buffer)
1130  */
1131 
1132 static void
sis900_init_rx_ring(struct net_device * net_dev)1133 sis900_init_rx_ring(struct net_device *net_dev)
1134 {
1135 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1136 	long ioaddr = net_dev->base_addr;
1137 	int i;
1138 
1139 	sis_priv->cur_rx = 0;
1140 	sis_priv->dirty_rx = 0;
1141 
1142 	/* init RX descriptor */
1143 	for (i = 0; i < NUM_RX_DESC; i++) {
1144 		sis_priv->rx_skbuff[i] = NULL;
1145 
1146 		sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1147 			((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1148 		sis_priv->rx_ring[i].cmdsts = 0;
1149 		sis_priv->rx_ring[i].bufptr = 0;
1150 	}
1151 
1152 	/* allocate sock buffers */
1153 	for (i = 0; i < NUM_RX_DESC; i++) {
1154 		struct sk_buff *skb;
1155 
1156 		if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1157 			/* not enough memory for skbuff, this makes a "hole"
1158 			   on the buffer ring, it is not clear how the
1159 			   hardware will react to this kind of degenerated
1160 			   buffer */
1161 			break;
1162 		}
1163 		sis_priv->rx_skbuff[i] = skb;
1164 		sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1165                 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1166                         skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1167 	}
1168 	sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1169 
1170 	/* load Receive Descriptor Register */
1171 	outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1172 	if (netif_msg_hw(sis_priv))
1173 		printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1174 		       net_dev->name, inl(ioaddr + rxdp));
1175 }
1176 
1177 /**
1178  *	sis630_set_eq - set phy equalizer value for 630 LAN
1179  *	@net_dev: the net device to set equalizer value
1180  *	@revision: 630 LAN revision number
1181  *
1182  *	630E equalizer workaround rule(Cyrus Huang 08/15)
1183  *	PHY register 14h(Test)
1184  *	Bit 14: 0 -- Automatically dectect (default)
1185  *		1 -- Manually set Equalizer filter
1186  *	Bit 13: 0 -- (Default)
1187  *		1 -- Speed up convergence of equalizer setting
1188  *	Bit 9 : 0 -- (Default)
1189  *		1 -- Disable Baseline Wander
1190  *	Bit 3~7   -- Equalizer filter setting
1191  *	Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1192  *	Then calculate equalizer value
1193  *	Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1194  *	Link Off:Set Bit 13 to 1, Bit 14 to 0
1195  *	Calculate Equalizer value:
1196  *	When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1197  *	When the equalizer is stable, this value is not a fixed value. It will be within
1198  *	a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1199  *	0 <= max <= 4  --> set equalizer to max
1200  *	5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1201  *	max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1202  */
1203 
sis630_set_eq(struct net_device * net_dev,u8 revision)1204 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1205 {
1206 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1207 	u16 reg14h, eq_value=0, max_value=0, min_value=0;
1208 	int i, maxcount=10;
1209 
1210 	if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1211 	       revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1212 		return;
1213 
1214 	if (netif_carrier_ok(net_dev)) {
1215 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1216 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1217 					(0x2200 | reg14h) & 0xBFFF);
1218 		for (i=0; i < maxcount; i++) {
1219 			eq_value = (0x00F8 & mdio_read(net_dev,
1220 					sis_priv->cur_phy, MII_RESV)) >> 3;
1221 			if (i == 0)
1222 				max_value=min_value=eq_value;
1223 			max_value = (eq_value > max_value) ?
1224 						eq_value : max_value;
1225 			min_value = (eq_value < min_value) ?
1226 						eq_value : min_value;
1227 		}
1228 		/* 630E rule to determine the equalizer value */
1229 		if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1230 		    revision == SIS630ET_900_REV) {
1231 			if (max_value < 5)
1232 				eq_value = max_value;
1233 			else if (max_value >= 5 && max_value < 15)
1234 				eq_value = (max_value == min_value) ?
1235 						max_value+2 : max_value+1;
1236 			else if (max_value >= 15)
1237 				eq_value=(max_value == min_value) ?
1238 						max_value+6 : max_value+5;
1239 		}
1240 		/* 630B0&B1 rule to determine the equalizer value */
1241 		if (revision == SIS630A_900_REV &&
1242 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1243 		     sis_priv->host_bridge_rev == SIS630B1)) {
1244 			if (max_value == 0)
1245 				eq_value = 3;
1246 			else
1247 				eq_value = (max_value + min_value + 1)/2;
1248 		}
1249 		/* write equalizer value and setting */
1250 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1251 		reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1252 		reg14h = (reg14h | 0x6000) & 0xFDFF;
1253 		mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1254 	} else {
1255 		reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1256 		if (revision == SIS630A_900_REV &&
1257 		    (sis_priv->host_bridge_rev == SIS630B0 ||
1258 		     sis_priv->host_bridge_rev == SIS630B1))
1259 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1260 						(reg14h | 0x2200) & 0xBFFF);
1261 		else
1262 			mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1263 						(reg14h | 0x2000) & 0xBFFF);
1264 	}
1265 	return;
1266 }
1267 
1268 /**
1269  *	sis900_timer - sis900 timer routine
1270  *	@data: pointer to sis900 net device
1271  *
1272  *	On each timer ticks we check two things,
1273  *	link status (ON/OFF) and link mode (10/100/Full/Half)
1274  */
1275 
sis900_timer(unsigned long data)1276 static void sis900_timer(unsigned long data)
1277 {
1278 	struct net_device *net_dev = (struct net_device *)data;
1279 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1280 	struct mii_phy *mii_phy = sis_priv->mii;
1281 	static const int next_tick = 5*HZ;
1282 	u16 status;
1283 
1284 	if (!sis_priv->autong_complete){
1285 		int uninitialized_var(speed), duplex = 0;
1286 
1287 		sis900_read_mode(net_dev, &speed, &duplex);
1288 		if (duplex){
1289 			sis900_set_mode(net_dev->base_addr, speed, duplex);
1290 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1291 			netif_start_queue(net_dev);
1292 		}
1293 
1294 		sis_priv->timer.expires = jiffies + HZ;
1295 		add_timer(&sis_priv->timer);
1296 		return;
1297 	}
1298 
1299 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1300 	status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1301 
1302 	/* Link OFF -> ON */
1303 	if (!netif_carrier_ok(net_dev)) {
1304 	LookForLink:
1305 		/* Search for new PHY */
1306 		status = sis900_default_phy(net_dev);
1307 		mii_phy = sis_priv->mii;
1308 
1309 		if (status & MII_STAT_LINK){
1310 			sis900_check_mode(net_dev, mii_phy);
1311 			netif_carrier_on(net_dev);
1312 		}
1313 	} else {
1314 	/* Link ON -> OFF */
1315                 if (!(status & MII_STAT_LINK)){
1316                 	netif_carrier_off(net_dev);
1317 			if(netif_msg_link(sis_priv))
1318                 		printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1319 
1320                 	/* Change mode issue */
1321                 	if ((mii_phy->phy_id0 == 0x001D) &&
1322 			    ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1323                			sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1324 
1325 			sis630_set_eq(net_dev, sis_priv->chipset_rev);
1326 
1327                 	goto LookForLink;
1328                 }
1329 	}
1330 
1331 	sis_priv->timer.expires = jiffies + next_tick;
1332 	add_timer(&sis_priv->timer);
1333 }
1334 
1335 /**
1336  *	sis900_check_mode - check the media mode for sis900
1337  *	@net_dev: the net device to be checked
1338  *	@mii_phy: the mii phy
1339  *
1340  *	Older driver gets the media mode from mii status output
1341  *	register. Now we set our media capability and auto-negotiate
1342  *	to get the upper bound of speed and duplex between two ends.
1343  *	If the types of mii phy is HOME, it doesn't need to auto-negotiate
1344  *	and autong_complete should be set to 1.
1345  */
1346 
sis900_check_mode(struct net_device * net_dev,struct mii_phy * mii_phy)1347 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1348 {
1349 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1350 	long ioaddr = net_dev->base_addr;
1351 	int speed, duplex;
1352 
1353 	if (mii_phy->phy_types == LAN) {
1354 		outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1355 		sis900_set_capability(net_dev , mii_phy);
1356 		sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1357 	} else {
1358 		outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1359 		speed = HW_SPEED_HOME;
1360 		duplex = FDX_CAPABLE_HALF_SELECTED;
1361 		sis900_set_mode(ioaddr, speed, duplex);
1362 		sis_priv->autong_complete = 1;
1363 	}
1364 }
1365 
1366 /**
1367  *	sis900_set_mode - Set the media mode of mac register.
1368  *	@ioaddr: the address of the device
1369  *	@speed : the transmit speed to be determined
1370  *	@duplex: the duplex mode to be determined
1371  *
1372  *	Set the media mode of mac register txcfg/rxcfg according to
1373  *	speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1374  *	bus is used instead of PCI bus. When this bit is set 1, the
1375  *	Max DMA Burst Size for TX/RX DMA should be no larger than 16
1376  *	double words.
1377  */
1378 
sis900_set_mode(long ioaddr,int speed,int duplex)1379 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1380 {
1381 	u32 tx_flags = 0, rx_flags = 0;
1382 
1383 	if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1384 		tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1385 					(TX_FILL_THRESH << TxFILLT_shift);
1386 		rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1387 	} else {
1388 		tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1389 					(TX_FILL_THRESH << TxFILLT_shift);
1390 		rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1391 	}
1392 
1393 	if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1394 		rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1395 		tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1396 	} else {
1397 		rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1398 		tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1399 	}
1400 
1401 	if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1402 		tx_flags |= (TxCSI | TxHBI);
1403 		rx_flags |= RxATX;
1404 	}
1405 
1406 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1407 	/* Can accept Jumbo packet */
1408 	rx_flags |= RxAJAB;
1409 #endif
1410 
1411 	outl (tx_flags, ioaddr + txcfg);
1412 	outl (rx_flags, ioaddr + rxcfg);
1413 }
1414 
1415 /**
1416  *	sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1417  *	@net_dev: the net device to read mode for
1418  *	@phy_addr: mii phy address
1419  *
1420  *	If the adapter is link-on, set the auto-negotiate enable/reset bit.
1421  *	autong_complete should be set to 0 when starting auto-negotiation.
1422  *	autong_complete should be set to 1 if we didn't start auto-negotiation.
1423  *	sis900_timer will wait for link on again if autong_complete = 0.
1424  */
1425 
sis900_auto_negotiate(struct net_device * net_dev,int phy_addr)1426 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1427 {
1428 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1429 	int i = 0;
1430 	u32 status;
1431 
1432 	for (i = 0; i < 2; i++)
1433 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1434 
1435 	if (!(status & MII_STAT_LINK)){
1436 		if(netif_msg_link(sis_priv))
1437 			printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1438 		sis_priv->autong_complete = 1;
1439 		netif_carrier_off(net_dev);
1440 		return;
1441 	}
1442 
1443 	/* (Re)start AutoNegotiate */
1444 	mdio_write(net_dev, phy_addr, MII_CONTROL,
1445 		   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1446 	sis_priv->autong_complete = 0;
1447 }
1448 
1449 
1450 /**
1451  *	sis900_read_mode - read media mode for sis900 internal phy
1452  *	@net_dev: the net device to read mode for
1453  *	@speed  : the transmit speed to be determined
1454  *	@duplex : the duplex mode to be determined
1455  *
1456  *	The capability of remote end will be put in mii register autorec
1457  *	after auto-negotiation. Use AND operation to get the upper bound
1458  *	of speed and duplex between two ends.
1459  */
1460 
sis900_read_mode(struct net_device * net_dev,int * speed,int * duplex)1461 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1462 {
1463 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1464 	struct mii_phy *phy = sis_priv->mii;
1465 	int phy_addr = sis_priv->cur_phy;
1466 	u32 status;
1467 	u16 autoadv, autorec;
1468 	int i;
1469 
1470 	for (i = 0; i < 2; i++)
1471 		status = mdio_read(net_dev, phy_addr, MII_STATUS);
1472 
1473 	if (!(status & MII_STAT_LINK))
1474 		return;
1475 
1476 	/* AutoNegotiate completed */
1477 	autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1478 	autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1479 	status = autoadv & autorec;
1480 
1481 	*speed = HW_SPEED_10_MBPS;
1482 	*duplex = FDX_CAPABLE_HALF_SELECTED;
1483 
1484 	if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1485 		*speed = HW_SPEED_100_MBPS;
1486 	if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1487 		*duplex = FDX_CAPABLE_FULL_SELECTED;
1488 
1489 	sis_priv->autong_complete = 1;
1490 
1491 	/* Workaround for Realtek RTL8201 PHY issue */
1492 	if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1493 		if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1494 			*duplex = FDX_CAPABLE_FULL_SELECTED;
1495 		if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1496 			*speed = HW_SPEED_100_MBPS;
1497 	}
1498 
1499 	if(netif_msg_link(sis_priv))
1500 		printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1501 	       				net_dev->name,
1502 	       				*speed == HW_SPEED_100_MBPS ?
1503 	       					"100mbps" : "10mbps",
1504 	       				*duplex == FDX_CAPABLE_FULL_SELECTED ?
1505 	       					"full" : "half");
1506 }
1507 
1508 /**
1509  *	sis900_tx_timeout - sis900 transmit timeout routine
1510  *	@net_dev: the net device to transmit
1511  *
1512  *	print transmit timeout status
1513  *	disable interrupts and do some tasks
1514  */
1515 
sis900_tx_timeout(struct net_device * net_dev)1516 static void sis900_tx_timeout(struct net_device *net_dev)
1517 {
1518 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1519 	long ioaddr = net_dev->base_addr;
1520 	unsigned long flags;
1521 	int i;
1522 
1523 	if(netif_msg_tx_err(sis_priv))
1524 		printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1525 	       		net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1526 
1527 	/* Disable interrupts by clearing the interrupt mask. */
1528 	outl(0x0000, ioaddr + imr);
1529 
1530 	/* use spinlock to prevent interrupt handler accessing buffer ring */
1531 	spin_lock_irqsave(&sis_priv->lock, flags);
1532 
1533 	/* discard unsent packets */
1534 	sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1535 	for (i = 0; i < NUM_TX_DESC; i++) {
1536 		struct sk_buff *skb = sis_priv->tx_skbuff[i];
1537 
1538 		if (skb) {
1539 			pci_unmap_single(sis_priv->pci_dev,
1540 				sis_priv->tx_ring[i].bufptr, skb->len,
1541 				PCI_DMA_TODEVICE);
1542 			dev_kfree_skb_irq(skb);
1543 			sis_priv->tx_skbuff[i] = NULL;
1544 			sis_priv->tx_ring[i].cmdsts = 0;
1545 			sis_priv->tx_ring[i].bufptr = 0;
1546 			net_dev->stats.tx_dropped++;
1547 		}
1548 	}
1549 	sis_priv->tx_full = 0;
1550 	netif_wake_queue(net_dev);
1551 
1552 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1553 
1554 	net_dev->trans_start = jiffies;
1555 
1556 	/* load Transmit Descriptor Register */
1557 	outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1558 
1559 	/* Enable all known interrupts by setting the interrupt mask. */
1560 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1561 	return;
1562 }
1563 
1564 /**
1565  *	sis900_start_xmit - sis900 start transmit routine
1566  *	@skb: socket buffer pointer to put the data being transmitted
1567  *	@net_dev: the net device to transmit with
1568  *
1569  *	Set the transmit buffer descriptor,
1570  *	and write TxENA to enable transmit state machine.
1571  *	tell upper layer if the buffer is full
1572  */
1573 
1574 static int
sis900_start_xmit(struct sk_buff * skb,struct net_device * net_dev)1575 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1576 {
1577 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1578 	long ioaddr = net_dev->base_addr;
1579 	unsigned int  entry;
1580 	unsigned long flags;
1581 	unsigned int  index_cur_tx, index_dirty_tx;
1582 	unsigned int  count_dirty_tx;
1583 
1584 	/* Don't transmit data before the complete of auto-negotiation */
1585 	if(!sis_priv->autong_complete){
1586 		netif_stop_queue(net_dev);
1587 		return 1;
1588 	}
1589 
1590 	spin_lock_irqsave(&sis_priv->lock, flags);
1591 
1592 	/* Calculate the next Tx descriptor entry. */
1593 	entry = sis_priv->cur_tx % NUM_TX_DESC;
1594 	sis_priv->tx_skbuff[entry] = skb;
1595 
1596 	/* set the transmit buffer descriptor and enable Transmit State Machine */
1597 	sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1598 		skb->data, skb->len, PCI_DMA_TODEVICE);
1599 	sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1600 	outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1601 
1602 	sis_priv->cur_tx ++;
1603 	index_cur_tx = sis_priv->cur_tx;
1604 	index_dirty_tx = sis_priv->dirty_tx;
1605 
1606 	for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1607 		count_dirty_tx ++;
1608 
1609 	if (index_cur_tx == index_dirty_tx) {
1610 		/* dirty_tx is met in the cycle of cur_tx, buffer full */
1611 		sis_priv->tx_full = 1;
1612 		netif_stop_queue(net_dev);
1613 	} else if (count_dirty_tx < NUM_TX_DESC) {
1614 		/* Typical path, tell upper layer that more transmission is possible */
1615 		netif_start_queue(net_dev);
1616 	} else {
1617 		/* buffer full, tell upper layer no more transmission */
1618 		sis_priv->tx_full = 1;
1619 		netif_stop_queue(net_dev);
1620 	}
1621 
1622 	spin_unlock_irqrestore(&sis_priv->lock, flags);
1623 
1624 	net_dev->trans_start = jiffies;
1625 
1626 	if (netif_msg_tx_queued(sis_priv))
1627 		printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1628 		       "to slot %d.\n",
1629 		       net_dev->name, skb->data, (int)skb->len, entry);
1630 
1631 	return 0;
1632 }
1633 
1634 /**
1635  *	sis900_interrupt - sis900 interrupt handler
1636  *	@irq: the irq number
1637  *	@dev_instance: the client data object
1638  *
1639  *	The interrupt handler does all of the Rx thread work,
1640  *	and cleans up after the Tx thread
1641  */
1642 
sis900_interrupt(int irq,void * dev_instance)1643 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1644 {
1645 	struct net_device *net_dev = dev_instance;
1646 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1647 	int boguscnt = max_interrupt_work;
1648 	long ioaddr = net_dev->base_addr;
1649 	u32 status;
1650 	unsigned int handled = 0;
1651 
1652 	spin_lock (&sis_priv->lock);
1653 
1654 	do {
1655 		status = inl(ioaddr + isr);
1656 
1657 		if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1658 			/* nothing intresting happened */
1659 			break;
1660 		handled = 1;
1661 
1662 		/* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1663 		if (status & (RxORN | RxERR | RxOK))
1664 			/* Rx interrupt */
1665 			sis900_rx(net_dev);
1666 
1667 		if (status & (TxURN | TxERR | TxIDLE))
1668 			/* Tx interrupt */
1669 			sis900_finish_xmit(net_dev);
1670 
1671 		/* something strange happened !!! */
1672 		if (status & HIBERR) {
1673 			if(netif_msg_intr(sis_priv))
1674 				printk(KERN_INFO "%s: Abnormal interrupt, "
1675 					"status %#8.8x.\n", net_dev->name, status);
1676 			break;
1677 		}
1678 		if (--boguscnt < 0) {
1679 			if(netif_msg_intr(sis_priv))
1680 				printk(KERN_INFO "%s: Too much work at interrupt, "
1681 					"interrupt status = %#8.8x.\n",
1682 					net_dev->name, status);
1683 			break;
1684 		}
1685 	} while (1);
1686 
1687 	if(netif_msg_intr(sis_priv))
1688 		printk(KERN_DEBUG "%s: exiting interrupt, "
1689 		       "interrupt status = 0x%#8.8x.\n",
1690 		       net_dev->name, inl(ioaddr + isr));
1691 
1692 	spin_unlock (&sis_priv->lock);
1693 	return IRQ_RETVAL(handled);
1694 }
1695 
1696 /**
1697  *	sis900_rx - sis900 receive routine
1698  *	@net_dev: the net device which receives data
1699  *
1700  *	Process receive interrupt events,
1701  *	put buffer to higher layer and refill buffer pool
1702  *	Note: This function is called by interrupt handler,
1703  *	don't do "too much" work here
1704  */
1705 
sis900_rx(struct net_device * net_dev)1706 static int sis900_rx(struct net_device *net_dev)
1707 {
1708 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1709 	long ioaddr = net_dev->base_addr;
1710 	unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1711 	u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1712 	int rx_work_limit;
1713 
1714 	if (netif_msg_rx_status(sis_priv))
1715 		printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1716 		       "status:0x%8.8x\n",
1717 		       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1718 	rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1719 
1720 	while (rx_status & OWN) {
1721 		unsigned int rx_size;
1722 		unsigned int data_size;
1723 
1724 		if (--rx_work_limit < 0)
1725 			break;
1726 
1727 		data_size = rx_status & DSIZE;
1728 		rx_size = data_size - CRC_SIZE;
1729 
1730 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1731 		/* ``TOOLONG'' flag means jumbo packet recived. */
1732 		if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1733 			rx_status &= (~ ((unsigned int)TOOLONG));
1734 #endif
1735 
1736 		if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1737 			/* corrupted packet received */
1738 			if (netif_msg_rx_err(sis_priv))
1739 				printk(KERN_DEBUG "%s: Corrupted packet "
1740 				       "received, buffer status = 0x%8.8x/%d.\n",
1741 				       net_dev->name, rx_status, data_size);
1742 			net_dev->stats.rx_errors++;
1743 			if (rx_status & OVERRUN)
1744 				net_dev->stats.rx_over_errors++;
1745 			if (rx_status & (TOOLONG|RUNT))
1746 				net_dev->stats.rx_length_errors++;
1747 			if (rx_status & (RXISERR | FAERR))
1748 				net_dev->stats.rx_frame_errors++;
1749 			if (rx_status & CRCERR)
1750 				net_dev->stats.rx_crc_errors++;
1751 			/* reset buffer descriptor state */
1752 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1753 		} else {
1754 			struct sk_buff * skb;
1755 			struct sk_buff * rx_skb;
1756 
1757 			pci_unmap_single(sis_priv->pci_dev,
1758 				sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1759 				PCI_DMA_FROMDEVICE);
1760 
1761 			/* refill the Rx buffer, what if there is not enought
1762 			 * memory for new socket buffer ?? */
1763 			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1764 				/*
1765 				 * Not enough memory to refill the buffer
1766 				 * so we need to recycle the old one so
1767 				 * as to avoid creating a memory hole
1768 				 * in the rx ring
1769 				 */
1770 				skb = sis_priv->rx_skbuff[entry];
1771 				net_dev->stats.rx_dropped++;
1772 				goto refill_rx_ring;
1773 			}
1774 
1775 			/* This situation should never happen, but due to
1776 			   some unknow bugs, it is possible that
1777 			   we are working on NULL sk_buff :-( */
1778 			if (sis_priv->rx_skbuff[entry] == NULL) {
1779 				if (netif_msg_rx_err(sis_priv))
1780 					printk(KERN_WARNING "%s: NULL pointer "
1781 					      "encountered in Rx ring\n"
1782 					      "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1783 					      net_dev->name, sis_priv->cur_rx,
1784 					      sis_priv->dirty_rx);
1785 				break;
1786 			}
1787 
1788 			/* give the socket buffer to upper layers */
1789 			rx_skb = sis_priv->rx_skbuff[entry];
1790 			skb_put(rx_skb, rx_size);
1791 			rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1792 			netif_rx(rx_skb);
1793 
1794 			/* some network statistics */
1795 			if ((rx_status & BCAST) == MCAST)
1796 				net_dev->stats.multicast++;
1797 			net_dev->stats.rx_bytes += rx_size;
1798 			net_dev->stats.rx_packets++;
1799 			sis_priv->dirty_rx++;
1800 refill_rx_ring:
1801 			sis_priv->rx_skbuff[entry] = skb;
1802 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1803                 	sis_priv->rx_ring[entry].bufptr =
1804 				pci_map_single(sis_priv->pci_dev, skb->data,
1805 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1806 		}
1807 		sis_priv->cur_rx++;
1808 		entry = sis_priv->cur_rx % NUM_RX_DESC;
1809 		rx_status = sis_priv->rx_ring[entry].cmdsts;
1810 	} // while
1811 
1812 	/* refill the Rx buffer, what if the rate of refilling is slower
1813 	 * than consuming ?? */
1814 	for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1815 		struct sk_buff *skb;
1816 
1817 		entry = sis_priv->dirty_rx % NUM_RX_DESC;
1818 
1819 		if (sis_priv->rx_skbuff[entry] == NULL) {
1820 			if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1821 				/* not enough memory for skbuff, this makes a
1822 				 * "hole" on the buffer ring, it is not clear
1823 				 * how the hardware will react to this kind
1824 				 * of degenerated buffer */
1825 				if (netif_msg_rx_err(sis_priv))
1826 					printk(KERN_INFO "%s: Memory squeeze, "
1827 						"deferring packet.\n",
1828 						net_dev->name);
1829 				net_dev->stats.rx_dropped++;
1830 				break;
1831 			}
1832 			sis_priv->rx_skbuff[entry] = skb;
1833 			sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1834                 	sis_priv->rx_ring[entry].bufptr =
1835 				pci_map_single(sis_priv->pci_dev, skb->data,
1836 					RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1837 		}
1838 	}
1839 	/* re-enable the potentially idle receive state matchine */
1840 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  *	sis900_finish_xmit - finish up transmission of packets
1847  *	@net_dev: the net device to be transmitted on
1848  *
1849  *	Check for error condition and free socket buffer etc
1850  *	schedule for more transmission as needed
1851  *	Note: This function is called by interrupt handler,
1852  *	don't do "too much" work here
1853  */
1854 
sis900_finish_xmit(struct net_device * net_dev)1855 static void sis900_finish_xmit (struct net_device *net_dev)
1856 {
1857 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1858 
1859 	for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1860 		struct sk_buff *skb;
1861 		unsigned int entry;
1862 		u32 tx_status;
1863 
1864 		entry = sis_priv->dirty_tx % NUM_TX_DESC;
1865 		tx_status = sis_priv->tx_ring[entry].cmdsts;
1866 
1867 		if (tx_status & OWN) {
1868 			/* The packet is not transmitted yet (owned by hardware) !
1869 			 * Note: the interrupt is generated only when Tx Machine
1870 			 * is idle, so this is an almost impossible case */
1871 			break;
1872 		}
1873 
1874 		if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1875 			/* packet unsuccessfully transmitted */
1876 			if (netif_msg_tx_err(sis_priv))
1877 				printk(KERN_DEBUG "%s: Transmit "
1878 				       "error, Tx status %8.8x.\n",
1879 				       net_dev->name, tx_status);
1880 			net_dev->stats.tx_errors++;
1881 			if (tx_status & UNDERRUN)
1882 				net_dev->stats.tx_fifo_errors++;
1883 			if (tx_status & ABORT)
1884 				net_dev->stats.tx_aborted_errors++;
1885 			if (tx_status & NOCARRIER)
1886 				net_dev->stats.tx_carrier_errors++;
1887 			if (tx_status & OWCOLL)
1888 				net_dev->stats.tx_window_errors++;
1889 		} else {
1890 			/* packet successfully transmitted */
1891 			net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1892 			net_dev->stats.tx_bytes += tx_status & DSIZE;
1893 			net_dev->stats.tx_packets++;
1894 		}
1895 		/* Free the original skb. */
1896 		skb = sis_priv->tx_skbuff[entry];
1897 		pci_unmap_single(sis_priv->pci_dev,
1898 			sis_priv->tx_ring[entry].bufptr, skb->len,
1899 			PCI_DMA_TODEVICE);
1900 		dev_kfree_skb_irq(skb);
1901 		sis_priv->tx_skbuff[entry] = NULL;
1902 		sis_priv->tx_ring[entry].bufptr = 0;
1903 		sis_priv->tx_ring[entry].cmdsts = 0;
1904 	}
1905 
1906 	if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1907 	    sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1908 		/* The ring is no longer full, clear tx_full and schedule
1909 		 * more transmission by netif_wake_queue(net_dev) */
1910 		sis_priv->tx_full = 0;
1911 		netif_wake_queue (net_dev);
1912 	}
1913 }
1914 
1915 /**
1916  *	sis900_close - close sis900 device
1917  *	@net_dev: the net device to be closed
1918  *
1919  *	Disable interrupts, stop the Tx and Rx Status Machine
1920  *	free Tx and RX socket buffer
1921  */
1922 
sis900_close(struct net_device * net_dev)1923 static int sis900_close(struct net_device *net_dev)
1924 {
1925 	long ioaddr = net_dev->base_addr;
1926 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1927 	struct sk_buff *skb;
1928 	int i;
1929 
1930 	netif_stop_queue(net_dev);
1931 
1932 	/* Disable interrupts by clearing the interrupt mask. */
1933 	outl(0x0000, ioaddr + imr);
1934 	outl(0x0000, ioaddr + ier);
1935 
1936 	/* Stop the chip's Tx and Rx Status Machine */
1937 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1938 
1939 	del_timer(&sis_priv->timer);
1940 
1941 	free_irq(net_dev->irq, net_dev);
1942 
1943 	/* Free Tx and RX skbuff */
1944 	for (i = 0; i < NUM_RX_DESC; i++) {
1945 		skb = sis_priv->rx_skbuff[i];
1946 		if (skb) {
1947 			pci_unmap_single(sis_priv->pci_dev,
1948 				sis_priv->rx_ring[i].bufptr,
1949 				RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1950 			dev_kfree_skb(skb);
1951 			sis_priv->rx_skbuff[i] = NULL;
1952 		}
1953 	}
1954 	for (i = 0; i < NUM_TX_DESC; i++) {
1955 		skb = sis_priv->tx_skbuff[i];
1956 		if (skb) {
1957 			pci_unmap_single(sis_priv->pci_dev,
1958 				sis_priv->tx_ring[i].bufptr, skb->len,
1959 				PCI_DMA_TODEVICE);
1960 			dev_kfree_skb(skb);
1961 			sis_priv->tx_skbuff[i] = NULL;
1962 		}
1963 	}
1964 
1965 	/* Green! Put the chip in low-power mode. */
1966 
1967 	return 0;
1968 }
1969 
1970 /**
1971  *	sis900_get_drvinfo - Return information about driver
1972  *	@net_dev: the net device to probe
1973  *	@info: container for info returned
1974  *
1975  *	Process ethtool command such as "ehtool -i" to show information
1976  */
1977 
sis900_get_drvinfo(struct net_device * net_dev,struct ethtool_drvinfo * info)1978 static void sis900_get_drvinfo(struct net_device *net_dev,
1979 			       struct ethtool_drvinfo *info)
1980 {
1981 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1982 
1983 	strcpy (info->driver, SIS900_MODULE_NAME);
1984 	strcpy (info->version, SIS900_DRV_VERSION);
1985 	strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1986 }
1987 
sis900_get_msglevel(struct net_device * net_dev)1988 static u32 sis900_get_msglevel(struct net_device *net_dev)
1989 {
1990 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1991 	return sis_priv->msg_enable;
1992 }
1993 
sis900_set_msglevel(struct net_device * net_dev,u32 value)1994 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1995 {
1996 	struct sis900_private *sis_priv = netdev_priv(net_dev);
1997 	sis_priv->msg_enable = value;
1998 }
1999 
sis900_get_link(struct net_device * net_dev)2000 static u32 sis900_get_link(struct net_device *net_dev)
2001 {
2002 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2003 	return mii_link_ok(&sis_priv->mii_info);
2004 }
2005 
sis900_get_settings(struct net_device * net_dev,struct ethtool_cmd * cmd)2006 static int sis900_get_settings(struct net_device *net_dev,
2007 				struct ethtool_cmd *cmd)
2008 {
2009 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2010 	spin_lock_irq(&sis_priv->lock);
2011 	mii_ethtool_gset(&sis_priv->mii_info, cmd);
2012 	spin_unlock_irq(&sis_priv->lock);
2013 	return 0;
2014 }
2015 
sis900_set_settings(struct net_device * net_dev,struct ethtool_cmd * cmd)2016 static int sis900_set_settings(struct net_device *net_dev,
2017 				struct ethtool_cmd *cmd)
2018 {
2019 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2020 	int rt;
2021 	spin_lock_irq(&sis_priv->lock);
2022 	rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2023 	spin_unlock_irq(&sis_priv->lock);
2024 	return rt;
2025 }
2026 
sis900_nway_reset(struct net_device * net_dev)2027 static int sis900_nway_reset(struct net_device *net_dev)
2028 {
2029 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2030 	return mii_nway_restart(&sis_priv->mii_info);
2031 }
2032 
2033 /**
2034  *	sis900_set_wol - Set up Wake on Lan registers
2035  *	@net_dev: the net device to probe
2036  *	@wol: container for info passed to the driver
2037  *
2038  *	Process ethtool command "wol" to setup wake on lan features.
2039  *	SiS900 supports sending WoL events if a correct packet is received,
2040  *	but there is no simple way to filter them to only a subset (broadcast,
2041  *	multicast, unicast or arp).
2042  */
2043 
sis900_set_wol(struct net_device * net_dev,struct ethtool_wolinfo * wol)2044 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2045 {
2046 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2047 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2048 	u32 cfgpmcsr = 0, pmctrl_bits = 0;
2049 
2050 	if (wol->wolopts == 0) {
2051 		pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2052 		cfgpmcsr &= ~PME_EN;
2053 		pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2054 		outl(pmctrl_bits, pmctrl_addr);
2055 		if (netif_msg_wol(sis_priv))
2056 			printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2057 		return 0;
2058 	}
2059 
2060 	if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2061 				| WAKE_BCAST | WAKE_ARP))
2062 		return -EINVAL;
2063 
2064 	if (wol->wolopts & WAKE_MAGIC)
2065 		pmctrl_bits |= MAGICPKT;
2066 	if (wol->wolopts & WAKE_PHY)
2067 		pmctrl_bits |= LINKON;
2068 
2069 	outl(pmctrl_bits, pmctrl_addr);
2070 
2071 	pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2072 	cfgpmcsr |= PME_EN;
2073 	pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2074 	if (netif_msg_wol(sis_priv))
2075 		printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2076 
2077 	return 0;
2078 }
2079 
sis900_get_wol(struct net_device * net_dev,struct ethtool_wolinfo * wol)2080 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2081 {
2082 	long pmctrl_addr = net_dev->base_addr + pmctrl;
2083 	u32 pmctrl_bits;
2084 
2085 	pmctrl_bits = inl(pmctrl_addr);
2086 	if (pmctrl_bits & MAGICPKT)
2087 		wol->wolopts |= WAKE_MAGIC;
2088 	if (pmctrl_bits & LINKON)
2089 		wol->wolopts |= WAKE_PHY;
2090 
2091 	wol->supported = (WAKE_PHY | WAKE_MAGIC);
2092 }
2093 
2094 static const struct ethtool_ops sis900_ethtool_ops = {
2095 	.get_drvinfo 	= sis900_get_drvinfo,
2096 	.get_msglevel	= sis900_get_msglevel,
2097 	.set_msglevel	= sis900_set_msglevel,
2098 	.get_link	= sis900_get_link,
2099 	.get_settings	= sis900_get_settings,
2100 	.set_settings	= sis900_set_settings,
2101 	.nway_reset	= sis900_nway_reset,
2102 	.get_wol	= sis900_get_wol,
2103 	.set_wol	= sis900_set_wol
2104 };
2105 
2106 /**
2107  *	mii_ioctl - process MII i/o control command
2108  *	@net_dev: the net device to command for
2109  *	@rq: parameter for command
2110  *	@cmd: the i/o command
2111  *
2112  *	Process MII command like read/write MII register
2113  */
2114 
mii_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)2115 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2116 {
2117 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2118 	struct mii_ioctl_data *data = if_mii(rq);
2119 
2120 	switch(cmd) {
2121 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2122 		data->phy_id = sis_priv->mii->phy_addr;
2123 		/* Fall Through */
2124 
2125 	case SIOCGMIIREG:		/* Read MII PHY register. */
2126 		data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2127 		return 0;
2128 
2129 	case SIOCSMIIREG:		/* Write MII PHY register. */
2130 		if (!capable(CAP_NET_ADMIN))
2131 			return -EPERM;
2132 		mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2133 		return 0;
2134 	default:
2135 		return -EOPNOTSUPP;
2136 	}
2137 }
2138 
2139 /**
2140  *	sis900_set_config - Set media type by net_device.set_config
2141  *	@dev: the net device for media type change
2142  *	@map: ifmap passed by ifconfig
2143  *
2144  *	Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2145  *	we support only port changes. All other runtime configuration
2146  *	changes will be ignored
2147  */
2148 
sis900_set_config(struct net_device * dev,struct ifmap * map)2149 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2150 {
2151 	struct sis900_private *sis_priv = netdev_priv(dev);
2152 	struct mii_phy *mii_phy = sis_priv->mii;
2153 
2154 	u16 status;
2155 
2156 	if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2157 		/* we switch on the ifmap->port field. I couldn't find anything
2158 		 * like a definition or standard for the values of that field.
2159 		 * I think the meaning of those values is device specific. But
2160 		 * since I would like to change the media type via the ifconfig
2161 		 * command I use the definition from linux/netdevice.h
2162 		 * (which seems to be different from the ifport(pcmcia) definition) */
2163 		switch(map->port){
2164 		case IF_PORT_UNKNOWN: /* use auto here */
2165 			dev->if_port = map->port;
2166 			/* we are going to change the media type, so the Link
2167 			 * will be temporary down and we need to reflect that
2168 			 * here. When the Link comes up again, it will be
2169 			 * sensed by the sis_timer procedure, which also does
2170 			 * all the rest for us */
2171 			netif_carrier_off(dev);
2172 
2173 			/* read current state */
2174 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2175 
2176 			/* enable auto negotiation and reset the negotioation
2177 			 * (I don't really know what the auto negatiotiation
2178 			 * reset really means, but it sounds for me right to
2179 			 * do one here) */
2180 			mdio_write(dev, mii_phy->phy_addr,
2181 				   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2182 
2183 			break;
2184 
2185 		case IF_PORT_10BASET: /* 10BaseT */
2186 			dev->if_port = map->port;
2187 
2188 			/* we are going to change the media type, so the Link
2189 			 * will be temporary down and we need to reflect that
2190 			 * here. When the Link comes up again, it will be
2191 			 * sensed by the sis_timer procedure, which also does
2192 			 * all the rest for us */
2193 			netif_carrier_off(dev);
2194 
2195 			/* set Speed to 10Mbps */
2196 			/* read current state */
2197 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2198 
2199 			/* disable auto negotiation and force 10MBit mode*/
2200 			mdio_write(dev, mii_phy->phy_addr,
2201 				   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2202 					MII_CNTL_AUTO));
2203 			break;
2204 
2205 		case IF_PORT_100BASET: /* 100BaseT */
2206 		case IF_PORT_100BASETX: /* 100BaseTx */
2207 			dev->if_port = map->port;
2208 
2209 			/* we are going to change the media type, so the Link
2210 			 * will be temporary down and we need to reflect that
2211 			 * here. When the Link comes up again, it will be
2212 			 * sensed by the sis_timer procedure, which also does
2213 			 * all the rest for us */
2214 			netif_carrier_off(dev);
2215 
2216 			/* set Speed to 100Mbps */
2217 			/* disable auto negotiation and enable 100MBit Mode */
2218 			status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2219 			mdio_write(dev, mii_phy->phy_addr,
2220 				   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2221 				   MII_CNTL_SPEED);
2222 
2223 			break;
2224 
2225 		case IF_PORT_10BASE2: /* 10Base2 */
2226 		case IF_PORT_AUI: /* AUI */
2227 		case IF_PORT_100BASEFX: /* 100BaseFx */
2228                 	/* These Modes are not supported (are they?)*/
2229 			return -EOPNOTSUPP;
2230 			break;
2231 
2232 		default:
2233 			return -EINVAL;
2234 		}
2235 	}
2236 	return 0;
2237 }
2238 
2239 /**
2240  *	sis900_mcast_bitnr - compute hashtable index
2241  *	@addr: multicast address
2242  *	@revision: revision id of chip
2243  *
2244  *	SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2245  *	hash table, which makes this function a little bit different from other drivers
2246  *	SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2247  *   	multicast hash table.
2248  */
2249 
sis900_mcast_bitnr(u8 * addr,u8 revision)2250 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2251 {
2252 
2253 	u32 crc = ether_crc(6, addr);
2254 
2255 	/* leave 8 or 7 most siginifant bits */
2256 	if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2257 		return ((int)(crc >> 24));
2258 	else
2259 		return ((int)(crc >> 25));
2260 }
2261 
2262 /**
2263  *	set_rx_mode - Set SiS900 receive mode
2264  *	@net_dev: the net device to be set
2265  *
2266  *	Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2267  *	And set the appropriate multicast filter.
2268  *	Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2269  */
2270 
set_rx_mode(struct net_device * net_dev)2271 static void set_rx_mode(struct net_device *net_dev)
2272 {
2273 	long ioaddr = net_dev->base_addr;
2274 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2275 	u16 mc_filter[16] = {0};	/* 256/128 bits multicast hash table */
2276 	int i, table_entries;
2277 	u32 rx_mode;
2278 
2279 	/* 635 Hash Table entries = 256(2^16) */
2280 	if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2281 			(sis_priv->chipset_rev == SIS900B_900_REV))
2282 		table_entries = 16;
2283 	else
2284 		table_entries = 8;
2285 
2286 	if (net_dev->flags & IFF_PROMISC) {
2287 		/* Accept any kinds of packets */
2288 		rx_mode = RFPromiscuous;
2289 		for (i = 0; i < table_entries; i++)
2290 			mc_filter[i] = 0xffff;
2291 	} else if ((net_dev->mc_count > multicast_filter_limit) ||
2292 		   (net_dev->flags & IFF_ALLMULTI)) {
2293 		/* too many multicast addresses or accept all multicast packet */
2294 		rx_mode = RFAAB | RFAAM;
2295 		for (i = 0; i < table_entries; i++)
2296 			mc_filter[i] = 0xffff;
2297 	} else {
2298 		/* Accept Broadcast packet, destination address matchs our
2299 		 * MAC address, use Receive Filter to reject unwanted MCAST
2300 		 * packets */
2301 		struct dev_mc_list *mclist;
2302 		rx_mode = RFAAB;
2303 		for (i = 0, mclist = net_dev->mc_list;
2304 			mclist && i < net_dev->mc_count;
2305 			i++, mclist = mclist->next) {
2306 			unsigned int bit_nr =
2307 				sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2308 			mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2309 		}
2310 	}
2311 
2312 	/* update Multicast Hash Table in Receive Filter */
2313 	for (i = 0; i < table_entries; i++) {
2314                 /* why plus 0x04 ??, That makes the correct value for hash table. */
2315 		outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2316 		outl(mc_filter[i], ioaddr + rfdr);
2317 	}
2318 
2319 	outl(RFEN | rx_mode, ioaddr + rfcr);
2320 
2321 	/* sis900 is capable of looping back packets at MAC level for
2322 	 * debugging purpose */
2323 	if (net_dev->flags & IFF_LOOPBACK) {
2324 		u32 cr_saved;
2325 		/* We must disable Tx/Rx before setting loopback mode */
2326 		cr_saved = inl(ioaddr + cr);
2327 		outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2328 		/* enable loopback */
2329 		outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2330 		outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2331 		/* restore cr */
2332 		outl(cr_saved, ioaddr + cr);
2333 	}
2334 
2335 	return;
2336 }
2337 
2338 /**
2339  *	sis900_reset - Reset sis900 MAC
2340  *	@net_dev: the net device to reset
2341  *
2342  *	reset sis900 MAC and wait until finished
2343  *	reset through command register
2344  *	change backoff algorithm for 900B0 & 635 M/B
2345  */
2346 
sis900_reset(struct net_device * net_dev)2347 static void sis900_reset(struct net_device *net_dev)
2348 {
2349 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2350 	long ioaddr = net_dev->base_addr;
2351 	int i = 0;
2352 	u32 status = TxRCMP | RxRCMP;
2353 
2354 	outl(0, ioaddr + ier);
2355 	outl(0, ioaddr + imr);
2356 	outl(0, ioaddr + rfcr);
2357 
2358 	outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2359 
2360 	/* Check that the chip has finished the reset. */
2361 	while (status && (i++ < 1000)) {
2362 		status ^= (inl(isr + ioaddr) & status);
2363 	}
2364 
2365 	if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2366 			(sis_priv->chipset_rev == SIS900B_900_REV) )
2367 		outl(PESEL | RND_CNT, ioaddr + cfg);
2368 	else
2369 		outl(PESEL, ioaddr + cfg);
2370 }
2371 
2372 /**
2373  *	sis900_remove - Remove sis900 device
2374  *	@pci_dev: the pci device to be removed
2375  *
2376  *	remove and release SiS900 net device
2377  */
2378 
sis900_remove(struct pci_dev * pci_dev)2379 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2380 {
2381 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2382 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2383 	struct mii_phy *phy = NULL;
2384 
2385 	while (sis_priv->first_mii) {
2386 		phy = sis_priv->first_mii;
2387 		sis_priv->first_mii = phy->next;
2388 		kfree(phy);
2389 	}
2390 
2391 	pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2392 		sis_priv->rx_ring_dma);
2393 	pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2394 		sis_priv->tx_ring_dma);
2395 	unregister_netdev(net_dev);
2396 	free_netdev(net_dev);
2397 	pci_release_regions(pci_dev);
2398 	pci_set_drvdata(pci_dev, NULL);
2399 }
2400 
2401 #ifdef CONFIG_PM
2402 
sis900_suspend(struct pci_dev * pci_dev,pm_message_t state)2403 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2404 {
2405 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2406 	long ioaddr = net_dev->base_addr;
2407 
2408 	if(!netif_running(net_dev))
2409 		return 0;
2410 
2411 	netif_stop_queue(net_dev);
2412 	netif_device_detach(net_dev);
2413 
2414 	/* Stop the chip's Tx and Rx Status Machine */
2415 	outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2416 
2417 	pci_set_power_state(pci_dev, PCI_D3hot);
2418 	pci_save_state(pci_dev);
2419 
2420 	return 0;
2421 }
2422 
sis900_resume(struct pci_dev * pci_dev)2423 static int sis900_resume(struct pci_dev *pci_dev)
2424 {
2425 	struct net_device *net_dev = pci_get_drvdata(pci_dev);
2426 	struct sis900_private *sis_priv = netdev_priv(net_dev);
2427 	long ioaddr = net_dev->base_addr;
2428 
2429 	if(!netif_running(net_dev))
2430 		return 0;
2431 	pci_restore_state(pci_dev);
2432 	pci_set_power_state(pci_dev, PCI_D0);
2433 
2434 	sis900_init_rxfilter(net_dev);
2435 
2436 	sis900_init_tx_ring(net_dev);
2437 	sis900_init_rx_ring(net_dev);
2438 
2439 	set_rx_mode(net_dev);
2440 
2441 	netif_device_attach(net_dev);
2442 	netif_start_queue(net_dev);
2443 
2444 	/* Workaround for EDB */
2445 	sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2446 
2447 	/* Enable all known interrupts by setting the interrupt mask. */
2448 	outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2449 	outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2450 	outl(IE, ioaddr + ier);
2451 
2452 	sis900_check_mode(net_dev, sis_priv->mii);
2453 
2454 	return 0;
2455 }
2456 #endif /* CONFIG_PM */
2457 
2458 static struct pci_driver sis900_pci_driver = {
2459 	.name		= SIS900_MODULE_NAME,
2460 	.id_table	= sis900_pci_tbl,
2461 	.probe		= sis900_probe,
2462 	.remove		= __devexit_p(sis900_remove),
2463 #ifdef CONFIG_PM
2464 	.suspend	= sis900_suspend,
2465 	.resume		= sis900_resume,
2466 #endif /* CONFIG_PM */
2467 };
2468 
sis900_init_module(void)2469 static int __init sis900_init_module(void)
2470 {
2471 /* when a module, this is printed whether or not devices are found in probe */
2472 #ifdef MODULE
2473 	printk(version);
2474 #endif
2475 
2476 	return pci_register_driver(&sis900_pci_driver);
2477 }
2478 
sis900_cleanup_module(void)2479 static void __exit sis900_cleanup_module(void)
2480 {
2481 	pci_unregister_driver(&sis900_pci_driver);
2482 }
2483 
2484 module_init(sis900_init_module);
2485 module_exit(sis900_cleanup_module);
2486 
2487