• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * File Name:
3  *   skfddi.c
4  *
5  * Copyright Information:
6  *   Copyright SysKonnect 1998,1999.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * The information in this file is provided "AS IS" without warranty.
14  *
15  * Abstract:
16  *   A Linux device driver supporting the SysKonnect FDDI PCI controller
17  *   familie.
18  *
19  * Maintainers:
20  *   CG    Christoph Goos (cgoos@syskonnect.de)
21  *
22  * Contributors:
23  *   DM    David S. Miller
24  *
25  * Address all question to:
26  *   linux@syskonnect.de
27  *
28  * The technical manual for the adapters is available from SysKonnect's
29  * web pages: www.syskonnect.com
30  * Goto "Support" and search Knowledge Base for "manual".
31  *
32  * Driver Architecture:
33  *   The driver architecture is based on the DEC FDDI driver by
34  *   Lawrence V. Stefani and several ethernet drivers.
35  *   I also used an existing Windows NT miniport driver.
36  *   All hardware dependent fuctions are handled by the SysKonnect
37  *   Hardware Module.
38  *   The only headerfiles that are directly related to this source
39  *   are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40  *   The others belong to the SysKonnect FDDI Hardware Module and
41  *   should better not be changed.
42  *
43  * Modification History:
44  *              Date            Name    Description
45  *              02-Mar-98       CG	Created.
46  *
47  *		10-Mar-99	CG	Support for 2.2.x added.
48  *		25-Mar-99	CG	Corrected IRQ routing for SMP (APIC)
49  *		26-Oct-99	CG	Fixed compilation error on 2.2.13
50  *		12-Nov-99	CG	Source code release
51  *		22-Nov-99	CG	Included in kernel source.
52  *		07-May-00	DM	64 bit fixes, new dma interface
53  *		31-Jul-03	DB	Audit copy_*_user in skfp_ioctl
54  *					  Daniele Bellucci <bellucda@tiscali.it>
55  *		03-Dec-03	SH	Convert to PCI device model
56  *
57  * Compilation options (-Dxxx):
58  *              DRIVERDEBUG     print lots of messages to log file
59  *              DUMPPACKETS     print received/transmitted packets to logfile
60  *
61  * Tested cpu architectures:
62  *	- i386
63  *	- sparc64
64  */
65 
66 /* Version information string - should be updated prior to */
67 /* each new release!!! */
68 #define VERSION		"2.07"
69 
70 static const char * const boot_msg =
71 	"SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 	"  SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73 
74 /* Include files */
75 
76 #include <linux/module.h>
77 #include <linux/kernel.h>
78 #include <linux/errno.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/netdevice.h>
84 #include <linux/fddidevice.h>
85 #include <linux/skbuff.h>
86 #include <linux/bitops.h>
87 
88 #include <asm/byteorder.h>
89 #include <asm/io.h>
90 #include <asm/uaccess.h>
91 
92 #include	"h/types.h"
93 #undef ADDR			// undo Linux definition
94 #include	"h/skfbi.h"
95 #include	"h/fddi.h"
96 #include	"h/smc.h"
97 #include	"h/smtstate.h"
98 
99 
100 // Define module-wide (static) routines
101 static int skfp_driver_init(struct net_device *dev);
102 static int skfp_open(struct net_device *dev);
103 static int skfp_close(struct net_device *dev);
104 static irqreturn_t skfp_interrupt(int irq, void *dev_id);
105 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106 static void skfp_ctl_set_multicast_list(struct net_device *dev);
107 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111 static void send_queued_packets(struct s_smc *smc);
112 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113 static void ResetAdapter(struct s_smc *smc);
114 
115 
116 // Functions needed by the hardware module
117 void *mac_drv_get_space(struct s_smc *smc, u_int size);
118 void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120 unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 		  int flag);
123 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124 void llc_restart_tx(struct s_smc *smc);
125 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 			 int frag_count, int len);
127 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 			 int frag_count);
129 void mac_drv_fill_rxd(struct s_smc *smc);
130 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 		       int frag_count);
132 int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 		    int la_len);
134 void dump_data(unsigned char *Data, int length);
135 
136 // External functions from the hardware module
137 extern u_int mac_drv_check_space(void);
138 extern void read_address(struct s_smc *smc, u_char * mac_addr);
139 extern void card_stop(struct s_smc *smc);
140 extern int mac_drv_init(struct s_smc *smc);
141 extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 			int len, int frame_status);
143 extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 		       int frame_len, int frame_status);
145 extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146 extern void fddi_isr(struct s_smc *smc);
147 extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148 			int len, int frame_status);
149 extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150 extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151 extern void enable_tx_irq(struct s_smc *smc, u_short queue);
152 
153 static struct pci_device_id skfddi_pci_tbl[] = {
154 	{ PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
155 	{ }			/* Terminating entry */
156 };
157 MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
158 MODULE_LICENSE("GPL");
159 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
160 
161 // Define module-wide (static) variables
162 
163 static int num_boards;	/* total number of adapters configured */
164 
165 #ifdef DRIVERDEBUG
166 #define PRINTK(s, args...) printk(s, ## args)
167 #else
168 #define PRINTK(s, args...)
169 #endif				// DRIVERDEBUG
170 
171 static const struct net_device_ops skfp_netdev_ops = {
172 	.ndo_open		= skfp_open,
173 	.ndo_stop		= skfp_close,
174 	.ndo_start_xmit		= skfp_send_pkt,
175 	.ndo_get_stats		= skfp_ctl_get_stats,
176 	.ndo_change_mtu		= fddi_change_mtu,
177 	.ndo_set_multicast_list = skfp_ctl_set_multicast_list,
178 	.ndo_set_mac_address	= skfp_ctl_set_mac_address,
179 	.ndo_do_ioctl		= skfp_ioctl,
180 };
181 
182 /*
183  * =================
184  * = skfp_init_one =
185  * =================
186  *
187  * Overview:
188  *   Probes for supported FDDI PCI controllers
189  *
190  * Returns:
191  *   Condition code
192  *
193  * Arguments:
194  *   pdev - pointer to PCI device information
195  *
196  * Functional Description:
197  *   This is now called by PCI driver registration process
198  *   for each board found.
199  *
200  * Return Codes:
201  *   0           - This device (fddi0, fddi1, etc) configured successfully
202  *   -ENODEV - No devices present, or no SysKonnect FDDI PCI device
203  *                         present for this device name
204  *
205  *
206  * Side Effects:
207  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
208  *   initialized and the board resources are read and stored in
209  *   the device structure.
210  */
skfp_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)211 static int skfp_init_one(struct pci_dev *pdev,
212 				const struct pci_device_id *ent)
213 {
214 	struct net_device *dev;
215 	struct s_smc *smc;	/* board pointer */
216 	void __iomem *mem;
217 	int err;
218 
219 	PRINTK(KERN_INFO "entering skfp_init_one\n");
220 
221 	if (num_boards == 0)
222 		printk("%s\n", boot_msg);
223 
224 	err = pci_enable_device(pdev);
225 	if (err)
226 		return err;
227 
228 	err = pci_request_regions(pdev, "skfddi");
229 	if (err)
230 		goto err_out1;
231 
232 	pci_set_master(pdev);
233 
234 #ifdef MEM_MAPPED_IO
235 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
236 		printk(KERN_ERR "skfp: region is not an MMIO resource\n");
237 		err = -EIO;
238 		goto err_out2;
239 	}
240 
241 	mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
242 #else
243 	if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
244 		printk(KERN_ERR "skfp: region is not PIO resource\n");
245 		err = -EIO;
246 		goto err_out2;
247 	}
248 
249 	mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
250 #endif
251 	if (!mem) {
252 		printk(KERN_ERR "skfp:  Unable to map register, "
253 				"FDDI adapter will be disabled.\n");
254 		err = -EIO;
255 		goto err_out2;
256 	}
257 
258 	dev = alloc_fddidev(sizeof(struct s_smc));
259 	if (!dev) {
260 		printk(KERN_ERR "skfp: Unable to allocate fddi device, "
261 				"FDDI adapter will be disabled.\n");
262 		err = -ENOMEM;
263 		goto err_out3;
264 	}
265 
266 	dev->irq = pdev->irq;
267 	dev->netdev_ops = &skfp_netdev_ops;
268 
269 	SET_NETDEV_DEV(dev, &pdev->dev);
270 
271 	/* Initialize board structure with bus-specific info */
272 	smc = netdev_priv(dev);
273 	smc->os.dev = dev;
274 	smc->os.bus_type = SK_BUS_TYPE_PCI;
275 	smc->os.pdev = *pdev;
276 	smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
277 	smc->os.MaxFrameSize = MAX_FRAME_SIZE;
278 	smc->os.dev = dev;
279 	smc->hw.slot = -1;
280 	smc->hw.iop = mem;
281 	smc->os.ResetRequested = FALSE;
282 	skb_queue_head_init(&smc->os.SendSkbQueue);
283 
284 	dev->base_addr = (unsigned long)mem;
285 
286 	err = skfp_driver_init(dev);
287 	if (err)
288 		goto err_out4;
289 
290 	err = register_netdev(dev);
291 	if (err)
292 		goto err_out5;
293 
294 	++num_boards;
295 	pci_set_drvdata(pdev, dev);
296 
297 	if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
298 	    (pdev->subsystem_device & 0xff00) == 0x5800)
299 		printk("%s: SysKonnect FDDI PCI adapter"
300 		       " found (SK-%04X)\n", dev->name,
301 		       pdev->subsystem_device);
302 	else
303 		printk("%s: FDDI PCI adapter found\n", dev->name);
304 
305 	return 0;
306 err_out5:
307 	if (smc->os.SharedMemAddr)
308 		pci_free_consistent(pdev, smc->os.SharedMemSize,
309 				    smc->os.SharedMemAddr,
310 				    smc->os.SharedMemDMA);
311 	pci_free_consistent(pdev, MAX_FRAME_SIZE,
312 			    smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
313 err_out4:
314 	free_netdev(dev);
315 err_out3:
316 #ifdef MEM_MAPPED_IO
317 	iounmap(mem);
318 #else
319 	ioport_unmap(mem);
320 #endif
321 err_out2:
322 	pci_release_regions(pdev);
323 err_out1:
324 	pci_disable_device(pdev);
325 	return err;
326 }
327 
328 /*
329  * Called for each adapter board from pci_unregister_driver
330  */
skfp_remove_one(struct pci_dev * pdev)331 static void __devexit skfp_remove_one(struct pci_dev *pdev)
332 {
333 	struct net_device *p = pci_get_drvdata(pdev);
334 	struct s_smc *lp = netdev_priv(p);
335 
336 	unregister_netdev(p);
337 
338 	if (lp->os.SharedMemAddr) {
339 		pci_free_consistent(&lp->os.pdev,
340 				    lp->os.SharedMemSize,
341 				    lp->os.SharedMemAddr,
342 				    lp->os.SharedMemDMA);
343 		lp->os.SharedMemAddr = NULL;
344 	}
345 	if (lp->os.LocalRxBuffer) {
346 		pci_free_consistent(&lp->os.pdev,
347 				    MAX_FRAME_SIZE,
348 				    lp->os.LocalRxBuffer,
349 				    lp->os.LocalRxBufferDMA);
350 		lp->os.LocalRxBuffer = NULL;
351 	}
352 #ifdef MEM_MAPPED_IO
353 	iounmap(lp->hw.iop);
354 #else
355 	ioport_unmap(lp->hw.iop);
356 #endif
357 	pci_release_regions(pdev);
358 	free_netdev(p);
359 
360 	pci_disable_device(pdev);
361 	pci_set_drvdata(pdev, NULL);
362 }
363 
364 /*
365  * ====================
366  * = skfp_driver_init =
367  * ====================
368  *
369  * Overview:
370  *   Initializes remaining adapter board structure information
371  *   and makes sure adapter is in a safe state prior to skfp_open().
372  *
373  * Returns:
374  *   Condition code
375  *
376  * Arguments:
377  *   dev - pointer to device information
378  *
379  * Functional Description:
380  *   This function allocates additional resources such as the host memory
381  *   blocks needed by the adapter.
382  *   The adapter is also reset. The OS must call skfp_open() to open
383  *   the adapter and bring it on-line.
384  *
385  * Return Codes:
386  *    0 - initialization succeeded
387  *   -1 - initialization failed
388  */
skfp_driver_init(struct net_device * dev)389 static  int skfp_driver_init(struct net_device *dev)
390 {
391 	struct s_smc *smc = netdev_priv(dev);
392 	skfddi_priv *bp = &smc->os;
393 	int err = -EIO;
394 
395 	PRINTK(KERN_INFO "entering skfp_driver_init\n");
396 
397 	// set the io address in private structures
398 	bp->base_addr = dev->base_addr;
399 
400 	// Get the interrupt level from the PCI Configuration Table
401 	smc->hw.irq = dev->irq;
402 
403 	spin_lock_init(&bp->DriverLock);
404 
405 	// Allocate invalid frame
406 	bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
407 	if (!bp->LocalRxBuffer) {
408 		printk("could not allocate mem for ");
409 		printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
410 		goto fail;
411 	}
412 
413 	// Determine the required size of the 'shared' memory area.
414 	bp->SharedMemSize = mac_drv_check_space();
415 	PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
416 	if (bp->SharedMemSize > 0) {
417 		bp->SharedMemSize += 16;	// for descriptor alignment
418 
419 		bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
420 							 bp->SharedMemSize,
421 							 &bp->SharedMemDMA);
422 		if (!bp->SharedMemSize) {
423 			printk("could not allocate mem for ");
424 			printk("hardware module: %ld byte\n",
425 			       bp->SharedMemSize);
426 			goto fail;
427 		}
428 		bp->SharedMemHeap = 0;	// Nothing used yet.
429 
430 	} else {
431 		bp->SharedMemAddr = NULL;
432 		bp->SharedMemHeap = 0;
433 	}			// SharedMemSize > 0
434 
435 	memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
436 
437 	card_stop(smc);		// Reset adapter.
438 
439 	PRINTK(KERN_INFO "mac_drv_init()..\n");
440 	if (mac_drv_init(smc) != 0) {
441 		PRINTK(KERN_INFO "mac_drv_init() failed.\n");
442 		goto fail;
443 	}
444 	read_address(smc, NULL);
445 	PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
446 	       smc->hw.fddi_canon_addr.a[0],
447 	       smc->hw.fddi_canon_addr.a[1],
448 	       smc->hw.fddi_canon_addr.a[2],
449 	       smc->hw.fddi_canon_addr.a[3],
450 	       smc->hw.fddi_canon_addr.a[4],
451 	       smc->hw.fddi_canon_addr.a[5]);
452 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
453 
454 	smt_reset_defaults(smc, 0);
455 
456 	return (0);
457 
458 fail:
459 	if (bp->SharedMemAddr) {
460 		pci_free_consistent(&bp->pdev,
461 				    bp->SharedMemSize,
462 				    bp->SharedMemAddr,
463 				    bp->SharedMemDMA);
464 		bp->SharedMemAddr = NULL;
465 	}
466 	if (bp->LocalRxBuffer) {
467 		pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
468 				    bp->LocalRxBuffer, bp->LocalRxBufferDMA);
469 		bp->LocalRxBuffer = NULL;
470 	}
471 	return err;
472 }				// skfp_driver_init
473 
474 
475 /*
476  * =============
477  * = skfp_open =
478  * =============
479  *
480  * Overview:
481  *   Opens the adapter
482  *
483  * Returns:
484  *   Condition code
485  *
486  * Arguments:
487  *   dev - pointer to device information
488  *
489  * Functional Description:
490  *   This function brings the adapter to an operational state.
491  *
492  * Return Codes:
493  *   0           - Adapter was successfully opened
494  *   -EAGAIN - Could not register IRQ
495  */
skfp_open(struct net_device * dev)496 static int skfp_open(struct net_device *dev)
497 {
498 	struct s_smc *smc = netdev_priv(dev);
499 	int err;
500 
501 	PRINTK(KERN_INFO "entering skfp_open\n");
502 	/* Register IRQ - support shared interrupts by passing device ptr */
503 	err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED,
504 			  dev->name, dev);
505 	if (err)
506 		return err;
507 
508 	/*
509 	 * Set current address to factory MAC address
510 	 *
511 	 * Note: We've already done this step in skfp_driver_init.
512 	 *       However, it's possible that a user has set a node
513 	 *               address override, then closed and reopened the
514 	 *               adapter.  Unless we reset the device address field
515 	 *               now, we'll continue to use the existing modified
516 	 *               address.
517 	 */
518 	read_address(smc, NULL);
519 	memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
520 
521 	init_smt(smc, NULL);
522 	smt_online(smc, 1);
523 	STI_FBI();
524 
525 	/* Clear local multicast address tables */
526 	mac_clear_multicast(smc);
527 
528 	/* Disable promiscuous filter settings */
529 	mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
530 
531 	netif_start_queue(dev);
532 	return (0);
533 }				// skfp_open
534 
535 
536 /*
537  * ==============
538  * = skfp_close =
539  * ==============
540  *
541  * Overview:
542  *   Closes the device/module.
543  *
544  * Returns:
545  *   Condition code
546  *
547  * Arguments:
548  *   dev - pointer to device information
549  *
550  * Functional Description:
551  *   This routine closes the adapter and brings it to a safe state.
552  *   The interrupt service routine is deregistered with the OS.
553  *   The adapter can be opened again with another call to skfp_open().
554  *
555  * Return Codes:
556  *   Always return 0.
557  *
558  * Assumptions:
559  *   No further requests for this adapter are made after this routine is
560  *   called.  skfp_open() can be called to reset and reinitialize the
561  *   adapter.
562  */
skfp_close(struct net_device * dev)563 static int skfp_close(struct net_device *dev)
564 {
565 	struct s_smc *smc = netdev_priv(dev);
566 	skfddi_priv *bp = &smc->os;
567 
568 	CLI_FBI();
569 	smt_reset_defaults(smc, 1);
570 	card_stop(smc);
571 	mac_drv_clear_tx_queue(smc);
572 	mac_drv_clear_rx_queue(smc);
573 
574 	netif_stop_queue(dev);
575 	/* Deregister (free) IRQ */
576 	free_irq(dev->irq, dev);
577 
578 	skb_queue_purge(&bp->SendSkbQueue);
579 	bp->QueueSkb = MAX_TX_QUEUE_LEN;
580 
581 	return (0);
582 }				// skfp_close
583 
584 
585 /*
586  * ==================
587  * = skfp_interrupt =
588  * ==================
589  *
590  * Overview:
591  *   Interrupt processing routine
592  *
593  * Returns:
594  *   None
595  *
596  * Arguments:
597  *   irq        - interrupt vector
598  *   dev_id     - pointer to device information
599  *
600  * Functional Description:
601  *   This routine calls the interrupt processing routine for this adapter.  It
602  *   disables and reenables adapter interrupts, as appropriate.  We can support
603  *   shared interrupts since the incoming dev_id pointer provides our device
604  *   structure context. All the real work is done in the hardware module.
605  *
606  * Return Codes:
607  *   None
608  *
609  * Assumptions:
610  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
611  *   on Intel-based systems) is done by the operating system outside this
612  *   routine.
613  *
614  *       System interrupts are enabled through this call.
615  *
616  * Side Effects:
617  *   Interrupts are disabled, then reenabled at the adapter.
618  */
619 
skfp_interrupt(int irq,void * dev_id)620 static irqreturn_t skfp_interrupt(int irq, void *dev_id)
621 {
622 	struct net_device *dev = dev_id;
623 	struct s_smc *smc;	/* private board structure pointer */
624 	skfddi_priv *bp;
625 
626 	smc = netdev_priv(dev);
627 	bp = &smc->os;
628 
629 	// IRQs enabled or disabled ?
630 	if (inpd(ADDR(B0_IMSK)) == 0) {
631 		// IRQs are disabled: must be shared interrupt
632 		return IRQ_NONE;
633 	}
634 	// Note: At this point, IRQs are enabled.
635 	if ((inpd(ISR_A) & smc->hw.is_imask) == 0) {	// IRQ?
636 		// Adapter did not issue an IRQ: must be shared interrupt
637 		return IRQ_NONE;
638 	}
639 	CLI_FBI();		// Disable IRQs from our adapter.
640 	spin_lock(&bp->DriverLock);
641 
642 	// Call interrupt handler in hardware module (HWM).
643 	fddi_isr(smc);
644 
645 	if (smc->os.ResetRequested) {
646 		ResetAdapter(smc);
647 		smc->os.ResetRequested = FALSE;
648 	}
649 	spin_unlock(&bp->DriverLock);
650 	STI_FBI();		// Enable IRQs from our adapter.
651 
652 	return IRQ_HANDLED;
653 }				// skfp_interrupt
654 
655 
656 /*
657  * ======================
658  * = skfp_ctl_get_stats =
659  * ======================
660  *
661  * Overview:
662  *   Get statistics for FDDI adapter
663  *
664  * Returns:
665  *   Pointer to FDDI statistics structure
666  *
667  * Arguments:
668  *   dev - pointer to device information
669  *
670  * Functional Description:
671  *   Gets current MIB objects from adapter, then
672  *   returns FDDI statistics structure as defined
673  *   in if_fddi.h.
674  *
675  *   Note: Since the FDDI statistics structure is
676  *   still new and the device structure doesn't
677  *   have an FDDI-specific get statistics handler,
678  *   we'll return the FDDI statistics structure as
679  *   a pointer to an Ethernet statistics structure.
680  *   That way, at least the first part of the statistics
681  *   structure can be decoded properly.
682  *   We'll have to pay attention to this routine as the
683  *   device structure becomes more mature and LAN media
684  *   independent.
685  *
686  */
skfp_ctl_get_stats(struct net_device * dev)687 static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
688 {
689 	struct s_smc *bp = netdev_priv(dev);
690 
691 	/* Fill the bp->stats structure with driver-maintained counters */
692 
693 	bp->os.MacStat.port_bs_flag[0] = 0x1234;
694 	bp->os.MacStat.port_bs_flag[1] = 0x5678;
695 // goos: need to fill out fddi statistic
696 #if 0
697 	/* Get FDDI SMT MIB objects */
698 
699 /* Fill the bp->stats structure with the SMT MIB object values */
700 
701 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
702 	bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
703 	bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
704 	bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
705 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
706 	bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
707 	bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
708 	bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
709 	bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
710 	bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
711 	bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
712 	bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
713 	bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
714 	bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
715 	bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
716 	bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
717 	bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
718 	bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
719 	bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
720 	bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
721 	bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
722 	bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
723 	bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
724 	bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
725 	bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
726 	bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
727 	bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
728 	bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
729 	bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
730 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
731 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
732 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
733 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
734 	bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
735 	bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
736 	bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
737 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
738 	bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
739 	bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
740 	bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
741 	bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
742 	bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
743 	bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
744 	bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
745 	bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
746 	bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
747 	bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
748 	bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
749 	bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
750 	bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
751 	bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
752 	bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
753 	bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
754 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
755 	bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
756 	bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
757 	bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
758 	bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
759 	bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
760 	bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
761 	bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
762 	bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
763 	bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
764 	bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
765 	memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
766 	memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
767 	bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
768 	bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
769 	bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
770 	bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
771 	bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
772 	bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
773 	bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
774 	bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
775 	bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
776 	bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
777 	bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
778 	bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
779 	bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
780 	bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
781 	bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
782 	bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
783 	bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
784 	bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
785 	bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
786 	bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
787 	bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
788 	bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
789 	bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
790 	bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
791 	bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
792 	bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
793 
794 
795 	/* Fill the bp->stats structure with the FDDI counter values */
796 
797 	bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
798 	bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
799 	bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
800 	bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
801 	bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
802 	bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
803 	bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
804 	bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
805 	bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
806 	bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
807 	bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
808 
809 #endif
810 	return ((struct net_device_stats *) &bp->os.MacStat);
811 }				// ctl_get_stat
812 
813 
814 /*
815  * ==============================
816  * = skfp_ctl_set_multicast_list =
817  * ==============================
818  *
819  * Overview:
820  *   Enable/Disable LLC frame promiscuous mode reception
821  *   on the adapter and/or update multicast address table.
822  *
823  * Returns:
824  *   None
825  *
826  * Arguments:
827  *   dev - pointer to device information
828  *
829  * Functional Description:
830  *   This function acquires the driver lock and only calls
831  *   skfp_ctl_set_multicast_list_wo_lock then.
832  *   This routine follows a fairly simple algorithm for setting the
833  *   adapter filters and CAM:
834  *
835  *      if IFF_PROMISC flag is set
836  *              enable promiscuous mode
837  *      else
838  *              disable promiscuous mode
839  *              if number of multicast addresses <= max. multicast number
840  *                      add mc addresses to adapter table
841  *              else
842  *                      enable promiscuous mode
843  *              update adapter filters
844  *
845  * Assumptions:
846  *   Multicast addresses are presented in canonical (LSB) format.
847  *
848  * Side Effects:
849  *   On-board adapter filters are updated.
850  */
skfp_ctl_set_multicast_list(struct net_device * dev)851 static void skfp_ctl_set_multicast_list(struct net_device *dev)
852 {
853 	struct s_smc *smc = netdev_priv(dev);
854 	skfddi_priv *bp = &smc->os;
855 	unsigned long Flags;
856 
857 	spin_lock_irqsave(&bp->DriverLock, Flags);
858 	skfp_ctl_set_multicast_list_wo_lock(dev);
859 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
860 	return;
861 }				// skfp_ctl_set_multicast_list
862 
863 
864 
skfp_ctl_set_multicast_list_wo_lock(struct net_device * dev)865 static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
866 {
867 	struct s_smc *smc = netdev_priv(dev);
868 	struct dev_mc_list *dmi;	/* ptr to multicast addr entry */
869 	int i;
870 
871 	/* Enable promiscuous mode, if necessary */
872 	if (dev->flags & IFF_PROMISC) {
873 		mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
874 		PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
875 	}
876 	/* Else, update multicast address table */
877 	else {
878 		mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
879 		PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
880 
881 		// Reset all MC addresses
882 		mac_clear_multicast(smc);
883 		mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
884 
885 		if (dev->flags & IFF_ALLMULTI) {
886 			mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
887 			PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
888 		} else if (dev->mc_count > 0) {
889 			if (dev->mc_count <= FPMAX_MULTICAST) {
890 				/* use exact filtering */
891 
892 				// point to first multicast addr
893 				dmi = dev->mc_list;
894 
895 				for (i = 0; i < dev->mc_count; i++) {
896 					mac_add_multicast(smc,
897 							  (struct fddi_addr *)dmi->dmi_addr,
898 							  1);
899 
900 					PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
901 					PRINTK(" %02x %02x %02x ",
902 					       dmi->dmi_addr[0],
903 					       dmi->dmi_addr[1],
904 					       dmi->dmi_addr[2]);
905 					PRINTK("%02x %02x %02x\n",
906 					       dmi->dmi_addr[3],
907 					       dmi->dmi_addr[4],
908 					       dmi->dmi_addr[5]);
909 					dmi = dmi->next;
910 				}	// for
911 
912 			} else {	// more MC addresses than HW supports
913 
914 				mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
915 				PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
916 			}
917 		} else {	// no MC addresses
918 
919 			PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
920 		}
921 
922 		/* Update adapter filters */
923 		mac_update_multicast(smc);
924 	}
925 	return;
926 }				// skfp_ctl_set_multicast_list_wo_lock
927 
928 
929 /*
930  * ===========================
931  * = skfp_ctl_set_mac_address =
932  * ===========================
933  *
934  * Overview:
935  *   set new mac address on adapter and update dev_addr field in device table.
936  *
937  * Returns:
938  *   None
939  *
940  * Arguments:
941  *   dev  - pointer to device information
942  *   addr - pointer to sockaddr structure containing unicast address to set
943  *
944  * Assumptions:
945  *   The address pointed to by addr->sa_data is a valid unicast
946  *   address and is presented in canonical (LSB) format.
947  */
skfp_ctl_set_mac_address(struct net_device * dev,void * addr)948 static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
949 {
950 	struct s_smc *smc = netdev_priv(dev);
951 	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
952 	skfddi_priv *bp = &smc->os;
953 	unsigned long Flags;
954 
955 
956 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
957 	spin_lock_irqsave(&bp->DriverLock, Flags);
958 	ResetAdapter(smc);
959 	spin_unlock_irqrestore(&bp->DriverLock, Flags);
960 
961 	return (0);		/* always return zero */
962 }				// skfp_ctl_set_mac_address
963 
964 
965 /*
966  * ==============
967  * = skfp_ioctl =
968  * ==============
969  *
970  * Overview:
971  *
972  * Perform IOCTL call functions here. Some are privileged operations and the
973  * effective uid is checked in those cases.
974  *
975  * Returns:
976  *   status value
977  *   0 - success
978  *   other - failure
979  *
980  * Arguments:
981  *   dev  - pointer to device information
982  *   rq - pointer to ioctl request structure
983  *   cmd - ?
984  *
985  */
986 
987 
skfp_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)988 static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
989 {
990 	struct s_smc *smc = netdev_priv(dev);
991 	skfddi_priv *lp = &smc->os;
992 	struct s_skfp_ioctl ioc;
993 	int status = 0;
994 
995 	if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
996 		return -EFAULT;
997 
998 	switch (ioc.cmd) {
999 	case SKFP_GET_STATS:	/* Get the driver statistics */
1000 		ioc.len = sizeof(lp->MacStat);
1001 		status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
1002 				? -EFAULT : 0;
1003 		break;
1004 	case SKFP_CLR_STATS:	/* Zero out the driver statistics */
1005 		if (!capable(CAP_NET_ADMIN)) {
1006 			status = -EPERM;
1007 		} else {
1008 			memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1009 		}
1010 		break;
1011 	default:
1012 		printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1013 		status = -EOPNOTSUPP;
1014 
1015 	}			// switch
1016 
1017 	return status;
1018 }				// skfp_ioctl
1019 
1020 
1021 /*
1022  * =====================
1023  * = skfp_send_pkt     =
1024  * =====================
1025  *
1026  * Overview:
1027  *   Queues a packet for transmission and try to transmit it.
1028  *
1029  * Returns:
1030  *   Condition code
1031  *
1032  * Arguments:
1033  *   skb - pointer to sk_buff to queue for transmission
1034  *   dev - pointer to device information
1035  *
1036  * Functional Description:
1037  *   Here we assume that an incoming skb transmit request
1038  *   is contained in a single physically contiguous buffer
1039  *   in which the virtual address of the start of packet
1040  *   (skb->data) can be converted to a physical address
1041  *   by using pci_map_single().
1042  *
1043  *   We have an internal queue for packets we can not send
1044  *   immediately. Packets in this queue can be given to the
1045  *   adapter if transmit buffers are freed.
1046  *
1047  *   We can't free the skb until after it's been DMA'd
1048  *   out by the adapter, so we'll keep it in the driver and
1049  *   return it in mac_drv_tx_complete.
1050  *
1051  * Return Codes:
1052  *   0 - driver has queued and/or sent packet
1053  *       1 - caller should requeue the sk_buff for later transmission
1054  *
1055  * Assumptions:
1056  *   The entire packet is stored in one physically
1057  *   contiguous buffer which is not cached and whose
1058  *   32-bit physical address can be determined.
1059  *
1060  *   It's vital that this routine is NOT reentered for the
1061  *   same board and that the OS is not in another section of
1062  *   code (eg. skfp_interrupt) for the same board on a
1063  *   different thread.
1064  *
1065  * Side Effects:
1066  *   None
1067  */
skfp_send_pkt(struct sk_buff * skb,struct net_device * dev)1068 static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1069 {
1070 	struct s_smc *smc = netdev_priv(dev);
1071 	skfddi_priv *bp = &smc->os;
1072 
1073 	PRINTK(KERN_INFO "skfp_send_pkt\n");
1074 
1075 	/*
1076 	 * Verify that incoming transmit request is OK
1077 	 *
1078 	 * Note: The packet size check is consistent with other
1079 	 *               Linux device drivers, although the correct packet
1080 	 *               size should be verified before calling the
1081 	 *               transmit routine.
1082 	 */
1083 
1084 	if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1085 		bp->MacStat.gen.tx_errors++;	/* bump error counter */
1086 		// dequeue packets from xmt queue and send them
1087 		netif_start_queue(dev);
1088 		dev_kfree_skb(skb);
1089 		return (0);	/* return "success" */
1090 	}
1091 	if (bp->QueueSkb == 0) {	// return with tbusy set: queue full
1092 
1093 		netif_stop_queue(dev);
1094 		return 1;
1095 	}
1096 	bp->QueueSkb--;
1097 	skb_queue_tail(&bp->SendSkbQueue, skb);
1098 	send_queued_packets(netdev_priv(dev));
1099 	if (bp->QueueSkb == 0) {
1100 		netif_stop_queue(dev);
1101 	}
1102 	dev->trans_start = jiffies;
1103 	return 0;
1104 
1105 }				// skfp_send_pkt
1106 
1107 
1108 /*
1109  * =======================
1110  * = send_queued_packets =
1111  * =======================
1112  *
1113  * Overview:
1114  *   Send packets from the driver queue as long as there are some and
1115  *   transmit resources are available.
1116  *
1117  * Returns:
1118  *   None
1119  *
1120  * Arguments:
1121  *   smc - pointer to smc (adapter) structure
1122  *
1123  * Functional Description:
1124  *   Take a packet from queue if there is any. If not, then we are done.
1125  *   Check if there are resources to send the packet. If not, requeue it
1126  *   and exit.
1127  *   Set packet descriptor flags and give packet to adapter.
1128  *   Check if any send resources can be freed (we do not use the
1129  *   transmit complete interrupt).
1130  */
send_queued_packets(struct s_smc * smc)1131 static void send_queued_packets(struct s_smc *smc)
1132 {
1133 	skfddi_priv *bp = &smc->os;
1134 	struct sk_buff *skb;
1135 	unsigned char fc;
1136 	int queue;
1137 	struct s_smt_fp_txd *txd;	// Current TxD.
1138 	dma_addr_t dma_address;
1139 	unsigned long Flags;
1140 
1141 	int frame_status;	// HWM tx frame status.
1142 
1143 	PRINTK(KERN_INFO "send queued packets\n");
1144 	for (;;) {
1145 		// send first buffer from queue
1146 		skb = skb_dequeue(&bp->SendSkbQueue);
1147 
1148 		if (!skb) {
1149 			PRINTK(KERN_INFO "queue empty\n");
1150 			return;
1151 		}		// queue empty !
1152 
1153 		spin_lock_irqsave(&bp->DriverLock, Flags);
1154 		fc = skb->data[0];
1155 		queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1156 #ifdef ESS
1157 		// Check if the frame may/must be sent as a synchronous frame.
1158 
1159 		if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1160 			// It's an LLC frame.
1161 			if (!smc->ess.sync_bw_available)
1162 				fc &= ~FC_SYNC_BIT; // No bandwidth available.
1163 
1164 			else {	// Bandwidth is available.
1165 
1166 				if (smc->mib.fddiESSSynchTxMode) {
1167 					// Send as sync. frame.
1168 					fc |= FC_SYNC_BIT;
1169 				}
1170 			}
1171 		}
1172 #endif				// ESS
1173 		frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1174 
1175 		if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1176 			// Unable to send the frame.
1177 
1178 			if ((frame_status & RING_DOWN) != 0) {
1179 				// Ring is down.
1180 				PRINTK("Tx attempt while ring down.\n");
1181 			} else if ((frame_status & OUT_OF_TXD) != 0) {
1182 				PRINTK("%s: out of TXDs.\n", bp->dev->name);
1183 			} else {
1184 				PRINTK("%s: out of transmit resources",
1185 					bp->dev->name);
1186 			}
1187 
1188 			// Note: We will retry the operation as soon as
1189 			// transmit resources become available.
1190 			skb_queue_head(&bp->SendSkbQueue, skb);
1191 			spin_unlock_irqrestore(&bp->DriverLock, Flags);
1192 			return;	// Packet has been queued.
1193 
1194 		}		// if (unable to send frame)
1195 
1196 		bp->QueueSkb++;	// one packet less in local queue
1197 
1198 		// source address in packet ?
1199 		CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1200 
1201 		txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1202 
1203 		dma_address = pci_map_single(&bp->pdev, skb->data,
1204 					     skb->len, PCI_DMA_TODEVICE);
1205 		if (frame_status & LAN_TX) {
1206 			txd->txd_os.skb = skb;			// save skb
1207 			txd->txd_os.dma_addr = dma_address;	// save dma mapping
1208 		}
1209 		hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1210                       frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1211 
1212 		if (!(frame_status & LAN_TX)) {		// local only frame
1213 			pci_unmap_single(&bp->pdev, dma_address,
1214 					 skb->len, PCI_DMA_TODEVICE);
1215 			dev_kfree_skb_irq(skb);
1216 		}
1217 		spin_unlock_irqrestore(&bp->DriverLock, Flags);
1218 	}			// for
1219 
1220 	return;			// never reached
1221 
1222 }				// send_queued_packets
1223 
1224 
1225 /************************
1226  *
1227  * CheckSourceAddress
1228  *
1229  * Verify if the source address is set. Insert it if necessary.
1230  *
1231  ************************/
CheckSourceAddress(unsigned char * frame,unsigned char * hw_addr)1232 static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1233 {
1234 	unsigned char SRBit;
1235 
1236 	if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1237 
1238 		return;
1239 	if ((unsigned short) frame[1 + 10] != 0)
1240 		return;
1241 	SRBit = frame[1 + 6] & 0x01;
1242 	memcpy(&frame[1 + 6], hw_addr, 6);
1243 	frame[8] |= SRBit;
1244 }				// CheckSourceAddress
1245 
1246 
1247 /************************
1248  *
1249  *	ResetAdapter
1250  *
1251  *	Reset the adapter and bring it back to operational mode.
1252  * Args
1253  *	smc - A pointer to the SMT context struct.
1254  * Out
1255  *	Nothing.
1256  *
1257  ************************/
ResetAdapter(struct s_smc * smc)1258 static void ResetAdapter(struct s_smc *smc)
1259 {
1260 
1261 	PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1262 
1263 	// Stop the adapter.
1264 
1265 	card_stop(smc);		// Stop all activity.
1266 
1267 	// Clear the transmit and receive descriptor queues.
1268 	mac_drv_clear_tx_queue(smc);
1269 	mac_drv_clear_rx_queue(smc);
1270 
1271 	// Restart the adapter.
1272 
1273 	smt_reset_defaults(smc, 1);	// Initialize the SMT module.
1274 
1275 	init_smt(smc, (smc->os.dev)->dev_addr);	// Initialize the hardware.
1276 
1277 	smt_online(smc, 1);	// Insert into the ring again.
1278 	STI_FBI();
1279 
1280 	// Restore original receive mode (multicasts, promiscuous, etc.).
1281 	skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1282 }				// ResetAdapter
1283 
1284 
1285 //--------------- functions called by hardware module ----------------
1286 
1287 /************************
1288  *
1289  *	llc_restart_tx
1290  *
1291  *	The hardware driver calls this routine when the transmit complete
1292  *	interrupt bits (end of frame) for the synchronous or asynchronous
1293  *	queue is set.
1294  *
1295  * NOTE The hardware driver calls this function also if no packets are queued.
1296  *	The routine must be able to handle this case.
1297  * Args
1298  *	smc - A pointer to the SMT context struct.
1299  * Out
1300  *	Nothing.
1301  *
1302  ************************/
llc_restart_tx(struct s_smc * smc)1303 void llc_restart_tx(struct s_smc *smc)
1304 {
1305 	skfddi_priv *bp = &smc->os;
1306 
1307 	PRINTK(KERN_INFO "[llc_restart_tx]\n");
1308 
1309 	// Try to send queued packets
1310 	spin_unlock(&bp->DriverLock);
1311 	send_queued_packets(smc);
1312 	spin_lock(&bp->DriverLock);
1313 	netif_start_queue(bp->dev);// system may send again if it was blocked
1314 
1315 }				// llc_restart_tx
1316 
1317 
1318 /************************
1319  *
1320  *	mac_drv_get_space
1321  *
1322  *	The hardware module calls this function to allocate the memory
1323  *	for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1324  * Args
1325  *	smc - A pointer to the SMT context struct.
1326  *
1327  *	size - Size of memory in bytes to allocate.
1328  * Out
1329  *	!= 0	A pointer to the virtual address of the allocated memory.
1330  *	== 0	Allocation error.
1331  *
1332  ************************/
mac_drv_get_space(struct s_smc * smc,unsigned int size)1333 void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1334 {
1335 	void *virt;
1336 
1337 	PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1338 	virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1339 
1340 	if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1341 		printk("Unexpected SMT memory size requested: %d\n", size);
1342 		return (NULL);
1343 	}
1344 	smc->os.SharedMemHeap += size;	// Move heap pointer.
1345 
1346 	PRINTK(KERN_INFO "mac_drv_get_space end\n");
1347 	PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1348 	PRINTK(KERN_INFO "bus  addr: %lx\n", (ulong)
1349 	       (smc->os.SharedMemDMA +
1350 		((char *) virt - (char *)smc->os.SharedMemAddr)));
1351 	return (virt);
1352 }				// mac_drv_get_space
1353 
1354 
1355 /************************
1356  *
1357  *	mac_drv_get_desc_mem
1358  *
1359  *	This function is called by the hardware dependent module.
1360  *	It allocates the memory for the RxD and TxD descriptors.
1361  *
1362  *	This memory must be non-cached, non-movable and non-swappable.
1363  *	This memory should start at a physical page boundary.
1364  * Args
1365  *	smc - A pointer to the SMT context struct.
1366  *
1367  *	size - Size of memory in bytes to allocate.
1368  * Out
1369  *	!= 0	A pointer to the virtual address of the allocated memory.
1370  *	== 0	Allocation error.
1371  *
1372  ************************/
mac_drv_get_desc_mem(struct s_smc * smc,unsigned int size)1373 void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1374 {
1375 
1376 	char *virt;
1377 
1378 	PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1379 
1380 	// Descriptor memory must be aligned on 16-byte boundary.
1381 
1382 	virt = mac_drv_get_space(smc, size);
1383 
1384 	size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1385 	size = size % 16;
1386 
1387 	PRINTK("Allocate %u bytes alignment gap ", size);
1388 	PRINTK("for descriptor memory.\n");
1389 
1390 	if (!mac_drv_get_space(smc, size)) {
1391 		printk("fddi: Unable to align descriptor memory.\n");
1392 		return (NULL);
1393 	}
1394 	return (virt + size);
1395 }				// mac_drv_get_desc_mem
1396 
1397 
1398 /************************
1399  *
1400  *	mac_drv_virt2phys
1401  *
1402  *	Get the physical address of a given virtual address.
1403  * Args
1404  *	smc - A pointer to the SMT context struct.
1405  *
1406  *	virt - A (virtual) pointer into our 'shared' memory area.
1407  * Out
1408  *	Physical address of the given virtual address.
1409  *
1410  ************************/
mac_drv_virt2phys(struct s_smc * smc,void * virt)1411 unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1412 {
1413 	return (smc->os.SharedMemDMA +
1414 		((char *) virt - (char *)smc->os.SharedMemAddr));
1415 }				// mac_drv_virt2phys
1416 
1417 
1418 /************************
1419  *
1420  *	dma_master
1421  *
1422  *	The HWM calls this function, when the driver leads through a DMA
1423  *	transfer. If the OS-specific module must prepare the system hardware
1424  *	for the DMA transfer, it should do it in this function.
1425  *
1426  *	The hardware module calls this dma_master if it wants to send an SMT
1427  *	frame.  This means that the virt address passed in here is part of
1428  *      the 'shared' memory area.
1429  * Args
1430  *	smc - A pointer to the SMT context struct.
1431  *
1432  *	virt - The virtual address of the data.
1433  *
1434  *	len - The length in bytes of the data.
1435  *
1436  *	flag - Indicates the transmit direction and the buffer type:
1437  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1438  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1439  *		SMT_BUF (0x80)	SMT buffer
1440  *
1441  *	>> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1442  * Out
1443  *	Returns the pyhsical address for the DMA transfer.
1444  *
1445  ************************/
dma_master(struct s_smc * smc,void * virt,int len,int flag)1446 u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1447 {
1448 	return (smc->os.SharedMemDMA +
1449 		((char *) virt - (char *)smc->os.SharedMemAddr));
1450 }				// dma_master
1451 
1452 
1453 /************************
1454  *
1455  *	dma_complete
1456  *
1457  *	The hardware module calls this routine when it has completed a DMA
1458  *	transfer. If the operating system dependent module has set up the DMA
1459  *	channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1460  *	the DMA channel.
1461  * Args
1462  *	smc - A pointer to the SMT context struct.
1463  *
1464  *	descr - A pointer to a TxD or RxD, respectively.
1465  *
1466  *	flag - Indicates the DMA transfer direction / SMT buffer:
1467  *		DMA_RD	(0x01)	system RAM ==> adapter buffer memory
1468  *		DMA_WR	(0x02)	adapter buffer memory ==> system RAM
1469  *		SMT_BUF (0x80)	SMT buffer (managed by HWM)
1470  * Out
1471  *	Nothing.
1472  *
1473  ************************/
dma_complete(struct s_smc * smc,volatile union s_fp_descr * descr,int flag)1474 void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1475 {
1476 	/* For TX buffers, there are two cases.  If it is an SMT transmit
1477 	 * buffer, there is nothing to do since we use consistent memory
1478 	 * for the 'shared' memory area.  The other case is for normal
1479 	 * transmit packets given to us by the networking stack, and in
1480 	 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1481 	 * below.
1482 	 *
1483 	 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1484 	 * because the hardware module is about to potentially look at
1485 	 * the contents of the buffer.  If we did not call the PCI DMA
1486 	 * unmap first, the hardware module could read inconsistent data.
1487 	 */
1488 	if (flag & DMA_WR) {
1489 		skfddi_priv *bp = &smc->os;
1490 		volatile struct s_smt_fp_rxd *r = &descr->r;
1491 
1492 		/* If SKB is NULL, we used the local buffer. */
1493 		if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1494 			int MaxFrameSize = bp->MaxFrameSize;
1495 
1496 			pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1497 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1498 			r->rxd_os.dma_addr = 0;
1499 		}
1500 	}
1501 }				// dma_complete
1502 
1503 
1504 /************************
1505  *
1506  *	mac_drv_tx_complete
1507  *
1508  *	Transmit of a packet is complete. Release the tx staging buffer.
1509  *
1510  * Args
1511  *	smc - A pointer to the SMT context struct.
1512  *
1513  *	txd - A pointer to the last TxD which is used by the frame.
1514  * Out
1515  *	Returns nothing.
1516  *
1517  ************************/
mac_drv_tx_complete(struct s_smc * smc,volatile struct s_smt_fp_txd * txd)1518 void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1519 {
1520 	struct sk_buff *skb;
1521 
1522 	PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1523 	// Check if this TxD points to a skb
1524 
1525 	if (!(skb = txd->txd_os.skb)) {
1526 		PRINTK("TXD with no skb assigned.\n");
1527 		return;
1528 	}
1529 	txd->txd_os.skb = NULL;
1530 
1531 	// release the DMA mapping
1532 	pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1533 			 skb->len, PCI_DMA_TODEVICE);
1534 	txd->txd_os.dma_addr = 0;
1535 
1536 	smc->os.MacStat.gen.tx_packets++;	// Count transmitted packets.
1537 	smc->os.MacStat.gen.tx_bytes+=skb->len;	// Count bytes
1538 
1539 	// free the skb
1540 	dev_kfree_skb_irq(skb);
1541 
1542 	PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1543 }				// mac_drv_tx_complete
1544 
1545 
1546 /************************
1547  *
1548  * dump packets to logfile
1549  *
1550  ************************/
1551 #ifdef DUMPPACKETS
dump_data(unsigned char * Data,int length)1552 void dump_data(unsigned char *Data, int length)
1553 {
1554 	int i, j;
1555 	unsigned char s[255], sh[10];
1556 	if (length > 64) {
1557 		length = 64;
1558 	}
1559 	printk(KERN_INFO "---Packet start---\n");
1560 	for (i = 0, j = 0; i < length / 8; i++, j += 8)
1561 		printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1562 		       Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1563 		       Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1564 	strcpy(s, "");
1565 	for (i = 0; i < length % 8; i++) {
1566 		sprintf(sh, "%02x ", Data[j + i]);
1567 		strcat(s, sh);
1568 	}
1569 	printk(KERN_INFO "%s\n", s);
1570 	printk(KERN_INFO "------------------\n");
1571 }				// dump_data
1572 #else
1573 #define dump_data(data,len)
1574 #endif				// DUMPPACKETS
1575 
1576 /************************
1577  *
1578  *	mac_drv_rx_complete
1579  *
1580  *	The hardware module calls this function if an LLC frame is received
1581  *	in a receive buffer. Also the SMT, NSA, and directed beacon frames
1582  *	from the network will be passed to the LLC layer by this function
1583  *	if passing is enabled.
1584  *
1585  *	mac_drv_rx_complete forwards the frame to the LLC layer if it should
1586  *	be received. It also fills the RxD ring with new receive buffers if
1587  *	some can be queued.
1588  * Args
1589  *	smc - A pointer to the SMT context struct.
1590  *
1591  *	rxd - A pointer to the first RxD which is used by the receive frame.
1592  *
1593  *	frag_count - Count of RxDs used by the received frame.
1594  *
1595  *	len - Frame length.
1596  * Out
1597  *	Nothing.
1598  *
1599  ************************/
mac_drv_rx_complete(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count,int len)1600 void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1601 			 int frag_count, int len)
1602 {
1603 	skfddi_priv *bp = &smc->os;
1604 	struct sk_buff *skb;
1605 	unsigned char *virt, *cp;
1606 	unsigned short ri;
1607 	u_int RifLength;
1608 
1609 	PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1610 	if (frag_count != 1) {	// This is not allowed to happen.
1611 
1612 		printk("fddi: Multi-fragment receive!\n");
1613 		goto RequeueRxd;	// Re-use the given RXD(s).
1614 
1615 	}
1616 	skb = rxd->rxd_os.skb;
1617 	if (!skb) {
1618 		PRINTK(KERN_INFO "No skb in rxd\n");
1619 		smc->os.MacStat.gen.rx_errors++;
1620 		goto RequeueRxd;
1621 	}
1622 	virt = skb->data;
1623 
1624 	// The DMA mapping was released in dma_complete above.
1625 
1626 	dump_data(skb->data, len);
1627 
1628 	/*
1629 	 * FDDI Frame format:
1630 	 * +-------+-------+-------+------------+--------+------------+
1631 	 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1632 	 * +-------+-------+-------+------------+--------+------------+
1633 	 *
1634 	 * FC = Frame Control
1635 	 * DA = Destination Address
1636 	 * SA = Source Address
1637 	 * RIF = Routing Information Field
1638 	 * LLC = Logical Link Control
1639 	 */
1640 
1641 	// Remove Routing Information Field (RIF), if present.
1642 
1643 	if ((virt[1 + 6] & FDDI_RII) == 0)
1644 		RifLength = 0;
1645 	else {
1646 		int n;
1647 // goos: RIF removal has still to be tested
1648 		PRINTK(KERN_INFO "RIF found\n");
1649 		// Get RIF length from Routing Control (RC) field.
1650 		cp = virt + FDDI_MAC_HDR_LEN;	// Point behind MAC header.
1651 
1652 		ri = ntohs(*((__be16 *) cp));
1653 		RifLength = ri & FDDI_RCF_LEN_MASK;
1654 		if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1655 			printk("fddi: Invalid RIF.\n");
1656 			goto RequeueRxd;	// Discard the frame.
1657 
1658 		}
1659 		virt[1 + 6] &= ~FDDI_RII;	// Clear RII bit.
1660 		// regions overlap
1661 
1662 		virt = cp + RifLength;
1663 		for (n = FDDI_MAC_HDR_LEN; n; n--)
1664 			*--virt = *--cp;
1665 		// adjust sbd->data pointer
1666 		skb_pull(skb, RifLength);
1667 		len -= RifLength;
1668 		RifLength = 0;
1669 	}
1670 
1671 	// Count statistics.
1672 	smc->os.MacStat.gen.rx_packets++;	// Count indicated receive
1673 						// packets.
1674 	smc->os.MacStat.gen.rx_bytes+=len;	// Count bytes.
1675 
1676 	// virt points to header again
1677 	if (virt[1] & 0x01) {	// Check group (multicast) bit.
1678 
1679 		smc->os.MacStat.gen.multicast++;
1680 	}
1681 
1682 	// deliver frame to system
1683 	rxd->rxd_os.skb = NULL;
1684 	skb_trim(skb, len);
1685 	skb->protocol = fddi_type_trans(skb, bp->dev);
1686 
1687 	netif_rx(skb);
1688 
1689 	HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1690 	return;
1691 
1692       RequeueRxd:
1693 	PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1694 	mac_drv_requeue_rxd(smc, rxd, frag_count);
1695 	smc->os.MacStat.gen.rx_errors++;	// Count receive packets
1696 						// not indicated.
1697 
1698 }				// mac_drv_rx_complete
1699 
1700 
1701 /************************
1702  *
1703  *	mac_drv_requeue_rxd
1704  *
1705  *	The hardware module calls this function to request the OS-specific
1706  *	module to queue the receive buffer(s) represented by the pointer
1707  *	to the RxD and the frag_count into the receive queue again. This
1708  *	buffer was filled with an invalid frame or an SMT frame.
1709  * Args
1710  *	smc - A pointer to the SMT context struct.
1711  *
1712  *	rxd - A pointer to the first RxD which is used by the receive frame.
1713  *
1714  *	frag_count - Count of RxDs used by the received frame.
1715  * Out
1716  *	Nothing.
1717  *
1718  ************************/
mac_drv_requeue_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1719 void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1720 			 int frag_count)
1721 {
1722 	volatile struct s_smt_fp_rxd *next_rxd;
1723 	volatile struct s_smt_fp_rxd *src_rxd;
1724 	struct sk_buff *skb;
1725 	int MaxFrameSize;
1726 	unsigned char *v_addr;
1727 	dma_addr_t b_addr;
1728 
1729 	if (frag_count != 1)	// This is not allowed to happen.
1730 
1731 		printk("fddi: Multi-fragment requeue!\n");
1732 
1733 	MaxFrameSize = smc->os.MaxFrameSize;
1734 	src_rxd = rxd;
1735 	for (; frag_count > 0; frag_count--) {
1736 		next_rxd = src_rxd->rxd_next;
1737 		rxd = HWM_GET_CURR_RXD(smc);
1738 
1739 		skb = src_rxd->rxd_os.skb;
1740 		if (skb == NULL) {	// this should not happen
1741 
1742 			PRINTK("Requeue with no skb in rxd!\n");
1743 			skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1744 			if (skb) {
1745 				// we got a skb
1746 				rxd->rxd_os.skb = skb;
1747 				skb_reserve(skb, 3);
1748 				skb_put(skb, MaxFrameSize);
1749 				v_addr = skb->data;
1750 				b_addr = pci_map_single(&smc->os.pdev,
1751 							v_addr,
1752 							MaxFrameSize,
1753 							PCI_DMA_FROMDEVICE);
1754 				rxd->rxd_os.dma_addr = b_addr;
1755 			} else {
1756 				// no skb available, use local buffer
1757 				PRINTK("Queueing invalid buffer!\n");
1758 				rxd->rxd_os.skb = NULL;
1759 				v_addr = smc->os.LocalRxBuffer;
1760 				b_addr = smc->os.LocalRxBufferDMA;
1761 			}
1762 		} else {
1763 			// we use skb from old rxd
1764 			rxd->rxd_os.skb = skb;
1765 			v_addr = skb->data;
1766 			b_addr = pci_map_single(&smc->os.pdev,
1767 						v_addr,
1768 						MaxFrameSize,
1769 						PCI_DMA_FROMDEVICE);
1770 			rxd->rxd_os.dma_addr = b_addr;
1771 		}
1772 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1773 			    FIRST_FRAG | LAST_FRAG);
1774 
1775 		src_rxd = next_rxd;
1776 	}
1777 }				// mac_drv_requeue_rxd
1778 
1779 
1780 /************************
1781  *
1782  *	mac_drv_fill_rxd
1783  *
1784  *	The hardware module calls this function at initialization time
1785  *	to fill the RxD ring with receive buffers. It is also called by
1786  *	mac_drv_rx_complete if rx_free is large enough to queue some new
1787  *	receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1788  *	receive buffers as long as enough RxDs and receive buffers are
1789  *	available.
1790  * Args
1791  *	smc - A pointer to the SMT context struct.
1792  * Out
1793  *	Nothing.
1794  *
1795  ************************/
mac_drv_fill_rxd(struct s_smc * smc)1796 void mac_drv_fill_rxd(struct s_smc *smc)
1797 {
1798 	int MaxFrameSize;
1799 	unsigned char *v_addr;
1800 	unsigned long b_addr;
1801 	struct sk_buff *skb;
1802 	volatile struct s_smt_fp_rxd *rxd;
1803 
1804 	PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1805 
1806 	// Walk through the list of free receive buffers, passing receive
1807 	// buffers to the HWM as long as RXDs are available.
1808 
1809 	MaxFrameSize = smc->os.MaxFrameSize;
1810 	// Check if there is any RXD left.
1811 	while (HWM_GET_RX_FREE(smc) > 0) {
1812 		PRINTK(KERN_INFO ".\n");
1813 
1814 		rxd = HWM_GET_CURR_RXD(smc);
1815 		skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1816 		if (skb) {
1817 			// we got a skb
1818 			skb_reserve(skb, 3);
1819 			skb_put(skb, MaxFrameSize);
1820 			v_addr = skb->data;
1821 			b_addr = pci_map_single(&smc->os.pdev,
1822 						v_addr,
1823 						MaxFrameSize,
1824 						PCI_DMA_FROMDEVICE);
1825 			rxd->rxd_os.dma_addr = b_addr;
1826 		} else {
1827 			// no skb available, use local buffer
1828 			// System has run out of buffer memory, but we want to
1829 			// keep the receiver running in hope of better times.
1830 			// Multiple descriptors may point to this local buffer,
1831 			// so data in it must be considered invalid.
1832 			PRINTK("Queueing invalid buffer!\n");
1833 			v_addr = smc->os.LocalRxBuffer;
1834 			b_addr = smc->os.LocalRxBufferDMA;
1835 		}
1836 
1837 		rxd->rxd_os.skb = skb;
1838 
1839 		// Pass receive buffer to HWM.
1840 		hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1841 			    FIRST_FRAG | LAST_FRAG);
1842 	}
1843 	PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1844 }				// mac_drv_fill_rxd
1845 
1846 
1847 /************************
1848  *
1849  *	mac_drv_clear_rxd
1850  *
1851  *	The hardware module calls this function to release unused
1852  *	receive buffers.
1853  * Args
1854  *	smc - A pointer to the SMT context struct.
1855  *
1856  *	rxd - A pointer to the first RxD which is used by the receive buffer.
1857  *
1858  *	frag_count - Count of RxDs used by the receive buffer.
1859  * Out
1860  *	Nothing.
1861  *
1862  ************************/
mac_drv_clear_rxd(struct s_smc * smc,volatile struct s_smt_fp_rxd * rxd,int frag_count)1863 void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1864 		       int frag_count)
1865 {
1866 
1867 	struct sk_buff *skb;
1868 
1869 	PRINTK("entering mac_drv_clear_rxd\n");
1870 
1871 	if (frag_count != 1)	// This is not allowed to happen.
1872 
1873 		printk("fddi: Multi-fragment clear!\n");
1874 
1875 	for (; frag_count > 0; frag_count--) {
1876 		skb = rxd->rxd_os.skb;
1877 		if (skb != NULL) {
1878 			skfddi_priv *bp = &smc->os;
1879 			int MaxFrameSize = bp->MaxFrameSize;
1880 
1881 			pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1882 					 MaxFrameSize, PCI_DMA_FROMDEVICE);
1883 
1884 			dev_kfree_skb(skb);
1885 			rxd->rxd_os.skb = NULL;
1886 		}
1887 		rxd = rxd->rxd_next;	// Next RXD.
1888 
1889 	}
1890 }				// mac_drv_clear_rxd
1891 
1892 
1893 /************************
1894  *
1895  *	mac_drv_rx_init
1896  *
1897  *	The hardware module calls this routine when an SMT or NSA frame of the
1898  *	local SMT should be delivered to the LLC layer.
1899  *
1900  *	It is necessary to have this function, because there is no other way to
1901  *	copy the contents of SMT MBufs into receive buffers.
1902  *
1903  *	mac_drv_rx_init allocates the required target memory for this frame,
1904  *	and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1905  * Args
1906  *	smc - A pointer to the SMT context struct.
1907  *
1908  *	len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1909  *
1910  *	fc - The Frame Control field of the received frame.
1911  *
1912  *	look_ahead - A pointer to the lookahead data buffer (may be NULL).
1913  *
1914  *	la_len - The length of the lookahead data stored in the lookahead
1915  *	buffer (may be zero).
1916  * Out
1917  *	Always returns zero (0).
1918  *
1919  ************************/
mac_drv_rx_init(struct s_smc * smc,int len,int fc,char * look_ahead,int la_len)1920 int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1921 		    char *look_ahead, int la_len)
1922 {
1923 	struct sk_buff *skb;
1924 
1925 	PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1926 
1927 	// "Received" a SMT or NSA frame of the local SMT.
1928 
1929 	if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1930 		PRINTK("fddi: Discard invalid local SMT frame\n");
1931 		PRINTK("  len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1932 		       len, la_len, (unsigned long) look_ahead);
1933 		return (0);
1934 	}
1935 	skb = alloc_skb(len + 3, GFP_ATOMIC);
1936 	if (!skb) {
1937 		PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1938 		return (0);
1939 	}
1940 	skb_reserve(skb, 3);
1941 	skb_put(skb, len);
1942 	skb_copy_to_linear_data(skb, look_ahead, len);
1943 
1944 	// deliver frame to system
1945 	skb->protocol = fddi_type_trans(skb, smc->os.dev);
1946 	netif_rx(skb);
1947 
1948 	return (0);
1949 }				// mac_drv_rx_init
1950 
1951 
1952 /************************
1953  *
1954  *	smt_timer_poll
1955  *
1956  *	This routine is called periodically by the SMT module to clean up the
1957  *	driver.
1958  *
1959  *	Return any queued frames back to the upper protocol layers if the ring
1960  *	is down.
1961  * Args
1962  *	smc - A pointer to the SMT context struct.
1963  * Out
1964  *	Nothing.
1965  *
1966  ************************/
smt_timer_poll(struct s_smc * smc)1967 void smt_timer_poll(struct s_smc *smc)
1968 {
1969 }				// smt_timer_poll
1970 
1971 
1972 /************************
1973  *
1974  *	ring_status_indication
1975  *
1976  *	This function indicates a change of the ring state.
1977  * Args
1978  *	smc - A pointer to the SMT context struct.
1979  *
1980  *	status - The current ring status.
1981  * Out
1982  *	Nothing.
1983  *
1984  ************************/
ring_status_indication(struct s_smc * smc,u_long status)1985 void ring_status_indication(struct s_smc *smc, u_long status)
1986 {
1987 	PRINTK("ring_status_indication( ");
1988 	if (status & RS_RES15)
1989 		PRINTK("RS_RES15 ");
1990 	if (status & RS_HARDERROR)
1991 		PRINTK("RS_HARDERROR ");
1992 	if (status & RS_SOFTERROR)
1993 		PRINTK("RS_SOFTERROR ");
1994 	if (status & RS_BEACON)
1995 		PRINTK("RS_BEACON ");
1996 	if (status & RS_PATHTEST)
1997 		PRINTK("RS_PATHTEST ");
1998 	if (status & RS_SELFTEST)
1999 		PRINTK("RS_SELFTEST ");
2000 	if (status & RS_RES9)
2001 		PRINTK("RS_RES9 ");
2002 	if (status & RS_DISCONNECT)
2003 		PRINTK("RS_DISCONNECT ");
2004 	if (status & RS_RES7)
2005 		PRINTK("RS_RES7 ");
2006 	if (status & RS_DUPADDR)
2007 		PRINTK("RS_DUPADDR ");
2008 	if (status & RS_NORINGOP)
2009 		PRINTK("RS_NORINGOP ");
2010 	if (status & RS_VERSION)
2011 		PRINTK("RS_VERSION ");
2012 	if (status & RS_STUCKBYPASSS)
2013 		PRINTK("RS_STUCKBYPASSS ");
2014 	if (status & RS_EVENT)
2015 		PRINTK("RS_EVENT ");
2016 	if (status & RS_RINGOPCHANGE)
2017 		PRINTK("RS_RINGOPCHANGE ");
2018 	if (status & RS_RES0)
2019 		PRINTK("RS_RES0 ");
2020 	PRINTK("]\n");
2021 }				// ring_status_indication
2022 
2023 
2024 /************************
2025  *
2026  *	smt_get_time
2027  *
2028  *	Gets the current time from the system.
2029  * Args
2030  *	None.
2031  * Out
2032  *	The current time in TICKS_PER_SECOND.
2033  *
2034  *	TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2035  *	defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2036  *	to the time returned by smt_get_time().
2037  *
2038  ************************/
smt_get_time(void)2039 unsigned long smt_get_time(void)
2040 {
2041 	return jiffies;
2042 }				// smt_get_time
2043 
2044 
2045 /************************
2046  *
2047  *	smt_stat_counter
2048  *
2049  *	Status counter update (ring_op, fifo full).
2050  * Args
2051  *	smc - A pointer to the SMT context struct.
2052  *
2053  *	stat -	= 0: A ring operational change occurred.
2054  *		= 1: The FORMAC FIFO buffer is full / FIFO overflow.
2055  * Out
2056  *	Nothing.
2057  *
2058  ************************/
smt_stat_counter(struct s_smc * smc,int stat)2059 void smt_stat_counter(struct s_smc *smc, int stat)
2060 {
2061 //      BOOLEAN RingIsUp ;
2062 
2063 	PRINTK(KERN_INFO "smt_stat_counter\n");
2064 	switch (stat) {
2065 	case 0:
2066 		PRINTK(KERN_INFO "Ring operational change.\n");
2067 		break;
2068 	case 1:
2069 		PRINTK(KERN_INFO "Receive fifo overflow.\n");
2070 		smc->os.MacStat.gen.rx_errors++;
2071 		break;
2072 	default:
2073 		PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2074 		break;
2075 	}
2076 }				// smt_stat_counter
2077 
2078 
2079 /************************
2080  *
2081  *	cfm_state_change
2082  *
2083  *	Sets CFM state in custom statistics.
2084  * Args
2085  *	smc - A pointer to the SMT context struct.
2086  *
2087  *	c_state - Possible values are:
2088  *
2089  *		EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2090  *		EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2091  * Out
2092  *	Nothing.
2093  *
2094  ************************/
cfm_state_change(struct s_smc * smc,int c_state)2095 void cfm_state_change(struct s_smc *smc, int c_state)
2096 {
2097 #ifdef DRIVERDEBUG
2098 	char *s;
2099 
2100 	switch (c_state) {
2101 	case SC0_ISOLATED:
2102 		s = "SC0_ISOLATED";
2103 		break;
2104 	case SC1_WRAP_A:
2105 		s = "SC1_WRAP_A";
2106 		break;
2107 	case SC2_WRAP_B:
2108 		s = "SC2_WRAP_B";
2109 		break;
2110 	case SC4_THRU_A:
2111 		s = "SC4_THRU_A";
2112 		break;
2113 	case SC5_THRU_B:
2114 		s = "SC5_THRU_B";
2115 		break;
2116 	case SC7_WRAP_S:
2117 		s = "SC7_WRAP_S";
2118 		break;
2119 	case SC9_C_WRAP_A:
2120 		s = "SC9_C_WRAP_A";
2121 		break;
2122 	case SC10_C_WRAP_B:
2123 		s = "SC10_C_WRAP_B";
2124 		break;
2125 	case SC11_C_WRAP_S:
2126 		s = "SC11_C_WRAP_S";
2127 		break;
2128 	default:
2129 		PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2130 		return;
2131 	}
2132 	PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2133 #endif				// DRIVERDEBUG
2134 }				// cfm_state_change
2135 
2136 
2137 /************************
2138  *
2139  *	ecm_state_change
2140  *
2141  *	Sets ECM state in custom statistics.
2142  * Args
2143  *	smc - A pointer to the SMT context struct.
2144  *
2145  *	e_state - Possible values are:
2146  *
2147  *		SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2148  *		SC5_THRU_B (7), SC7_WRAP_S (8)
2149  * Out
2150  *	Nothing.
2151  *
2152  ************************/
ecm_state_change(struct s_smc * smc,int e_state)2153 void ecm_state_change(struct s_smc *smc, int e_state)
2154 {
2155 #ifdef DRIVERDEBUG
2156 	char *s;
2157 
2158 	switch (e_state) {
2159 	case EC0_OUT:
2160 		s = "EC0_OUT";
2161 		break;
2162 	case EC1_IN:
2163 		s = "EC1_IN";
2164 		break;
2165 	case EC2_TRACE:
2166 		s = "EC2_TRACE";
2167 		break;
2168 	case EC3_LEAVE:
2169 		s = "EC3_LEAVE";
2170 		break;
2171 	case EC4_PATH_TEST:
2172 		s = "EC4_PATH_TEST";
2173 		break;
2174 	case EC5_INSERT:
2175 		s = "EC5_INSERT";
2176 		break;
2177 	case EC6_CHECK:
2178 		s = "EC6_CHECK";
2179 		break;
2180 	case EC7_DEINSERT:
2181 		s = "EC7_DEINSERT";
2182 		break;
2183 	default:
2184 		s = "unknown";
2185 		break;
2186 	}
2187 	PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2188 #endif				//DRIVERDEBUG
2189 }				// ecm_state_change
2190 
2191 
2192 /************************
2193  *
2194  *	rmt_state_change
2195  *
2196  *	Sets RMT state in custom statistics.
2197  * Args
2198  *	smc - A pointer to the SMT context struct.
2199  *
2200  *	r_state - Possible values are:
2201  *
2202  *		RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2203  *		RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2204  * Out
2205  *	Nothing.
2206  *
2207  ************************/
rmt_state_change(struct s_smc * smc,int r_state)2208 void rmt_state_change(struct s_smc *smc, int r_state)
2209 {
2210 #ifdef DRIVERDEBUG
2211 	char *s;
2212 
2213 	switch (r_state) {
2214 	case RM0_ISOLATED:
2215 		s = "RM0_ISOLATED";
2216 		break;
2217 	case RM1_NON_OP:
2218 		s = "RM1_NON_OP - not operational";
2219 		break;
2220 	case RM2_RING_OP:
2221 		s = "RM2_RING_OP - ring operational";
2222 		break;
2223 	case RM3_DETECT:
2224 		s = "RM3_DETECT - detect dupl addresses";
2225 		break;
2226 	case RM4_NON_OP_DUP:
2227 		s = "RM4_NON_OP_DUP - dupl. addr detected";
2228 		break;
2229 	case RM5_RING_OP_DUP:
2230 		s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2231 		break;
2232 	case RM6_DIRECTED:
2233 		s = "RM6_DIRECTED - sending directed beacons";
2234 		break;
2235 	case RM7_TRACE:
2236 		s = "RM7_TRACE - trace initiated";
2237 		break;
2238 	default:
2239 		s = "unknown";
2240 		break;
2241 	}
2242 	PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2243 #endif				// DRIVERDEBUG
2244 }				// rmt_state_change
2245 
2246 
2247 /************************
2248  *
2249  *	drv_reset_indication
2250  *
2251  *	This function is called by the SMT when it has detected a severe
2252  *	hardware problem. The driver should perform a reset on the adapter
2253  *	as soon as possible, but not from within this function.
2254  * Args
2255  *	smc - A pointer to the SMT context struct.
2256  * Out
2257  *	Nothing.
2258  *
2259  ************************/
drv_reset_indication(struct s_smc * smc)2260 void drv_reset_indication(struct s_smc *smc)
2261 {
2262 	PRINTK(KERN_INFO "entering drv_reset_indication\n");
2263 
2264 	smc->os.ResetRequested = TRUE;	// Set flag.
2265 
2266 }				// drv_reset_indication
2267 
2268 static struct pci_driver skfddi_pci_driver = {
2269 	.name		= "skfddi",
2270 	.id_table	= skfddi_pci_tbl,
2271 	.probe		= skfp_init_one,
2272 	.remove		= __devexit_p(skfp_remove_one),
2273 };
2274 
skfd_init(void)2275 static int __init skfd_init(void)
2276 {
2277 	return pci_register_driver(&skfddi_pci_driver);
2278 }
2279 
skfd_exit(void)2280 static void __exit skfd_exit(void)
2281 {
2282 	pci_unregister_driver(&skfddi_pci_driver);
2283 }
2284 
2285 module_init(skfd_init);
2286 module_exit(skfd_exit);
2287